BUILD: remove cygwin gcc 3.4.4 build warnings
[fw/openocd] / src / target / cortex_m3.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   This program is free software; you can redistribute it and/or modify  *
12  *   it under the terms of the GNU General Public License as published by  *
13  *   the Free Software Foundation; either version 2 of the License, or     *
14  *   (at your option) any later version.                                   *
15  *                                                                         *
16  *   This program is distributed in the hope that it will be useful,       *
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
19  *   GNU General Public License for more details.                          *
20  *                                                                         *
21  *   You should have received a copy of the GNU General Public License     *
22  *   along with this program; if not, write to the                         *
23  *   Free Software Foundation, Inc.,                                       *
24  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
25  *                                                                         *
26  *                                                                         *
27  *   Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0)              *
28  *                                                                         *
29  ***************************************************************************/
30 #ifdef HAVE_CONFIG_H
31 #include "config.h"
32 #endif
33
34 #include "breakpoints.h"
35 #include "cortex_m3.h"
36 #include "target_request.h"
37 #include "target_type.h"
38 #include "arm_disassembler.h"
39 #include "register.h"
40 #include "arm_opcodes.h"
41
42
43 /* NOTE:  most of this should work fine for the Cortex-M1 and
44  * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
45  * Some differences:  M0/M1 doesn't have FBP remapping or the
46  * DWT tracing/profiling support.  (So the cycle counter will
47  * not be usable; the other stuff isn't currently used here.)
48  *
49  * Although there are some workarounds for errata seen only in r0p0
50  * silicon, such old parts are hard to find and thus not much tested
51  * any longer.
52  */
53
54
55 /* forward declarations */
56 static int cortex_m3_set_breakpoint(struct target *target, struct breakpoint *breakpoint);
57 static int cortex_m3_unset_breakpoint(struct target *target, struct breakpoint *breakpoint);
58 static void cortex_m3_enable_watchpoints(struct target *target);
59 static int cortex_m3_store_core_reg_u32(struct target *target,
60                 enum armv7m_regtype type, uint32_t num, uint32_t value);
61
62 static int cortexm3_dap_read_coreregister_u32(struct swjdp_common *swjdp,
63                 uint32_t *value, int regnum)
64 {
65         int retval;
66         uint32_t dcrdr;
67
68         /* because the DCB_DCRDR is used for the emulated dcc channel
69          * we have to save/restore the DCB_DCRDR when used */
70
71         mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
72
73         swjdp->trans_mode = TRANS_MODE_COMPOSITE;
74
75         /* mem_ap_write_u32(swjdp, DCB_DCRSR, regnum); */
76         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
77         dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum);
78
79         /* mem_ap_read_u32(swjdp, DCB_DCRDR, value); */
80         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
81         dap_ap_read_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
82
83         retval = swjdp_transaction_endcheck(swjdp);
84
85         /* restore DCB_DCRDR - this needs to be in a seperate
86          * transaction otherwise the emulated DCC channel breaks */
87         if (retval == ERROR_OK)
88                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
89
90         return retval;
91 }
92
93 static int cortexm3_dap_write_coreregister_u32(struct swjdp_common *swjdp,
94                 uint32_t value, int regnum)
95 {
96         int retval;
97         uint32_t dcrdr;
98
99         /* because the DCB_DCRDR is used for the emulated dcc channel
100          * we have to save/restore the DCB_DCRDR when used */
101
102         mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
103
104         swjdp->trans_mode = TRANS_MODE_COMPOSITE;
105
106         /* mem_ap_write_u32(swjdp, DCB_DCRDR, core_regs[i]); */
107         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
108         dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
109
110         /* mem_ap_write_u32(swjdp, DCB_DCRSR, i | DCRSR_WnR); */
111         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
112         dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum | DCRSR_WnR);
113
114         retval = swjdp_transaction_endcheck(swjdp);
115
116         /* restore DCB_DCRDR - this needs to be in a seperate
117          * transaction otherwise the emulated DCC channel breaks */
118         if (retval == ERROR_OK)
119                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
120
121         return retval;
122 }
123
124 static int cortex_m3_write_debug_halt_mask(struct target *target,
125                 uint32_t mask_on, uint32_t mask_off)
126 {
127         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
128         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
129
130         /* mask off status bits */
131         cortex_m3->dcb_dhcsr &= ~((0xFFFF << 16) | mask_off);
132         /* create new register mask */
133         cortex_m3->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
134
135         return mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, cortex_m3->dcb_dhcsr);
136 }
137
138 static int cortex_m3_clear_halt(struct target *target)
139 {
140         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
141         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
142
143         /* clear step if any */
144         cortex_m3_write_debug_halt_mask(target, C_HALT, C_STEP);
145
146         /* Read Debug Fault Status Register */
147         mem_ap_read_atomic_u32(swjdp, NVIC_DFSR, &cortex_m3->nvic_dfsr);
148
149         /* Clear Debug Fault Status */
150         mem_ap_write_atomic_u32(swjdp, NVIC_DFSR, cortex_m3->nvic_dfsr);
151         LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m3->nvic_dfsr);
152
153         return ERROR_OK;
154 }
155
156 static int cortex_m3_single_step_core(struct target *target)
157 {
158         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
159         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
160         uint32_t dhcsr_save;
161
162         /* backup dhcsr reg */
163         dhcsr_save = cortex_m3->dcb_dhcsr;
164
165         /* Mask interrupts before clearing halt, if done already.  This avoids
166          * Erratum 377497 (fixed in r1p0) where setting MASKINTS while clearing
167          * HALT can put the core into an unknown state.
168          */
169         if (!(cortex_m3->dcb_dhcsr & C_MASKINTS))
170                 mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
171                                 DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN);
172         mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
173                                 DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN);
174         LOG_DEBUG(" ");
175
176         /* restore dhcsr reg */
177         cortex_m3->dcb_dhcsr = dhcsr_save;
178         cortex_m3_clear_halt(target);
179
180         return ERROR_OK;
181 }
182
183 static int cortex_m3_endreset_event(struct target *target)
184 {
185         int i;
186         uint32_t dcb_demcr;
187         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
188         struct armv7m_common *armv7m = &cortex_m3->armv7m;
189         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
190         struct cortex_m3_fp_comparator *fp_list = cortex_m3->fp_comparator_list;
191         struct cortex_m3_dwt_comparator *dwt_list = cortex_m3->dwt_comparator_list;
192
193         /* REVISIT The four debug monitor bits are currently ignored... */
194         mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &dcb_demcr);
195         LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "",dcb_demcr);
196
197         /* this register is used for emulated dcc channel */
198         mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
199
200         /* Enable debug requests */
201         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
202         if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN))
203                 mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
204
205         /* clear any interrupt masking */
206         cortex_m3_write_debug_halt_mask(target, 0, C_MASKINTS);
207
208         /* Enable features controlled by ITM and DWT blocks, and catch only
209          * the vectors we were told to pay attention to.
210          *
211          * Target firmware is responsible for all fault handling policy
212          * choices *EXCEPT* explicitly scripted overrides like "vector_catch"
213          * or manual updates to the NVIC SHCSR and CCR registers.
214          */
215         mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | armv7m->demcr);
216
217         /* Paranoia: evidently some (early?) chips don't preserve all the
218          * debug state (including FBP, DWT, etc) across reset...
