target: simplify register get/set ops
[fw/openocd] / src / target / cortex_m3.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   This program is free software; you can redistribute it and/or modify  *
12  *   it under the terms of the GNU General Public License as published by  *
13  *   the Free Software Foundation; either version 2 of the License, or     *
14  *   (at your option) any later version.                                   *
15  *                                                                         *
16  *   This program is distributed in the hope that it will be useful,       *
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
19  *   GNU General Public License for more details.                          *
20  *                                                                         *
21  *   You should have received a copy of the GNU General Public License     *
22  *   along with this program; if not, write to the                         *
23  *   Free Software Foundation, Inc.,                                       *
24  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
25  *                                                                         *
26  *                                                                         *
27  *   Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0)              *
28  *                                                                         *
29  ***************************************************************************/
30 #ifdef HAVE_CONFIG_H
31 #include "config.h"
32 #endif
33
34 #include "breakpoints.h"
35 #include "cortex_m3.h"
36 #include "target_request.h"
37 #include "target_type.h"
38 #include "arm_disassembler.h"
39 #include "register.h"
40
41
42 /* NOTE:  most of this should work fine for the Cortex-M1 and
43  * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
44  */
45
46
47 /* forward declarations */
48 static int cortex_m3_set_breakpoint(struct target *target, struct breakpoint *breakpoint);
49 static int cortex_m3_unset_breakpoint(struct target *target, struct breakpoint *breakpoint);
50 static void cortex_m3_enable_watchpoints(struct target *target);
51 static int cortex_m3_store_core_reg_u32(struct target *target,
52                 enum armv7m_regtype type, uint32_t num, uint32_t value);
53
54 #ifdef ARMV7_GDB_HACKS
55 extern uint8_t armv7m_gdb_dummy_cpsr_value[];
56 extern struct reg armv7m_gdb_dummy_cpsr_reg;
57 #endif
58
59 static int cortexm3_dap_read_coreregister_u32(struct swjdp_common *swjdp,
60                 uint32_t *value, int regnum)
61 {
62         int retval;
63         uint32_t dcrdr;
64
65         /* because the DCB_DCRDR is used for the emulated dcc channel
66          * we have to save/restore the DCB_DCRDR when used */
67
68         mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
69
70         swjdp->trans_mode = TRANS_MODE_COMPOSITE;
71
72         /* mem_ap_write_u32(swjdp, DCB_DCRSR, regnum); */
73         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
74         dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum);
75
76         /* mem_ap_read_u32(swjdp, DCB_DCRDR, value); */
77         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
78         dap_ap_read_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
79
80         retval = swjdp_transaction_endcheck(swjdp);
81
82         /* restore DCB_DCRDR - this needs to be in a seperate
83          * transaction otherwise the emulated DCC channel breaks */
84         if (retval == ERROR_OK)
85                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
86
87         return retval;
88 }
89
90 static int cortexm3_dap_write_coreregister_u32(struct swjdp_common *swjdp,
91                 uint32_t value, int regnum)
92 {
93         int retval;
94         uint32_t dcrdr;
95
96         /* because the DCB_DCRDR is used for the emulated dcc channel
97          * we have to save/restore the DCB_DCRDR when used */
98
99         mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
100
101         swjdp->trans_mode = TRANS_MODE_COMPOSITE;
102
103         /* mem_ap_write_u32(swjdp, DCB_DCRDR, core_regs[i]); */
104         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
105         dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
106
107         /* mem_ap_write_u32(swjdp, DCB_DCRSR, i | DCRSR_WnR); */
108         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
109         dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum | DCRSR_WnR);
110
111         retval = swjdp_transaction_endcheck(swjdp);
112
113         /* restore DCB_DCRDR - this needs to be in a seperate
114          * transaction otherwise the emulated DCC channel breaks */
115         if (retval == ERROR_OK)
116                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
117
118         return retval;
119 }
120
121 static int cortex_m3_write_debug_halt_mask(struct target *target,
122                 uint32_t mask_on, uint32_t mask_off)
123 {
124         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
125         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
126
127         /* mask off status bits */
128         cortex_m3->dcb_dhcsr &= ~((0xFFFF << 16) | mask_off);
129         /* create new register mask */
130         cortex_m3->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
131
132         return mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, cortex_m3->dcb_dhcsr);
133 }
134
135 static int cortex_m3_clear_halt(struct target *target)
136 {
137         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
138         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
139
140         /* clear step if any */
141         cortex_m3_write_debug_halt_mask(target, C_HALT, C_STEP);
142
143         /* Read Debug Fault Status Register */
144         mem_ap_read_atomic_u32(swjdp, NVIC_DFSR, &cortex_m3->nvic_dfsr);
145         /* Clear Debug Fault Status */
146         mem_ap_write_atomic_u32(swjdp, NVIC_DFSR, cortex_m3->nvic_dfsr);
147         LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m3->nvic_dfsr);
148
149         return ERROR_OK;
150 }
151
152 static int cortex_m3_single_step_core(struct target *target)
153 {
154         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
155         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
156         uint32_t dhcsr_save;
157
158         /* backup dhcsr reg */
159         dhcsr_save = cortex_m3->dcb_dhcsr;
160
161         /* mask interrupts if not done already */
162         if (!(cortex_m3->dcb_dhcsr & C_MASKINTS))
163                 mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN);
164         mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN);
165         LOG_DEBUG(" ");
166
167         /* restore dhcsr reg */
168         cortex_m3->dcb_dhcsr = dhcsr_save;
169         cortex_m3_clear_halt(target);
170
171         return ERROR_OK;
172 }
173
174 static int cortex_m3_endreset_event(struct target *target)
175 {
176         int i;
177         uint32_t dcb_demcr;
178         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
179         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
180         struct cortex_m3_fp_comparator *fp_list = cortex_m3->fp_comparator_list;
181         struct cortex_m3_dwt_comparator *dwt_list = cortex_m3->dwt_comparator_list;
182
183         mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &dcb_demcr);
184         LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "",dcb_demcr);
185
186         /* this regsiter is used for emulated dcc channel */
187         mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
188
189         /* Enable debug requests */
190         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
191         if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN))
192                 mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
193
194         /* clear any interrupt masking */
195         cortex_m3_write_debug_halt_mask(target, 0, C_MASKINTS);
196
197         /* Enable trace and dwt */
198         mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | VC_HARDERR | VC_BUSERR);
199         /* Monitor bus faults */
200         mem_ap_write_u32(swjdp, NVIC_SHCSR, SHCSR_BUSFAULTENA);
201
202         /* Enable FPB */
203         target_write_u32(target, FP_CTRL, 3);
204         cortex_m3->fpb_enabled = 1;
205
206         /* Restore FPB registers */
207         for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++)
208         {
209                 target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
210         }
211
212         /* Restore DWT registers */
213         for (i = 0; i < cortex_m3->dwt_num_comp; i++)
214         {
215                 target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
216                                 dwt_list[i].comp);
217                 target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
218                                 dwt_list[i].mask);
219                 target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
220                                 dwt_list[i].function);
221         }
