8279a8b939400270960a6dbbaf5b25d01a190934
[fw/openocd] / src / target / cortex_m3.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   This program is free software; you can redistribute it and/or modify  *
12  *   it under the terms of the GNU General Public License as published by  *
13  *   the Free Software Foundation; either version 2 of the License, or     *
14  *   (at your option) any later version.                                   *
15  *                                                                         *
16  *   This program is distributed in the hope that it will be useful,       *
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
19  *   GNU General Public License for more details.                          *
20  *                                                                         *
21  *   You should have received a copy of the GNU General Public License     *
22  *   along with this program; if not, write to the                         *
23  *   Free Software Foundation, Inc.,                                       *
24  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
25  *                                                                         *
26  *                                                                         *
27  *   Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0)              *
28  *                                                                         *
29  ***************************************************************************/
30 #ifdef HAVE_CONFIG_H
31 #include "config.h"
32 #endif
33
34 #include "breakpoints.h"
35 #include "cortex_m3.h"
36 #include "target_request.h"
37 #include "target_type.h"
38 #include "arm_disassembler.h"
39 #include "register.h"
40
41
42 /* NOTE:  most of this should work fine for the Cortex-M1 and
43  * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
44  */
45
46
47 /* forward declarations */
48 static int cortex_m3_set_breakpoint(struct target *target, struct breakpoint *breakpoint);
49 static int cortex_m3_unset_breakpoint(struct target *target, struct breakpoint *breakpoint);
50 static void cortex_m3_enable_watchpoints(struct target *target);
51 static int cortex_m3_store_core_reg_u32(struct target *target,
52                 enum armv7m_regtype type, uint32_t num, uint32_t value);
53
54 #ifdef ARMV7_GDB_HACKS
55 extern uint8_t armv7m_gdb_dummy_cpsr_value[];
56 extern struct reg armv7m_gdb_dummy_cpsr_reg;
57 #endif
58
59 static int cortexm3_dap_read_coreregister_u32(struct swjdp_common *swjdp,
60                 uint32_t *value, int regnum)
61 {
62         int retval;
63         uint32_t dcrdr;
64
65         /* because the DCB_DCRDR is used for the emulated dcc channel
66          * we have to save/restore the DCB_DCRDR when used */
67
68         mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
69
70         swjdp->trans_mode = TRANS_MODE_COMPOSITE;
71
72         /* mem_ap_write_u32(swjdp, DCB_DCRSR, regnum); */
73         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
74         dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum);
75
76         /* mem_ap_read_u32(swjdp, DCB_DCRDR, value); */
77         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
78         dap_ap_read_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
79
80         retval = swjdp_transaction_endcheck(swjdp);
81
82         /* restore DCB_DCRDR - this needs to be in a seperate
83          * transaction otherwise the emulated DCC channel breaks */
84         if (retval == ERROR_OK)
85                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
86
87         return retval;
88 }
89
90 static int cortexm3_dap_write_coreregister_u32(struct swjdp_common *swjdp,
91                 uint32_t value, int regnum)
92 {
93         int retval;
94         uint32_t dcrdr;
95
96         /* because the DCB_DCRDR is used for the emulated dcc channel
97          * we have to save/restore the DCB_DCRDR when used */
98
99         mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
100
101         swjdp->trans_mode = TRANS_MODE_COMPOSITE;
102
103         /* mem_ap_write_u32(swjdp, DCB_DCRDR, core_regs[i]); */
104         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
105         dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
106
107         /* mem_ap_write_u32(swjdp, DCB_DCRSR, i | DCRSR_WnR); */
108         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
109         dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum | DCRSR_WnR);
110
111         retval = swjdp_transaction_endcheck(swjdp);
112
113         /* restore DCB_DCRDR - this needs to be in a seperate
114          * transaction otherwise the emulated DCC channel breaks */
115         if (retval == ERROR_OK)
116                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
117
118         return retval;
119 }
120
121 static int cortex_m3_write_debug_halt_mask(struct target *target,
122                 uint32_t mask_on, uint32_t mask_off)
123 {
124         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
125         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
126
127         /* mask off status bits */
128         cortex_m3->dcb_dhcsr &= ~((0xFFFF << 16) | mask_off);
129         /* create new register mask */
130         cortex_m3->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
131
132         return mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, cortex_m3->dcb_dhcsr);
133 }
134
135 static int cortex_m3_clear_halt(struct target *target)
136 {
137         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
138         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
139
140         /* clear step if any */
141         cortex_m3_write_debug_halt_mask(target, C_HALT, C_STEP);
142
143         /* Read Debug Fault Status Register */
144         mem_ap_read_atomic_u32(swjdp, NVIC_DFSR, &cortex_m3->nvic_dfsr);
145         /* Clear Debug Fault Status */
146         mem_ap_write_atomic_u32(swjdp, NVIC_DFSR, cortex_m3->nvic_dfsr);
147         LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m3->nvic_dfsr);
148
149         return ERROR_OK;
150 }
151
152 static int cortex_m3_single_step_core(struct target *target)
153 {
154         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
155         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
156         uint32_t dhcsr_save;
157
158         /* backup dhcsr reg */
159         dhcsr_save = cortex_m3->dcb_dhcsr;
160
161         /* mask interrupts if not done already */
162         if (!(cortex_m3->dcb_dhcsr & C_MASKINTS))
163                 mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN);
164         mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN);
165         LOG_DEBUG(" ");
166
167         /* restore dhcsr reg */
168         cortex_m3->dcb_dhcsr = dhcsr_save;
169         cortex_m3_clear_halt(target);
170
171         return ERROR_OK;
172 }
173
174 static int cortex_m3_endreset_event(struct target *target)
175 {
176         int i;
177         uint32_t dcb_demcr;
178         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
179         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
180         struct cortex_m3_fp_comparator *fp_list = cortex_m3->fp_comparator_list;
181         struct cortex_m3_dwt_comparator *dwt_list = cortex_m3->dwt_comparator_list;
182
183         mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &dcb_demcr);
184         LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "",dcb_demcr);
185
186         /* this regsiter is used for emulated dcc channel */
187         mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
188
189         /* Enable debug requests */
190         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
191         if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN))
192                 mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
193
194         /* clear any interrupt masking */
195         cortex_m3_write_debug_halt_mask(target, 0, C_MASKINTS);
196
197         /* Enable trace and dwt */
198         mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | VC_HARDERR | VC_BUSERR);
199         /* Monitor bus faults */
200         mem_ap_write_u32(swjdp, NVIC_SHCSR, SHCSR_BUSFAULTENA);
201
202         /* Enable FPB */
203         target_write_u32(target, FP_CTRL, 3);
204         cortex_m3->fpb_enabled = 1;
205
206         /* Restore FPB registers */
207         for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++)
208         {
209                 target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
210         }
211
212         /* Restore DWT registers */
213         for (i = 0; i < cortex_m3->dwt_num_comp; i++)
214         {
215                 target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
216                                 dwt_list[i].comp);
217                 target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
218                                 dwt_list[i].mask);
219                 target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
220                                 dwt_list[i].function);
221         }
222         swjdp_transaction_endcheck(swjdp);
223
224         register_cache_invalidate(cortex_m3->armv7m.core_cache);