219          */
220
221         /* Enable FPB */
222         target_write_u32(target, FP_CTRL, 3);
223         cortex_m3->fpb_enabled = 1;
224
225         /* Restore FPB registers */
226         for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++)
227         {
228                 target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
229         }
230
231         /* Restore DWT registers */
232         for (i = 0; i < cortex_m3->dwt_num_comp; i++)
233         {
234                 target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
235                                 dwt_list[i].comp);
236                 target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
237                                 dwt_list[i].mask);
238                 target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
239                                 dwt_list[i].function);
240         }
241         swjdp_transaction_endcheck(swjdp);
242
243         register_cache_invalidate(cortex_m3->armv7m.core_cache);
244
245         /* make sure we have latest dhcsr flags */
246         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
247
248         return ERROR_OK;
249 }
250
251 static int cortex_m3_examine_debug_reason(struct target *target)
252 {
253         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
254
255         /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason */
256         /* only check the debug reason if we don't know it already */
257
258         if ((target->debug_reason != DBG_REASON_DBGRQ)
259                 && (target->debug_reason != DBG_REASON_SINGLESTEP))
260         {
261                 if (cortex_m3->nvic_dfsr & DFSR_BKPT)
262                 {
263                         target->debug_reason = DBG_REASON_BREAKPOINT;
264                         if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
265                                 target->debug_reason = DBG_REASON_WPTANDBKPT;
266                 }
267                 else if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
268                         target->debug_reason = DBG_REASON_WATCHPOINT;
269                 else if (cortex_m3->nvic_dfsr & DFSR_VCATCH)
270                         target->debug_reason = DBG_REASON_BREAKPOINT;
271                 else /* EXTERNAL, HALTED */
272                         target->debug_reason = DBG_REASON_UNDEFINED;
273         }
274
275         return ERROR_OK;
276 }
277
278 static int cortex_m3_examine_exception_reason(struct target *target)
279 {
280         uint32_t shcsr, except_sr, cfsr = -1, except_ar = -1;
281         struct armv7m_common *armv7m = target_to_armv7m(target);
282         struct swjdp_common *swjdp = &armv7m->swjdp_info;
283
284         mem_ap_read_u32(swjdp, NVIC_SHCSR, &shcsr);
285         switch (armv7m->exception_number)
286         {
287                 case 2: /* NMI */
288                         break;
289                 case 3: /* Hard Fault */
290                         mem_ap_read_atomic_u32(swjdp, NVIC_HFSR, &except_sr);
291                         if (except_sr & 0x40000000)
292                         {
293                                 mem_ap_read_u32(swjdp, NVIC_CFSR, &cfsr);
294                         }
295                         break;
296                 case 4: /* Memory Management */
297                         mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
298                         mem_ap_read_u32(swjdp, NVIC_MMFAR, &except_ar);
299                         break;
300                 case 5: /* Bus Fault */
301                         mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
302                         mem_ap_read_u32(swjdp, NVIC_BFAR, &except_ar);
303                         break;
304                 case 6: /* Usage Fault */
305                         mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
306                         break;
307                 case 11:        /* SVCall */
308                         break;
309                 case 12:        /* Debug Monitor */
310                         mem_ap_read_u32(swjdp, NVIC_DFSR, &except_sr);
311                         break;
312                 case 14:        /* PendSV */
313                         break;
314                 case 15:        /* SysTick */
315                         break;
316                 default:
317                         except_sr = 0;
318                         break;
319         }
320         swjdp_transaction_endcheck(swjdp);
321         LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32 ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32 "", armv7m_exception_string(armv7m->exception_number), \
322                 shcsr, except_sr, cfsr, except_ar);
323         return ERROR_OK;
324 }
325
326 static int cortex_m3_debug_entry(struct target *target)
327 {
328         int i;
329         uint32_t xPSR;
330         int retval;
331         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
332         struct armv7m_common *armv7m = &cortex_m3->armv7m;
333         struct swjdp_common *swjdp = &armv7m->swjdp_info;
334         struct reg *r;
335
336         LOG_DEBUG(" ");
337
338         cortex_m3_clear_halt(target);
339         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
340
341         if ((retval = armv7m->examine_debug_reason(target)) != ERROR_OK)
342                 return retval;
343
344         /* Examine target state and mode */
345         /* First load register acessible through core debug port*/
346         int num_regs = armv7m->core_cache->num_regs;
347
348         for (i = 0; i < num_regs; i++)
349         {
350                 if (!armv7m->core_cache->reg_list[i].valid)
351                         armv7m->read_core_reg(target, i);
352         }
353
354         r = armv7m->core_cache->reg_list + ARMV7M_xPSR;
355         xPSR = buf_get_u32(r->value, 0, 32);
356
357 #ifdef ARMV7_GDB_HACKS
358         /* FIXME this breaks on scan chains with more than one Cortex-M3.
359          * Instead, each CM3 should have its own dummy value...
360          */
361         /* copy real xpsr reg for gdb, setting thumb bit */
362         buf_set_u32(armv7m_gdb_dummy_cpsr_value, 0, 32, xPSR);
363         buf_set_u32(armv7m_gdb_dummy_cpsr_value, 5, 1, 1);
364         armv7m_gdb_dummy_cpsr_reg.valid = r->valid;
365         armv7m_gdb_dummy_cpsr_reg.dirty = r->dirty;
366 #endif
367
368         /* For IT instructions xPSR must be reloaded on resume and clear on debug exec */
369         if (xPSR & 0xf00)
370         {
371                 r->dirty = r->valid;
372                 cortex_m3_store_core_reg_u32(target, ARMV7M_REGISTER_CORE_GP, 16, xPSR &~ 0xff);
373         }
374
375         /* Are we in an exception handler */
376         if (xPSR & 0x1FF)
377         {
378                 armv7m->core_mode = ARMV7M_MODE_HANDLER;
379                 armv7m->exception_number = (xPSR & 0x1FF);
380         }
381         else
382         {
383                 armv7m->core_mode = buf_get_u32(armv7m->core_cache
384                                 ->reg_list[ARMV7M_CONTROL].value, 0, 1);
385                 armv7m->exception_number = 0;
386         }
387
388         if (armv7m->exception_number)
389         {
390                 cortex_m3_examine_exception_reason(target);
391         }
392
393         LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", target->state: %s",
394                 armv7m_mode_strings[armv7m->core_mode],
395                 *(uint32_t*)(armv7m->core_cache->reg_list[15].value),
396                 target_state_name(target));
397
398         if (armv7m->post_debug_entry)
399                 armv7m->post_debug_entry(target);
400
401         return ERROR_OK;
402 }
403
404 static int cortex_m3_poll(struct target *target)
405 {
406         int retval;
407         enum target_state prev_target_state = target->state;
408         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
409         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
410
411         /* Read from Debug Halting Control and Status Register */
412         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
413         if (retval != ERROR_OK)
414         {
415                 target->state = TARGET_UNKNOWN;
416                 return retval;
417         }
418
419         if (cortex_m3->dcb_dhcsr & S_RESET_ST)
420         {
421                 /* check if still in reset */
422                 mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
423
424                 if (cortex_m3->dcb_dhcsr & S_RESET_ST)
425                 {
426                         target->state = TARGET_RESET;
427                         return ERROR_OK;
428                 }
429         }
430
431         if (target->state == TARGET_RESET)
432         {
433                 /* Cannot switch context while running so endreset is
434                  * called with target->state == TARGET_RESET
435                  */
436                 LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32,
437                                 cortex_m3->dcb_dhcsr);
438                 cortex_m3_endreset_event(target);
439                 target->state = TARGET_RUNNING;
440                 prev_target_state = TARGET_RUNNING;
441         }
442
443         if (cortex_m3->dcb_dhcsr & S_HALT)
444         {
445                 target->state = TARGET_HALTED;
446
447                 if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET))
448                 {
449                         if ((retval = cortex_m3_debug_entry(target)) != ERROR_OK)
450                                 return retval;
451
452                         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
453                 }
454                 if (prev_target_state == TARGET_DEBUG_RUNNING)
455                 {
456                         LOG_DEBUG(" ");
457                         if ((retval = cortex_m3_debug_entry(target)) != ERROR_OK)
458                                 return retval;
459
460                         target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
461                 }
462         }
463
464         /* REVISIT when S_SLEEP is set, it's in a Sleep or DeepSleep state.
465          * How best to model low power modes?
