7aec01513637bfe1653b9ae218d3a6577b48e764
[fw/openocd] / src / target / cortex_m3.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   This program is free software; you can redistribute it and/or modify  *
12  *   it under the terms of the GNU General Public License as published by  *
13  *   the Free Software Foundation; either version 2 of the License, or     *
14  *   (at your option) any later version.                                   *
15  *                                                                         *
16  *   This program is distributed in the hope that it will be useful,       *
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
19  *   GNU General Public License for more details.                          *
20  *                                                                         *
21  *   You should have received a copy of the GNU General Public License     *
22  *   along with this program; if not, write to the                         *
23  *   Free Software Foundation, Inc.,                                       *
24  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
25  *                                                                         *
26  *                                                                         *
27  *   Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0)              *
28  *                                                                         *
29  ***************************************************************************/
30 #ifdef HAVE_CONFIG_H
31 #include "config.h"
32 #endif
33
34 #include "breakpoints.h"
35 #include "cortex_m3.h"
36 #include "target_request.h"
37 #include "target_type.h"
38 #include "arm_disassembler.h"
39 #include "register.h"
40 #include "arm_opcodes.h"
41 #include "arm_semihosting.h"
42
43 /* NOTE:  most of this should work fine for the Cortex-M1 and
44  * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
45  * Some differences:  M0/M1 doesn't have FBP remapping or the
46  * DWT tracing/profiling support.  (So the cycle counter will
47  * not be usable; the other stuff isn't currently used here.)
48  *
49  * Although there are some workarounds for errata seen only in r0p0
50  * silicon, such old parts are hard to find and thus not much tested
51  * any longer.
52  */
53
54
55 /* forward declarations */
56 static int cortex_m3_set_breakpoint(struct target *target, struct breakpoint *breakpoint);
57 static int cortex_m3_unset_breakpoint(struct target *target, struct breakpoint *breakpoint);
58 static void cortex_m3_enable_watchpoints(struct target *target);
59 static int cortex_m3_store_core_reg_u32(struct target *target,
60                 enum armv7m_regtype type, uint32_t num, uint32_t value);
61
62 static int cortexm3_dap_read_coreregister_u32(struct swjdp_common *swjdp,
63                 uint32_t *value, int regnum)
64 {
65         int retval;
66         uint32_t dcrdr;
67
68         /* because the DCB_DCRDR is used for the emulated dcc channel
69          * we have to save/restore the DCB_DCRDR when used */
70
71         mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
72
73         /* mem_ap_write_u32(swjdp, DCB_DCRSR, regnum); */
74         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
75         dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum);
76
77         /* mem_ap_read_u32(swjdp, DCB_DCRDR, value); */
78         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
79         dap_ap_read_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
80
81         retval = dap_run(swjdp);
82
83         /* restore DCB_DCRDR - this needs to be in a seperate
84          * transaction otherwise the emulated DCC channel breaks */
85         if (retval == ERROR_OK)
86                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
87
88         return retval;
89 }
90
91 static int cortexm3_dap_write_coreregister_u32(struct swjdp_common *swjdp,
92                 uint32_t value, int regnum)
93 {
94         int retval;
95         uint32_t dcrdr;
96
97         /* because the DCB_DCRDR is used for the emulated dcc channel
98          * we have to save/restore the DCB_DCRDR when used */
99
100         mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
101
102         /* mem_ap_write_u32(swjdp, DCB_DCRDR, core_regs[i]); */
103         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
104         dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
105
106         /* mem_ap_write_u32(swjdp, DCB_DCRSR, i | DCRSR_WnR); */
107         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
108         dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum | DCRSR_WnR);
109
110         retval = dap_run(swjdp);
111
112         /* restore DCB_DCRDR - this needs to be in a seperate
113          * transaction otherwise the emulated DCC channel breaks */
114         if (retval == ERROR_OK)
115                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
116
117         return retval;
118 }
119
120 static int cortex_m3_write_debug_halt_mask(struct target *target,
121                 uint32_t mask_on, uint32_t mask_off)
122 {
123         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
124         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
125
126         /* mask off status bits */
127         cortex_m3->dcb_dhcsr &= ~((0xFFFF << 16) | mask_off);
128         /* create new register mask */
129         cortex_m3->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
130
131         return mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, cortex_m3->dcb_dhcsr);
132 }
133
134 static int cortex_m3_clear_halt(struct target *target)
135 {
136         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
137         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
138
139         /* clear step if any */
140         cortex_m3_write_debug_halt_mask(target, C_HALT, C_STEP);
141
142         /* Read Debug Fault Status Register */
143         mem_ap_read_atomic_u32(swjdp, NVIC_DFSR, &cortex_m3->nvic_dfsr);
144
145         /* Clear Debug Fault Status */
146         mem_ap_write_atomic_u32(swjdp, NVIC_DFSR, cortex_m3->nvic_dfsr);
147         LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m3->nvic_dfsr);
148
149         return ERROR_OK;
150 }
151
152 static int cortex_m3_single_step_core(struct target *target)
153 {
154         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
155         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
156         uint32_t dhcsr_save;
157
158         /* backup dhcsr reg */
159         dhcsr_save = cortex_m3->dcb_dhcsr;
160
161         /* Mask interrupts before clearing halt, if done already.  This avoids
162          * Erratum 377497 (fixed in r1p0) where setting MASKINTS while clearing
163          * HALT can put the core into an unknown state.
164          */
165         if (!(cortex_m3->dcb_dhcsr & C_MASKINTS))
166                 mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
167                                 DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN);
168         mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
169                                 DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN);
170         LOG_DEBUG(" ");
171
172         /* restore dhcsr reg */
173         cortex_m3->dcb_dhcsr = dhcsr_save;
174         cortex_m3_clear_halt(target);
175
176         return ERROR_OK;
177 }
178
179 static int cortex_m3_endreset_event(struct target *target)
180 {
181         int i;
182         int retval;
183         uint32_t dcb_demcr;
184         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
185         struct armv7m_common *armv7m = &cortex_m3->armv7m;
186         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
187         struct cortex_m3_fp_comparator *fp_list = cortex_m3->fp_comparator_list;
188         struct cortex_m3_dwt_comparator *dwt_list = cortex_m3->dwt_comparator_list;
189
190         /* REVISIT The four debug monitor bits are currently ignored... */
191         mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &dcb_demcr);
192         LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "",dcb_demcr);
193
194         /* this register is used for emulated dcc channel */
195         mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
196
197         /* Enable debug requests */
198         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
199         if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN))
200                 mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
201
202         /* clear any interrupt masking */
203         cortex_m3_write_debug_halt_mask(target, 0, C_MASKINTS);
204
205         /* Enable features controlled by ITM and DWT blocks, and catch only
206          * the vectors we were told to pay attention to.
207          *
208          * Target firmware is responsible for all fault handling policy
209          * choices *EXCEPT* explicitly scripted overrides like "vector_catch"
210          * or manual updates to the NVIC SHCSR and CCR registers.