225
226         /* make sure we have latest dhcsr flags */
227         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
228
229         return ERROR_OK;
230 }
231
232 static int cortex_m3_examine_debug_reason(struct target *target)
233 {
234         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
235
236         /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason */
237         /* only check the debug reason if we don't know it already */
238
239         if ((target->debug_reason != DBG_REASON_DBGRQ)
240                 && (target->debug_reason != DBG_REASON_SINGLESTEP))
241         {
242                 if (cortex_m3->nvic_dfsr & DFSR_BKPT)
243                 {
244                         target->debug_reason = DBG_REASON_BREAKPOINT;
245                         if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
246                                 target->debug_reason = DBG_REASON_WPTANDBKPT;
247                 }
248                 else if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
249                         target->debug_reason = DBG_REASON_WATCHPOINT;
250                 else if (cortex_m3->nvic_dfsr & DFSR_VCATCH)
251                         target->debug_reason = DBG_REASON_BREAKPOINT;
252                 else /* EXTERNAL, HALTED */
253                         target->debug_reason = DBG_REASON_UNDEFINED;
254         }
255
256         return ERROR_OK;
257 }
258
259 static int cortex_m3_examine_exception_reason(struct target *target)
260 {
261         uint32_t shcsr, except_sr, cfsr = -1, except_ar = -1;
262         struct armv7m_common *armv7m = target_to_armv7m(target);
263         struct swjdp_common *swjdp = &armv7m->swjdp_info;
264
265         mem_ap_read_u32(swjdp, NVIC_SHCSR, &shcsr);
266         switch (armv7m->exception_number)
267         {
268                 case 2: /* NMI */
269                         break;
270                 case 3: /* Hard Fault */
271                         mem_ap_read_atomic_u32(swjdp, NVIC_HFSR, &except_sr);
272                         if (except_sr & 0x40000000)
273                         {
274                                 mem_ap_read_u32(swjdp, NVIC_CFSR, &cfsr);
275                         }
276                         break;
277                 case 4: /* Memory Management */
278                         mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
279                         mem_ap_read_u32(swjdp, NVIC_MMFAR, &except_ar);
280                         break;
281                 case 5: /* Bus Fault */
282                         mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
283                         mem_ap_read_u32(swjdp, NVIC_BFAR, &except_ar);
284                         break;
285                 case 6: /* Usage Fault */
286                         mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
287                         break;
288                 case 11:        /* SVCall */
289                         break;
290                 case 12:        /* Debug Monitor */
291                         mem_ap_read_u32(swjdp, NVIC_DFSR, &except_sr);
292                         break;
293                 case 14:        /* PendSV */
294                         break;
295                 case 15:        /* SysTick */
296                         break;
297                 default:
298                         except_sr = 0;
299                         break;
300         }
301         swjdp_transaction_endcheck(swjdp);
302         LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32 ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32 "", armv7m_exception_string(armv7m->exception_number), \
303                 shcsr, except_sr, cfsr, except_ar);
304         return ERROR_OK;
305 }
306
307 static int cortex_m3_debug_entry(struct target *target)
308 {
309         int i;
310         uint32_t xPSR;
311         int retval;
312         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
313         struct armv7m_common *armv7m = &cortex_m3->armv7m;
314         struct swjdp_common *swjdp = &armv7m->swjdp_info;
315
316         LOG_DEBUG(" ");
317
318         cortex_m3_clear_halt(target);
319         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
320
321         if ((retval = armv7m->examine_debug_reason(target)) != ERROR_OK)
322                 return retval;
323
324         /* Examine target state and mode */
325         /* First load register acessible through core debug port*/
326         int num_regs = armv7m->core_cache->num_regs;
327
328         for (i = 0; i < num_regs; i++)
329         {
330                 if (!armv7m->core_cache->reg_list[i].valid)
331                         armv7m->read_core_reg(target, i);
332         }
333
334         xPSR = buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32);
335
336 #ifdef ARMV7_GDB_HACKS
337         /* FIXME this breaks on scan chains with more than one Cortex-M3.
338          * Instead, each CM3 should have its own dummy value...
339          */
340         /* copy real xpsr reg for gdb, setting thumb bit */
341         buf_set_u32(armv7m_gdb_dummy_cpsr_value, 0, 32, xPSR);
342         buf_set_u32(armv7m_gdb_dummy_cpsr_value, 5, 1, 1);
343         armv7m_gdb_dummy_cpsr_reg.valid = armv7m->core_cache->reg_list[ARMV7M_xPSR].valid;
344         armv7m_gdb_dummy_cpsr_reg.dirty = armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty;
345 #endif
346
347         /* For IT instructions xPSR must be reloaded on resume and clear on debug exec */
348         if (xPSR & 0xf00)
349         {
350                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = armv7m->core_cache->reg_list[ARMV7M_xPSR].valid;
351                 cortex_m3_store_core_reg_u32(target, ARMV7M_REGISTER_CORE_GP, 16, xPSR &~ 0xff);
352         }
353
354         /* Are we in an exception handler */
355         if (xPSR & 0x1FF)
356         {
357                 armv7m->core_mode = ARMV7M_MODE_HANDLER;
358                 armv7m->exception_number = (xPSR & 0x1FF);
359         }
360         else
361         {
362                 armv7m->core_mode = buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_CONTROL].value, 0, 1);
363                 armv7m->exception_number = 0;
364         }
365
366         if (armv7m->exception_number)
367         {
368                 cortex_m3_examine_exception_reason(target);
369         }
370
371         LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", target->state: %s",
372                 armv7m_mode_strings[armv7m->core_mode],
373                 *(uint32_t*)(armv7m->core_cache->reg_list[15].value),
374                 target_state_name(target));
375
376         if (armv7m->post_debug_entry)
377                 armv7m->post_debug_entry(target);
378
379         return ERROR_OK;
380 }
381
382 static int cortex_m3_poll(struct target *target)
383 {
384         int retval;
385         enum target_state prev_target_state = target->state;
386         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
387         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
388
389         /* Read from Debug Halting Control and Status Register */
390         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
391         if (retval != ERROR_OK)
392         {
393                 target->state = TARGET_UNKNOWN;
394                 return retval;
395         }
396
397         if (cortex_m3->dcb_dhcsr & S_RESET_ST)
398         {
399                 /* check if still in reset */
400                 mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
401
402                 if (cortex_m3->dcb_dhcsr & S_RESET_ST)
403                 {
404                         target->state = TARGET_RESET;
405                         return ERROR_OK;
406                 }
407         }
408
409         if (target->state == TARGET_RESET)
410         {
411                 /* Cannot switch context while running so endreset is called with target->state == TARGET_RESET */
412                 LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32 "", cortex_m3->dcb_dhcsr);
413                 cortex_m3_endreset_event(target);
414                 target->state = TARGET_RUNNING;
415                 prev_target_state = TARGET_RUNNING;
416         }
417
418         if (cortex_m3->dcb_dhcsr & S_HALT)
419         {
420                 target->state = TARGET_HALTED;
421
422                 if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET))
423                 {
424                         if ((retval = cortex_m3_debug_entry(target)) != ERROR_OK)
425                                 return retval;
426
427                         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
428                 }
429                 if (prev_target_state == TARGET_DEBUG_RUNNING)
430                 {
431                         LOG_DEBUG(" ");
432                         if ((retval = cortex_m3_debug_entry(target)) != ERROR_OK)
433                                 return retval;
434
435                         target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
436                 }
437         }
438
439         /* REVISIT when S_SLEEP is set, it's in a Sleep or DeepSleep state.
440          * How best to model low power modes?