466          */
467
468         if (target->state == TARGET_UNKNOWN)
469         {
470                 /* check if processor is retiring instructions */
471                 if (cortex_m3->dcb_dhcsr & S_RETIRE_ST)
472                 {
473                         target->state = TARGET_RUNNING;
474                         return ERROR_OK;
475                 }
476         }
477
478         return ERROR_OK;
479 }
480
481 static int cortex_m3_halt(struct target *target)
482 {
483         LOG_DEBUG("target->state: %s",
484                 target_state_name(target));
485
486         if (target->state == TARGET_HALTED)
487         {
488                 LOG_DEBUG("target was already halted");
489                 return ERROR_OK;
490         }
491
492         if (target->state == TARGET_UNKNOWN)
493         {
494                 LOG_WARNING("target was in unknown state when halt was requested");
495         }
496
497         if (target->state == TARGET_RESET)
498         {
499                 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst())
500                 {
501                         LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
502                         return ERROR_TARGET_FAILURE;
503                 }
504                 else
505                 {
506                         /* we came here in a reset_halt or reset_init sequence
507                          * debug entry was already prepared in cortex_m3_prepare_reset_halt()
508                          */
509                         target->debug_reason = DBG_REASON_DBGRQ;
510
511                         return ERROR_OK;
512                 }
513         }
514
515         /* Write to Debug Halting Control and Status Register */
516         cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
517
518         target->debug_reason = DBG_REASON_DBGRQ;
519
520         return ERROR_OK;
521 }
522
523 static int cortex_m3_soft_reset_halt(struct target *target)
524 {
525         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
526         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
527         uint32_t dcb_dhcsr = 0;
528         int retval, timeout = 0;
529
530         /* Enter debug state on reset; restore DEMCR in endreset_event() */
531         mem_ap_write_u32(swjdp, DCB_DEMCR,
532                         TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
533
534         /* Request a core-only reset */
535         mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
536                         AIRCR_VECTKEY | AIRCR_VECTRESET);
537         target->state = TARGET_RESET;
538
539         /* registers are now invalid */
540         register_cache_invalidate(cortex_m3->armv7m.core_cache);
541
542         while (timeout < 100)
543         {
544                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &dcb_dhcsr);
545                 if (retval == ERROR_OK)
546                 {
547                         mem_ap_read_atomic_u32(swjdp, NVIC_DFSR,
548                                         &cortex_m3->nvic_dfsr);
549                         if ((dcb_dhcsr & S_HALT)
550                                         && (cortex_m3->nvic_dfsr & DFSR_VCATCH))
551                         {
552                                 LOG_DEBUG("system reset-halted, DHCSR 0x%08x, "
553                                         "DFSR 0x%08x",
554                                         (unsigned) dcb_dhcsr,
555                                         (unsigned) cortex_m3->nvic_dfsr);
556                                 cortex_m3_poll(target);
557                                 /* FIXME restore user's vector catch config */
558                                 return ERROR_OK;
559                         }
560                         else
561                                 LOG_DEBUG("waiting for system reset-halt, "
562                                         "DHCSR 0x%08x, %d ms",
563                                         (unsigned) dcb_dhcsr, timeout);
564                 }
565                 timeout++;
566                 alive_sleep(1);
567         }
568
569         return ERROR_OK;
570 }
571
572 static void cortex_m3_enable_breakpoints(struct target *target)
573 {
574         struct breakpoint *breakpoint = target->breakpoints;
575
576         /* set any pending breakpoints */
577         while (breakpoint)
578         {
579                 if (!breakpoint->set)
580                         cortex_m3_set_breakpoint(target, breakpoint);
581                 breakpoint = breakpoint->next;
582         }
583 }
584
585 static int cortex_m3_resume(struct target *target, int current,
586                 uint32_t address, int handle_breakpoints, int debug_execution)
587 {
588         struct armv7m_common *armv7m = target_to_armv7m(target);
589         struct breakpoint *breakpoint = NULL;
590         uint32_t resume_pc;
591         struct reg *r;
592
593         if (target->state != TARGET_HALTED)
594         {
595                 LOG_WARNING("target not halted");
596                 return ERROR_TARGET_NOT_HALTED;
597         }
598
599         if (!debug_execution)
600         {
601                 target_free_all_working_areas(target);
602                 cortex_m3_enable_breakpoints(target);
603                 cortex_m3_enable_watchpoints(target);
604         }
605
606         if (debug_execution)
607         {
608                 r = armv7m->core_cache->reg_list + ARMV7M_PRIMASK;
609
610                 /* Disable interrupts */
611                 /* We disable interrupts in the PRIMASK register instead of
612                  * masking with C_MASKINTS.  This is probably the same issue
613                  * as Cortex-M3 Erratum 377493 (fixed in r1p0):  C_MASKINTS
614                  * in parallel with disabled interrupts can cause local faults
615                  * to not be taken.
616                  *
617                  * REVISIT this clearly breaks non-debug execution, since the
618                  * PRIMASK register state isn't saved/restored...  workaround
619                  * by never resuming app code after debug execution.
620                  */
621                 buf_set_u32(r->value, 0, 1, 1);
622                 r->dirty = true;
623                 r->valid = true;
624
625                 /* Make sure we are in Thumb mode */
626                 r = armv7m->core_cache->reg_list + ARMV7M_xPSR;
627                 buf_set_u32(r->value, 24, 1, 1);
628                 r->dirty = true;
629                 r->valid = true;
630         }
631
632         /* current = 1: continue on current pc, otherwise continue at <address> */
633         r = armv7m->core_cache->reg_list + 15;
634         if (!current)
635         {
636                 buf_set_u32(r->value, 0, 32, address);
637                 r->dirty = true;
638                 r->valid = true;
639         }
640
641         /* if we halted last time due to a bkpt instruction
642          * then we have to manually step over it, otherwise
643          * the core will break again */
644
645         if (!breakpoint_find(target, buf_get_u32(r->value, 0, 32))
646                         && !debug_execution)
647         {
648                 armv7m_maybe_skip_bkpt_inst(target, NULL);
649         }
650
651         resume_pc = buf_get_u32(r->value, 0, 32);
652
653         armv7m_restore_context(target);
654
655         /* the front-end may request us not to handle breakpoints */
656         if (handle_breakpoints)
657         {
658                 /* Single step past breakpoint at current address */
659                 if ((breakpoint = breakpoint_find(target, resume_pc)))
660                 {
661                         LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (ID: %d)",
662                                           breakpoint->address,
663                                           breakpoint->unique_id);
664                         cortex_m3_unset_breakpoint(target, breakpoint);
665                         cortex_m3_single_step_core(target);
666                         cortex_m3_set_breakpoint(target, breakpoint);
667                 }
668         }
669
670         /* Restart core */
671         cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
672
673         target->debug_reason = DBG_REASON_NOTHALTED;
674
675         /* registers are now invalid */
676         register_cache_invalidate(armv7m->core_cache);
677
678         if (!debug_execution)
679         {
680                 target->state = TARGET_RUNNING;
681                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
682                 LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc);
683         }
684         else
685         {
686                 target->state = TARGET_DEBUG_RUNNING;
687                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
688                 LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc);
689         }
690
691         return ERROR_OK;
692 }
693
694 /* int irqstepcount = 0; */
695 static int cortex_m3_step(struct target *target, int current,
696                 uint32_t address, int handle_breakpoints)
697 {
698         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
699         struct armv7m_common *armv7m = &cortex_m3->armv7m;
700         struct swjdp_common *swjdp = &armv7m->swjdp_info;
701         struct breakpoint *breakpoint = NULL;
702         struct reg *pc = armv7m->core_cache->reg_list + 15;
703         bool bkpt_inst_found = false;
704
705         if (target->state != TARGET_HALTED)
706         {
707                 LOG_WARNING("target not halted");
708                 return ERROR_TARGET_NOT_HALTED;
709         }
710
711         /* current = 1: continue on current pc, otherwise continue at <address> */
712         if (!current)
713                 buf_set_u32(pc->value, 0, 32, address);
714
715         /* the front-end may request us not to handle breakpoints */
716         if (handle_breakpoints) {
717                 breakpoint = breakpoint_find(target,
718                                 buf_get_u32(pc->value, 0, 32));
719                 if (breakpoint)
720                         cortex_m3_unset_breakpoint(target, breakpoint);
721         }
722
723         armv7m_maybe_skip_bkpt_inst(target, &bkpt_inst_found);
724
725         target->debug_reason = DBG_REASON_SINGLESTEP;
726
727         armv7m_restore_context(target);
728
729         target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
730
731         /* if no bkpt instruction is found at pc then we can perform
732          * a normal step, otherwise we have to manually step over the bkpt
733          * instruction - as such simulate a step */
734         if (bkpt_inst_found == false)
735         {
736                 /* set step and clear halt */
737                 cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
738         }
739
740         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
741
742         /* registers are now invalid */
743         register_cache_invalidate(cortex_m3->armv7m.core_cache);
744
745         if (breakpoint)
746                 cortex_m3_set_breakpoint(target, breakpoint);
747
748         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
749                         " nvic_icsr = 0x%" PRIx32,
750                         cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
751
752         cortex_m3_debug_entry(target);
753         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
754
755         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
756                         " nvic_icsr = 0x%" PRIx32,
757                         cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
758
759         return ERROR_OK;
760 }
761
762 static int cortex_m3_assert_reset(struct target *target)
763 {
764         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
765         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
766         int assert_srst = 1;
767
768         LOG_DEBUG("target->state: %s",
769                 target_state_name(target));
770
771         enum reset_types jtag_reset_config = jtag_get_reset_config();
772
773         /*
774          * We can reset Cortex-M3 targets using just the NVIC without
775          * requiring SRST, getting a SoC reset (or a core-only reset)
776          * instead of a system reset.
777          */
778         if (!(jtag_reset_config & RESET_HAS_SRST))
779                 assert_srst = 0;
780
781         /* Enable debug requests */
782         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
783         if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN))
784                 mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
785
786         mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
787
788         if (!target->reset_halt)
789         {
790                 /* Set/Clear C_MASKINTS in a separate operation */
791                 if (cortex_m3->dcb_dhcsr & C_MASKINTS)
792                         mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
793                                         DBGKEY | C_DEBUGEN | C_HALT);
794
795                 /* clear any debug flags before resuming */
796                 cortex_m3_clear_halt(target);
797
798                 /* clear C_HALT in dhcsr reg */
799                 cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
800         }
801         else
802         {
803                 /* Halt in debug on reset; endreset_event() restores DEMCR.
804                  *
805                  * REVISIT catching BUSERR presumably helps to defend against
806                  * bad vector table entries.  Should this include MMERR or
807                  * other flags too?