211          */
212         mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | armv7m->demcr);
213
214         /* Paranoia: evidently some (early?) chips don't preserve all the
215          * debug state (including FBP, DWT, etc) across reset...
216          */
217
218         /* Enable FPB */
219         target_write_u32(target, FP_CTRL, 3);
220         cortex_m3->fpb_enabled = 1;
221
222         /* Restore FPB registers */
223         for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++)
224         {
225                 target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
226         }
227
228         /* Restore DWT registers */
229         for (i = 0; i < cortex_m3->dwt_num_comp; i++)
230         {
231                 target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
232                                 dwt_list[i].comp);
233                 target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
234                                 dwt_list[i].mask);
235                 target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
236                                 dwt_list[i].function);
237         }
238         retval = dap_run(swjdp);
239         if (retval != ERROR_OK)
240                 return retval;
241
242         register_cache_invalidate(cortex_m3->armv7m.core_cache);
243
244         /* make sure we have latest dhcsr flags */
245         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
246
247         return retval;
248 }
249
250 static int cortex_m3_examine_debug_reason(struct target *target)
251 {
252         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
253
254         /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason */
255         /* only check the debug reason if we don't know it already */
256
257         if ((target->debug_reason != DBG_REASON_DBGRQ)
258                 && (target->debug_reason != DBG_REASON_SINGLESTEP))
259         {
260                 if (cortex_m3->nvic_dfsr & DFSR_BKPT)
261                 {
262                         target->debug_reason = DBG_REASON_BREAKPOINT;
263                         if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
264                                 target->debug_reason = DBG_REASON_WPTANDBKPT;
265                 }
266                 else if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
267                         target->debug_reason = DBG_REASON_WATCHPOINT;
268                 else if (cortex_m3->nvic_dfsr & DFSR_VCATCH)
269                         target->debug_reason = DBG_REASON_BREAKPOINT;
270                 else /* EXTERNAL, HALTED */
271                         target->debug_reason = DBG_REASON_UNDEFINED;
272         }
273
274         return ERROR_OK;
275 }
276
277 static int cortex_m3_examine_exception_reason(struct target *target)
278 {
279         uint32_t shcsr, except_sr, cfsr = -1, except_ar = -1;
280         struct armv7m_common *armv7m = target_to_armv7m(target);
281         struct swjdp_common *swjdp = &armv7m->swjdp_info;
282         int retval;
283
284         mem_ap_read_u32(swjdp, NVIC_SHCSR, &shcsr);
285         switch (armv7m->exception_number)
286         {
287                 case 2: /* NMI */
288                         break;
289                 case 3: /* Hard Fault */
290                         mem_ap_read_atomic_u32(swjdp, NVIC_HFSR, &except_sr);
291                         if (except_sr & 0x40000000)
292                         {
293                                 mem_ap_read_u32(swjdp, NVIC_CFSR, &cfsr);
294                         }
295                         break;
296                 case 4: /* Memory Management */
297                         mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
298                         mem_ap_read_u32(swjdp, NVIC_MMFAR, &except_ar);
299                         break;
300                 case 5: /* Bus Fault */
301                         mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
302                         mem_ap_read_u32(swjdp, NVIC_BFAR, &except_ar);
303                         break;
304                 case 6: /* Usage Fault */
305                         mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
306                         break;
307                 case 11:        /* SVCall */
308                         break;
309                 case 12:        /* Debug Monitor */
310                         mem_ap_read_u32(swjdp, NVIC_DFSR, &except_sr);
311                         break;
312                 case 14:        /* PendSV */
313                         break;
314                 case 15:        /* SysTick */
315                         break;
316                 default:
317                         except_sr = 0;
318                         break;
319         }
320         retval = dap_run(swjdp);
321         if (retval == ERROR_OK)
322                 LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32
323                         ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32,
324                         armv7m_exception_string(armv7m->exception_number),
325                         shcsr, except_sr, cfsr, except_ar);
326         return retval;
327 }
328
329 /* PSP is used in some thread modes */
330 static const int armv7m_psp_reg_map[17] = {
331         ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
332         ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
333         ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
334         ARMV7M_R12, ARMV7M_PSP, ARMV7M_R14, ARMV7M_PC,
335         ARMV7M_xPSR,
336 };
337
338 /* MSP is used in handler and some thread modes */
339 static const int armv7m_msp_reg_map[17] = {
340         ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
341         ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
342         ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
343         ARMV7M_R12, ARMV7M_MSP, ARMV7M_R14, ARMV7M_PC,
344         ARMV7M_xPSR,
345 };
346
347 static int cortex_m3_debug_entry(struct target *target)
348 {
349         int i;
350         uint32_t xPSR;
351         int retval;
352         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
353         struct armv7m_common *armv7m = &cortex_m3->armv7m;
354         struct arm *arm = &armv7m->arm;
355         struct swjdp_common *swjdp = &armv7m->swjdp_info;
356         struct reg *r;
357
358         LOG_DEBUG(" ");
359
360         cortex_m3_clear_halt(target);
361         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
362
363         if ((retval = armv7m->examine_debug_reason(target)) != ERROR_OK)
364                 return retval;
365
366         /* Examine target state and mode */
367         /* First load register acessible through core debug port*/
368         int num_regs = armv7m->core_cache->num_regs;
369
370         for (i = 0; i < num_regs; i++)
371         {
372                 if (!armv7m->core_cache->reg_list[i].valid)
373                         armv7m->read_core_reg(target, i);
374         }
375
376         r = armv7m->core_cache->reg_list + ARMV7M_xPSR;
377         xPSR = buf_get_u32(r->value, 0, 32);
378
379 #ifdef ARMV7_GDB_HACKS
380         /* FIXME this breaks on scan chains with more than one Cortex-M3.
381          * Instead, each CM3 should have its own dummy value...