441          */
442
443         if (target->state == TARGET_UNKNOWN)
444         {
445                 /* check if processor is retiring instructions */
446                 if (cortex_m3->dcb_dhcsr & S_RETIRE_ST)
447                 {
448                         target->state = TARGET_RUNNING;
449                         return ERROR_OK;
450                 }
451         }
452
453         return ERROR_OK;
454 }
455
456 static int cortex_m3_halt(struct target *target)
457 {
458         LOG_DEBUG("target->state: %s",
459                 target_state_name(target));
460
461         if (target->state == TARGET_HALTED)
462         {
463                 LOG_DEBUG("target was already halted");
464                 return ERROR_OK;
465         }
466
467         if (target->state == TARGET_UNKNOWN)
468         {
469                 LOG_WARNING("target was in unknown state when halt was requested");
470         }
471
472         if (target->state == TARGET_RESET)
473         {
474                 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst())
475                 {
476                         LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
477                         return ERROR_TARGET_FAILURE;
478                 }
479                 else
480                 {
481                         /* we came here in a reset_halt or reset_init sequence
482                          * debug entry was already prepared in cortex_m3_prepare_reset_halt()
483                          */
484                         target->debug_reason = DBG_REASON_DBGRQ;
485
486                         return ERROR_OK;
487                 }
488         }
489
490         /* Write to Debug Halting Control and Status Register */
491         cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
492
493         target->debug_reason = DBG_REASON_DBGRQ;
494
495         return ERROR_OK;
496 }
497
498 static int cortex_m3_soft_reset_halt(struct target *target)
499 {
500         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
501         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
502         uint32_t dcb_dhcsr = 0;
503         int retval, timeout = 0;
504
505         /* Enter debug state on reset, cf. end_reset_event() */
506         mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
507
508         /* Request a reset */
509         mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR, AIRCR_VECTKEY | AIRCR_VECTRESET);
510         target->state = TARGET_RESET;
511
512         /* registers are now invalid */
513         register_cache_invalidate(cortex_m3->armv7m.core_cache);
514
515         while (timeout < 100)
516         {
517                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &dcb_dhcsr);
518                 if (retval == ERROR_OK)
519                 {
520                         mem_ap_read_atomic_u32(swjdp, NVIC_DFSR, &cortex_m3->nvic_dfsr);
521                         if ((dcb_dhcsr & S_HALT) && (cortex_m3->nvic_dfsr & DFSR_VCATCH))
522                         {
523                                 LOG_DEBUG("system reset-halted, dcb_dhcsr 0x%" PRIx32 ", nvic_dfsr 0x%" PRIx32 "", dcb_dhcsr, cortex_m3->nvic_dfsr);
524                                 cortex_m3_poll(target);
525                                 return ERROR_OK;
526                         }
527                         else
528                                 LOG_DEBUG("waiting for system reset-halt, dcb_dhcsr 0x%" PRIx32 ", %i ms", dcb_dhcsr, timeout);
529                 }
530                 timeout++;
531                 alive_sleep(1);
532         }
533
534         return ERROR_OK;
535 }
536
537 static void cortex_m3_enable_breakpoints(struct target *target)
538 {
539         struct breakpoint *breakpoint = target->breakpoints;
540
541         /* set any pending breakpoints */
542         while (breakpoint)
543         {
544                 if (breakpoint->set == 0)
545                         cortex_m3_set_breakpoint(target, breakpoint);
546                 breakpoint = breakpoint->next;
547         }
548 }
549
550 static int cortex_m3_resume(struct target *target, int current,
551                 uint32_t address, int handle_breakpoints, int debug_execution)
552 {
553         struct armv7m_common *armv7m = target_to_armv7m(target);
554         struct breakpoint *breakpoint = NULL;
555         uint32_t resume_pc;
556
557         if (target->state != TARGET_HALTED)
558         {
559                 LOG_WARNING("target not halted");
560                 return ERROR_TARGET_NOT_HALTED;
561         }
562
563         if (!debug_execution)
564         {
565                 target_free_all_working_areas(target);
566                 cortex_m3_enable_breakpoints(target);
567                 cortex_m3_enable_watchpoints(target);
568         }
569
570         if (debug_execution)
571         {
572                 /* Disable interrupts */
573                 /* We disable interrupts in the PRIMASK register instead of masking with C_MASKINTS,
574                  * This is probably the same issue as Cortex-M3 Errata  377493:
575                  * C_MASKINTS in parallel with disabled interrupts can cause local faults to not be taken. */
576                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
577                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
578                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
579
580                 /* Make sure we are in Thumb mode */
581                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
582                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
583                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
584                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
585         }
586
587         /* current = 1: continue on current pc, otherwise continue at <address> */
588         if (!current)
589         {
590                 buf_set_u32(armv7m->core_cache->reg_list[15].value, 0, 32, address);
591                 armv7m->core_cache->reg_list[15].dirty = 1;
592                 armv7m->core_cache->reg_list[15].valid = 1;
593         }
594
595         resume_pc = buf_get_u32(armv7m->core_cache->reg_list[15].value, 0, 32);
596
597         armv7m_restore_context(target);
598
599         /* the front-end may request us not to handle breakpoints */
600         if (handle_breakpoints)
601         {
602                 /* Single step past breakpoint at current address */
603                 if ((breakpoint = breakpoint_find(target, resume_pc)))
604                 {
605                         LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (ID: %d)",
606                                           breakpoint->address,
607                                           breakpoint->unique_id);
608                         cortex_m3_unset_breakpoint(target, breakpoint);
609                         cortex_m3_single_step_core(target);
610                         cortex_m3_set_breakpoint(target, breakpoint);
611                 }
612         }
613
614         /* Restart core */
615         cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
616
617         target->debug_reason = DBG_REASON_NOTHALTED;
618
619         /* registers are now invalid */
620         register_cache_invalidate(armv7m->core_cache);
621
622         if (!debug_execution)
623         {
624                 target->state = TARGET_RUNNING;
625                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
626                 LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc);
627         }
628         else
629         {
630                 target->state = TARGET_DEBUG_RUNNING;
631                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
632                 LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc);
633         }
634
635         return ERROR_OK;
636 }
637
638 /* int irqstepcount = 0; */
639 static int cortex_m3_step(struct target *target, int current,
640                 uint32_t address, int handle_breakpoints)
641 {
642         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
643         struct armv7m_common *armv7m = &cortex_m3->armv7m;
644         struct swjdp_common *swjdp = &armv7m->swjdp_info;
645         struct breakpoint *breakpoint = NULL;
646
647         if (target->state != TARGET_HALTED)
648         {
649                 LOG_WARNING("target not halted");
650                 return ERROR_TARGET_NOT_HALTED;
651         }
652
653         /* current = 1: continue on current pc, otherwise continue at <address> */
654         if (!current)
655                 buf_set_u32(cortex_m3->armv7m.core_cache->reg_list[15].value,
656                                 0, 32, address);
657
658         /* the front-end may request us not to handle breakpoints */
659         if (handle_breakpoints) {
660                 breakpoint = breakpoint_find(target, buf_get_u32(armv7m
661                                 ->core_cache->reg_list[15].value, 0, 32));
662                 if (breakpoint)
663                         cortex_m3_unset_breakpoint(target, breakpoint);
664         }
665
666         target->debug_reason = DBG_REASON_SINGLESTEP;
667
668         armv7m_restore_context(target);
669
670         target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
671
672         /* set step and clear halt */
673         cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
674         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
675
676         /* registers are now invalid */
677         register_cache_invalidate(cortex_m3->armv7m.core_cache);
678
679         if (breakpoint)
680                 cortex_m3_set_breakpoint(target, breakpoint);
681
682         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32 " nvic_icsr = 0x%" PRIx32 "", cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
683
684         cortex_m3_debug_entry(target);
685         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
686
687         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32 " nvic_icsr = 0x%" PRIx32 "", cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
688         return ERROR_OK;
689 }
690
691 static int cortex_m3_assert_reset(struct target *target)
692 {
693         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
694         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
695         int assert_srst = 1;
696
697         LOG_DEBUG("target->state: %s",
698                 target_state_name(target));
699
700         enum reset_types jtag_reset_config = jtag_get_reset_config();
701
702         /*
703          * We can reset Cortex-M3 targets using just the NVIC without
704          * requiring SRST, getting a SoC reset (or a core-only reset)
705          * instead of a system reset.
706          */
707         if (!(jtag_reset_config & RESET_HAS_SRST))
708                 assert_srst = 0;
709
710         /* Enable debug requests */
711         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
712         if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN))
713                 mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
714
715         mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
716
717         if (!target->reset_halt)
718         {
719                 /* Set/Clear C_MASKINTS in a separate operation */
720                 if (cortex_m3->dcb_dhcsr & C_MASKINTS)
721                         mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN | C_HALT);
722
723                 /* clear any debug flags before resuming */
724                 cortex_m3_clear_halt(target);
725
726                 /* clear C_HALT in dhcsr reg */
727                 cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
728
729                 /* Enter debug state on reset, cf. end_reset_event() */
730                 mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | VC_HARDERR | VC_BUSERR);
731         }
732         else
733         {
734                 /* Enter debug state on reset, cf. end_reset_event() */
735                 mem_ap_write_atomic_u32(swjdp, DCB_DEMCR, TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
736         }
737
738         /*
739          * When nRST is asserted on most Stellaris devices, it clears some of
740          * the debug state.  The ARMv7M and Cortex-M3 TRMs say that's wrong;
741          * and OpenOCD depends on those TRMs.  So we won't use SRST on those
742          * chips.  (Only power-on reset should affect debug state, beyond a
743          * few specified bits; not the chip's nRST input, wired to SRST.)
744          *
745          * REVISIT current errata specs don't seem to cover this issue.
746          * Do we have more details than this email?
747          *   https://lists.berlios.de/pipermail
748          *      /openocd-development/2008-August/003065.html
749          */
750         if (strcmp(target->variant, "lm3s") == 0)
751         {
752                 /* Check for silicon revisions with the issue. */
753                 uint32_t did0;
754
755                 if (target_read_u32(target, 0x400fe000, &did0) == ERROR_OK)
756                 {
757                         switch ((did0 >> 16) & 0xff)
758                         {
759                                 case 0:
760                                         /* all Sandstorm suffer issue */
761                                         assert_srst = 0;
762                                         break;
763
764                                 case 1:
765                                 case 3:
766                                         /* Fury and DustDevil rev A have
767                                          * this nRST problem.  It should
768                                          * be fixed in rev B silicon.