808                  */
809                 mem_ap_write_atomic_u32(swjdp, DCB_DEMCR,
810                                 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
811         }
812
813         /*
814          * When nRST is asserted on most Stellaris devices, it clears some of
815          * the debug state.  The ARMv7M and Cortex-M3 TRMs say that's wrong;
816          * and OpenOCD depends on those TRMs.  So we won't use SRST on those
817          * chips.  (Only power-on reset should affect debug state, beyond a
818          * few specified bits; not the chip's nRST input, wired to SRST.)
819          *
820          * REVISIT current errata specs don't seem to cover this issue.
821          * Do we have more details than this email?
822          *   https://lists.berlios.de/pipermail
823          *      /openocd-development/2008-August/003065.html
824          */
825         if (strcmp(target->variant, "lm3s") == 0)
826         {
827                 /* Check for silicon revisions with the issue. */
828                 uint32_t did0;
829
830                 if (target_read_u32(target, 0x400fe000, &did0) == ERROR_OK)
831                 {
832                         switch ((did0 >> 16) & 0xff)
833                         {
834                                 case 0:
835                                         /* all Sandstorm suffer issue */
836                                         assert_srst = 0;
837                                         break;
838
839                                 case 1:
840                                 case 3:
841                                         /* Fury and DustDevil rev A have
842                                          * this nRST problem.  It should
843                                          * be fixed in rev B silicon.
844                                          */
845                                         if (((did0 >> 8) & 0xff) == 0)
846                                                 assert_srst = 0;
847                                         break;
848                                 case 4:
849                                         /* Tempest should be fine. */
850                                         break;
851                         }
852                 }
853         }
854
855         if (assert_srst)
856         {
857                 /* default to asserting srst */
858                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
859                 {
860                         jtag_add_reset(1, 1);
861                 }
862                 else
863                 {
864                         jtag_add_reset(0, 1);
865                 }
866         }
867         else
868         {
869                 /* Use a standard Cortex-M3 software reset mechanism.
870                  * SYSRESETREQ will reset SoC peripherals outside the
871                  * core, like watchdog timers, if the SoC wires it up
872                  * correctly.  Else VECRESET can reset just the core.
873                  */
874                 mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
875                                 AIRCR_VECTKEY | AIRCR_SYSRESETREQ);
876                 LOG_DEBUG("Using Cortex-M3 SYSRESETREQ");
877
878                 {
879                         /* I do not know why this is necessary, but it
880                          * fixes strange effects (step/resume cause NMI
881                          * after reset) on LM3S6918 -- Michael Schwingen
882                          */
883                         uint32_t tmp;
884                         mem_ap_read_atomic_u32(swjdp, NVIC_AIRCR, &tmp);
885                 }
886         }
887
888         target->state = TARGET_RESET;
889         jtag_add_sleep(50000);
890
891         register_cache_invalidate(cortex_m3->armv7m.core_cache);
892
893         if (target->reset_halt)
894         {
895                 int retval;
896                 if ((retval = target_halt(target)) != ERROR_OK)
897                         return retval;
898         }
899
900         return ERROR_OK;
901 }
902
903 static int cortex_m3_deassert_reset(struct target *target)
904 {
905         LOG_DEBUG("target->state: %s",
906                 target_state_name(target));
907
908         /* deassert reset lines */
909         jtag_add_reset(0, 0);
910
911         return ERROR_OK;
912 }
913
914 static int
915 cortex_m3_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
916 {
917         int retval;
918         int fp_num = 0;
919         uint32_t hilo;
920         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
921         struct cortex_m3_fp_comparator *comparator_list = cortex_m3->fp_comparator_list;
922
923         if (breakpoint->set)
924         {
925                 LOG_WARNING("breakpoint (BPID: %d) already set", breakpoint->unique_id);
926                 return ERROR_OK;
927         }
928
929         if (cortex_m3->auto_bp_type)
930         {
931                 breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
932         }
933
934         if (breakpoint->type == BKPT_HARD)
935         {
936                 while (comparator_list[fp_num].used && (fp_num < cortex_m3->fp_num_code))
937                         fp_num++;
938                 if (fp_num >= cortex_m3->fp_num_code)
939                 {
940                         LOG_ERROR("Can not find free FPB Comparator!");
941                         return ERROR_FAIL;
942                 }
943                 breakpoint->set = fp_num + 1;
944                 hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
945                 comparator_list[fp_num].used = 1;
946                 comparator_list[fp_num].fpcr_value = (breakpoint->address & 0x1FFFFFFC) | hilo | 1;
947                 target_write_u32(target, comparator_list[fp_num].fpcr_address, comparator_list[fp_num].fpcr_value);
948                 LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "", fp_num, comparator_list[fp_num].fpcr_value);
949                 if (!cortex_m3->fpb_enabled)
950                 {
951                         LOG_DEBUG("FPB wasn't enabled, do it now");
952                         target_write_u32(target, FP_CTRL, 3);
953                 }
954         }
955         else if (breakpoint->type == BKPT_SOFT)
956         {
957                 uint8_t code[4];
958
959                 /* NOTE: on ARMv6-M and ARMv7-M, BKPT(0xab) is used for
960                  * semihosting; don't use that.  Otherwise the BKPT
961                  * parameter is arbitrary.
962                  */
963                 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
964                 retval = target_read_memory(target,
965                                 breakpoint->address & 0xFFFFFFFE,
966                                 breakpoint->length, 1,
967                                 breakpoint->orig_instr);
968                 if (retval != ERROR_OK)
969                         return retval;
970                 retval = target_write_memory(target,
971                                 breakpoint->address & 0xFFFFFFFE,
972                                 breakpoint->length, 1,
973                                 code);
974                 if (retval != ERROR_OK)
975                         return retval;
976                 breakpoint->set = true;
977         }
978
979         LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
980                           breakpoint->unique_id,
981                           (int)(breakpoint->type),
982                           breakpoint->address,
983                           breakpoint->length,
984                           breakpoint->set);
985
986         return ERROR_OK;
987 }
988
989 static int
990 cortex_m3_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
991 {
992         int retval;
993         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
994         struct cortex_m3_fp_comparator * comparator_list = cortex_m3->fp_comparator_list;
995
996         if (!breakpoint->set)
997         {
998                 LOG_WARNING("breakpoint not set");
999                 return ERROR_OK;
1000         }
1001
1002         LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
1003                           breakpoint->unique_id,
1004                           (int)(breakpoint->type),
1005                           breakpoint->address,
1006                           breakpoint->length,
1007                           breakpoint->set);
1008
1009         if (breakpoint->type == BKPT_HARD)
1010         {
1011                 int fp_num = breakpoint->set - 1;
1012                 if ((fp_num < 0) || (fp_num >= cortex_m3->fp_num_code))
1013                 {
1014                         LOG_DEBUG("Invalid FP Comparator number in breakpoint");
1015                         return ERROR_OK;
1016                 }
1017                 comparator_list[fp_num].used = 0;
1018                 comparator_list[fp_num].fpcr_value = 0;
1019                 target_write_u32(target, comparator_list[fp_num].fpcr_address, comparator_list[fp_num].fpcr_value);
1020         }
1021         else
1022         {
1023                 /* restore original instruction (kept in target endianness) */
1024                 if (breakpoint->length == 4)
1025                 {
1026                         if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
1027                         {
1028                                 return retval;
1029                         }
1030                 }
1031                 else
1032                 {
1033                         if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
1034                         {
1035                                 return retval;
1036                         }
1037                 }
1038         }
1039         breakpoint->set = false;
1040
1041         return ERROR_OK;
1042 }
1043
1044 static int
1045 cortex_m3_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1046 {
1047         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1048
1049         if (cortex_m3->auto_bp_type)
1050         {
1051                 breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
1052 #ifdef ARMV7_GDB_HACKS
1053                 if (breakpoint->length != 2) {
1054                         /* XXX Hack: Replace all breakpoints with length != 2 with
1055                          * a hardware breakpoint. */
1056                         breakpoint->type = BKPT_HARD;
1057                         breakpoint->length = 2;
1058                 }
1059 #endif
1060         }
1061
1062         if ((breakpoint->type == BKPT_HARD) && (breakpoint->address >= 0x20000000))