382          */
383         /* copy real xpsr reg for gdb, setting thumb bit */
384         buf_set_u32(armv7m_gdb_dummy_cpsr_value, 0, 32, xPSR);
385         buf_set_u32(armv7m_gdb_dummy_cpsr_value, 5, 1, 1);
386         armv7m_gdb_dummy_cpsr_reg.valid = r->valid;
387         armv7m_gdb_dummy_cpsr_reg.dirty = r->dirty;
388 #endif
389
390         /* For IT instructions xPSR must be reloaded on resume and clear on debug exec */
391         if (xPSR & 0xf00)
392         {
393                 r->dirty = r->valid;
394                 cortex_m3_store_core_reg_u32(target, ARMV7M_REGISTER_CORE_GP, 16, xPSR &~ 0xff);
395         }
396
397         /* Are we in an exception handler */
398         if (xPSR & 0x1FF)
399         {
400                 armv7m->core_mode = ARMV7M_MODE_HANDLER;
401                 armv7m->exception_number = (xPSR & 0x1FF);
402
403                 arm->core_mode = ARM_MODE_HANDLER;
404                 arm->map = armv7m_msp_reg_map;
405         }
406         else
407         {
408                 unsigned control = buf_get_u32(armv7m->core_cache
409                                 ->reg_list[ARMV7M_CONTROL].value, 0, 2);
410
411                 /* is this thread privileged? */
412                 armv7m->core_mode = control & 1;
413                 arm->core_mode = armv7m->core_mode
414                                 ? ARM_MODE_USER_THREAD
415                                 : ARM_MODE_THREAD;
416
417                 /* which stack is it using? */
418                 if (control & 2)
419                         arm->map = armv7m_psp_reg_map;
420                 else
421                         arm->map = armv7m_msp_reg_map;
422
423                 armv7m->exception_number = 0;
424         }
425
426         if (armv7m->exception_number)
427         {
428                 cortex_m3_examine_exception_reason(target);
429         }
430
431         LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", target->state: %s",
432                 armv7m_mode_strings[armv7m->core_mode],
433                 *(uint32_t*)(arm->pc->value),
434                 target_state_name(target));
435
436         if (armv7m->post_debug_entry)
437                 armv7m->post_debug_entry(target);
438
439         return ERROR_OK;
440 }
441
442 static int cortex_m3_poll(struct target *target)
443 {
444         int retval;
445         enum target_state prev_target_state = target->state;
446         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
447         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
448
449         /* Read from Debug Halting Control and Status Register */
450         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
451         if (retval != ERROR_OK)
452         {
453                 target->state = TARGET_UNKNOWN;
454                 return retval;
455         }
456
457         /* Recover from lockup.  See ARMv7-M architecture spec,
458          * section B1.5.15 "Unrecoverable exception cases".
459          *
460          * REVISIT Is there a better way to report and handle this?
461          */
462         if (cortex_m3->dcb_dhcsr & S_LOCKUP) {
463                 LOG_WARNING("%s -- clearing lockup after double fault",
464                                 target_name(target));
465                 cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
466                 target->debug_reason = DBG_REASON_DBGRQ;
467
468                 /* refresh status bits */
469                 mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
470         }
471
472         if (cortex_m3->dcb_dhcsr & S_RESET_ST)
473         {
474                 /* check if still in reset */
475                 mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
476
477                 if (cortex_m3->dcb_dhcsr & S_RESET_ST)
478                 {
479                         target->state = TARGET_RESET;
480                         return ERROR_OK;
481                 }
482         }
483
484         if (target->state == TARGET_RESET)
485         {
486                 /* Cannot switch context while running so endreset is
487                  * called with target->state == TARGET_RESET
488                  */
489                 LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32,
490                                 cortex_m3->dcb_dhcsr);
491                 cortex_m3_endreset_event(target);
492                 target->state = TARGET_RUNNING;
493                 prev_target_state = TARGET_RUNNING;
494         }
495
496         if (cortex_m3->dcb_dhcsr & S_HALT)
497         {
498                 target->state = TARGET_HALTED;
499
500                 if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET))
501                 {
502                         if ((retval = cortex_m3_debug_entry(target)) != ERROR_OK)
503                                 return retval;
504
505                         if (arm_semihosting(target, &retval) != 0)
506                                 return retval;
507
508                         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
509                 }
510                 if (prev_target_state == TARGET_DEBUG_RUNNING)
511                 {
512                         LOG_DEBUG(" ");
513                         if ((retval = cortex_m3_debug_entry(target)) != ERROR_OK)
514                                 return retval;
515
516                         target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
517                 }
518         }
519
520         /* REVISIT when S_SLEEP is set, it's in a Sleep or DeepSleep state.
521          * How best to model low power modes?
522          */
523
524         if (target->state == TARGET_UNKNOWN)
525         {
526                 /* check if processor is retiring instructions */
527                 if (cortex_m3->dcb_dhcsr & S_RETIRE_ST)
528                 {
529                         target->state = TARGET_RUNNING;
530                         return ERROR_OK;
531                 }
532         }
533
534         return ERROR_OK;
535 }
536
537 static int cortex_m3_halt(struct target *target)
538 {
539         LOG_DEBUG("target->state: %s",
540                 target_state_name(target));
541
542         if (target->state == TARGET_HALTED)
543         {
544                 LOG_DEBUG("target was already halted");
545                 return ERROR_OK;
546         }
547
548         if (target->state == TARGET_UNKNOWN)
549         {
550                 LOG_WARNING("target was in unknown state when halt was requested");
551         }
552
553         if (target->state == TARGET_RESET)
554         {
555                 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst())
556                 {
557                         LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
558                         return ERROR_TARGET_FAILURE;
559                 }
560                 else
561                 {
562                         /* we came here in a reset_halt or reset_init sequence
563                          * debug entry was already prepared in cortex_m3_prepare_reset_halt()
564                          */
565                         target->debug_reason = DBG_REASON_DBGRQ;
566
567                         return ERROR_OK;
568                 }
569         }
570
571         /* Write to Debug Halting Control and Status Register */
572         cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
573
574         target->debug_reason = DBG_REASON_DBGRQ;
575
576         return ERROR_OK;
577 }
578
579 static int cortex_m3_soft_reset_halt(struct target *target)
580 {
581         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
582         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
583         uint32_t dcb_dhcsr = 0;
584         int retval, timeout = 0;
585
586         /* Enter debug state on reset; restore DEMCR in endreset_event() */
587         mem_ap_write_u32(swjdp, DCB_DEMCR,
588                         TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
589
590         /* Request a core-only reset */
591         mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
592                         AIRCR_VECTKEY | AIRCR_VECTRESET);
593         target->state = TARGET_RESET;
594
595         /* registers are now invalid */
596         register_cache_invalidate(cortex_m3->armv7m.core_cache);
597
598         while (timeout < 100)
599         {
600                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &dcb_dhcsr);
601                 if (retval == ERROR_OK)
602                 {
603                         mem_ap_read_atomic_u32(swjdp, NVIC_DFSR,
604                                         &cortex_m3->nvic_dfsr);
605                         if ((dcb_dhcsr & S_HALT)
606                                         && (cortex_m3->nvic_dfsr & DFSR_VCATCH))
607                         {
608                                 LOG_DEBUG("system reset-halted, DHCSR 0x%08x, "
609                                         "DFSR 0x%08x",
610                                         (unsigned) dcb_dhcsr,
611                                         (unsigned) cortex_m3->nvic_dfsr);
612                                 cortex_m3_poll(target);
613                                 /* FIXME restore user's vector catch config */
614                                 return ERROR_OK;
615                         }
616                         else
617                                 LOG_DEBUG("waiting for system reset-halt, "
618                                         "DHCSR 0x%08x, %d ms",
619                                         (unsigned) dcb_dhcsr, timeout);
620                 }
621                 timeout++;
622                 alive_sleep(1);
623         }
624
625         return ERROR_OK;
626 }
627
628 static void cortex_m3_enable_breakpoints(struct target *target)
629 {
630         struct breakpoint *breakpoint = target->breakpoints;
631
632         /* set any pending breakpoints */
633         while (breakpoint)
634         {
635                 if (!breakpoint->set)
636                         cortex_m3_set_breakpoint(target, breakpoint);
637                 breakpoint = breakpoint->next;
638         }
639 }
640
641 static int cortex_m3_resume(struct target *target, int current,
642                 uint32_t address, int handle_breakpoints, int debug_execution)
643 {
644         struct armv7m_common *armv7m = target_to_armv7m(target);
645         struct breakpoint *breakpoint = NULL;
646         uint32_t resume_pc;
647         struct reg *r;
648
649         if (target->state != TARGET_HALTED)
650         {
651                 LOG_WARNING("target not halted");
652                 return ERROR_TARGET_NOT_HALTED;
653         }
654
655         if (!debug_execution)
656         {
657                 target_free_all_working_areas(target);
658                 cortex_m3_enable_breakpoints(target);
659                 cortex_m3_enable_watchpoints(target);
660         }
661
662         if (debug_execution)
663         {
664                 r = armv7m->core_cache->reg_list + ARMV7M_PRIMASK;
665
666                 /* Disable interrupts */
667                 /* We disable interrupts in the PRIMASK register instead of
668                  * masking with C_MASKINTS.  This is probably the same issue
669                  * as Cortex-M3 Erratum 377493 (fixed in r1p0):  C_MASKINTS
670                  * in parallel with disabled interrupts can cause local faults
671                  * to not be taken.