769                                          */
770                                         if (((did0 >> 8) & 0xff) == 0)
771                                                 assert_srst = 0;
772                                         break;
773                                 case 4:
774                                         /* Tempest should be fine. */
775                                         break;
776                         }
777                 }
778         }
779
780         if (assert_srst)
781         {
782                 /* default to asserting srst */
783                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
784                 {
785                         jtag_add_reset(1, 1);
786                 }
787                 else
788                 {
789                         jtag_add_reset(0, 1);
790                 }
791         }
792         else
793         {
794                 /* Use a standard Cortex-M3 software reset mechanism.
795                  * SYSRESETREQ will reset SoC peripherals outside the
796                  * core, like watchdog timers, if the SoC wires it up
797                  * correctly.  Else VECRESET can reset just the core.
798                  */
799                 mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
800                                 AIRCR_VECTKEY | AIRCR_SYSRESETREQ);
801                 LOG_DEBUG("Using Cortex-M3 SYSRESETREQ");
802
803                 {
804                         /* I do not know why this is necessary, but it
805                          * fixes strange effects (step/resume cause NMI
806                          * after reset) on LM3S6918 -- Michael Schwingen
807                          */
808                         uint32_t tmp;
809                         mem_ap_read_atomic_u32(swjdp, NVIC_AIRCR, &tmp);
810                 }
811         }
812
813         target->state = TARGET_RESET;
814         jtag_add_sleep(50000);
815
816         register_cache_invalidate(cortex_m3->armv7m.core_cache);
817
818         if (target->reset_halt)
819         {
820                 int retval;
821                 if ((retval = target_halt(target)) != ERROR_OK)
822                         return retval;
823         }
824
825         return ERROR_OK;
826 }
827
828 static int cortex_m3_deassert_reset(struct target *target)
829 {
830         LOG_DEBUG("target->state: %s",
831                 target_state_name(target));
832
833         /* deassert reset lines */
834         jtag_add_reset(0, 0);
835
836         return ERROR_OK;
837 }
838
839 static int
840 cortex_m3_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
841 {
842         int retval;
843         int fp_num = 0;
844         uint32_t hilo;
845         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
846         struct cortex_m3_fp_comparator *comparator_list = cortex_m3->fp_comparator_list;
847
848         if (breakpoint->set)
849         {
850                 LOG_WARNING("breakpoint (BPID: %d) already set", breakpoint->unique_id);
851                 return ERROR_OK;
852         }
853
854         if (cortex_m3->auto_bp_type)
855         {
856                 breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
857         }
858
859         if (breakpoint->type == BKPT_HARD)
860         {
861                 while (comparator_list[fp_num].used && (fp_num < cortex_m3->fp_num_code))
862                         fp_num++;
863                 if (fp_num >= cortex_m3->fp_num_code)
864                 {
865                         LOG_ERROR("Can not find free FPB Comparator!");
866                         return ERROR_FAIL;
867                 }
868                 breakpoint->set = fp_num + 1;
869                 hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
870                 comparator_list[fp_num].used = 1;
871                 comparator_list[fp_num].fpcr_value = (breakpoint->address & 0x1FFFFFFC) | hilo | 1;
872                 target_write_u32(target, comparator_list[fp_num].fpcr_address, comparator_list[fp_num].fpcr_value);
873                 LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "", fp_num, comparator_list[fp_num].fpcr_value);
874                 if (!cortex_m3->fpb_enabled)
875                 {
876                         LOG_DEBUG("FPB wasn't enabled, do it now");
877                         target_write_u32(target, FP_CTRL, 3);
878                 }
879         }
880         else if (breakpoint->type == BKPT_SOFT)
881         {
882                 uint8_t code[4];
883                 buf_set_u32(code, 0, 32, ARMV7M_T_BKPT(0x11));
884                 if ((retval = target_read_memory(target, breakpoint->address & 0xFFFFFFFE, breakpoint->length, 1, breakpoint->orig_instr)) != ERROR_OK)
885                 {
886                         return retval;
887                 }
888                 if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, breakpoint->length, 1, code)) != ERROR_OK)
889                 {
890                         return retval;
891                 }
892                 breakpoint->set = 0x11; /* Any nice value but 0 */
893         }
894
895         LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
896                           breakpoint->unique_id,
897                           (int)(breakpoint->type),
898                           breakpoint->address,
899                           breakpoint->length,
900                           breakpoint->set);
901
902         return ERROR_OK;
903 }
904
905 static int
906 cortex_m3_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
907 {
908         int retval;
909         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
910         struct cortex_m3_fp_comparator * comparator_list = cortex_m3->fp_comparator_list;
911
912         if (!breakpoint->set)
913         {
914                 LOG_WARNING("breakpoint not set");
915                 return ERROR_OK;
916         }
917
918         LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
919                           breakpoint->unique_id,
920                           (int)(breakpoint->type),
921                           breakpoint->address,
922                           breakpoint->length,
923                           breakpoint->set);
924
925         if (breakpoint->type == BKPT_HARD)
926         {
927                 int fp_num = breakpoint->set - 1;
928                 if ((fp_num < 0) || (fp_num >= cortex_m3->fp_num_code))
929                 {
930                         LOG_DEBUG("Invalid FP Comparator number in breakpoint");
931                         return ERROR_OK;
932                 }
933                 comparator_list[fp_num].used = 0;
934                 comparator_list[fp_num].fpcr_value = 0;
935                 target_write_u32(target, comparator_list[fp_num].fpcr_address, comparator_list[fp_num].fpcr_value);
936         }
937         else
938         {
939                 /* restore original instruction (kept in target endianness) */
940                 if (breakpoint->length == 4)
941                 {
942                         if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
943                         {
944                                 return retval;
945                         }
946                 }
947                 else
948                 {
949                         if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
950                         {
951                                 return retval;
952                         }
953                 }
954         }
955         breakpoint->set = 0;
956
957         return ERROR_OK;
958 }
959
960 static int
961 cortex_m3_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
962 {
963         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
964
965         if (cortex_m3->auto_bp_type)
966         {
967                 breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
968 #ifdef ARMV7_GDB_HACKS
969                 if (breakpoint->length != 2) {
970                         /* XXX Hack: Replace all breakpoints with length != 2 with
971                          * a hardware breakpoint. */
972                         breakpoint->type = BKPT_HARD;
973                         breakpoint->length = 2;
974                 }
975 #endif
976         }
977
978         if ((breakpoint->type == BKPT_HARD) && (breakpoint->address >= 0x20000000))
979         {
980                 LOG_INFO("flash patch comparator requested outside code memory region");
981                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
982         }
983
984         if ((breakpoint->type == BKPT_SOFT) && (breakpoint->address < 0x20000000))
985         {
986                 LOG_INFO("soft breakpoint requested in code (flash) memory region");
987                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
988         }
989
990         if ((breakpoint->type == BKPT_HARD) && (cortex_m3->fp_code_available < 1))
991         {
992                 LOG_INFO("no flash patch comparator unit available for hardware breakpoint");
993                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
994         }
995
996         if ((breakpoint->length != 2))
997         {
998                 LOG_INFO("only breakpoints of two bytes length supported");
999                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1000         }
1001
1002         if (breakpoint->type == BKPT_HARD)
1003                 cortex_m3->fp_code_available--;
1004         cortex_m3_set_breakpoint(target, breakpoint);
1005
1006         return ERROR_OK;
1007 }
1008
1009 static int
1010 cortex_m3_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1011 {