222         swjdp_transaction_endcheck(swjdp);
223
224         armv7m_invalidate_core_regs(target);
225
226         /* make sure we have latest dhcsr flags */
227         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
228
229         return ERROR_OK;
230 }
231
232 static int cortex_m3_examine_debug_reason(struct target *target)
233 {
234         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
235
236         /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason */
237         /* only check the debug reason if we don't know it already */
238
239         if ((target->debug_reason != DBG_REASON_DBGRQ)
240                 && (target->debug_reason != DBG_REASON_SINGLESTEP))
241         {
242                 if (cortex_m3->nvic_dfsr & DFSR_BKPT)
243                 {
244                         target->debug_reason = DBG_REASON_BREAKPOINT;
245                         if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
246                                 target->debug_reason = DBG_REASON_WPTANDBKPT;
247                 }
248                 else if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
249                         target->debug_reason = DBG_REASON_WATCHPOINT;
250                 else if (cortex_m3->nvic_dfsr & DFSR_VCATCH)
251                         target->debug_reason = DBG_REASON_BREAKPOINT;
252                 else /* EXTERNAL, HALTED */
253                         target->debug_reason = DBG_REASON_UNDEFINED;
254         }
255
256         return ERROR_OK;
257 }
258
259 static int cortex_m3_examine_exception_reason(struct target *target)
260 {
261         uint32_t shcsr, except_sr, cfsr = -1, except_ar = -1;
262         struct armv7m_common *armv7m = target_to_armv7m(target);
263         struct swjdp_common *swjdp = &armv7m->swjdp_info;
264
265         mem_ap_read_u32(swjdp, NVIC_SHCSR, &shcsr);
266         switch (armv7m->exception_number)
267         {
268                 case 2: /* NMI */
269                         break;
270                 case 3: /* Hard Fault */
271                         mem_ap_read_atomic_u32(swjdp, NVIC_HFSR, &except_sr);
272                         if (except_sr & 0x40000000)
273                         {
274                                 mem_ap_read_u32(swjdp, NVIC_CFSR, &cfsr);
275                         }
276                         break;
277                 case 4: /* Memory Management */
278                         mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
279                         mem_ap_read_u32(swjdp, NVIC_MMFAR, &except_ar);
280                         break;
281                 case 5: /* Bus Fault */
282                         mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
283                         mem_ap_read_u32(swjdp, NVIC_BFAR, &except_ar);
284                         break;
285                 case 6: /* Usage Fault */
286                         mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
287                         break;
288                 case 11:        /* SVCall */
289                         break;
290                 case 12:        /* Debug Monitor */
291                         mem_ap_read_u32(swjdp, NVIC_DFSR, &except_sr);
292                         break;
293                 case 14:        /* PendSV */
294                         break;
295                 case 15:        /* SysTick */
296                         break;
297                 default:
298                         except_sr = 0;
299                         break;
300         }
301         swjdp_transaction_endcheck(swjdp);
302         LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32 ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32 "", armv7m_exception_string(armv7m->exception_number), \
303                 shcsr, except_sr, cfsr, except_ar);
304         return ERROR_OK;
305 }
306
307 static int cortex_m3_debug_entry(struct target *target)
308 {
309         int i;
310         uint32_t xPSR;
311         int retval;
312         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
313         struct armv7m_common *armv7m = &cortex_m3->armv7m;
314         struct swjdp_common *swjdp = &armv7m->swjdp_info;
315
316         LOG_DEBUG(" ");
317
318         cortex_m3_clear_halt(target);
319         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
320
321         if ((retval = armv7m->examine_debug_reason(target)) != ERROR_OK)
322                 return retval;
323
324         /* Examine target state and mode */
325         /* First load register acessible through core debug port*/
326         int num_regs = armv7m->core_cache->num_regs;
327
328         for (i = 0; i < num_regs; i++)
329         {
330                 if (!armv7m->core_cache->reg_list[i].valid)
331                         armv7m->read_core_reg(target, i);
332         }
333
334         xPSR = buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32);
335
336 #ifdef ARMV7_GDB_HACKS
337         /* copy real xpsr reg for gdb, setting thumb bit */
338         buf_set_u32(armv7m_gdb_dummy_cpsr_value, 0, 32, xPSR);
339         buf_set_u32(armv7m_gdb_dummy_cpsr_value, 5, 1, 1);
340         armv7m_gdb_dummy_cpsr_reg.valid = armv7m->core_cache->reg_list[ARMV7M_xPSR].valid;
341         armv7m_gdb_dummy_cpsr_reg.dirty = armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty;
342 #endif
343
344         /* For IT instructions xPSR must be reloaded on resume and clear on debug exec */
345         if (xPSR & 0xf00)
346         {
347                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = armv7m->core_cache->reg_list[ARMV7M_xPSR].valid;
348                 cortex_m3_store_core_reg_u32(target, ARMV7M_REGISTER_CORE_GP, 16, xPSR &~ 0xff);
349         }
350
351         /* Are we in an exception handler */
352         if (xPSR & 0x1FF)
353         {
354                 armv7m->core_mode = ARMV7M_MODE_HANDLER;
355                 armv7m->exception_number = (xPSR & 0x1FF);
356         }
357         else
358         {
359                 armv7m->core_mode = buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_CONTROL].value, 0, 1);
360                 armv7m->exception_number = 0;
361         }
362
363         if (armv7m->exception_number)
364         {
365                 cortex_m3_examine_exception_reason(target);
366         }
367
368         LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", target->state: %s",
369                 armv7m_mode_strings[armv7m->core_mode],
370                 *(uint32_t*)(armv7m->core_cache->reg_list[15].value),
371                 target_state_name(target));
372
373         if (armv7m->post_debug_entry)
374                 armv7m->post_debug_entry(target);
375
376         return ERROR_OK;
377 }
378
379 static int cortex_m3_poll(struct target *target)
380 {
381         int retval;
382         enum target_state prev_target_state = target->state;
383         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
384         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
385
386         /* Read from Debug Halting Control and Status Register */
387         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
388         if (retval != ERROR_OK)
389         {
390                 target->state = TARGET_UNKNOWN;
391                 return retval;
392         }
393
394         if (cortex_m3->dcb_dhcsr & S_RESET_ST)
395         {
396                 /* check if still in reset */
397                 mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
398
399                 if (cortex_m3->dcb_dhcsr & S_RESET_ST)
400                 {
401                         target->state = TARGET_RESET;
402                         return ERROR_OK;
403                 }
404         }
405
406         if (target->state == TARGET_RESET)
407         {
408                 /* Cannot switch context while running so endreset is called with target->state == TARGET_RESET */
409                 LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32 "", cortex_m3->dcb_dhcsr);
410                 cortex_m3_endreset_event(target);
411                 target->state = TARGET_RUNNING;
412                 prev_target_state = TARGET_RUNNING;
413         }
414
415         if (cortex_m3->dcb_dhcsr & S_HALT)
416         {
417                 target->state = TARGET_HALTED;
418
419                 if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET))
420                 {
421                         if ((retval = cortex_m3_debug_entry(target)) != ERROR_OK)
422                                 return retval;
423
424                         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
425                 }
426                 if (prev_target_state == TARGET_DEBUG_RUNNING)
427                 {
428                         LOG_DEBUG(" ");
429                         if ((retval = cortex_m3_debug_entry(target)) != ERROR_OK)
430                                 return retval;
431
432                         target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
433                 }
434         }
435
436         /* REVISIT when S_SLEEP is set, it's in a Sleep or DeepSleep state.
437          * How best to model low power modes?