672                  *
673                  * REVISIT this clearly breaks non-debug execution, since the
674                  * PRIMASK register state isn't saved/restored...  workaround
675                  * by never resuming app code after debug execution.
676                  */
677                 buf_set_u32(r->value, 0, 1, 1);
678                 r->dirty = true;
679                 r->valid = true;
680
681                 /* Make sure we are in Thumb mode */
682                 r = armv7m->core_cache->reg_list + ARMV7M_xPSR;
683                 buf_set_u32(r->value, 24, 1, 1);
684                 r->dirty = true;
685                 r->valid = true;
686         }
687
688         /* current = 1: continue on current pc, otherwise continue at <address> */
689         r = armv7m->arm.pc;
690         if (!current)
691         {
692                 buf_set_u32(r->value, 0, 32, address);
693                 r->dirty = true;
694                 r->valid = true;
695         }
696
697         /* if we halted last time due to a bkpt instruction
698          * then we have to manually step over it, otherwise
699          * the core will break again */
700
701         if (!breakpoint_find(target, buf_get_u32(r->value, 0, 32))
702                         && !debug_execution)
703         {
704                 armv7m_maybe_skip_bkpt_inst(target, NULL);
705         }
706
707         resume_pc = buf_get_u32(r->value, 0, 32);
708
709         armv7m_restore_context(target);
710
711         /* the front-end may request us not to handle breakpoints */
712         if (handle_breakpoints)
713         {
714                 /* Single step past breakpoint at current address */
715                 if ((breakpoint = breakpoint_find(target, resume_pc)))
716                 {
717                         LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (ID: %d)",
718                                           breakpoint->address,
719                                           breakpoint->unique_id);
720                         cortex_m3_unset_breakpoint(target, breakpoint);
721                         cortex_m3_single_step_core(target);
722                         cortex_m3_set_breakpoint(target, breakpoint);
723                 }
724         }
725
726         /* Restart core */
727         cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
728
729         target->debug_reason = DBG_REASON_NOTHALTED;
730
731         /* registers are now invalid */
732         register_cache_invalidate(armv7m->core_cache);
733
734         if (!debug_execution)
735         {
736                 target->state = TARGET_RUNNING;
737                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
738                 LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc);
739         }
740         else
741         {
742                 target->state = TARGET_DEBUG_RUNNING;
743                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
744                 LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc);
745         }
746
747         return ERROR_OK;
748 }
749
750 /* int irqstepcount = 0; */
751 static int cortex_m3_step(struct target *target, int current,
752                 uint32_t address, int handle_breakpoints)
753 {
754         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
755         struct armv7m_common *armv7m = &cortex_m3->armv7m;
756         struct swjdp_common *swjdp = &armv7m->swjdp_info;
757         struct breakpoint *breakpoint = NULL;
758         struct reg *pc = armv7m->arm.pc;
759         bool bkpt_inst_found = false;
760
761         if (target->state != TARGET_HALTED)
762         {
763                 LOG_WARNING("target not halted");
764                 return ERROR_TARGET_NOT_HALTED;
765         }
766
767         /* current = 1: continue on current pc, otherwise continue at <address> */
768         if (!current)
769                 buf_set_u32(pc->value, 0, 32, address);
770
771         /* the front-end may request us not to handle breakpoints */
772         if (handle_breakpoints) {
773                 breakpoint = breakpoint_find(target,
774                                 buf_get_u32(pc->value, 0, 32));
775                 if (breakpoint)
776                         cortex_m3_unset_breakpoint(target, breakpoint);
777         }
778
779         armv7m_maybe_skip_bkpt_inst(target, &bkpt_inst_found);
780
781         target->debug_reason = DBG_REASON_SINGLESTEP;
782
783         armv7m_restore_context(target);
784
785         target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
786
787         /* if no bkpt instruction is found at pc then we can perform
788          * a normal step, otherwise we have to manually step over the bkpt
789          * instruction - as such simulate a step */
790         if (bkpt_inst_found == false)
791         {
792                 /* set step and clear halt */
793                 cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
794         }
795
796         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
797
798         /* registers are now invalid */
799         register_cache_invalidate(cortex_m3->armv7m.core_cache);
800
801         if (breakpoint)
802                 cortex_m3_set_breakpoint(target, breakpoint);
803
804         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
805                         " nvic_icsr = 0x%" PRIx32,
806                         cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
807
808         cortex_m3_debug_entry(target);
809         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
810
811         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
812                         " nvic_icsr = 0x%" PRIx32,
813                         cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
814
815         return ERROR_OK;
816 }
817
818 static int cortex_m3_assert_reset(struct target *target)
819 {
820         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
821         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
822         int assert_srst = 1;
823
824         LOG_DEBUG("target->state: %s",
825                 target_state_name(target));
826
827         enum reset_types jtag_reset_config = jtag_get_reset_config();
828
829         /*
830          * We can reset Cortex-M3 targets using just the NVIC without
831          * requiring SRST, getting a SoC reset (or a core-only reset)
832          * instead of a system reset.
833          */
834         if (!(jtag_reset_config & RESET_HAS_SRST))
835                 assert_srst = 0;
836
837         /* Enable debug requests */
838         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
839         if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN))
840                 mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
841
842         mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
843
844         if (!target->reset_halt)
845         {
846                 /* Set/Clear C_MASKINTS in a separate operation */
847                 if (cortex_m3->dcb_dhcsr & C_MASKINTS)
848                         mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
849                                         DBGKEY | C_DEBUGEN | C_HALT);
850
851                 /* clear any debug flags before resuming */
852                 cortex_m3_clear_halt(target);
853
854                 /* clear C_HALT in dhcsr reg */
855                 cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
856         }
857         else
858         {
859                 /* Halt in debug on reset; endreset_event() restores DEMCR.