1012         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1013
1014         /* REVISIT why check? FBP can be updated with core running ... */
1015         if (target->state != TARGET_HALTED)
1016         {
1017                 LOG_WARNING("target not halted");
1018                 return ERROR_TARGET_NOT_HALTED;
1019         }
1020
1021         if (cortex_m3->auto_bp_type)
1022         {
1023                 breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
1024         }
1025
1026         if (breakpoint->set)
1027         {
1028                 cortex_m3_unset_breakpoint(target, breakpoint);
1029         }
1030
1031         if (breakpoint->type == BKPT_HARD)
1032                 cortex_m3->fp_code_available++;
1033
1034         return ERROR_OK;
1035 }
1036
1037 static int
1038 cortex_m3_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1039 {
1040         int dwt_num = 0;
1041         uint32_t mask, temp;
1042         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1043
1044         /* watchpoint params were validated earlier */
1045         mask = 0;
1046         temp = watchpoint->length;
1047         while (temp) {
1048                 temp >>= 1;
1049                 mask++;
1050         }
1051         mask--;
1052
1053         /* REVISIT Don't fully trust these "not used" records ... users
1054          * may set up breakpoints by hand, e.g. dual-address data value
1055          * watchpoint using comparator #1; comparator #0 matching cycle
1056          * count; send data trace info through ITM and TPIU; etc
1057          */
1058         struct cortex_m3_dwt_comparator *comparator;
1059
1060         for (comparator = cortex_m3->dwt_comparator_list;
1061                         comparator->used && dwt_num < cortex_m3->dwt_num_comp;
1062                         comparator++, dwt_num++)
1063                 continue;
1064         if (dwt_num >= cortex_m3->dwt_num_comp)
1065         {
1066                 LOG_ERROR("Can not find free DWT Comparator");
1067                 return ERROR_FAIL;
1068         }
1069         comparator->used = 1;
1070         watchpoint->set = dwt_num + 1;
1071
1072         comparator->comp = watchpoint->address;
1073         target_write_u32(target, comparator->dwt_comparator_address + 0,
1074                         comparator->comp);
1075
1076         comparator->mask = mask;
1077         target_write_u32(target, comparator->dwt_comparator_address + 4,
1078                         comparator->mask);
1079
1080         switch (watchpoint->rw) {
1081         case WPT_READ:
1082                 comparator->function = 5;
1083                 break;
1084         case WPT_WRITE:
1085                 comparator->function = 6;
1086                 break;
1087         case WPT_ACCESS:
1088                 comparator->function = 7;
1089                 break;
1090         }
1091         target_write_u32(target, comparator->dwt_comparator_address + 8,
1092                         comparator->function);
1093
1094         LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
1095                         watchpoint->unique_id, dwt_num,
1096                         (unsigned) comparator->comp,
1097                         (unsigned) comparator->mask,
1098                         (unsigned) comparator->function);
1099         return ERROR_OK;
1100 }
1101
1102 static int
1103 cortex_m3_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1104 {
1105         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1106         struct cortex_m3_dwt_comparator *comparator;
1107         int dwt_num;
1108
1109         if (!watchpoint->set)
1110         {
1111                 LOG_WARNING("watchpoint (wpid: %d) not set",
1112                                 watchpoint->unique_id);
1113                 return ERROR_OK;
1114         }
1115
1116         dwt_num = watchpoint->set - 1;
1117
1118         LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear",
1119                         watchpoint->unique_id, dwt_num,
1120                         (unsigned) watchpoint->address);
1121
1122         if ((dwt_num < 0) || (dwt_num >= cortex_m3->dwt_num_comp))
1123         {
1124                 LOG_DEBUG("Invalid DWT Comparator number in watchpoint");
1125                 return ERROR_OK;
1126         }
1127
1128         comparator = cortex_m3->dwt_comparator_list + dwt_num;
1129         comparator->used = 0;
1130         comparator->function = 0;
1131         target_write_u32(target, comparator->dwt_comparator_address + 8,
1132                         comparator->function);
1133
1134         watchpoint->set = 0;
1135
1136         return ERROR_OK;
1137 }
1138
1139 static int
1140 cortex_m3_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1141 {
1142         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1143
1144         /* REVISIT why check? DWT can be updated with core running ... */
1145         if (target->state != TARGET_HALTED)
1146         {
1147                 LOG_WARNING("target not halted");
1148                 return ERROR_TARGET_NOT_HALTED;
1149         }
1150
1151         if (cortex_m3->dwt_comp_available < 1)
1152         {
1153                 LOG_DEBUG("no comparators?");
1154                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1155         }
1156
1157         /* hardware doesn't support data value masking */
1158         if (watchpoint->mask != ~(uint32_t)0) {
1159                 LOG_DEBUG("watchpoint value masks not supported");
1160                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1161         }
1162
1163         /* hardware allows address masks of up to 32K */
1164         unsigned mask;
1165
1166         for (mask = 0; mask < 16; mask++) {
1167                 if ((1u << mask) == watchpoint->length)
1168                         break;
1169         }
1170         if (mask == 16) {
1171                 LOG_DEBUG("unsupported watchpoint length");
1172                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1173         }
1174         if (watchpoint->address & ((1 << mask) - 1)) {
1175                 LOG_DEBUG("watchpoint address is unaligned");
1176                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1177         }
1178
1179         /* Caller doesn't seem to be able to describe watching for data
1180          * values of zero; that flags "no value".
1181          *
1182          * REVISIT This DWT may well be able to watch for specific data
1183          * values.  Requires comparator #1 to set DATAVMATCH and match
1184          * the data, and another comparator (DATAVADDR0) matching addr.
1185          */
1186         if (watchpoint->value) {
1187                 LOG_DEBUG("data value watchpoint not YET supported");
1188                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1189         }
1190
1191         cortex_m3->dwt_comp_available--;
1192         LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1193
1194         return ERROR_OK;
1195 }
1196
1197 static int
1198 cortex_m3_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1199 {
1200         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1201
1202         /* REVISIT why check? DWT can be updated with core running ... */
1203         if (target->state != TARGET_HALTED)
1204         {
1205                 LOG_WARNING("target not halted");
1206                 return ERROR_TARGET_NOT_HALTED;
1207         }
1208
1209         if (watchpoint->set)
1210         {
1211                 cortex_m3_unset_watchpoint(target, watchpoint);
1212         }
1213
1214         cortex_m3->dwt_comp_available++;
1215         LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1216
1217         return ERROR_OK;
1218 }
1219
1220 static void cortex_m3_enable_watchpoints(struct target *target)
1221 {
1222         struct watchpoint *watchpoint = target->watchpoints;
1223
1224         /* set any pending watchpoints */
1225         while (watchpoint)
1226         {
1227                 if (watchpoint->set == 0)
1228                         cortex_m3_set_watchpoint(target, watchpoint);
1229                 watchpoint = watchpoint->next;
1230         }
1231 }
1232
1233 static int cortex_m3_load_core_reg_u32(struct target *target,
1234                 enum armv7m_regtype type, uint32_t num, uint32_t * value)
1235 {
1236         int retval;
1237         struct armv7m_common *armv7m = target_to_armv7m(target);
1238         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1239
1240         /* NOTE:  we "know" here that the register identifiers used
1241          * in the v7m header match the Cortex-M3 Debug Core Register
1242          * Selector values for R0..R15, xPSR, MSP, and PSP.
1243          */
1244         switch (num) {
1245         case 0 ... 18:
1246                 /* read a normal core register */
1247                 retval = cortexm3_dap_read_coreregister_u32(swjdp, value, num);
1248
1249                 if (retval != ERROR_OK)
1250                 {
1251                         LOG_ERROR("JTAG failure %i",retval);
1252                         return ERROR_JTAG_DEVICE_ERROR;
1253                 }
1254                 LOG_DEBUG("load from core reg %i  value 0x%" PRIx32 "",(int)num,*value);
1255                 break;
1256
1257         case ARMV7M_PRIMASK:
1258         case ARMV7M_BASEPRI:
1259         case ARMV7M_FAULTMASK:
1260         case ARMV7M_CONTROL:
1261                 /* Cortex-M3 packages these four registers as bitfields
1262                  * in one Debug Core register.  So say r0 and r2 docs;
1263                  * it was removed from r1 docs, but still works.