438          */
439
440         if (target->state == TARGET_UNKNOWN)
441         {
442                 /* check if processor is retiring instructions */
443                 if (cortex_m3->dcb_dhcsr & S_RETIRE_ST)
444                 {
445                         target->state = TARGET_RUNNING;
446                         return ERROR_OK;
447                 }
448         }
449
450         return ERROR_OK;
451 }
452
453 static int cortex_m3_halt(struct target *target)
454 {
455         LOG_DEBUG("target->state: %s",
456                 target_state_name(target));
457
458         if (target->state == TARGET_HALTED)
459         {
460                 LOG_DEBUG("target was already halted");
461                 return ERROR_OK;
462         }
463
464         if (target->state == TARGET_UNKNOWN)
465         {
466                 LOG_WARNING("target was in unknown state when halt was requested");
467         }
468
469         if (target->state == TARGET_RESET)
470         {
471                 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst())
472                 {
473                         LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
474                         return ERROR_TARGET_FAILURE;
475                 }
476                 else
477                 {
478                         /* we came here in a reset_halt or reset_init sequence
479                          * debug entry was already prepared in cortex_m3_prepare_reset_halt()
480                          */
481                         target->debug_reason = DBG_REASON_DBGRQ;
482
483                         return ERROR_OK;
484                 }
485         }
486
487         /* Write to Debug Halting Control and Status Register */
488         cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
489
490         target->debug_reason = DBG_REASON_DBGRQ;
491
492         return ERROR_OK;
493 }
494
495 static int cortex_m3_soft_reset_halt(struct target *target)
496 {
497         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
498         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
499         uint32_t dcb_dhcsr = 0;
500         int retval, timeout = 0;
501
502         /* Enter debug state on reset, cf. end_reset_event() */
503         mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
504
505         /* Request a reset */
506         mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR, AIRCR_VECTKEY | AIRCR_VECTRESET);
507         target->state = TARGET_RESET;
508
509         /* registers are now invalid */
510         armv7m_invalidate_core_regs(target);
511
512         while (timeout < 100)
513         {
514                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &dcb_dhcsr);
515                 if (retval == ERROR_OK)
516                 {
517                         mem_ap_read_atomic_u32(swjdp, NVIC_DFSR, &cortex_m3->nvic_dfsr);
518                         if ((dcb_dhcsr & S_HALT) && (cortex_m3->nvic_dfsr & DFSR_VCATCH))
519                         {
520                                 LOG_DEBUG("system reset-halted, dcb_dhcsr 0x%" PRIx32 ", nvic_dfsr 0x%" PRIx32 "", dcb_dhcsr, cortex_m3->nvic_dfsr);
521                                 cortex_m3_poll(target);
522                                 return ERROR_OK;
523                         }
524                         else
525                                 LOG_DEBUG("waiting for system reset-halt, dcb_dhcsr 0x%" PRIx32 ", %i ms", dcb_dhcsr, timeout);
526                 }
527                 timeout++;
528                 alive_sleep(1);
529         }
530
531         return ERROR_OK;
532 }
533
534 static void cortex_m3_enable_breakpoints(struct target *target)
535 {
536         struct breakpoint *breakpoint = target->breakpoints;
537
538         /* set any pending breakpoints */
539         while (breakpoint)
540         {
541                 if (breakpoint->set == 0)
542                         cortex_m3_set_breakpoint(target, breakpoint);
543                 breakpoint = breakpoint->next;
544         }
545 }
546
547 static int cortex_m3_resume(struct target *target, int current,
548                 uint32_t address, int handle_breakpoints, int debug_execution)
549 {
550         struct armv7m_common *armv7m = target_to_armv7m(target);
551         struct breakpoint *breakpoint = NULL;
552         uint32_t resume_pc;
553
554         if (target->state != TARGET_HALTED)
555         {
556                 LOG_WARNING("target not halted");
557                 return ERROR_TARGET_NOT_HALTED;
558         }
559
560         if (!debug_execution)
561         {
562                 target_free_all_working_areas(target);
563                 cortex_m3_enable_breakpoints(target);
564                 cortex_m3_enable_watchpoints(target);
565         }
566
567         if (debug_execution)
568         {
569                 /* Disable interrupts */
570                 /* We disable interrupts in the PRIMASK register instead of masking with C_MASKINTS,
571                  * This is probably the same issue as Cortex-M3 Errata  377493:
572                  * C_MASKINTS in parallel with disabled interrupts can cause local faults to not be taken. */
573                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
574                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
575                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
576
577                 /* Make sure we are in Thumb mode */
578                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
579                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
580                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
581                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
582         }
583
584         /* current = 1: continue on current pc, otherwise continue at <address> */
585         if (!current)
586         {
587                 buf_set_u32(armv7m->core_cache->reg_list[15].value, 0, 32, address);
588                 armv7m->core_cache->reg_list[15].dirty = 1;
589                 armv7m->core_cache->reg_list[15].valid = 1;
590         }
591
592         resume_pc = buf_get_u32(armv7m->core_cache->reg_list[15].value, 0, 32);
593
594         armv7m_restore_context(target);
595
596         /* the front-end may request us not to handle breakpoints */
597         if (handle_breakpoints)
598         {
599                 /* Single step past breakpoint at current address */
600                 if ((breakpoint = breakpoint_find(target, resume_pc)))
601                 {
602                         LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (ID: %d)",
603                                           breakpoint->address,
604                                           breakpoint->unique_id);
605                         cortex_m3_unset_breakpoint(target, breakpoint);
606                         cortex_m3_single_step_core(target);
607                         cortex_m3_set_breakpoint(target, breakpoint);
608                 }
609         }
610
611         /* Restart core */
612         cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
613
614         target->debug_reason = DBG_REASON_NOTHALTED;
615
616         /* registers are now invalid */
617         armv7m_invalidate_core_regs(target);
618         if (!debug_execution)
619         {
620                 target->state = TARGET_RUNNING;
621                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
622                 LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc);
623         }
624         else
625         {
626                 target->state = TARGET_DEBUG_RUNNING;
627                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
628                 LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc);
629         }
630
631         return ERROR_OK;
632 }
633
634 /* int irqstepcount = 0; */
635 static int cortex_m3_step(struct target *target, int current,
636                 uint32_t address, int handle_breakpoints)
637 {
638         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
639         struct armv7m_common *armv7m = &cortex_m3->armv7m;
640         struct swjdp_common *swjdp = &armv7m->swjdp_info;
641         struct breakpoint *breakpoint = NULL;
642
643         if (target->state != TARGET_HALTED)
644         {
645                 LOG_WARNING("target not halted");
646                 return ERROR_TARGET_NOT_HALTED;
647         }
648
649         /* current = 1: continue on current pc, otherwise continue at <address> */
650         if (!current)
651                 buf_set_u32(cortex_m3->armv7m.core_cache->reg_list[15].value,
652                                 0, 32, address);
653
654         /* the front-end may request us not to handle breakpoints */
655         if (handle_breakpoints) {
656                 breakpoint = breakpoint_find(target, buf_get_u32(armv7m
657                                 ->core_cache->reg_list[15].value, 0, 32));
658                 if (breakpoint)
659                         cortex_m3_unset_breakpoint(target, breakpoint);
660         }
661
662         target->debug_reason = DBG_REASON_SINGLESTEP;
663
664         armv7m_restore_context(target);
665
666         target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
667
668         /* set step and clear halt */
669         cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
670         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
671
672         /* registers are now invalid */
673         armv7m_invalidate_core_regs(target);
674
675         if (breakpoint)
676                 cortex_m3_set_breakpoint(target, breakpoint);
677
678         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32 " nvic_icsr = 0x%" PRIx32 "", cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
679
680         cortex_m3_debug_entry(target);
681         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
682
683         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32 " nvic_icsr = 0x%" PRIx32 "", cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
684         return ERROR_OK;
685 }
686
687 static int cortex_m3_assert_reset(struct target *target)
688 {
689         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
690         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
691         int assert_srst = 1;
692
693         LOG_DEBUG("target->state: %s",
694                 target_state_name(target));
695
696         enum reset_types jtag_reset_config = jtag_get_reset_config();
697
698         /*
699          * We can reset Cortex-M3 targets using just the NVIC without
700          * requiring SRST, getting a SoC reset (or a core-only reset)
701          * instead of a system reset.
702          */
703         if (!(jtag_reset_config & RESET_HAS_SRST))
704                 assert_srst = 0;
705
706         /* Enable debug requests */
707         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
708         if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN))
709                 mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
710
711         mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
712
713         if (!target->reset_halt)
714         {
715                 /* Set/Clear C_MASKINTS in a separate operation */
716                 if (cortex_m3->dcb_dhcsr & C_MASKINTS)
717                         mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN | C_HALT);
718
719                 /* clear any debug flags before resuming */
720                 cortex_m3_clear_halt(target);
721
722                 /* clear C_HALT in dhcsr reg */
723                 cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
724
725                 /* Enter debug state on reset, cf. end_reset_event() */
726                 mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | VC_HARDERR | VC_BUSERR);
727         }
728         else
729         {
730                 /* Enter debug state on reset, cf. end_reset_event() */
731                 mem_ap_write_atomic_u32(swjdp, DCB_DEMCR, TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
732         }
733
734         /*
735          * When nRST is asserted on most Stellaris devices, it clears some of
736          * the debug state.  The ARMv7M and Cortex-M3 TRMs say that's wrong;
737          * and OpenOCD depends on those TRMs.  So we won't use SRST on those
738          * chips.  (Only power-on reset should affect debug state, beyond a
739          * few specified bits; not the chip's nRST input, wired to SRST.)
740          *
741          * REVISIT current errata specs don't seem to cover this issue.
742          * Do we have more details than this email?
743          *   https://lists.berlios.de/pipermail
744          *      /openocd-development/2008-August/003065.html
745          */
746         if (strcmp(target->variant, "lm3s") == 0)
747         {
748                 /* Check for silicon revisions with the issue. */
749                 uint32_t did0;
750
751                 if (target_read_u32(target, 0x400fe000, &did0) == ERROR_OK)
752                 {
753                         switch ((did0 >> 16) & 0xff)
754                         {
755                                 case 0:
756                                         /* all Sandstorm suffer issue */
757                                         assert_srst = 0;
758                                         break;
759
760                                 case 1:
761                                 case 3:
762                                         /* Fury and DustDevil rev A have
763                                          * this nRST problem.  It should
764                                          * be fixed in rev B silicon.