1063         {
1064                 LOG_INFO("flash patch comparator requested outside code memory region");
1065                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1066         }
1067
1068         if ((breakpoint->type == BKPT_SOFT) && (breakpoint->address < 0x20000000))
1069         {
1070                 LOG_INFO("soft breakpoint requested in code (flash) memory region");
1071                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1072         }
1073
1074         if ((breakpoint->type == BKPT_HARD) && (cortex_m3->fp_code_available < 1))
1075         {
1076                 LOG_INFO("no flash patch comparator unit available for hardware breakpoint");
1077                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1078         }
1079
1080         if ((breakpoint->length != 2))
1081         {
1082                 LOG_INFO("only breakpoints of two bytes length supported");
1083                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1084         }
1085
1086         if (breakpoint->type == BKPT_HARD)
1087                 cortex_m3->fp_code_available--;
1088         cortex_m3_set_breakpoint(target, breakpoint);
1089
1090         return ERROR_OK;
1091 }
1092
1093 static int
1094 cortex_m3_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1095 {
1096         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1097
1098         /* REVISIT why check? FBP can be updated with core running ... */
1099         if (target->state != TARGET_HALTED)
1100         {
1101                 LOG_WARNING("target not halted");
1102                 return ERROR_TARGET_NOT_HALTED;
1103         }
1104
1105         if (cortex_m3->auto_bp_type)
1106         {
1107                 breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
1108         }
1109
1110         if (breakpoint->set)
1111         {
1112                 cortex_m3_unset_breakpoint(target, breakpoint);
1113         }
1114
1115         if (breakpoint->type == BKPT_HARD)
1116                 cortex_m3->fp_code_available++;
1117
1118         return ERROR_OK;
1119 }
1120
1121 static int
1122 cortex_m3_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1123 {
1124         int dwt_num = 0;
1125         uint32_t mask, temp;
1126         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1127
1128         /* watchpoint params were validated earlier */
1129         mask = 0;
1130         temp = watchpoint->length;
1131         while (temp) {
1132                 temp >>= 1;
1133                 mask++;
1134         }
1135         mask--;
1136
1137         /* REVISIT Don't fully trust these "not used" records ... users
1138          * may set up breakpoints by hand, e.g. dual-address data value
1139          * watchpoint using comparator #1; comparator #0 matching cycle
1140          * count; send data trace info through ITM and TPIU; etc
1141          */
1142         struct cortex_m3_dwt_comparator *comparator;
1143
1144         for (comparator = cortex_m3->dwt_comparator_list;
1145                         comparator->used && dwt_num < cortex_m3->dwt_num_comp;
1146                         comparator++, dwt_num++)
1147                 continue;
1148         if (dwt_num >= cortex_m3->dwt_num_comp)
1149         {
1150                 LOG_ERROR("Can not find free DWT Comparator");
1151                 return ERROR_FAIL;
1152         }
1153         comparator->used = 1;
1154         watchpoint->set = dwt_num + 1;
1155
1156         comparator->comp = watchpoint->address;
1157         target_write_u32(target, comparator->dwt_comparator_address + 0,
1158                         comparator->comp);
1159
1160         comparator->mask = mask;
1161         target_write_u32(target, comparator->dwt_comparator_address + 4,
1162                         comparator->mask);
1163
1164         switch (watchpoint->rw) {
1165         case WPT_READ:
1166                 comparator->function = 5;
1167                 break;
1168         case WPT_WRITE:
1169                 comparator->function = 6;
1170                 break;
1171         case WPT_ACCESS:
1172                 comparator->function = 7;
1173                 break;
1174         }
1175         target_write_u32(target, comparator->dwt_comparator_address + 8,
1176                         comparator->function);
1177
1178         LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
1179                         watchpoint->unique_id, dwt_num,
1180                         (unsigned) comparator->comp,
1181                         (unsigned) comparator->mask,
1182                         (unsigned) comparator->function);
1183         return ERROR_OK;
1184 }
1185
1186 static int
1187 cortex_m3_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1188 {
1189         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1190         struct cortex_m3_dwt_comparator *comparator;
1191         int dwt_num;
1192
1193         if (!watchpoint->set)
1194         {
1195                 LOG_WARNING("watchpoint (wpid: %d) not set",
1196                                 watchpoint->unique_id);
1197                 return ERROR_OK;
1198         }
1199
1200         dwt_num = watchpoint->set - 1;
1201
1202         LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear",
1203                         watchpoint->unique_id, dwt_num,
1204                         (unsigned) watchpoint->address);
1205
1206         if ((dwt_num < 0) || (dwt_num >= cortex_m3->dwt_num_comp))
1207         {
1208                 LOG_DEBUG("Invalid DWT Comparator number in watchpoint");
1209                 return ERROR_OK;
1210         }
1211
1212         comparator = cortex_m3->dwt_comparator_list + dwt_num;
1213         comparator->used = 0;
1214         comparator->function = 0;
1215         target_write_u32(target, comparator->dwt_comparator_address + 8,
1216                         comparator->function);
1217
1218         watchpoint->set = false;
1219
1220         return ERROR_OK;
1221 }
1222
1223 static int
1224 cortex_m3_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1225 {
1226         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1227
1228         if (cortex_m3->dwt_comp_available < 1)
1229         {
1230                 LOG_DEBUG("no comparators?");
1231                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1232         }
1233
1234         /* hardware doesn't support data value masking */
1235         if (watchpoint->mask != ~(uint32_t)0) {
1236                 LOG_DEBUG("watchpoint value masks not supported");
1237                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1238         }
1239
1240         /* hardware allows address masks of up to 32K */
1241         unsigned mask;
1242
1243         for (mask = 0; mask < 16; mask++) {
1244                 if ((1u << mask) == watchpoint->length)
1245                         break;
1246         }
1247         if (mask == 16) {
1248                 LOG_DEBUG("unsupported watchpoint length");
1249                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1250         }
1251         if (watchpoint->address & ((1 << mask) - 1)) {
1252                 LOG_DEBUG("watchpoint address is unaligned");
1253                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1254         }
1255
1256         /* Caller doesn't seem to be able to describe watching for data
1257          * values of zero; that flags "no value".
1258          *
1259          * REVISIT This DWT may well be able to watch for specific data
1260          * values.  Requires comparator #1 to set DATAVMATCH and match
1261          * the data, and another comparator (DATAVADDR0) matching addr.
1262          */
1263         if (watchpoint->value) {
1264                 LOG_DEBUG("data value watchpoint not YET supported");
1265                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1266         }
1267
1268         cortex_m3->dwt_comp_available--;
1269         LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1270
1271         return ERROR_OK;
1272 }
1273
1274 static int
1275 cortex_m3_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1276 {
1277         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1278
1279         /* REVISIT why check? DWT can be updated with core running ... */
1280         if (target->state != TARGET_HALTED)
1281         {
1282                 LOG_WARNING("target not halted");
1283                 return ERROR_TARGET_NOT_HALTED;
1284         }
1285
1286         if (watchpoint->set)
1287         {
1288                 cortex_m3_unset_watchpoint(target, watchpoint);
1289         }
1290
1291         cortex_m3->dwt_comp_available++;
1292         LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1293
1294         return ERROR_OK;
1295 }
1296
1297 static void cortex_m3_enable_watchpoints(struct target *target)
1298 {
1299         struct watchpoint *watchpoint = target->watchpoints;
1300
1301         /* set any pending watchpoints */
1302         while (watchpoint)
1303         {
1304                 if (!watchpoint->set)
1305                         cortex_m3_set_watchpoint(target, watchpoint);
1306                 watchpoint = watchpoint->next;
1307         }
1308 }
1309
1310 static int cortex_m3_load_core_reg_u32(struct target *target,
1311                 enum armv7m_regtype type, uint32_t num, uint32_t * value)
1312 {
1313         int retval;
1314         struct armv7m_common *armv7m = target_to_armv7m(target);
1315         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1316
1317         /* NOTE:  we "know" here that the register identifiers used
1318          * in the v7m header match the Cortex-M3 Debug Core Register
1319          * Selector values for R0..R15, xPSR, MSP, and PSP.
1320          */
1321         switch (num) {
1322         case 0 ... 18:
1323                 /* read a normal core register */
1324                 retval = cortexm3_dap_read_coreregister_u32(swjdp, value, num);
1325
1326                 if (retval != ERROR_OK)
1327                 {
1328                         LOG_ERROR("JTAG failure %i",retval);
1329                         return ERROR_JTAG_DEVICE_ERROR;
1330                 }
1331                 LOG_DEBUG("load from core reg %i  value 0x%" PRIx32 "",(int)num,*value);
1332                 break;
1333
1334         case ARMV7M_PRIMASK:
1335         case ARMV7M_BASEPRI:
1336         case ARMV7M_FAULTMASK:
1337         case ARMV7M_CONTROL:
1338                 /* Cortex-M3 packages these four registers as bitfields
1339                  * in one Debug Core register.  So say r0 and r2 docs;
1340                  * it was removed from r1 docs, but still works.