1264                  */
1265                 cortexm3_dap_read_coreregister_u32(swjdp, value, 20);
1266
1267                 switch (num)
1268                 {
1269                         case ARMV7M_PRIMASK:
1270                                 *value = buf_get_u32((uint8_t*)value, 0, 1);
1271                                 break;
1272
1273                         case ARMV7M_BASEPRI:
1274                                 *value = buf_get_u32((uint8_t*)value, 8, 8);
1275                                 break;
1276
1277                         case ARMV7M_FAULTMASK:
1278                                 *value = buf_get_u32((uint8_t*)value, 16, 1);
1279                                 break;
1280
1281                         case ARMV7M_CONTROL:
1282                                 *value = buf_get_u32((uint8_t*)value, 24, 2);
1283                                 break;
1284                 }
1285
1286                 LOG_DEBUG("load from special reg %i value 0x%" PRIx32 "", (int)num, *value);
1287                 break;
1288
1289         default:
1290                 return ERROR_INVALID_ARGUMENTS;
1291         }
1292
1293         return ERROR_OK;
1294 }
1295
1296 static int cortex_m3_store_core_reg_u32(struct target *target,
1297                 enum armv7m_regtype type, uint32_t num, uint32_t value)
1298 {
1299         int retval;
1300         uint32_t reg;
1301         struct armv7m_common *armv7m = target_to_armv7m(target);
1302         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1303
1304 #ifdef ARMV7_GDB_HACKS
1305         /* If the LR register is being modified, make sure it will put us
1306          * in "thumb" mode, or an INVSTATE exception will occur. This is a
1307          * hack to deal with the fact that gdb will sometimes "forge"
1308          * return addresses, and doesn't set the LSB correctly (i.e., when
1309          * printing expressions containing function calls, it sets LR = 0.)
1310          * Valid exception return codes have bit 0 set too.
1311          */
1312         if (num == ARMV7M_R14)
1313                 value |= 0x01;
1314 #endif
1315
1316         /* NOTE:  we "know" here that the register identifiers used
1317          * in the v7m header match the Cortex-M3 Debug Core Register
1318          * Selector values for R0..R15, xPSR, MSP, and PSP.
1319          */
1320         switch (num) {
1321         case 0 ... 18:
1322                 retval = cortexm3_dap_write_coreregister_u32(swjdp, value, num);
1323                 if (retval != ERROR_OK)
1324                 {
1325                         LOG_ERROR("JTAG failure %i", retval);
1326                         armv7m->core_cache->reg_list[num].dirty = armv7m->core_cache->reg_list[num].valid;
1327                         return ERROR_JTAG_DEVICE_ERROR;
1328                 }
1329                 LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value);
1330                 break;
1331
1332         case ARMV7M_PRIMASK:
1333         case ARMV7M_BASEPRI:
1334         case ARMV7M_FAULTMASK:
1335         case ARMV7M_CONTROL:
1336                 /* Cortex-M3 packages these four registers as bitfields
1337                  * in one Debug Core register.  So say r0 and r2 docs;
1338                  * it was removed from r1 docs, but still works.
1339                  */
1340                 cortexm3_dap_read_coreregister_u32(swjdp, &reg, 20);
1341
1342                 switch (num)
1343                 {
1344                         case ARMV7M_PRIMASK:
1345                                 buf_set_u32((uint8_t*)&reg, 0, 1, value);
1346                                 break;
1347
1348                         case ARMV7M_BASEPRI:
1349                                 buf_set_u32((uint8_t*)&reg, 8, 8, value);
1350                                 break;
1351
1352                         case ARMV7M_FAULTMASK:
1353                                 buf_set_u32((uint8_t*)&reg, 16, 1, value);
1354                                 break;
1355
1356                         case ARMV7M_CONTROL:
1357                                 buf_set_u32((uint8_t*)&reg, 24, 2, value);
1358                                 break;
1359                 }
1360
1361                 cortexm3_dap_write_coreregister_u32(swjdp, reg, 20);
1362
1363                 LOG_DEBUG("write special reg %i value 0x%" PRIx32 " ", (int)num, value);
1364                 break;
1365
1366         default:
1367                 return ERROR_INVALID_ARGUMENTS;
1368         }
1369
1370         return ERROR_OK;
1371 }
1372
1373 static int cortex_m3_read_memory(struct target *target, uint32_t address,
1374                 uint32_t size, uint32_t count, uint8_t *buffer)
1375 {
1376         struct armv7m_common *armv7m = target_to_armv7m(target);
1377         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1378         int retval = ERROR_INVALID_ARGUMENTS;
1379
1380         /* cortex_m3 handles unaligned memory access */
1381         if (count && buffer) {
1382                 switch (size) {
1383                 case 4:
1384                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1385                         break;
1386                 case 2:
1387                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1388                         break;
1389                 case 1:
1390                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1391                         break;
1392                 }
1393         }
1394
1395         return retval;
1396 }
1397
1398 static int cortex_m3_write_memory(struct target *target, uint32_t address,
1399                 uint32_t size, uint32_t count, uint8_t *buffer)
1400 {
1401         struct armv7m_common *armv7m = target_to_armv7m(target);
1402         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1403         int retval = ERROR_INVALID_ARGUMENTS;
1404
1405         if (count && buffer) {
1406                 switch (size) {
1407                 case 4:
1408                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1409                         break;
1410                 case 2:
1411                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1412                         break;
1413                 case 1:
1414                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1415                         break;
1416                 }
1417         }
1418
1419         return retval;
1420 }
1421
1422 static int cortex_m3_bulk_write_memory(struct target *target, uint32_t address,
1423                 uint32_t count, uint8_t *buffer)
1424 {
1425         return cortex_m3_write_memory(target, address, 4, count, buffer);
1426 }
1427
1428 static int cortex_m3_init_target(struct command_context *cmd_ctx,
1429                 struct target *target)
1430 {
1431         armv7m_build_reg_cache(target);
1432         return ERROR_OK;
1433 }
1434
1435 /* REVISIT cache valid/dirty bits are unmaintained.  We could set "valid"
1436  * on r/w if the core is not running, and clear on resume or reset ... or
1437  * at least, in a post_restore_context() method.
1438  */
1439
1440 struct dwt_reg_state {
1441         struct target   *target;
1442         uint32_t        addr;
1443         uint32_t        value;  /* scratch/cache */
1444 };
1445
1446 static int cortex_m3_dwt_get_reg(struct reg *reg)
1447 {
1448         struct dwt_reg_state *state = reg->arch_info;
1449
1450         return target_read_u32(state->target, state->addr, &state->value);
1451 }
1452
1453 static int cortex_m3_dwt_set_reg(struct reg *reg, uint8_t *buf)
1454 {
1455         struct dwt_reg_state *state = reg->arch_info;
1456
1457         return target_write_u32(state->target, state->addr,
1458                         buf_get_u32(buf, 0, reg->size));
1459 }
1460
1461 struct dwt_reg {
1462         uint32_t        addr;
1463         char            *name;
1464         unsigned        size;
1465 };
1466
1467 static struct dwt_reg dwt_base_regs[] = {
1468         { DWT_CTRL, "dwt_ctrl", 32, },
1469         { DWT_CYCCNT, "dwt_cyccnt", 32, },
1470         /* plus some 8 bit counters, useful for profiling with TPIU */
1471 };
1472
1473 static struct dwt_reg dwt_comp[] = {
1474 #define DWT_COMPARATOR(i) \
1475                 { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
1476                 { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
1477                 { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
1478         DWT_COMPARATOR(0),
1479         DWT_COMPARATOR(1),
1480         DWT_COMPARATOR(2),
1481         DWT_COMPARATOR(3),
1482 #undef DWT_COMPARATOR
1483 };
1484
1485 static const struct reg_arch_type dwt_reg_type = {
1486         .get = cortex_m3_dwt_get_reg,
1487         .set = cortex_m3_dwt_set_reg,
1488 };
1489
1490 static void
1491 cortex_m3_dwt_addreg(struct target *t, struct reg *r, struct dwt_reg *d)
1492 {
1493         struct dwt_reg_state *state;
1494
1495         state = calloc(1, sizeof *state);
1496         if (!state)
1497                 return;
1498         state->addr = d->addr;
1499         state->target = t;
1500
1501         r->name = d->name;
1502         r->size = d->size;
1503         r->value = &state->value;
1504         r->arch_info = state;
1505         r->type = &dwt_reg_type;
1506 }
1507
1508 static void
1509 cortex_m3_dwt_setup(struct cortex_m3_common *cm3, struct target *target)
1510 {
1511         uint32_t dwtcr;
1512         struct reg_cache *cache;
1513         struct cortex_m3_dwt_comparator *comparator;
1514         int reg, i;
1515
1516         target_read_u32(target, DWT_CTRL, &dwtcr);
1517         if (!dwtcr) {
1518                 LOG_DEBUG("no DWT");
1519                 return;
1520         }
1521
1522         cm3->dwt_num_comp = (dwtcr >> 28) & 0xF;
1523         cm3->dwt_comp_available = cm3->dwt_num_comp;
1524         cm3->dwt_comparator_list = calloc(cm3->dwt_num_comp,
1525                         sizeof(struct cortex_m3_dwt_comparator));
1526         if (!cm3->dwt_comparator_list) {
1527 fail0:
1528                 cm3->dwt_num_comp = 0;
1529                 LOG_ERROR("out of mem");
1530                 return;
1531         }
1532
1533         cache = calloc(1, sizeof *cache);
1534         if (!cache) {
1535 fail1:
1536                 free(cm3->dwt_comparator_list);
1537                 goto fail0;
1538         }
1539         cache->name = "cortex-m3 dwt registers";
1540         cache->num_regs = 2 + cm3->dwt_num_comp * 3;
1541         cache->reg_list = calloc(cache->num_regs, sizeof *cache->reg_list);
1542         if (!cache->reg_list) {
1543                 free(cache);
1544                 goto fail1;
1545         }
1546
1547         for (reg = 0; reg < 2; reg++)
1548                 cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1549                                 dwt_base_regs + reg);
1550
1551         comparator = cm3->dwt_comparator_list;
1552         for (i = 0; i < cm3->dwt_num_comp; i++, comparator++) {
1553                 int j;
1554
1555                 comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
1556                 for (j = 0; j < 3; j++, reg++)
1557                         cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1558                                         dwt_comp + 3 * i + j);
1559         }
1560
1561         *register_get_last_cache_p(&target->reg_cache) = cache;
1562         cm3->dwt_cache = cache;
1563
1564         LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
1565                         dwtcr, cm3->dwt_num_comp,
1566                         (dwtcr & (0xf << 24)) ? " only" : "/trigger");
1567
1568         /* REVISIT:  if num_comp > 1, check whether comparator #1 can
1569          * implement single-address data value watchpoints ... so we
1570          * won't need to check it later, when asked to set one up.