860                  *
861                  * REVISIT catching BUSERR presumably helps to defend against
862                  * bad vector table entries.  Should this include MMERR or
863                  * other flags too?
864                  */
865                 mem_ap_write_atomic_u32(swjdp, DCB_DEMCR,
866                                 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
867         }
868
869         /*
870          * When nRST is asserted on most Stellaris devices, it clears some of
871          * the debug state.  The ARMv7M and Cortex-M3 TRMs say that's wrong;
872          * and OpenOCD depends on those TRMs.  So we won't use SRST on those
873          * chips.  (Only power-on reset should affect debug state, beyond a
874          * few specified bits; not the chip's nRST input, wired to SRST.)
875          *
876          * REVISIT current errata specs don't seem to cover this issue.
877          * Do we have more details than this email?
878          *   https://lists.berlios.de/pipermail
879          *      /openocd-development/2008-August/003065.html
880          */
881         if (strcmp(target->variant, "lm3s") == 0)
882         {
883                 /* Check for silicon revisions with the issue. */
884                 uint32_t did0;
885
886                 if (target_read_u32(target, 0x400fe000, &did0) == ERROR_OK)
887                 {
888                         switch ((did0 >> 16) & 0xff)
889                         {
890                                 case 0:
891                                         /* all Sandstorm suffer issue */
892                                         assert_srst = 0;
893                                         break;
894
895                                 case 1:
896                                 case 3:
897                                         /* Fury and DustDevil rev A have
898                                          * this nRST problem.  It should
899                                          * be fixed in rev B silicon.
900                                          */
901                                         if (((did0 >> 8) & 0xff) == 0)
902                                                 assert_srst = 0;
903                                         break;
904                                 case 4:
905                                         /* Tempest should be fine. */
906                                         break;
907                         }
908                 }
909         }
910
911         if (assert_srst)
912         {
913                 /* default to asserting srst */
914                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
915                 {
916                         jtag_add_reset(1, 1);
917                 }
918                 else
919                 {
920                         jtag_add_reset(0, 1);
921                 }
922         }
923         else
924         {
925                 /* Use a standard Cortex-M3 software reset mechanism.
926                  * SYSRESETREQ will reset SoC peripherals outside the
927                  * core, like watchdog timers, if the SoC wires it up
928                  * correctly.  Else VECRESET can reset just the core.
929                  */
930                 mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
931                                 AIRCR_VECTKEY | AIRCR_SYSRESETREQ);
932                 LOG_DEBUG("Using Cortex-M3 SYSRESETREQ");
933
934                 {
935                         /* I do not know why this is necessary, but it
936                          * fixes strange effects (step/resume cause NMI
937                          * after reset) on LM3S6918 -- Michael Schwingen
938                          */
939                         uint32_t tmp;
940                         mem_ap_read_atomic_u32(swjdp, NVIC_AIRCR, &tmp);
941                 }
942         }
943
944         target->state = TARGET_RESET;
945         jtag_add_sleep(50000);
946
947         register_cache_invalidate(cortex_m3->armv7m.core_cache);
948
949         if (target->reset_halt)
950         {
951                 int retval;
952                 if ((retval = target_halt(target)) != ERROR_OK)
953                         return retval;
954         }
955
956         return ERROR_OK;
957 }
958
959 static int cortex_m3_deassert_reset(struct target *target)
960 {
961         LOG_DEBUG("target->state: %s",
962                 target_state_name(target));
963
964         /* deassert reset lines */
965         jtag_add_reset(0, 0);
966
967         return ERROR_OK;
968 }
969
970 static int
971 cortex_m3_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
972 {
973         int retval;
974         int fp_num = 0;
975         uint32_t hilo;
976         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
977         struct cortex_m3_fp_comparator *comparator_list = cortex_m3->fp_comparator_list;
978
979         if (breakpoint->set)
980         {
981                 LOG_WARNING("breakpoint (BPID: %d) already set", breakpoint->unique_id);
982                 return ERROR_OK;
983         }
984
985         if (cortex_m3->auto_bp_type)
986         {
987                 breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
988         }
989
990         if (breakpoint->type == BKPT_HARD)
991         {
992                 while (comparator_list[fp_num].used && (fp_num < cortex_m3->fp_num_code))
993                         fp_num++;
994                 if (fp_num >= cortex_m3->fp_num_code)
995                 {
996                         LOG_ERROR("Can not find free FPB Comparator!");
997                         return ERROR_FAIL;
998                 }
999                 breakpoint->set = fp_num + 1;
1000                 hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
1001                 comparator_list[fp_num].used = 1;
1002                 comparator_list[fp_num].fpcr_value = (breakpoint->address & 0x1FFFFFFC) | hilo | 1;
1003                 target_write_u32(target, comparator_list[fp_num].fpcr_address, comparator_list[fp_num].fpcr_value);
1004                 LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "", fp_num, comparator_list[fp_num].fpcr_value);
1005                 if (!cortex_m3->fpb_enabled)
1006                 {
1007                         LOG_DEBUG("FPB wasn't enabled, do it now");
1008                         target_write_u32(target, FP_CTRL, 3);
1009                 }
1010         }
1011         else if (breakpoint->type == BKPT_SOFT)
1012         {
1013                 uint8_t code[4];
1014
1015                 /* NOTE: on ARMv6-M and ARMv7-M, BKPT(0xab) is used for
1016                  * semihosting; don't use that.  Otherwise the BKPT
1017                  * parameter is arbitrary.