1341                  */
1342                 cortexm3_dap_read_coreregister_u32(swjdp, value, 20);
1343
1344                 switch (num)
1345                 {
1346                         case ARMV7M_PRIMASK:
1347                                 *value = buf_get_u32((uint8_t*)value, 0, 1);
1348                                 break;
1349
1350                         case ARMV7M_BASEPRI:
1351                                 *value = buf_get_u32((uint8_t*)value, 8, 8);
1352                                 break;
1353
1354                         case ARMV7M_FAULTMASK:
1355                                 *value = buf_get_u32((uint8_t*)value, 16, 1);
1356                                 break;
1357
1358                         case ARMV7M_CONTROL:
1359                                 *value = buf_get_u32((uint8_t*)value, 24, 2);
1360                                 break;
1361                 }
1362
1363                 LOG_DEBUG("load from special reg %i value 0x%" PRIx32 "", (int)num, *value);
1364                 break;
1365
1366         default:
1367                 return ERROR_INVALID_ARGUMENTS;
1368         }
1369
1370         return ERROR_OK;
1371 }
1372
1373 static int cortex_m3_store_core_reg_u32(struct target *target,
1374                 enum armv7m_regtype type, uint32_t num, uint32_t value)
1375 {
1376         int retval;
1377         uint32_t reg;
1378         struct armv7m_common *armv7m = target_to_armv7m(target);
1379         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1380
1381 #ifdef ARMV7_GDB_HACKS
1382         /* If the LR register is being modified, make sure it will put us
1383          * in "thumb" mode, or an INVSTATE exception will occur. This is a
1384          * hack to deal with the fact that gdb will sometimes "forge"
1385          * return addresses, and doesn't set the LSB correctly (i.e., when
1386          * printing expressions containing function calls, it sets LR = 0.)
1387          * Valid exception return codes have bit 0 set too.
1388          */
1389         if (num == ARMV7M_R14)
1390                 value |= 0x01;
1391 #endif
1392
1393         /* NOTE:  we "know" here that the register identifiers used
1394          * in the v7m header match the Cortex-M3 Debug Core Register
1395          * Selector values for R0..R15, xPSR, MSP, and PSP.
1396          */
1397         switch (num) {
1398         case 0 ... 18:
1399                 retval = cortexm3_dap_write_coreregister_u32(swjdp, value, num);
1400                 if (retval != ERROR_OK)
1401                 {
1402                         struct reg *r;
1403
1404                         LOG_ERROR("JTAG failure %i", retval);
1405                         r = armv7m->core_cache->reg_list + num;
1406                         r->dirty = r->valid;
1407                         return ERROR_JTAG_DEVICE_ERROR;
1408                 }
1409                 LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value);
1410                 break;
1411
1412         case ARMV7M_PRIMASK:
1413         case ARMV7M_BASEPRI:
1414         case ARMV7M_FAULTMASK:
1415         case ARMV7M_CONTROL:
1416                 /* Cortex-M3 packages these four registers as bitfields
1417                  * in one Debug Core register.  So say r0 and r2 docs;
1418                  * it was removed from r1 docs, but still works.
1419                  */
1420                 cortexm3_dap_read_coreregister_u32(swjdp, &reg, 20);
1421
1422                 switch (num)
1423                 {
1424                         case ARMV7M_PRIMASK:
1425                                 buf_set_u32((uint8_t*)&reg, 0, 1, value);
1426                                 break;
1427
1428                         case ARMV7M_BASEPRI:
1429                                 buf_set_u32((uint8_t*)&reg, 8, 8, value);
1430                                 break;
1431
1432                         case ARMV7M_FAULTMASK:
1433                                 buf_set_u32((uint8_t*)&reg, 16, 1, value);
1434                                 break;
1435
1436                         case ARMV7M_CONTROL:
1437                                 buf_set_u32((uint8_t*)&reg, 24, 2, value);
1438                                 break;
1439                 }
1440
1441                 cortexm3_dap_write_coreregister_u32(swjdp, reg, 20);
1442
1443                 LOG_DEBUG("write special reg %i value 0x%" PRIx32 " ", (int)num, value);
1444                 break;
1445
1446         default:
1447                 return ERROR_INVALID_ARGUMENTS;
1448         }
1449
1450         return ERROR_OK;
1451 }
1452
1453 static int cortex_m3_read_memory(struct target *target, uint32_t address,
1454                 uint32_t size, uint32_t count, uint8_t *buffer)
1455 {
1456         struct armv7m_common *armv7m = target_to_armv7m(target);
1457         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1458         int retval = ERROR_INVALID_ARGUMENTS;
1459
1460         /* cortex_m3 handles unaligned memory access */
1461         if (count && buffer) {
1462                 switch (size) {
1463                 case 4:
1464                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1465                         break;
1466                 case 2:
1467                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1468                         break;
1469                 case 1:
1470                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1471                         break;
1472                 }
1473         }
1474
1475         return retval;
1476 }
1477
1478 static int cortex_m3_write_memory(struct target *target, uint32_t address,
1479                 uint32_t size, uint32_t count, uint8_t *buffer)
1480 {
1481         struct armv7m_common *armv7m = target_to_armv7m(target);
1482         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1483         int retval = ERROR_INVALID_ARGUMENTS;
1484
1485         if (count && buffer) {
1486                 switch (size) {
1487                 case 4:
1488                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1489                         break;
1490                 case 2:
1491                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1492                         break;
1493                 case 1:
1494                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1495                         break;
1496                 }
1497         }
1498
1499         return retval;
1500 }
1501
1502 static int cortex_m3_bulk_write_memory(struct target *target, uint32_t address,
1503                 uint32_t count, uint8_t *buffer)
1504 {
1505         return cortex_m3_write_memory(target, address, 4, count, buffer);
1506 }
1507
1508 static int cortex_m3_init_target(struct command_context *cmd_ctx,
1509                 struct target *target)
1510 {
1511         armv7m_build_reg_cache(target);
1512         return ERROR_OK;
1513 }
1514
1515 /* REVISIT cache valid/dirty bits are unmaintained.  We could set "valid"
1516  * on r/w if the core is not running, and clear on resume or reset ... or
1517  * at least, in a post_restore_context() method.
1518  */
1519
1520 struct dwt_reg_state {
1521         struct target   *target;
1522         uint32_t        addr;
1523         uint32_t        value;  /* scratch/cache */
1524 };
1525
1526 static int cortex_m3_dwt_get_reg(struct reg *reg)
1527 {
1528         struct dwt_reg_state *state = reg->arch_info;
1529
1530         return target_read_u32(state->target, state->addr, &state->value);
1531 }
1532
1533 static int cortex_m3_dwt_set_reg(struct reg *reg, uint8_t *buf)
1534 {
1535         struct dwt_reg_state *state = reg->arch_info;
1536
1537         return target_write_u32(state->target, state->addr,
1538                         buf_get_u32(buf, 0, reg->size));
1539 }
1540
1541 struct dwt_reg {
1542         uint32_t        addr;
1543         char            *name;
1544         unsigned        size;
1545 };
1546
1547 static struct dwt_reg dwt_base_regs[] = {
1548         { DWT_CTRL, "dwt_ctrl", 32, },
1549         /* NOTE that Erratum 532314 (fixed r2p0) affects CYCCNT:  it wrongly
1550          * increments while the core is asleep.
1551          */
1552         { DWT_CYCCNT, "dwt_cyccnt", 32, },
1553         /* plus some 8 bit counters, useful for profiling with TPIU */
1554 };
1555
1556 static struct dwt_reg dwt_comp[] = {
1557 #define DWT_COMPARATOR(i) \
1558                 { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
1559                 { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
1560                 { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
1561         DWT_COMPARATOR(0),
1562         DWT_COMPARATOR(1),
1563         DWT_COMPARATOR(2),
1564         DWT_COMPARATOR(3),
1565 #undef DWT_COMPARATOR
1566 };
1567
1568 static const struct reg_arch_type dwt_reg_type = {
1569         .get = cortex_m3_dwt_get_reg,
1570         .set = cortex_m3_dwt_set_reg,
1571 };
1572
1573 static void
1574 cortex_m3_dwt_addreg(struct target *t, struct reg *r, struct dwt_reg *d)
1575 {
1576         struct dwt_reg_state *state;
1577
1578         state = calloc(1, sizeof *state);
1579         if (!state)
1580                 return;
1581         state->addr = d->addr;
1582         state->target = t;
1583
1584         r->name = d->name;
1585         r->size = d->size;
1586         r->value = &state->value;
1587         r->arch_info = state;
1588         r->type = &dwt_reg_type;
1589 }
1590
1591 static void
1592 cortex_m3_dwt_setup(struct cortex_m3_common *cm3, struct target *target)
1593 {
1594         uint32_t dwtcr;
1595         struct reg_cache *cache;
1596         struct cortex_m3_dwt_comparator *comparator;
1597         int reg, i;
1598
1599         target_read_u32(target, DWT_CTRL, &dwtcr);
1600         if (!dwtcr) {
1601                 LOG_DEBUG("no DWT");
1602                 return;
1603         }
1604
1605         cm3->dwt_num_comp = (dwtcr >> 28) & 0xF;
1606         cm3->dwt_comp_available = cm3->dwt_num_comp;
1607         cm3->dwt_comparator_list = calloc(cm3->dwt_num_comp,
1608                         sizeof(struct cortex_m3_dwt_comparator));
1609         if (!cm3->dwt_comparator_list) {
1610 fail0:
1611                 cm3->dwt_num_comp = 0;
1612                 LOG_ERROR("out of mem");
1613                 return;
1614         }
1615
1616         cache = calloc(1, sizeof *cache);
1617         if (!cache) {
1618 fail1:
1619                 free(cm3->dwt_comparator_list);
1620                 goto fail0;
1621         }
1622         cache->name = "cortex-m3 dwt registers";
1623         cache->num_regs = 2 + cm3->dwt_num_comp * 3;
1624         cache->reg_list = calloc(cache->num_regs, sizeof *cache->reg_list);
1625         if (!cache->reg_list) {
1626                 free(cache);
1627                 goto fail1;
1628         }
1629
1630         for (reg = 0; reg < 2; reg++)
1631                 cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1632                                 dwt_base_regs + reg);
1633
1634         comparator = cm3->dwt_comparator_list;
1635         for (i = 0; i < cm3->dwt_num_comp; i++, comparator++) {
1636                 int j;
1637
1638                 comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
1639                 for (j = 0; j < 3; j++, reg++)
1640                         cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1641                                         dwt_comp + 3 * i + j);
1642         }
1643
1644         *register_get_last_cache_p(&target->reg_cache) = cache;
1645         cm3->dwt_cache = cache;
1646
1647         LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
1648                         dwtcr, cm3->dwt_num_comp,
1649                         (dwtcr & (0xf << 24)) ? " only" : "/trigger");
1650
1651         /* REVISIT:  if num_comp > 1, check whether comparator #1 can
1652          * implement single-address data value watchpoints ... so we
1653          * won't need to check it later, when asked to set one up.