765                                          */
766                                         if (((did0 >> 8) & 0xff) == 0)
767                                                 assert_srst = 0;
768                                         break;
769                                 case 4:
770                                         /* Tempest should be fine. */
771                                         break;
772                         }
773                 }
774         }
775
776         if (assert_srst)
777         {
778                 /* default to asserting srst */
779                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
780                 {
781                         jtag_add_reset(1, 1);
782                 }
783                 else
784                 {
785                         jtag_add_reset(0, 1);
786                 }
787         }
788         else
789         {
790                 /* Use a standard Cortex-M3 software reset mechanism.
791                  * SYSRESETREQ will reset SoC peripherals outside the
792                  * core, like watchdog timers, if the SoC wires it up
793                  * correctly.  Else VECRESET can reset just the core.
794                  */
795                 mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
796                                 AIRCR_VECTKEY | AIRCR_SYSRESETREQ);
797                 LOG_DEBUG("Using Cortex-M3 SYSRESETREQ");
798
799                 {
800                         /* I do not know why this is necessary, but it
801                          * fixes strange effects (step/resume cause NMI
802                          * after reset) on LM3S6918 -- Michael Schwingen
803                          */
804                         uint32_t tmp;
805                         mem_ap_read_atomic_u32(swjdp, NVIC_AIRCR, &tmp);
806                 }
807         }
808
809         target->state = TARGET_RESET;
810         jtag_add_sleep(50000);
811
812         armv7m_invalidate_core_regs(target);
813
814         if (target->reset_halt)
815         {
816                 int retval;
817                 if ((retval = target_halt(target)) != ERROR_OK)
818                         return retval;
819         }
820
821         return ERROR_OK;
822 }
823
824 static int cortex_m3_deassert_reset(struct target *target)
825 {
826         LOG_DEBUG("target->state: %s",
827                 target_state_name(target));
828
829         /* deassert reset lines */
830         jtag_add_reset(0, 0);
831
832         return ERROR_OK;
833 }
834
835 static int
836 cortex_m3_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
837 {
838         int retval;
839         int fp_num = 0;
840         uint32_t hilo;
841         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
842         struct cortex_m3_fp_comparator *comparator_list = cortex_m3->fp_comparator_list;
843
844         if (breakpoint->set)
845         {
846                 LOG_WARNING("breakpoint (BPID: %d) already set", breakpoint->unique_id);
847                 return ERROR_OK;
848         }
849
850         if (cortex_m3->auto_bp_type)
851         {
852                 breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
853         }
854
855         if (breakpoint->type == BKPT_HARD)
856         {
857                 while (comparator_list[fp_num].used && (fp_num < cortex_m3->fp_num_code))
858                         fp_num++;
859                 if (fp_num >= cortex_m3->fp_num_code)
860                 {
861                         LOG_ERROR("Can not find free FPB Comparator!");
862                         return ERROR_FAIL;
863                 }
864                 breakpoint->set = fp_num + 1;
865                 hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
866                 comparator_list[fp_num].used = 1;
867                 comparator_list[fp_num].fpcr_value = (breakpoint->address & 0x1FFFFFFC) | hilo | 1;
868                 target_write_u32(target, comparator_list[fp_num].fpcr_address, comparator_list[fp_num].fpcr_value);
869                 LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "", fp_num, comparator_list[fp_num].fpcr_value);
870                 if (!cortex_m3->fpb_enabled)
871                 {
872                         LOG_DEBUG("FPB wasn't enabled, do it now");
873                         target_write_u32(target, FP_CTRL, 3);
874                 }
875         }
876         else if (breakpoint->type == BKPT_SOFT)
877         {
878                 uint8_t code[4];
879                 buf_set_u32(code, 0, 32, ARMV7M_T_BKPT(0x11));
880                 if ((retval = target_read_memory(target, breakpoint->address & 0xFFFFFFFE, breakpoint->length, 1, breakpoint->orig_instr)) != ERROR_OK)
881                 {
882                         return retval;
883                 }
884                 if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, breakpoint->length, 1, code)) != ERROR_OK)
885                 {
886                         return retval;
887                 }
888                 breakpoint->set = 0x11; /* Any nice value but 0 */
889         }
890
891         LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
892                           breakpoint->unique_id,
893                           (int)(breakpoint->type),
894                           breakpoint->address,
895                           breakpoint->length,
896                           breakpoint->set);
897
898         return ERROR_OK;
899 }
900
901 static int
902 cortex_m3_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
903 {
904         int retval;
905         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
906         struct cortex_m3_fp_comparator * comparator_list = cortex_m3->fp_comparator_list;
907
908         if (!breakpoint->set)
909         {
910                 LOG_WARNING("breakpoint not set");
911                 return ERROR_OK;
912         }
913
914         LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
915                           breakpoint->unique_id,
916                           (int)(breakpoint->type),
917                           breakpoint->address,
918                           breakpoint->length,
919                           breakpoint->set);
920
921         if (breakpoint->type == BKPT_HARD)
922         {
923                 int fp_num = breakpoint->set - 1;
924                 if ((fp_num < 0) || (fp_num >= cortex_m3->fp_num_code))
925                 {
926                         LOG_DEBUG("Invalid FP Comparator number in breakpoint");
927                         return ERROR_OK;
928                 }
929                 comparator_list[fp_num].used = 0;
930                 comparator_list[fp_num].fpcr_value = 0;
931                 target_write_u32(target, comparator_list[fp_num].fpcr_address, comparator_list[fp_num].fpcr_value);
932         }
933         else
934         {
935                 /* restore original instruction (kept in target endianness) */
936                 if (breakpoint->length == 4)
937                 {
938                         if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
939                         {
940                                 return retval;
941                         }
942                 }
943                 else
944                 {
945                         if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
946                         {
947                                 return retval;
948                         }
949                 }
950         }
951         breakpoint->set = 0;
952
953         return ERROR_OK;
954 }
955
956 static int
957 cortex_m3_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
958 {
959         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
960
961         if (cortex_m3->auto_bp_type)
962         {
963                 breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
964 #ifdef ARMV7_GDB_HACKS
965                 if (breakpoint->length != 2) {
966                         /* XXX Hack: Replace all breakpoints with length != 2 with
967                          * a hardware breakpoint. */
968                         breakpoint->type = BKPT_HARD;
969                         breakpoint->length = 2;
970                 }
971 #endif
972         }
973
974         if ((breakpoint->type == BKPT_HARD) && (breakpoint->address >= 0x20000000))
975         {
976                 LOG_INFO("flash patch comparator requested outside code memory region");
977                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
978         }
979
980         if ((breakpoint->type == BKPT_SOFT) && (breakpoint->address < 0x20000000))
981         {
982                 LOG_INFO("soft breakpoint requested in code (flash) memory region");
983                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
984         }
985
986         if ((breakpoint->type == BKPT_HARD) && (cortex_m3->fp_code_available < 1))
987         {
988                 LOG_INFO("no flash patch comparator unit available for hardware breakpoint");
989                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
990         }
991
992         if ((breakpoint->length != 2))
993         {
994                 LOG_INFO("only breakpoints of two bytes length supported");
995                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
996         }
997
998         if (breakpoint->type == BKPT_HARD)
999                 cortex_m3->fp_code_available--;
1000         cortex_m3_set_breakpoint(target, breakpoint);
1001
1002         return ERROR_OK;
1003 }
1004
1005 static int
1006 cortex_m3_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1007 {
1008         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1009
1010         /* REVISIT why check? FBP can be updated with core running ... */
1011         if (target->state != TARGET_HALTED)
1012         {
1013                 LOG_WARNING("target not halted");
1014                 return ERROR_TARGET_NOT_HALTED;
1015         }
1016
1017         if (cortex_m3->auto_bp_type)
1018         {
1019                 breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
1020         }
1021
1022         if (breakpoint->set)
1023         {
1024                 cortex_m3_unset_breakpoint(target, breakpoint);
1025         }
1026
1027         if (breakpoint->type == BKPT_HARD)
1028                 cortex_m3->fp_code_available++;
1029
1030         return ERROR_OK;
1031 }
1032
1033 static int
1034 cortex_m3_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1035 {
1036         int dwt_num = 0;
1037         uint32_t mask, temp;