1018                  */
1019                 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1020                 retval = target_read_memory(target,
1021                                 breakpoint->address & 0xFFFFFFFE,
1022                                 breakpoint->length, 1,
1023                                 breakpoint->orig_instr);
1024                 if (retval != ERROR_OK)
1025                         return retval;
1026                 retval = target_write_memory(target,
1027                                 breakpoint->address & 0xFFFFFFFE,
1028                                 breakpoint->length, 1,
1029                                 code);
1030                 if (retval != ERROR_OK)
1031                         return retval;
1032                 breakpoint->set = true;
1033         }
1034
1035         LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
1036                           breakpoint->unique_id,
1037                           (int)(breakpoint->type),
1038                           breakpoint->address,
1039                           breakpoint->length,
1040                           breakpoint->set);
1041
1042         return ERROR_OK;
1043 }
1044
1045 static int
1046 cortex_m3_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1047 {
1048         int retval;
1049         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1050         struct cortex_m3_fp_comparator * comparator_list = cortex_m3->fp_comparator_list;
1051
1052         if (!breakpoint->set)
1053         {
1054                 LOG_WARNING("breakpoint not set");
1055                 return ERROR_OK;
1056         }
1057
1058         LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
1059                           breakpoint->unique_id,
1060                           (int)(breakpoint->type),
1061                           breakpoint->address,
1062                           breakpoint->length,
1063                           breakpoint->set);
1064
1065         if (breakpoint->type == BKPT_HARD)
1066         {
1067                 int fp_num = breakpoint->set - 1;
1068                 if ((fp_num < 0) || (fp_num >= cortex_m3->fp_num_code))
1069                 {
1070                         LOG_DEBUG("Invalid FP Comparator number in breakpoint");
1071                         return ERROR_OK;
1072                 }
1073                 comparator_list[fp_num].used = 0;
1074                 comparator_list[fp_num].fpcr_value = 0;
1075                 target_write_u32(target, comparator_list[fp_num].fpcr_address, comparator_list[fp_num].fpcr_value);
1076         }
1077         else
1078         {
1079                 /* restore original instruction (kept in target endianness) */
1080                 if (breakpoint->length == 4)
1081                 {
1082                         if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
1083                         {
1084                                 return retval;
1085                         }
1086                 }
1087                 else
1088                 {
1089                         if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
1090                         {
1091                                 return retval;
1092                         }
1093                 }
1094         }
1095         breakpoint->set = false;
1096
1097         return ERROR_OK;
1098 }
1099
1100 static int
1101 cortex_m3_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1102 {
1103         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1104
1105         if (cortex_m3->auto_bp_type)
1106         {
1107                 breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
1108 #ifdef ARMV7_GDB_HACKS
1109                 if (breakpoint->length != 2) {
1110                         /* XXX Hack: Replace all breakpoints with length != 2 with
1111                          * a hardware breakpoint. */
1112                         breakpoint->type = BKPT_HARD;
1113                         breakpoint->length = 2;
1114                 }
1115 #endif
1116         }
1117
1118         if ((breakpoint->type == BKPT_HARD) && (breakpoint->address >= 0x20000000))
1119         {
1120                 LOG_INFO("flash patch comparator requested outside code memory region");
1121                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1122         }
1123
1124         if ((breakpoint->type == BKPT_SOFT) && (breakpoint->address < 0x20000000))
1125         {
1126                 LOG_INFO("soft breakpoint requested in code (flash) memory region");
1127                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1128         }
1129
1130         if ((breakpoint->type == BKPT_HARD) && (cortex_m3->fp_code_available < 1))
1131         {
1132                 LOG_INFO("no flash patch comparator unit available for hardware breakpoint");
1133                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1134         }
1135
1136         if ((breakpoint->length != 2))
1137         {
1138                 LOG_INFO("only breakpoints of two bytes length supported");
1139                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1140         }
1141
1142         if (breakpoint->type == BKPT_HARD)
1143                 cortex_m3->fp_code_available--;
1144         cortex_m3_set_breakpoint(target, breakpoint);
1145
1146         return ERROR_OK;
1147 }
1148
1149 static int
1150 cortex_m3_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1151 {
1152         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1153
1154         /* REVISIT why check? FBP can be updated with core running ... */
1155         if (target->state != TARGET_HALTED)
1156         {
1157                 LOG_WARNING("target not halted");
1158                 return ERROR_TARGET_NOT_HALTED;
1159         }
1160
1161         if (cortex_m3->auto_bp_type)
1162         {
1163                 breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
1164         }
1165
1166         if (breakpoint->set)
1167         {
1168                 cortex_m3_unset_breakpoint(target, breakpoint);
1169         }
1170
1171         if (breakpoint->type == BKPT_HARD)
1172                 cortex_m3->fp_code_available++;
1173
1174         return ERROR_OK;
1175 }
1176
1177 static int
1178 cortex_m3_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1179 {
1180         int dwt_num = 0;
1181         uint32_t mask, temp;
1182         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1183
1184         /* watchpoint params were validated earlier */
1185         mask = 0;
1186         temp = watchpoint->length;
1187         while (temp) {
1188                 temp >>= 1;
1189                 mask++;
1190         }
1191         mask--;
1192
1193         /* REVISIT Don't fully trust these "not used" records ... users
1194          * may set up breakpoints by hand, e.g. dual-address data value
1195          * watchpoint using comparator #1; comparator #0 matching cycle
1196          * count; send data trace info through ITM and TPIU; etc
1197          */
1198         struct cortex_m3_dwt_comparator *comparator;
1199
1200         for (comparator = cortex_m3->dwt_comparator_list;
1201                         comparator->used && dwt_num < cortex_m3->dwt_num_comp;
1202                         comparator++, dwt_num++)
1203                 continue;
1204         if (dwt_num >= cortex_m3->dwt_num_comp)
1205         {
1206                 LOG_ERROR("Can not find free DWT Comparator");
1207                 return ERROR_FAIL;
1208         }
1209         comparator->used = 1;
1210         watchpoint->set = dwt_num + 1;
1211
1212         comparator->comp = watchpoint->address;
1213         target_write_u32(target, comparator->dwt_comparator_address + 0,
1214                         comparator->comp);
1215
1216         comparator->mask = mask;
1217         target_write_u32(target, comparator->dwt_comparator_address + 4,
1218                         comparator->mask);
1219
1220         switch (watchpoint->rw) {
1221         case WPT_READ:
1222                 comparator->function = 5;
1223                 break;
1224         case WPT_WRITE:
1225                 comparator->function = 6;
1226                 break;
1227         case WPT_ACCESS:
1228                 comparator->function = 7;
1229                 break;
1230         }
1231         target_write_u32(target, comparator->dwt_comparator_address + 8,
1232                         comparator->function);
1233
1234         LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
1235                         watchpoint->unique_id, dwt_num,
1236                         (unsigned) comparator->comp,
1237                         (unsigned) comparator->mask,
1238                         (unsigned) comparator->function);
1239         return ERROR_OK;
1240 }
1241
1242 static int
1243 cortex_m3_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1244 {
1245         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1246         struct cortex_m3_dwt_comparator *comparator;
1247         int dwt_num;
1248
1249         if (!watchpoint->set)
1250         {
1251                 LOG_WARNING("watchpoint (wpid: %d) not set",
1252                                 watchpoint->unique_id);
1253                 return ERROR_OK;
1254         }
1255
1256         dwt_num = watchpoint->set - 1;
1257
1258         LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear",
1259                         watchpoint->unique_id, dwt_num,
1260                         (unsigned) watchpoint->address);
1261
1262         if ((dwt_num < 0) || (dwt_num >= cortex_m3->dwt_num_comp))
1263         {
1264                 LOG_DEBUG("Invalid DWT Comparator number in watchpoint");
1265                 return ERROR_OK;
1266         }
1267
1268         comparator = cortex_m3->dwt_comparator_list + dwt_num;
1269         comparator->used = 0;
1270         comparator->function = 0;
1271         target_write_u32(target, comparator->dwt_comparator_address + 8,
1272                         comparator->function);
1273
1274         watchpoint->set = false;
1275
1276         return ERROR_OK;
1277 }
1278
1279 static int
1280 cortex_m3_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1281 {
1282         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1283
1284         if (cortex_m3->dwt_comp_available < 1)
1285         {
1286                 LOG_DEBUG("no comparators?");
1287                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1288         }
1289
1290         /* hardware doesn't support data value masking */
1291         if (watchpoint->mask != ~(uint32_t)0) {
1292                 LOG_DEBUG("watchpoint value masks not supported");
1293                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1294         }
1295
1296         /* hardware allows address masks of up to 32K */
1297         unsigned mask;
1298
1299         for (mask = 0; mask < 16; mask++) {
1300                 if ((1u << mask) == watchpoint->length)
1301                         break;
1302         }
1303         if (mask == 16) {
1304                 LOG_DEBUG("unsupported watchpoint length");
1305                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1306         }
1307         if (watchpoint->address & ((1 << mask) - 1)) {
1308                 LOG_DEBUG("watchpoint address is unaligned");
1309                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1310         }
1311
1312         /* Caller doesn't seem to be able to describe watching for data
1313          * values of zero; that flags "no value".