1571          */
1572 }
1573
1574 static int cortex_m3_examine(struct target *target)
1575 {
1576         int retval;
1577         uint32_t cpuid, fpcr;
1578         int i;
1579         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1580         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
1581
1582         if ((retval = ahbap_debugport_init(swjdp)) != ERROR_OK)
1583                 return retval;
1584
1585         if (!target_was_examined(target))
1586         {
1587                 target_set_examined(target);
1588
1589                 /* Read from Device Identification Registers */
1590                 retval = target_read_u32(target, CPUID, &cpuid);
1591                 if (retval != ERROR_OK)
1592                         return retval;
1593
1594                 if (((cpuid >> 4) & 0xc3f) == 0xc23)
1595                         LOG_DEBUG("CORTEX-M3 processor detected");
1596                 LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid);
1597
1598                 /* NOTE: FPB and DWT are both optional. */
1599
1600                 /* Setup FPB */
1601                 target_read_u32(target, FP_CTRL, &fpcr);
1602                 cortex_m3->auto_bp_type = 1;
1603                 cortex_m3->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF); /* bits [14:12] and [7:4] */
1604                 cortex_m3->fp_num_lit = (fpcr >> 8) & 0xF;
1605                 cortex_m3->fp_code_available = cortex_m3->fp_num_code;
1606                 cortex_m3->fp_comparator_list = calloc(cortex_m3->fp_num_code + cortex_m3->fp_num_lit, sizeof(struct cortex_m3_fp_comparator));
1607                 cortex_m3->fpb_enabled = fpcr & 1;
1608                 for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++)
1609                 {
1610                         cortex_m3->fp_comparator_list[i].type = (i < cortex_m3->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
1611                         cortex_m3->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
1612                 }
1613                 LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i", fpcr, cortex_m3->fp_num_code, cortex_m3->fp_num_lit);
1614
1615                 /* Setup DWT */
1616                 cortex_m3_dwt_setup(cortex_m3, target);
1617         }
1618
1619         return ERROR_OK;
1620 }
1621
1622 static int cortex_m3_dcc_read(struct swjdp_common *swjdp, uint8_t *value, uint8_t *ctrl)
1623 {
1624         uint16_t dcrdr;
1625
1626         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1627         *ctrl = (uint8_t)dcrdr;
1628         *value = (uint8_t)(dcrdr >> 8);
1629
1630         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1631
1632         /* write ack back to software dcc register
1633          * signify we have read data */
1634         if (dcrdr & (1 << 0))
1635         {
1636                 dcrdr = 0;
1637                 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1638         }
1639
1640         return ERROR_OK;
1641 }
1642
1643 static int cortex_m3_target_request_data(struct target *target,
1644                 uint32_t size, uint8_t *buffer)
1645 {
1646         struct armv7m_common *armv7m = target_to_armv7m(target);
1647         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1648         uint8_t data;
1649         uint8_t ctrl;
1650         uint32_t i;
1651
1652         for (i = 0; i < (size * 4); i++)
1653         {
1654                 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1655                 buffer[i] = data;
1656         }
1657
1658         return ERROR_OK;
1659 }
1660
1661 static int cortex_m3_handle_target_request(void *priv)
1662 {
1663         struct target *target = priv;
1664         if (!target_was_examined(target))
1665                 return ERROR_OK;
1666         struct armv7m_common *armv7m = target_to_armv7m(target);
1667         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1668
1669         if (!target->dbg_msg_enabled)
1670                 return ERROR_OK;
1671
1672         if (target->state == TARGET_RUNNING)
1673         {
1674                 uint8_t data;
1675                 uint8_t ctrl;
1676
1677                 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1678
1679                 /* check if we have data */
1680                 if (ctrl & (1 << 0))
1681                 {
1682                         uint32_t request;
1683
1684                         /* we assume target is quick enough */
1685                         request = data;
1686                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1687                         request |= (data << 8);
1688                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1689                         request |= (data << 16);
1690                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1691                         request |= (data << 24);
1692                         target_request(target, request);
1693                 }
1694         }
1695
1696         return ERROR_OK;
1697 }
1698
1699 static int cortex_m3_init_arch_info(struct target *target,
1700                 struct cortex_m3_common *cortex_m3, struct jtag_tap *tap)
1701 {
1702         int retval;
1703         struct armv7m_common *armv7m = &cortex_m3->armv7m;
1704
1705         armv7m_init_arch_info(target, armv7m);
1706
1707         /* prepare JTAG information for the new target */
1708         cortex_m3->jtag_info.tap = tap;
1709         cortex_m3->jtag_info.scann_size = 4;
1710
1711         armv7m->swjdp_info.dp_select_value = -1;
1712         armv7m->swjdp_info.ap_csw_value = -1;
1713         armv7m->swjdp_info.ap_tar_value = -1;
1714         armv7m->swjdp_info.jtag_info = &cortex_m3->jtag_info;
1715         armv7m->swjdp_info.memaccess_tck = 8;
1716         armv7m->swjdp_info.tar_autoincr_block = (1 << 12);      /* Cortex-M3 has 4096 bytes autoincrement range */
1717
1718         /* register arch-specific functions */
1719         armv7m->examine_debug_reason = cortex_m3_examine_debug_reason;
1720
1721         armv7m->post_debug_entry = NULL;
1722
1723         armv7m->pre_restore_context = NULL;
1724         armv7m->post_restore_context = NULL;
1725
1726         armv7m->load_core_reg_u32 = cortex_m3_load_core_reg_u32;
1727         armv7m->store_core_reg_u32 = cortex_m3_store_core_reg_u32;
1728
1729         target_register_timer_callback(cortex_m3_handle_target_request, 1, 1, target);
1730
1731         if ((retval = arm_jtag_setup_connection(&cortex_m3->jtag_info)) != ERROR_OK)
1732         {
1733                 return retval;
1734         }
1735
1736         return ERROR_OK;
1737 }
1738
1739 static int cortex_m3_target_create(struct target *target, Jim_Interp *interp)
1740 {
1741         struct cortex_m3_common *cortex_m3 = calloc(1,sizeof(struct cortex_m3_common));
1742
1743         cortex_m3->common_magic = CORTEX_M3_COMMON_MAGIC;
1744         cortex_m3_init_arch_info(target, cortex_m3, target->tap);
1745
1746         return ERROR_OK;
1747 }
1748
1749 /*--------------------------------------------------------------------------*/
1750
1751 static int cortex_m3_verify_pointer(struct command_context *cmd_ctx,
1752                 struct cortex_m3_common *cm3)
1753 {
1754         if (cm3->common_magic != CORTEX_M3_COMMON_MAGIC) {
1755                 command_print(cmd_ctx, "target is not a Cortex-M3");
1756                 return ERROR_TARGET_INVALID;
1757         }
1758         return ERROR_OK;
1759 }
1760
1761 /*
1762  * Only stuff below this line should need to verify that its target
1763  * is a Cortex-M3.  Everything else should have indirected through the
1764  * cortexm3_target structure, which is only used with CM3 targets.