1038         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1039
1040         /* watchpoint params were validated earlier */
1041         mask = 0;
1042         temp = watchpoint->length;
1043         while (temp) {
1044                 temp >>= 1;
1045                 mask++;
1046         }
1047         mask--;
1048
1049         /* REVISIT Don't fully trust these "not used" records ... users
1050          * may set up breakpoints by hand, e.g. dual-address data value
1051          * watchpoint using comparator #1; comparator #0 matching cycle
1052          * count; send data trace info through ITM and TPIU; etc
1053          */
1054         struct cortex_m3_dwt_comparator *comparator;
1055
1056         for (comparator = cortex_m3->dwt_comparator_list;
1057                         comparator->used && dwt_num < cortex_m3->dwt_num_comp;
1058                         comparator++, dwt_num++)
1059                 continue;
1060         if (dwt_num >= cortex_m3->dwt_num_comp)
1061         {
1062                 LOG_ERROR("Can not find free DWT Comparator");
1063                 return ERROR_FAIL;
1064         }
1065         comparator->used = 1;
1066         watchpoint->set = dwt_num + 1;
1067
1068         comparator->comp = watchpoint->address;
1069         target_write_u32(target, comparator->dwt_comparator_address + 0,
1070                         comparator->comp);
1071
1072         comparator->mask = mask;
1073         target_write_u32(target, comparator->dwt_comparator_address + 4,
1074                         comparator->mask);
1075
1076         switch (watchpoint->rw) {
1077         case WPT_READ:
1078                 comparator->function = 5;
1079                 break;
1080         case WPT_WRITE:
1081                 comparator->function = 6;
1082                 break;
1083         case WPT_ACCESS:
1084                 comparator->function = 7;
1085                 break;
1086         }
1087         target_write_u32(target, comparator->dwt_comparator_address + 8,
1088                         comparator->function);
1089
1090         LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
1091                         watchpoint->unique_id, dwt_num,
1092                         (unsigned) comparator->comp,
1093                         (unsigned) comparator->mask,
1094                         (unsigned) comparator->function);
1095         return ERROR_OK;
1096 }
1097
1098 static int
1099 cortex_m3_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1100 {
1101         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1102         struct cortex_m3_dwt_comparator *comparator;
1103         int dwt_num;
1104
1105         if (!watchpoint->set)
1106         {
1107                 LOG_WARNING("watchpoint (wpid: %d) not set",
1108                                 watchpoint->unique_id);
1109                 return ERROR_OK;
1110         }
1111
1112         dwt_num = watchpoint->set - 1;
1113
1114         LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear",
1115                         watchpoint->unique_id, dwt_num,
1116                         (unsigned) watchpoint->address);
1117
1118         if ((dwt_num < 0) || (dwt_num >= cortex_m3->dwt_num_comp))
1119         {
1120                 LOG_DEBUG("Invalid DWT Comparator number in watchpoint");
1121                 return ERROR_OK;
1122         }
1123
1124         comparator = cortex_m3->dwt_comparator_list + dwt_num;
1125         comparator->used = 0;
1126         comparator->function = 0;
1127         target_write_u32(target, comparator->dwt_comparator_address + 8,
1128                         comparator->function);
1129
1130         watchpoint->set = 0;
1131
1132         return ERROR_OK;
1133 }
1134
1135 static int
1136 cortex_m3_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1137 {
1138         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1139
1140         /* REVISIT why check? DWT can be updated with core running ... */
1141         if (target->state != TARGET_HALTED)
1142         {
1143                 LOG_WARNING("target not halted");
1144                 return ERROR_TARGET_NOT_HALTED;
1145         }
1146
1147         if (cortex_m3->dwt_comp_available < 1)
1148         {
1149                 LOG_DEBUG("no comparators?");
1150                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1151         }
1152
1153         /* hardware doesn't support data value masking */
1154         if (watchpoint->mask != ~(uint32_t)0) {
1155                 LOG_DEBUG("watchpoint value masks not supported");
1156                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1157         }
1158
1159         /* hardware allows address masks of up to 32K */
1160         unsigned mask;
1161
1162         for (mask = 0; mask < 16; mask++) {
1163                 if ((1u << mask) == watchpoint->length)
1164                         break;
1165         }
1166         if (mask == 16) {
1167                 LOG_DEBUG("unsupported watchpoint length");
1168                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1169         }
1170         if (watchpoint->address & ((1 << mask) - 1)) {
1171                 LOG_DEBUG("watchpoint address is unaligned");
1172                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1173         }
1174
1175         /* Caller doesn't seem to be able to describe watching for data
1176          * values of zero; that flags "no value".
1177          *
1178          * REVISIT This DWT may well be able to watch for specific data
1179          * values.  Requires comparator #1 to set DATAVMATCH and match
1180          * the data, and another comparator (DATAVADDR0) matching addr.
1181          */
1182         if (watchpoint->value) {
1183                 LOG_DEBUG("data value watchpoint not YET supported");
1184                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1185         }
1186
1187         cortex_m3->dwt_comp_available--;
1188         LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1189
1190         return ERROR_OK;
1191 }
1192
1193 static int
1194 cortex_m3_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1195 {
1196         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1197
1198         /* REVISIT why check? DWT can be updated with core running ... */
1199         if (target->state != TARGET_HALTED)
1200         {
1201                 LOG_WARNING("target not halted");
1202                 return ERROR_TARGET_NOT_HALTED;
1203         }
1204
1205         if (watchpoint->set)
1206         {
1207                 cortex_m3_unset_watchpoint(target, watchpoint);
1208         }
1209
1210         cortex_m3->dwt_comp_available++;
1211         LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1212
1213         return ERROR_OK;
1214 }
1215
1216 static void cortex_m3_enable_watchpoints(struct target *target)
1217 {
1218         struct watchpoint *watchpoint = target->watchpoints;
1219
1220         /* set any pending watchpoints */
1221         while (watchpoint)
1222         {
1223                 if (watchpoint->set == 0)
1224                         cortex_m3_set_watchpoint(target, watchpoint);
1225                 watchpoint = watchpoint->next;
1226         }
1227 }
1228
1229 static int cortex_m3_load_core_reg_u32(struct target *target,
1230                 enum armv7m_regtype type, uint32_t num, uint32_t * value)
1231 {
1232         int retval;
1233         struct armv7m_common *armv7m = target_to_armv7m(target);
1234         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1235
1236         /* NOTE:  we "know" here that the register identifiers used
1237          * in the v7m header match the Cortex-M3 Debug Core Register
1238          * Selector values for R0..R15, xPSR, MSP, and PSP.
1239          */
1240         switch (num) {
1241         case 0 ... 18:
1242                 /* read a normal core register */
1243                 retval = cortexm3_dap_read_coreregister_u32(swjdp, value, num);
1244
1245                 if (retval != ERROR_OK)
1246                 {
1247                         LOG_ERROR("JTAG failure %i",retval);
1248                         return ERROR_JTAG_DEVICE_ERROR;
1249                 }
1250                 LOG_DEBUG("load from core reg %i  value 0x%" PRIx32 "",(int)num,*value);
1251                 break;
1252
1253         case ARMV7M_PRIMASK:
1254         case ARMV7M_BASEPRI:
1255         case ARMV7M_FAULTMASK:
1256         case ARMV7M_CONTROL:
1257                 /* Cortex-M3 packages these four registers as bitfields
1258                  * in one Debug Core register.  So say r0 and r2 docs;
1259                  * it was removed from r1 docs, but still works.
1260                  */
1261                 cortexm3_dap_read_coreregister_u32(swjdp, value, 20);
1262
1263                 switch (num)
1264                 {
1265                         case ARMV7M_PRIMASK:
1266                                 *value = buf_get_u32((uint8_t*)value, 0, 1);
1267                                 break;
1268
1269                         case ARMV7M_BASEPRI:
1270                                 *value = buf_get_u32((uint8_t*)value, 8, 8);
1271                                 break;
1272
1273                         case ARMV7M_FAULTMASK:
1274                                 *value = buf_get_u32((uint8_t*)value, 16, 1);
1275                                 break;
1276
1277                         case ARMV7M_CONTROL:
1278                                 *value = buf_get_u32((uint8_t*)value, 24, 2);
1279                                 break;
1280                 }
1281
1282                 LOG_DEBUG("load from special reg %i value 0x%" PRIx32 "", (int)num, *value);
1283                 break;
1284
1285         default:
1286                 return ERROR_INVALID_ARGUMENTS;
1287         }
1288
1289         return ERROR_OK;
1290 }
1291
1292 static int cortex_m3_store_core_reg_u32(struct target *target,
1293                 enum armv7m_regtype type, uint32_t num, uint32_t value)
1294 {
1295         int retval;
1296         uint32_t reg;
1297         struct armv7m_common *armv7m = target_to_armv7m(target);
1298         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1299
1300 #ifdef ARMV7_GDB_HACKS
1301         /* If the LR register is being modified, make sure it will put us
1302          * in "thumb" mode, or an INVSTATE exception will occur. This is a
1303          * hack to deal with the fact that gdb will sometimes "forge"
1304          * return addresses, and doesn't set the LSB correctly (i.e., when
1305          * printing expressions containing function calls, it sets LR = 0.)