1314          *
1315          * REVISIT This DWT may well be able to watch for specific data
1316          * values.  Requires comparator #1 to set DATAVMATCH and match
1317          * the data, and another comparator (DATAVADDR0) matching addr.
1318          */
1319         if (watchpoint->value) {
1320                 LOG_DEBUG("data value watchpoint not YET supported");
1321                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1322         }
1323
1324         cortex_m3->dwt_comp_available--;
1325         LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1326
1327         return ERROR_OK;
1328 }
1329
1330 static int
1331 cortex_m3_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1332 {
1333         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1334
1335         /* REVISIT why check? DWT can be updated with core running ... */
1336         if (target->state != TARGET_HALTED)
1337         {
1338                 LOG_WARNING("target not halted");
1339                 return ERROR_TARGET_NOT_HALTED;
1340         }
1341
1342         if (watchpoint->set)
1343         {
1344                 cortex_m3_unset_watchpoint(target, watchpoint);
1345         }
1346
1347         cortex_m3->dwt_comp_available++;
1348         LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1349
1350         return ERROR_OK;
1351 }
1352
1353 static void cortex_m3_enable_watchpoints(struct target *target)
1354 {
1355         struct watchpoint *watchpoint = target->watchpoints;
1356
1357         /* set any pending watchpoints */
1358         while (watchpoint)
1359         {
1360                 if (!watchpoint->set)
1361                         cortex_m3_set_watchpoint(target, watchpoint);
1362                 watchpoint = watchpoint->next;
1363         }
1364 }
1365
1366 static int cortex_m3_load_core_reg_u32(struct target *target,
1367                 enum armv7m_regtype type, uint32_t num, uint32_t * value)
1368 {
1369         int retval;
1370         struct armv7m_common *armv7m = target_to_armv7m(target);
1371         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1372
1373         /* NOTE:  we "know" here that the register identifiers used
1374          * in the v7m header match the Cortex-M3 Debug Core Register
1375          * Selector values for R0..R15, xPSR, MSP, and PSP.
1376          */
1377         switch (num) {
1378         case 0 ... 18:
1379                 /* read a normal core register */
1380                 retval = cortexm3_dap_read_coreregister_u32(swjdp, value, num);
1381
1382                 if (retval != ERROR_OK)
1383                 {
1384                         LOG_ERROR("JTAG failure %i",retval);
1385                         return ERROR_JTAG_DEVICE_ERROR;
1386                 }
1387                 LOG_DEBUG("load from core reg %i  value 0x%" PRIx32 "",(int)num,*value);
1388                 break;
1389
1390         case ARMV7M_PRIMASK:
1391         case ARMV7M_BASEPRI:
1392         case ARMV7M_FAULTMASK:
1393         case ARMV7M_CONTROL:
1394                 /* Cortex-M3 packages these four registers as bitfields
1395                  * in one Debug Core register.  So say r0 and r2 docs;
1396                  * it was removed from r1 docs, but still works.
1397                  */
1398                 cortexm3_dap_read_coreregister_u32(swjdp, value, 20);
1399
1400                 switch (num)
1401                 {
1402                         case ARMV7M_PRIMASK:
1403                                 *value = buf_get_u32((uint8_t*)value, 0, 1);
1404                                 break;
1405
1406                         case ARMV7M_BASEPRI:
1407                                 *value = buf_get_u32((uint8_t*)value, 8, 8);
1408                                 break;
1409
1410                         case ARMV7M_FAULTMASK:
1411                                 *value = buf_get_u32((uint8_t*)value, 16, 1);
1412                                 break;
1413
1414                         case ARMV7M_CONTROL:
1415                                 *value = buf_get_u32((uint8_t*)value, 24, 2);
1416                                 break;
1417                 }
1418
1419                 LOG_DEBUG("load from special reg %i value 0x%" PRIx32 "", (int)num, *value);
1420                 break;
1421
1422         default:
1423                 return ERROR_INVALID_ARGUMENTS;
1424         }
1425
1426         return ERROR_OK;
1427 }
1428
1429 static int cortex_m3_store_core_reg_u32(struct target *target,
1430                 enum armv7m_regtype type, uint32_t num, uint32_t value)
1431 {
1432         int retval;
1433         uint32_t reg;
1434         struct armv7m_common *armv7m = target_to_armv7m(target);
1435         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1436
1437 #ifdef ARMV7_GDB_HACKS
1438         /* If the LR register is being modified, make sure it will put us
1439          * in "thumb" mode, or an INVSTATE exception will occur. This is a
1440          * hack to deal with the fact that gdb will sometimes "forge"
1441          * return addresses, and doesn't set the LSB correctly (i.e., when
1442          * printing expressions containing function calls, it sets LR = 0.)
1443          * Valid exception return codes have bit 0 set too.
1444          */
1445         if (num == ARMV7M_R14)
1446                 value |= 0x01;
1447 #endif
1448
1449         /* NOTE:  we "know" here that the register identifiers used
1450          * in the v7m header match the Cortex-M3 Debug Core Register
1451          * Selector values for R0..R15, xPSR, MSP, and PSP.
1452          */
1453         switch (num) {
1454         case 0 ... 18:
1455                 retval = cortexm3_dap_write_coreregister_u32(swjdp, value, num);
1456                 if (retval != ERROR_OK)
1457                 {
1458                         struct reg *r;
1459
1460                         LOG_ERROR("JTAG failure %i", retval);
1461                         r = armv7m->core_cache->reg_list + num;
1462                         r->dirty = r->valid;
1463                         return ERROR_JTAG_DEVICE_ERROR;
1464                 }
1465                 LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value);
1466                 break;
1467
1468         case ARMV7M_PRIMASK:
1469         case ARMV7M_BASEPRI:
1470         case ARMV7M_FAULTMASK:
1471         case ARMV7M_CONTROL:
1472                 /* Cortex-M3 packages these four registers as bitfields
1473                  * in one Debug Core register.  So say r0 and r2 docs;
1474                  * it was removed from r1 docs, but still works.