1654          */
1655 }
1656
1657 static int cortex_m3_examine(struct target *target)
1658 {
1659         int retval;
1660         uint32_t cpuid, fpcr;
1661         int i;
1662         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1663         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
1664
1665         if ((retval = ahbap_debugport_init(swjdp)) != ERROR_OK)
1666                 return retval;
1667
1668         if (!target_was_examined(target))
1669         {
1670                 target_set_examined(target);
1671
1672                 /* Read from Device Identification Registers */
1673                 retval = target_read_u32(target, CPUID, &cpuid);
1674                 if (retval != ERROR_OK)
1675                         return retval;
1676
1677                 if (((cpuid >> 4) & 0xc3f) == 0xc23)
1678                         LOG_DEBUG("Cortex-M3 r%" PRId8 "p%" PRId8 " processor detected",
1679                                 (uint8_t)((cpuid >> 20) & 0xf), (uint8_t)((cpuid >> 0) & 0xf));
1680                 LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid);
1681
1682                 /* NOTE: FPB and DWT are both optional. */
1683
1684                 /* Setup FPB */
1685                 target_read_u32(target, FP_CTRL, &fpcr);
1686                 cortex_m3->auto_bp_type = 1;
1687                 cortex_m3->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF); /* bits [14:12] and [7:4] */
1688                 cortex_m3->fp_num_lit = (fpcr >> 8) & 0xF;
1689                 cortex_m3->fp_code_available = cortex_m3->fp_num_code;
1690                 cortex_m3->fp_comparator_list = calloc(cortex_m3->fp_num_code + cortex_m3->fp_num_lit, sizeof(struct cortex_m3_fp_comparator));
1691                 cortex_m3->fpb_enabled = fpcr & 1;
1692                 for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++)
1693                 {
1694                         cortex_m3->fp_comparator_list[i].type = (i < cortex_m3->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
1695                         cortex_m3->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
1696                 }
1697                 LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i", fpcr, cortex_m3->fp_num_code, cortex_m3->fp_num_lit);
1698
1699                 /* Setup DWT */
1700                 cortex_m3_dwt_setup(cortex_m3, target);
1701
1702                 /* These hardware breakpoints only work for code in flash! */
1703                 LOG_INFO("%s: hardware has %d breakpoints, %d watchpoints",
1704                                 target_name(target),
1705                                 cortex_m3->fp_num_code,
1706                                 cortex_m3->dwt_num_comp);
1707         }
1708
1709         return ERROR_OK;
1710 }
1711
1712 static int cortex_m3_dcc_read(struct swjdp_common *swjdp, uint8_t *value, uint8_t *ctrl)
1713 {
1714         uint16_t dcrdr;
1715
1716         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1717         *ctrl = (uint8_t)dcrdr;
1718         *value = (uint8_t)(dcrdr >> 8);
1719
1720         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1721
1722         /* write ack back to software dcc register
1723          * signify we have read data */
1724         if (dcrdr & (1 << 0))
1725         {
1726                 dcrdr = 0;
1727                 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1728         }
1729
1730         return ERROR_OK;
1731 }
1732
1733 static int cortex_m3_target_request_data(struct target *target,
1734                 uint32_t size, uint8_t *buffer)
1735 {
1736         struct armv7m_common *armv7m = target_to_armv7m(target);
1737         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1738         uint8_t data;
1739         uint8_t ctrl;
1740         uint32_t i;
1741
1742         for (i = 0; i < (size * 4); i++)
1743         {
1744                 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1745                 buffer[i] = data;
1746         }
1747
1748         return ERROR_OK;
1749 }
1750
1751 static int cortex_m3_handle_target_request(void *priv)
1752 {
1753         struct target *target = priv;
1754         if (!target_was_examined(target))
1755                 return ERROR_OK;
1756         struct armv7m_common *armv7m = target_to_armv7m(target);
1757         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1758
1759         if (!target->dbg_msg_enabled)
1760                 return ERROR_OK;
1761
1762         if (target->state == TARGET_RUNNING)
1763         {
1764                 uint8_t data;
1765                 uint8_t ctrl;
1766
1767                 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1768
1769                 /* check if we have data */
1770                 if (ctrl & (1 << 0))
1771                 {
1772                         uint32_t request;
1773
1774                         /* we assume target is quick enough */
1775                         request = data;
1776                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1777                         request |= (data << 8);
1778                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1779                         request |= (data << 16);
1780                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1781                         request |= (data << 24);
1782                         target_request(target, request);
1783                 }
1784         }
1785
1786         return ERROR_OK;
1787 }
1788
1789 static int cortex_m3_init_arch_info(struct target *target,
1790                 struct cortex_m3_common *cortex_m3, struct jtag_tap *tap)
1791 {
1792         int retval;
1793         struct armv7m_common *armv7m = &cortex_m3->armv7m;
1794
1795         armv7m_init_arch_info(target, armv7m);
1796
1797         /* prepare JTAG information for the new target */
1798         cortex_m3->jtag_info.tap = tap;
1799         cortex_m3->jtag_info.scann_size = 4;
1800
1801         armv7m->swjdp_info.dp_select_value = -1;
1802         armv7m->swjdp_info.ap_csw_value = -1;
1803         armv7m->swjdp_info.ap_tar_value = -1;
1804         armv7m->swjdp_info.jtag_info = &cortex_m3->jtag_info;
1805         armv7m->swjdp_info.memaccess_tck = 8;
1806         armv7m->swjdp_info.tar_autoincr_block = (1 << 12);      /* Cortex-M3 has 4096 bytes autoincrement range */
1807
1808         /* register arch-specific functions */
1809         armv7m->examine_debug_reason = cortex_m3_examine_debug_reason;
1810
1811         armv7m->post_debug_entry = NULL;
1812
1813         armv7m->pre_restore_context = NULL;
1814         armv7m->post_restore_context = NULL;
1815
1816         armv7m->load_core_reg_u32 = cortex_m3_load_core_reg_u32;
1817         armv7m->store_core_reg_u32 = cortex_m3_store_core_reg_u32;
1818
1819         target_register_timer_callback(cortex_m3_handle_target_request, 1, 1, target);
1820
1821         if ((retval = arm_jtag_setup_connection(&cortex_m3->jtag_info)) != ERROR_OK)
1822         {
1823                 return retval;
1824         }
1825
1826         return ERROR_OK;
1827 }
1828
1829 static int cortex_m3_target_create(struct target *target, Jim_Interp *interp)
1830 {
1831         struct cortex_m3_common *cortex_m3 = calloc(1,sizeof(struct cortex_m3_common));
1832
1833         cortex_m3->common_magic = CORTEX_M3_COMMON_MAGIC;
1834         cortex_m3_init_arch_info(target, cortex_m3, target->tap);
1835
1836         return ERROR_OK;
1837 }
1838
1839 /*--------------------------------------------------------------------------*/
1840
1841 static int cortex_m3_verify_pointer(struct command_context *cmd_ctx,
1842                 struct cortex_m3_common *cm3)
1843 {
1844         if (cm3->common_magic != CORTEX_M3_COMMON_MAGIC) {
1845                 command_print(cmd_ctx, "target is not a Cortex-M3");
1846                 return ERROR_TARGET_INVALID;
1847         }
1848         return ERROR_OK;
1849 }
1850
1851 /*
1852  * Only stuff below this line should need to verify that its target
1853  * is a Cortex-M3.  Everything else should have indirected through the
1854  * cortexm3_target structure, which is only used with CM3 targets.