1306          * Valid exception return codes have bit 0 set too.
1307          */
1308         if (num == ARMV7M_R14)
1309                 value |= 0x01;
1310 #endif
1311
1312         /* NOTE:  we "know" here that the register identifiers used
1313          * in the v7m header match the Cortex-M3 Debug Core Register
1314          * Selector values for R0..R15, xPSR, MSP, and PSP.
1315          */
1316         switch (num) {
1317         case 0 ... 18:
1318                 retval = cortexm3_dap_write_coreregister_u32(swjdp, value, num);
1319                 if (retval != ERROR_OK)
1320                 {
1321                         LOG_ERROR("JTAG failure %i", retval);
1322                         armv7m->core_cache->reg_list[num].dirty = armv7m->core_cache->reg_list[num].valid;
1323                         return ERROR_JTAG_DEVICE_ERROR;
1324                 }
1325                 LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value);
1326                 break;
1327
1328         case ARMV7M_PRIMASK:
1329         case ARMV7M_BASEPRI:
1330         case ARMV7M_FAULTMASK:
1331         case ARMV7M_CONTROL:
1332                 /* Cortex-M3 packages these four registers as bitfields
1333                  * in one Debug Core register.  So say r0 and r2 docs;
1334                  * it was removed from r1 docs, but still works.
1335                  */
1336                 cortexm3_dap_read_coreregister_u32(swjdp, &reg, 20);
1337
1338                 switch (num)
1339                 {
1340                         case ARMV7M_PRIMASK:
1341                                 buf_set_u32((uint8_t*)&reg, 0, 1, value);
1342                                 break;
1343
1344                         case ARMV7M_BASEPRI:
1345                                 buf_set_u32((uint8_t*)&reg, 8, 8, value);
1346                                 break;
1347
1348                         case ARMV7M_FAULTMASK:
1349                                 buf_set_u32((uint8_t*)&reg, 16, 1, value);
1350                                 break;
1351
1352                         case ARMV7M_CONTROL:
1353                                 buf_set_u32((uint8_t*)&reg, 24, 2, value);
1354                                 break;
1355                 }
1356
1357                 cortexm3_dap_write_coreregister_u32(swjdp, reg, 20);
1358
1359                 LOG_DEBUG("write special reg %i value 0x%" PRIx32 " ", (int)num, value);
1360                 break;
1361
1362         default:
1363                 return ERROR_INVALID_ARGUMENTS;
1364         }
1365
1366         return ERROR_OK;
1367 }
1368
1369 static int cortex_m3_read_memory(struct target *target, uint32_t address,
1370                 uint32_t size, uint32_t count, uint8_t *buffer)
1371 {
1372         struct armv7m_common *armv7m = target_to_armv7m(target);
1373         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1374         int retval = ERROR_INVALID_ARGUMENTS;
1375
1376         /* cortex_m3 handles unaligned memory access */
1377         if (count && buffer) {
1378                 switch (size) {
1379                 case 4:
1380                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1381                         break;
1382                 case 2:
1383                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1384                         break;
1385                 case 1:
1386                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1387                         break;
1388                 }
1389         }
1390
1391         return retval;
1392 }
1393
1394 static int cortex_m3_write_memory(struct target *target, uint32_t address,
1395                 uint32_t size, uint32_t count, uint8_t *buffer)
1396 {
1397         struct armv7m_common *armv7m = target_to_armv7m(target);
1398         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1399         int retval = ERROR_INVALID_ARGUMENTS;
1400
1401         if (count && buffer) {
1402                 switch (size) {
1403                 case 4:
1404                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1405                         break;
1406                 case 2:
1407                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1408                         break;
1409                 case 1:
1410                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1411                         break;
1412                 }
1413         }
1414
1415         return retval;
1416 }
1417
1418 static int cortex_m3_bulk_write_memory(struct target *target, uint32_t address,
1419                 uint32_t count, uint8_t *buffer)
1420 {
1421         return cortex_m3_write_memory(target, address, 4, count, buffer);
1422 }
1423
1424 static int cortex_m3_init_target(struct command_context *cmd_ctx,
1425                 struct target *target)
1426 {
1427         armv7m_build_reg_cache(target);
1428         return ERROR_OK;
1429 }
1430
1431 /* REVISIT cache valid/dirty bits are unmaintained.  We could set "valid"
1432  * on r/w if the core is not running, and clear on resume or reset ... or
1433  * at least, in a post_restore_context() method.
1434  */
1435
1436 struct dwt_reg_state {
1437         struct target   *target;
1438         uint32_t        addr;
1439         uint32_t        value;  /* scratch/cache */
1440 };
1441
1442 static int cortex_m3_dwt_get_reg(struct reg *reg)
1443 {
1444         struct dwt_reg_state *state = reg->arch_info;
1445
1446         return target_read_u32(state->target, state->addr, &state->value);
1447 }
1448
1449 static int cortex_m3_dwt_set_reg(struct reg *reg, uint8_t *buf)
1450 {
1451         struct dwt_reg_state *state = reg->arch_info;
1452
1453         return target_write_u32(state->target, state->addr,
1454                         buf_get_u32(buf, 0, reg->size));
1455 }
1456
1457 struct dwt_reg {
1458         uint32_t        addr;
1459         char            *name;
1460         unsigned        size;
1461 };
1462
1463 static struct dwt_reg dwt_base_regs[] = {
1464         { DWT_CTRL, "dwt_ctrl", 32, },
1465         { DWT_CYCCNT, "dwt_cyccnt", 32, },
1466         /* plus some 8 bit counters, useful for profiling with TPIU */
1467 };
1468
1469 static struct dwt_reg dwt_comp[] = {
1470 #define DWT_COMPARATOR(i) \
1471                 { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
1472                 { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
1473                 { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
1474         DWT_COMPARATOR(0),
1475         DWT_COMPARATOR(1),
1476         DWT_COMPARATOR(2),
1477         DWT_COMPARATOR(3),
1478 #undef DWT_COMPARATOR
1479 };
1480
1481 static const struct reg_arch_type dwt_reg_type = {
1482         .get = cortex_m3_dwt_get_reg,
1483         .set = cortex_m3_dwt_set_reg,
1484 };
1485
1486 static void
1487 cortex_m3_dwt_addreg(struct target *t, struct reg *r, struct dwt_reg *d)
1488 {
1489         struct dwt_reg_state *state;
1490
1491         state = calloc(1, sizeof *state);
1492         if (!state)
1493                 return;
1494         state->addr = d->addr;
1495         state->target = t;
1496
1497         r->name = d->name;
1498         r->size = d->size;
1499         r->value = &state->value;
1500         r->arch_info = state;
1501         r->type = &dwt_reg_type;
1502 }
1503
1504 static void
1505 cortex_m3_dwt_setup(struct cortex_m3_common *cm3, struct target *target)
1506 {
1507         uint32_t dwtcr;
1508         struct reg_cache *cache;
1509         struct cortex_m3_dwt_comparator *comparator;
1510         int reg, i;
1511
1512         target_read_u32(target, DWT_CTRL, &dwtcr);
1513         if (!dwtcr) {
1514                 LOG_DEBUG("no DWT");
1515                 return;
1516         }
1517
1518         cm3->dwt_num_comp = (dwtcr >> 28) & 0xF;
1519         cm3->dwt_comp_available = cm3->dwt_num_comp;
1520         cm3->dwt_comparator_list = calloc(cm3->dwt_num_comp,
1521                         sizeof(struct cortex_m3_dwt_comparator));
1522         if (!cm3->dwt_comparator_list) {
1523 fail0:
1524                 cm3->dwt_num_comp = 0;
1525                 LOG_ERROR("out of mem");
1526                 return;
1527         }
1528
1529         cache = calloc(1, sizeof *cache);
1530         if (!cache) {
1531 fail1:
1532                 free(cm3->dwt_comparator_list);
1533                 goto fail0;
1534         }
1535         cache->name = "cortex-m3 dwt registers";
1536         cache->num_regs = 2 + cm3->dwt_num_comp * 3;
1537         cache->reg_list = calloc(cache->num_regs, sizeof *cache->reg_list);
1538         if (!cache->reg_list) {
1539                 free(cache);
1540                 goto fail1;
1541         }
1542
1543         for (reg = 0; reg < 2; reg++)
1544                 cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1545                                 dwt_base_regs + reg);
1546
1547         comparator = cm3->dwt_comparator_list;
1548         for (i = 0; i < cm3->dwt_num_comp; i++, comparator++) {
1549                 int j;
1550
1551                 comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
1552                 for (j = 0; j < 3; j++, reg++)
1553                         cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1554                                         dwt_comp + 3 * i + j);
1555         }
1556
1557         *register_get_last_cache_p(&target->reg_cache) = cache;
1558         cm3->dwt_cache = cache;
1559
1560         LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
1561                         dwtcr, cm3->dwt_num_comp,
1562                         (dwtcr & (0xf << 24)) ? " only" : "/trigger");
1563
1564         /* REVISIT:  if num_comp > 1, check whether comparator #1 can
1565          * implement single-address data value watchpoints ... so we
1566          * won't need to check it later, when asked to set one up.