1765  */
1766
1767 /*
1768  * REVISIT Thumb2 disassembly should work for all ARMv7 cores, as well
1769  * as at least ARM-1156T2.  The interesting thing about Cortex-M is
1770  * that *only* Thumb2 disassembly matters.  There are also some small
1771  * additions to Thumb2 that are specific to ARMv7-M.
1772  */
1773 COMMAND_HANDLER(handle_cortex_m3_disassemble_command)
1774 {
1775         int retval;
1776         struct target *target = get_current_target(CMD_CTX);
1777         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1778         uint32_t address;
1779         unsigned long count = 1;
1780         struct arm_instruction cur_instruction;
1781
1782         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
1783         if (retval != ERROR_OK)
1784                 return retval;
1785
1786         errno = 0;
1787         switch (CMD_ARGC) {
1788         case 2:
1789                 COMMAND_PARSE_NUMBER(ulong, CMD_ARGV[1], count);
1790                 /* FALL THROUGH */
1791         case 1:
1792                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
1793                 break;
1794         default:
1795                 command_print(CMD_CTX,
1796                         "usage: cortex_m3 disassemble <address> [<count>]");
1797                 return ERROR_OK;
1798         }
1799
1800         while (count--) {
1801                 retval = thumb2_opcode(target, address, &cur_instruction);
1802                 if (retval != ERROR_OK)
1803                         return retval;
1804                 command_print(CMD_CTX, "%s", cur_instruction.text);
1805                 address += cur_instruction.instruction_size;
1806         }
1807
1808         return ERROR_OK;
1809 }
1810
1811 static const struct {
1812         char name[10];
1813         unsigned mask;
1814 } vec_ids[] = {
1815         { "hard_err",   VC_HARDERR, },
1816         { "int_err",    VC_INTERR, },
1817         { "bus_err",    VC_BUSERR, },
1818         { "state_err",  VC_STATERR, },
1819         { "chk_err",    VC_CHKERR, },
1820         { "nocp_err",   VC_NOCPERR, },
1821         { "mm_err",     VC_MMERR, },
1822         { "reset",      VC_CORERESET, },
1823 };
1824
1825 COMMAND_HANDLER(handle_cortex_m3_vector_catch_command)
1826 {
1827         struct target *target = get_current_target(CMD_CTX);
1828         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1829         struct armv7m_common *armv7m = &cortex_m3->armv7m;
1830         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1831         uint32_t demcr = 0;
1832         int retval;
1833
1834         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
1835         if (retval != ERROR_OK)
1836                 return retval;
1837
1838         mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
1839
1840         if (CMD_ARGC > 0) {
1841                 unsigned catch = 0;
1842
1843                 if (CMD_ARGC == 1) {
1844                         if (strcmp(CMD_ARGV[0], "all") == 0) {
1845                                 catch = VC_HARDERR | VC_INTERR | VC_BUSERR
1846                                         | VC_STATERR | VC_CHKERR | VC_NOCPERR
1847                                         | VC_MMERR | VC_CORERESET;
1848                                 goto write;
1849                         } else if (strcmp(CMD_ARGV[0], "none") == 0) {
1850                                 goto write;
1851                         }
1852                 }
1853                 while (CMD_ARGC-- > 0) {
1854                         unsigned i;
1855                         for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
1856                                 if (strcmp(CMD_ARGV[CMD_ARGC], vec_ids[i].name) != 0)
1857                                         continue;
1858                                 catch |= vec_ids[i].mask;
1859                                 break;
1860                         }
1861                         if (i == ARRAY_SIZE(vec_ids)) {
1862                                 LOG_ERROR("No CM3 vector '%s'", CMD_ARGV[CMD_ARGC]);
1863                                 return ERROR_INVALID_ARGUMENTS;
1864                         }
1865                 }
1866 write:
1867                 demcr &= ~0xffff;
1868                 demcr |= catch;
1869
1870                 /* write, but don't assume it stuck */
1871                 mem_ap_write_u32(swjdp, DCB_DEMCR, demcr);
1872                 mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
1873         }
1874
1875         for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++)
1876         {
1877                 command_print(CMD_CTX, "%9s: %s", vec_ids[i].name,
1878                         (demcr & vec_ids[i].mask) ? "catch" : "ignore");
1879         }
1880
1881         return ERROR_OK;
1882 }
1883
1884 COMMAND_HANDLER(handle_cortex_m3_mask_interrupts_command)
1885 {
1886         struct target *target = get_current_target(CMD_CTX);
1887         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1888         int retval;
1889
1890         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
1891         if (retval != ERROR_OK)
1892                 return retval;
1893
1894         if (target->state != TARGET_HALTED)
1895         {
1896                 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
1897                 return ERROR_OK;
1898         }
1899
1900         if (CMD_ARGC > 0)
1901         {
1902                 bool enable;
1903                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
1904                 uint32_t mask_on = C_HALT | (enable ? C_MASKINTS : 0);
1905                 uint32_t mask_off = enable ? 0 : C_MASKINTS;
1906                 cortex_m3_write_debug_halt_mask(target, mask_on, mask_off);
1907         }
1908
1909         command_print(CMD_CTX, "cortex_m3 interrupt mask %s",
1910                         (cortex_m3->dcb_dhcsr & C_MASKINTS) ? "on" : "off");
1911
1912         return ERROR_OK;
1913 }
1914
1915 static int cortex_m3_register_commands(struct command_context *cmd_ctx)
1916 {
1917         int retval;
1918         struct command *cortex_m3_cmd;
1919
1920         retval = armv7m_register_commands(cmd_ctx);
1921
1922         cortex_m3_cmd = register_command(cmd_ctx, NULL, "cortex_m3",
1923                         NULL, COMMAND_ANY, "cortex_m3 specific commands");
1924
1925         register_command(cmd_ctx, cortex_m3_cmd, "disassemble",
1926                         handle_cortex_m3_disassemble_command, COMMAND_EXEC,
1927                         "disassemble Thumb2 instructions <address> [<count>]");
1928         register_command(cmd_ctx, cortex_m3_cmd, "maskisr",
1929                         handle_cortex_m3_mask_interrupts_command, COMMAND_EXEC,
1930                         "mask cortex_m3 interrupts ['on'|'off']");
1931         register_command(cmd_ctx, cortex_m3_cmd, "vector_catch",
1932                         handle_cortex_m3_vector_catch_command, COMMAND_EXEC,
1933                         "catch hardware vectors ['all'|'none'|<list>]");
1934
1935         return retval;
1936 }
1937
1938 struct target_type cortexm3_target =
1939 {
1940         .name = "cortex_m3",
1941
1942         .poll = cortex_m3_poll,
1943         .arch_state = armv7m_arch_state,
1944
1945         .target_request_data = cortex_m3_target_request_data,
1946
1947         .halt = cortex_m3_halt,
1948         .resume = cortex_m3_resume,
1949         .step = cortex_m3_step,
1950
1951         .assert_reset = cortex_m3_assert_reset,
1952         .deassert_reset = cortex_m3_deassert_reset,
1953         .soft_reset_halt = cortex_m3_soft_reset_halt,
1954
1955         .get_gdb_reg_list = armv7m_get_gdb_reg_list,
1956
1957         .read_memory = cortex_m3_read_memory,
1958         .write_memory = cortex_m3_write_memory,
1959         .bulk_write_memory = cortex_m3_bulk_write_memory,
1960         .checksum_memory = armv7m_checksum_memory,
1961         .blank_check_memory = armv7m_blank_check_memory,
1962
1963         .run_algorithm = armv7m_run_algorithm,
1964
1965         .add_breakpoint = cortex_m3_add_breakpoint,
1966         .remove_breakpoint = cortex_m3_remove_breakpoint,
1967         .add_watchpoint = cortex_m3_add_watchpoint,
1968         .remove_watchpoint = cortex_m3_remove_watchpoint,
1969
1970         .register_commands = cortex_m3_register_commands,
1971         .target_create = cortex_m3_target_create,
1972         .init_target = cortex_m3_init_target,
1973         .examine = cortex_m3_examine,
1974 };