1855  */
1856
1857 /*
1858  * REVISIT Thumb2 disassembly should work for all ARMv7 cores, as well
1859  * as at least ARM-1156T2.  The interesting thing about Cortex-M is
1860  * that *only* Thumb2 disassembly matters.  There are also some small
1861  * additions to Thumb2 that are specific to ARMv7-M.
1862  */
1863 COMMAND_HANDLER(handle_cortex_m3_disassemble_command)
1864 {
1865         int retval;
1866         struct target *target = get_current_target(CMD_CTX);
1867         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1868         uint32_t address;
1869         unsigned long count = 1;
1870         struct arm_instruction cur_instruction;
1871
1872         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
1873         if (retval != ERROR_OK)
1874                 return retval;
1875
1876         errno = 0;
1877         switch (CMD_ARGC) {
1878         case 2:
1879                 COMMAND_PARSE_NUMBER(ulong, CMD_ARGV[1], count);
1880                 /* FALL THROUGH */
1881         case 1:
1882                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
1883                 break;
1884         default:
1885                 command_print(CMD_CTX,
1886                         "usage: cortex_m3 disassemble <address> [<count>]");
1887                 return ERROR_OK;
1888         }
1889
1890         while (count--) {
1891                 retval = thumb2_opcode(target, address, &cur_instruction);
1892                 if (retval != ERROR_OK)
1893                         return retval;
1894                 command_print(CMD_CTX, "%s", cur_instruction.text);
1895                 address += cur_instruction.instruction_size;
1896         }
1897
1898         return ERROR_OK;
1899 }
1900
1901 static const struct {
1902         char name[10];
1903         unsigned mask;
1904 } vec_ids[] = {
1905         { "hard_err",   VC_HARDERR, },
1906         { "int_err",    VC_INTERR, },
1907         { "bus_err",    VC_BUSERR, },
1908         { "state_err",  VC_STATERR, },
1909         { "chk_err",    VC_CHKERR, },
1910         { "nocp_err",   VC_NOCPERR, },
1911         { "mm_err",     VC_MMERR, },
1912         { "reset",      VC_CORERESET, },
1913 };
1914
1915 COMMAND_HANDLER(handle_cortex_m3_vector_catch_command)
1916 {
1917         struct target *target = get_current_target(CMD_CTX);
1918         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1919         struct armv7m_common *armv7m = &cortex_m3->armv7m;
1920         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1921         uint32_t demcr = 0;
1922         int retval;
1923
1924         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
1925         if (retval != ERROR_OK)
1926                 return retval;
1927
1928         mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
1929
1930         if (CMD_ARGC > 0) {
1931                 unsigned catch = 0;
1932
1933                 if (CMD_ARGC == 1) {
1934                         if (strcmp(CMD_ARGV[0], "all") == 0) {
1935                                 catch = VC_HARDERR | VC_INTERR | VC_BUSERR
1936                                         | VC_STATERR | VC_CHKERR | VC_NOCPERR
1937                                         | VC_MMERR | VC_CORERESET;
1938                                 goto write;
1939                         } else if (strcmp(CMD_ARGV[0], "none") == 0) {
1940                                 goto write;
1941                         }
1942                 }
1943                 while (CMD_ARGC-- > 0) {
1944                         unsigned i;
1945                         for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
1946                                 if (strcmp(CMD_ARGV[CMD_ARGC], vec_ids[i].name) != 0)
1947                                         continue;
1948                                 catch |= vec_ids[i].mask;
1949                                 break;
1950                         }
1951                         if (i == ARRAY_SIZE(vec_ids)) {
1952                                 LOG_ERROR("No CM3 vector '%s'", CMD_ARGV[CMD_ARGC]);
1953                                 return ERROR_INVALID_ARGUMENTS;
1954                         }
1955                 }
1956 write:
1957                 /* For now, armv7m->demcr only stores vector catch flags. */
1958                 armv7m->demcr = catch;
1959
1960                 demcr &= ~0xffff;
1961                 demcr |= catch;
1962
1963                 /* write, but don't assume it stuck (why not??) */
1964                 mem_ap_write_u32(swjdp, DCB_DEMCR, demcr);
1965                 mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
1966
1967                 /* FIXME be sure to clear DEMCR on clean server shutdown.
1968                  * Otherwise the vector catch hardware could fire when there's
1969                  * no debugger hooked up, causing much confusion...
1970                  */
1971         }
1972
1973         for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++)
1974         {
1975                 command_print(CMD_CTX, "%9s: %s", vec_ids[i].name,
1976                         (demcr & vec_ids[i].mask) ? "catch" : "ignore");
1977         }
1978
1979         return ERROR_OK;
1980 }
1981
1982 COMMAND_HANDLER(handle_cortex_m3_mask_interrupts_command)
1983 {
1984         struct target *target = get_current_target(CMD_CTX);
1985         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1986         int retval;
1987
1988         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
1989         if (retval != ERROR_OK)
1990                 return retval;
1991
1992         if (target->state != TARGET_HALTED)
1993         {
1994                 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
1995                 return ERROR_OK;
1996         }
1997
1998         if (CMD_ARGC > 0)
1999         {
2000                 bool enable;
2001                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2002                 uint32_t mask_on = C_HALT | (enable ? C_MASKINTS : 0);
2003                 uint32_t mask_off = enable ? 0 : C_MASKINTS;
2004                 cortex_m3_write_debug_halt_mask(target, mask_on, mask_off);
2005         }
2006
2007         command_print(CMD_CTX, "cortex_m3 interrupt mask %s",
2008                         (cortex_m3->dcb_dhcsr & C_MASKINTS) ? "on" : "off");
2009
2010         return ERROR_OK;
2011 }
2012
2013 static const struct command_registration cortex_m3_exec_command_handlers[] = {
2014         {
2015                 .name = "disassemble",
2016                 .handler = handle_cortex_m3_disassemble_command,
2017                 .mode = COMMAND_EXEC,
2018                 .help = "disassemble Thumb2 instructions",
2019                 .usage = "address [count]",
2020         },
2021         {
2022                 .name = "maskisr",
2023                 .handler = handle_cortex_m3_mask_interrupts_command,
2024                 .mode = COMMAND_EXEC,
2025                 .help = "mask cortex_m3 interrupts",
2026                 .usage = "['on'|'off']",
2027         },
2028         {
2029                 .name = "vector_catch",
2030                 .handler = handle_cortex_m3_vector_catch_command,
2031                 .mode = COMMAND_EXEC,
2032                 .help = "configure hardware vectors to trigger debug entry",
2033                 .usage = "['all'|'none'|('bus_err'|'chk_err'|...)*]",
2034         },
2035         COMMAND_REGISTRATION_DONE
2036 };
2037 static const struct command_registration cortex_m3_command_handlers[] = {
2038         {
2039                 .chain = armv7m_command_handlers,
2040         },
2041         {
2042                 .name = "cortex_m3",
2043                 .mode = COMMAND_EXEC,
2044                 .help = "Cortex-M3 command group",
2045                 .chain = cortex_m3_exec_command_handlers,
2046         },
2047         COMMAND_REGISTRATION_DONE
2048 };
2049
2050 struct target_type cortexm3_target =
2051 {
2052         .name = "cortex_m3",
2053
2054         .poll = cortex_m3_poll,
2055         .arch_state = armv7m_arch_state,
2056
2057         .target_request_data = cortex_m3_target_request_data,
2058
2059         .halt = cortex_m3_halt,
2060         .resume = cortex_m3_resume,
2061         .step = cortex_m3_step,
2062
2063         .assert_reset = cortex_m3_assert_reset,
2064         .deassert_reset = cortex_m3_deassert_reset,
2065         .soft_reset_halt = cortex_m3_soft_reset_halt,
2066
2067         .get_gdb_reg_list = armv7m_get_gdb_reg_list,
2068
2069         .read_memory = cortex_m3_read_memory,
2070         .write_memory = cortex_m3_write_memory,
2071         .bulk_write_memory = cortex_m3_bulk_write_memory,
2072         .checksum_memory = armv7m_checksum_memory,
2073         .blank_check_memory = armv7m_blank_check_memory,
2074
2075         .run_algorithm = armv7m_run_algorithm,
2076
2077         .add_breakpoint = cortex_m3_add_breakpoint,
2078         .remove_breakpoint = cortex_m3_remove_breakpoint,
2079         .add_watchpoint = cortex_m3_add_watchpoint,
2080         .remove_watchpoint = cortex_m3_remove_watchpoint,
2081
2082         .commands = cortex_m3_command_handlers,
2083         .target_create = cortex_m3_target_create,
2084         .init_target = cortex_m3_init_target,
2085         .examine = cortex_m3_examine,
2086 };