1567          */
1568 }
1569
1570 static int cortex_m3_examine(struct target *target)
1571 {
1572         int retval;
1573         uint32_t cpuid, fpcr;
1574         int i;
1575         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1576         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
1577
1578         if ((retval = ahbap_debugport_init(swjdp)) != ERROR_OK)
1579                 return retval;
1580
1581         if (!target_was_examined(target))
1582         {
1583                 target_set_examined(target);
1584
1585                 /* Read from Device Identification Registers */
1586                 retval = target_read_u32(target, CPUID, &cpuid);
1587                 if (retval != ERROR_OK)
1588                         return retval;
1589
1590                 if (((cpuid >> 4) & 0xc3f) == 0xc23)
1591                         LOG_DEBUG("CORTEX-M3 processor detected");
1592                 LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid);
1593
1594                 /* NOTE: FPB and DWT are both optional. */
1595
1596                 /* Setup FPB */
1597                 target_read_u32(target, FP_CTRL, &fpcr);
1598                 cortex_m3->auto_bp_type = 1;
1599                 cortex_m3->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF); /* bits [14:12] and [7:4] */
1600                 cortex_m3->fp_num_lit = (fpcr >> 8) & 0xF;
1601                 cortex_m3->fp_code_available = cortex_m3->fp_num_code;
1602                 cortex_m3->fp_comparator_list = calloc(cortex_m3->fp_num_code + cortex_m3->fp_num_lit, sizeof(struct cortex_m3_fp_comparator));
1603                 cortex_m3->fpb_enabled = fpcr & 1;
1604                 for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++)
1605                 {
1606                         cortex_m3->fp_comparator_list[i].type = (i < cortex_m3->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
1607                         cortex_m3->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
1608                 }
1609                 LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i", fpcr, cortex_m3->fp_num_code, cortex_m3->fp_num_lit);
1610
1611                 /* Setup DWT */
1612                 cortex_m3_dwt_setup(cortex_m3, target);
1613         }
1614
1615         return ERROR_OK;
1616 }
1617
1618 static int cortex_m3_dcc_read(struct swjdp_common *swjdp, uint8_t *value, uint8_t *ctrl)
1619 {
1620         uint16_t dcrdr;
1621
1622         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1623         *ctrl = (uint8_t)dcrdr;
1624         *value = (uint8_t)(dcrdr >> 8);
1625
1626         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1627
1628         /* write ack back to software dcc register
1629          * signify we have read data */
1630         if (dcrdr & (1 << 0))
1631         {
1632                 dcrdr = 0;
1633                 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1634         }
1635
1636         return ERROR_OK;
1637 }
1638
1639 static int cortex_m3_target_request_data(struct target *target,
1640                 uint32_t size, uint8_t *buffer)
1641 {
1642         struct armv7m_common *armv7m = target_to_armv7m(target);
1643         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1644         uint8_t data;
1645         uint8_t ctrl;
1646         uint32_t i;
1647
1648         for (i = 0; i < (size * 4); i++)
1649         {
1650                 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1651                 buffer[i] = data;
1652         }
1653
1654         return ERROR_OK;
1655 }
1656
1657 static int cortex_m3_handle_target_request(void *priv)
1658 {
1659         struct target *target = priv;
1660         if (!target_was_examined(target))
1661                 return ERROR_OK;
1662         struct armv7m_common *armv7m = target_to_armv7m(target);
1663         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1664
1665         if (!target->dbg_msg_enabled)
1666                 return ERROR_OK;
1667
1668         if (target->state == TARGET_RUNNING)
1669         {
1670                 uint8_t data;
1671                 uint8_t ctrl;
1672
1673                 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1674
1675                 /* check if we have data */
1676                 if (ctrl & (1 << 0))
1677                 {
1678                         uint32_t request;
1679
1680                         /* we assume target is quick enough */
1681                         request = data;
1682                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1683                         request |= (data << 8);
1684                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1685                         request |= (data << 16);
1686                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1687                         request |= (data << 24);
1688                         target_request(target, request);
1689                 }
1690         }
1691
1692         return ERROR_OK;
1693 }
1694
1695 static int cortex_m3_init_arch_info(struct target *target,
1696                 struct cortex_m3_common *cortex_m3, struct jtag_tap *tap)
1697 {
1698         int retval;
1699         struct armv7m_common *armv7m = &cortex_m3->armv7m;
1700
1701         armv7m_init_arch_info(target, armv7m);
1702
1703         /* prepare JTAG information for the new target */
1704         cortex_m3->jtag_info.tap = tap;
1705         cortex_m3->jtag_info.scann_size = 4;
1706
1707         armv7m->swjdp_info.dp_select_value = -1;
1708         armv7m->swjdp_info.ap_csw_value = -1;
1709         armv7m->swjdp_info.ap_tar_value = -1;
1710         armv7m->swjdp_info.jtag_info = &cortex_m3->jtag_info;
1711         armv7m->swjdp_info.memaccess_tck = 8;
1712         armv7m->swjdp_info.tar_autoincr_block = (1 << 12);      /* Cortex-M3 has 4096 bytes autoincrement range */
1713
1714         /* register arch-specific functions */
1715         armv7m->examine_debug_reason = cortex_m3_examine_debug_reason;
1716
1717         armv7m->post_debug_entry = NULL;
1718
1719         armv7m->pre_restore_context = NULL;
1720         armv7m->post_restore_context = NULL;
1721
1722         armv7m->load_core_reg_u32 = cortex_m3_load_core_reg_u32;
1723         armv7m->store_core_reg_u32 = cortex_m3_store_core_reg_u32;
1724
1725         target_register_timer_callback(cortex_m3_handle_target_request, 1, 1, target);
1726
1727         if ((retval = arm_jtag_setup_connection(&cortex_m3->jtag_info)) != ERROR_OK)
1728         {
1729                 return retval;
1730         }
1731
1732         return ERROR_OK;
1733 }
1734
1735 static int cortex_m3_target_create(struct target *target, Jim_Interp *interp)
1736 {
1737         struct cortex_m3_common *cortex_m3 = calloc(1,sizeof(struct cortex_m3_common));
1738
1739         cortex_m3->common_magic = CORTEX_M3_COMMON_MAGIC;
1740         cortex_m3_init_arch_info(target, cortex_m3, target->tap);
1741
1742         return ERROR_OK;
1743 }
1744
1745 /*--------------------------------------------------------------------------*/
1746
1747 static int cortex_m3_verify_pointer(struct command_context *cmd_ctx,
1748                 struct cortex_m3_common *cm3)
1749 {
1750         if (cm3->common_magic != CORTEX_M3_COMMON_MAGIC) {
1751                 command_print(cmd_ctx, "target is not a Cortex-M3");
1752                 return ERROR_TARGET_INVALID;
1753         }
1754         return ERROR_OK;
1755 }
1756
1757 /*
1758  * Only stuff below this line should need to verify that its target
1759  * is a Cortex-M3.  Everything else should have indirected through the
1760  * cortexm3_target structure, which is only used with CM3 targets.
1761  */
1762
1763 /*
1764  * REVISIT Thumb2 disassembly should work for all ARMv7 cores, as well
1765  * as at least ARM-1156T2.  The interesting thing about Cortex-M is
1766  * that *only* Thumb2 disassembly matters.  There are also some small
1767  * additions to Thumb2 that are specific to ARMv7-M.
1768  */
1769 COMMAND_HANDLER(handle_cortex_m3_disassemble_command)
1770 {
1771         int retval;
1772         struct target *target = get_current_target(cmd_ctx);
1773         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1774         uint32_t address;
1775         unsigned long count = 1;
1776         struct arm_instruction cur_instruction;
1777
1778         retval = cortex_m3_verify_pointer(cmd_ctx, cortex_m3);
1779         if (retval != ERROR_OK)
1780                 return retval;
1781
1782         errno = 0;
1783         switch (argc) {
1784         case 2:
1785                 COMMAND_PARSE_NUMBER(ulong, args[1], count);
1786                 /* FALL THROUGH */
1787         case 1:
1788                 COMMAND_PARSE_NUMBER(u32, args[0], address);
1789                 break;
1790         default:
1791                 command_print(cmd_ctx,
1792                         "usage: cortex_m3 disassemble <address> [<count>]");
1793                 return ERROR_OK;
1794         }
1795
1796         while (count--) {
1797                 retval = thumb2_opcode(target, address, &cur_instruction);
1798                 if (retval != ERROR_OK)
1799                         return retval;
1800                 command_print(cmd_ctx, "%s", cur_instruction.text);
1801                 address += cur_instruction.instruction_size;
1802         }
1803
1804         return ERROR_OK;
1805 }
1806
1807 static const struct {
1808         char name[10];
1809         unsigned mask;
1810 } vec_ids[] = {
1811         { "hard_err",   VC_HARDERR, },
1812         { "int_err",    VC_INTERR, },
1813         { "bus_err",    VC_BUSERR, },
1814         { "state_err",  VC_STATERR, },
1815         { "chk_err",    VC_CHKERR, },
1816         { "nocp_err",   VC_NOCPERR, },
1817         { "mm_err",     VC_MMERR, },
1818         { "reset",      VC_CORERESET, },
1819 };
1820
1821 COMMAND_HANDLER(handle_cortex_m3_vector_catch_command)
1822 {
1823         struct target *target = get_current_target(cmd_ctx);
1824         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1825         struct armv7m_common *armv7m = &cortex_m3->armv7m;
1826         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1827         uint32_t demcr = 0;
1828         int retval;
1829         retval = cortex_m3_verify_pointer(cmd_ctx, cortex_m3);
1830         if (retval != ERROR_OK)
1831                 return retval;
1832
1833         mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
1834
1835         if (argc > 0) {
1836                 unsigned catch = 0;
1837
1838                 if (argc == 1) {
1839                         if (strcmp(args[0], "all") == 0) {
1840                                 catch = VC_HARDERR | VC_INTERR | VC_BUSERR
1841                                         | VC_STATERR | VC_CHKERR | VC_NOCPERR
1842                                         | VC_MMERR | VC_CORERESET;
1843                                 goto write;
1844                         } else if (strcmp(args[0], "none") == 0) {
1845                                 goto write;
1846                         }
1847                 }
1848                 while (argc-- > 0) {
1849                         unsigned i;
1850                         for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
1851                                 if (strcmp(args[argc], vec_ids[i].name) != 0)
1852                                         continue;
1853                                 catch |= vec_ids[i].mask;
1854                                 break;
1855                         }
1856                         if (i == ARRAY_SIZE(vec_ids)) {
1857                                 LOG_ERROR("No CM3 vector '%s'", args[argc]);
1858                                 return ERROR_INVALID_ARGUMENTS;
1859                         }
1860                 }
1861 write:
1862                 demcr &= ~0xffff;
1863                 demcr |= catch;
1864
1865                 /* write, but don't assume it stuck */
1866                 mem_ap_write_u32(swjdp, DCB_DEMCR, demcr);
1867                 mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
1868         }
1869
1870         for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++)
1871                 command_print(cmd_ctx, "%9s: %s", vec_ids[i].name,
1872                         (demcr & vec_ids[i].mask) ? "catch" : "ignore");
1873
1874         return ERROR_OK;
1875 }
1876
1877 COMMAND_HANDLER(handle_cortex_m3_mask_interrupts_command)
1878 {
1879         struct target *target = get_current_target(cmd_ctx);
1880         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1881         int retval;
1882
1883         retval = cortex_m3_verify_pointer(cmd_ctx, cortex_m3);
1884         if (retval != ERROR_OK)
1885                 return retval;
1886
1887         if (target->state != TARGET_HALTED)
1888         {
1889                 command_print(cmd_ctx, "target must be stopped for \"%s\" command", CMD_NAME);
1890                 return ERROR_OK;
1891         }
1892
1893         if (argc > 0)
1894         {
1895                 if (!strcmp(args[0], "on"))
1896                 {
1897                         cortex_m3_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
1898                 }
1899                 else if (!strcmp(args[0], "off"))
1900                 {
1901                         cortex_m3_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
1902                 }
1903                 else
1904                 {
1905                         command_print(cmd_ctx, "usage: cortex_m3 maskisr ['on'|'off']");
1906                 }
1907         }
1908
1909         command_print(cmd_ctx, "cortex_m3 interrupt mask %s",
1910                         (cortex_m3->dcb_dhcsr & C_MASKINTS) ? "on" : "off");
1911
1912         return ERROR_OK;
1913 }
1914
1915 static int cortex_m3_register_commands(struct command_context *cmd_ctx)
1916 {
1917         int retval;
1918         struct command *cortex_m3_cmd;
1919
1920         retval = armv7m_register_commands(cmd_ctx);
1921
1922         cortex_m3_cmd = register_command(cmd_ctx, NULL, "cortex_m3",
1923                         NULL, COMMAND_ANY, "cortex_m3 specific commands");
1924
1925         register_command(cmd_ctx, cortex_m3_cmd, "disassemble",
1926                         handle_cortex_m3_disassemble_command, COMMAND_EXEC,
1927                         "disassemble Thumb2 instructions <address> [<count>]");
1928         register_command(cmd_ctx, cortex_m3_cmd, "maskisr",
1929                         handle_cortex_m3_mask_interrupts_command, COMMAND_EXEC,
1930                         "mask cortex_m3 interrupts ['on'|'off']");
1931         register_command(cmd_ctx, cortex_m3_cmd, "vector_catch",
1932                         handle_cortex_m3_vector_catch_command, COMMAND_EXEC,
1933                         "catch hardware vectors ['all'|'none'|<list>]");
1934
1935         return retval;
1936 }
1937
1938 struct target_type cortexm3_target =
1939 {
1940         .name = "cortex_m3",
1941
1942         .poll = cortex_m3_poll,
1943         .arch_state = armv7m_arch_state,
1944
1945         .target_request_data = cortex_m3_target_request_data,
1946
1947         .halt = cortex_m3_halt,
1948         .resume = cortex_m3_resume,
1949         .step = cortex_m3_step,
1950
1951         .assert_reset = cortex_m3_assert_reset,
1952         .deassert_reset = cortex_m3_deassert_reset,
1953         .soft_reset_halt = cortex_m3_soft_reset_halt,
1954
1955         .get_gdb_reg_list = armv7m_get_gdb_reg_list,
1956
1957         .read_memory = cortex_m3_read_memory,
1958         .write_memory = cortex_m3_write_memory,
1959         .bulk_write_memory = cortex_m3_bulk_write_memory,
1960         .checksum_memory = armv7m_checksum_memory,
1961         .blank_check_memory = armv7m_blank_check_memory,
1962
1963         .run_algorithm = armv7m_run_algorithm,
1964
1965         .add_breakpoint = cortex_m3_add_breakpoint,
1966         .remove_breakpoint = cortex_m3_remove_breakpoint,
1967         .add_watchpoint = cortex_m3_add_watchpoint,
1968         .remove_watchpoint = cortex_m3_remove_watchpoint,
1969
1970         .register_commands = cortex_m3_register_commands,
1971         .target_create = cortex_m3_target_create,
1972         .init_target = cortex_m3_init_target,
1973         .examine = cortex_m3_examine,
1974 };