1475                  */
1476                 cortexm3_dap_read_coreregister_u32(swjdp, &reg, 20);
1477
1478                 switch (num)
1479                 {
1480                         case ARMV7M_PRIMASK:
1481                                 buf_set_u32((uint8_t*)&reg, 0, 1, value);
1482                                 break;
1483
1484                         case ARMV7M_BASEPRI:
1485                                 buf_set_u32((uint8_t*)&reg, 8, 8, value);
1486                                 break;
1487
1488                         case ARMV7M_FAULTMASK:
1489                                 buf_set_u32((uint8_t*)&reg, 16, 1, value);
1490                                 break;
1491
1492                         case ARMV7M_CONTROL:
1493                                 buf_set_u32((uint8_t*)&reg, 24, 2, value);
1494                                 break;
1495                 }
1496
1497                 cortexm3_dap_write_coreregister_u32(swjdp, reg, 20);
1498
1499                 LOG_DEBUG("write special reg %i value 0x%" PRIx32 " ", (int)num, value);
1500                 break;
1501
1502         default:
1503                 return ERROR_INVALID_ARGUMENTS;
1504         }
1505
1506         return ERROR_OK;
1507 }
1508
1509 static int cortex_m3_read_memory(struct target *target, uint32_t address,
1510                 uint32_t size, uint32_t count, uint8_t *buffer)
1511 {
1512         struct armv7m_common *armv7m = target_to_armv7m(target);
1513         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1514         int retval = ERROR_INVALID_ARGUMENTS;
1515
1516         /* cortex_m3 handles unaligned memory access */
1517         if (count && buffer) {
1518                 switch (size) {
1519                 case 4:
1520                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1521                         break;
1522                 case 2:
1523                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1524                         break;
1525                 case 1:
1526                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1527                         break;
1528                 }
1529         }
1530
1531         return retval;
1532 }
1533
1534 static int cortex_m3_write_memory(struct target *target, uint32_t address,
1535                 uint32_t size, uint32_t count, uint8_t *buffer)
1536 {
1537         struct armv7m_common *armv7m = target_to_armv7m(target);
1538         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1539         int retval = ERROR_INVALID_ARGUMENTS;
1540
1541         if (count && buffer) {
1542                 switch (size) {
1543                 case 4:
1544                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1545                         break;
1546                 case 2:
1547                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1548                         break;
1549                 case 1:
1550                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1551                         break;
1552                 }
1553         }
1554
1555         return retval;
1556 }
1557
1558 static int cortex_m3_bulk_write_memory(struct target *target, uint32_t address,
1559                 uint32_t count, uint8_t *buffer)
1560 {
1561         return cortex_m3_write_memory(target, address, 4, count, buffer);
1562 }
1563
1564 static int cortex_m3_init_target(struct command_context *cmd_ctx,
1565                 struct target *target)
1566 {
1567         armv7m_build_reg_cache(target);
1568         return ERROR_OK;
1569 }
1570
1571 /* REVISIT cache valid/dirty bits are unmaintained.  We could set "valid"
1572  * on r/w if the core is not running, and clear on resume or reset ... or
1573  * at least, in a post_restore_context() method.
1574  */
1575
1576 struct dwt_reg_state {
1577         struct target   *target;
1578         uint32_t        addr;
1579         uint32_t        value;  /* scratch/cache */
1580 };
1581
1582 static int cortex_m3_dwt_get_reg(struct reg *reg)
1583 {
1584         struct dwt_reg_state *state = reg->arch_info;
1585
1586         return target_read_u32(state->target, state->addr, &state->value);
1587 }
1588
1589 static int cortex_m3_dwt_set_reg(struct reg *reg, uint8_t *buf)
1590 {
1591         struct dwt_reg_state *state = reg->arch_info;
1592
1593         return target_write_u32(state->target, state->addr,
1594                         buf_get_u32(buf, 0, reg->size));
1595 }
1596
1597 struct dwt_reg {
1598         uint32_t        addr;
1599         char            *name;
1600         unsigned        size;
1601 };
1602
1603 static struct dwt_reg dwt_base_regs[] = {
1604         { DWT_CTRL, "dwt_ctrl", 32, },
1605         /* NOTE that Erratum 532314 (fixed r2p0) affects CYCCNT:  it wrongly
1606          * increments while the core is asleep.
1607          */
1608         { DWT_CYCCNT, "dwt_cyccnt", 32, },
1609         /* plus some 8 bit counters, useful for profiling with TPIU */
1610 };
1611
1612 static struct dwt_reg dwt_comp[] = {
1613 #define DWT_COMPARATOR(i) \
1614                 { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
1615                 { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
1616                 { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
1617         DWT_COMPARATOR(0),
1618         DWT_COMPARATOR(1),
1619         DWT_COMPARATOR(2),
1620         DWT_COMPARATOR(3),
1621 #undef DWT_COMPARATOR
1622 };
1623
1624 static const struct reg_arch_type dwt_reg_type = {
1625         .get = cortex_m3_dwt_get_reg,
1626         .set = cortex_m3_dwt_set_reg,
1627 };
1628
1629 static void
1630 cortex_m3_dwt_addreg(struct target *t, struct reg *r, struct dwt_reg *d)
1631 {
1632         struct dwt_reg_state *state;
1633
1634         state = calloc(1, sizeof *state);
1635         if (!state)
1636                 return;
1637         state->addr = d->addr;
1638         state->target = t;
1639
1640         r->name = d->name;
1641         r->size = d->size;
1642         r->value = &state->value;
1643         r->arch_info = state;
1644         r->type = &dwt_reg_type;
1645 }
1646
1647 static void
1648 cortex_m3_dwt_setup(struct cortex_m3_common *cm3, struct target *target)
1649 {
1650         uint32_t dwtcr;
1651         struct reg_cache *cache;
1652         struct cortex_m3_dwt_comparator *comparator;
1653         int reg, i;
1654
1655         target_read_u32(target, DWT_CTRL, &dwtcr);
1656         if (!dwtcr) {
1657                 LOG_DEBUG("no DWT");
1658                 return;
1659         }
1660
1661         cm3->dwt_num_comp = (dwtcr >> 28) & 0xF;
1662         cm3->dwt_comp_available = cm3->dwt_num_comp;
1663         cm3->dwt_comparator_list = calloc(cm3->dwt_num_comp,
1664                         sizeof(struct cortex_m3_dwt_comparator));
1665         if (!cm3->dwt_comparator_list) {
1666 fail0:
1667                 cm3->dwt_num_comp = 0;
1668                 LOG_ERROR("out of mem");
1669                 return;
1670         }
1671
1672         cache = calloc(1, sizeof *cache);
1673         if (!cache) {
1674 fail1:
1675                 free(cm3->dwt_comparator_list);
1676                 goto fail0;
1677         }
1678         cache->name = "cortex-m3 dwt registers";
1679         cache->num_regs = 2 + cm3->dwt_num_comp * 3;
1680         cache->reg_list = calloc(cache->num_regs, sizeof *cache->reg_list);
1681         if (!cache->reg_list) {
1682                 free(cache);
1683                 goto fail1;
1684         }
1685
1686         for (reg = 0; reg < 2; reg++)
1687                 cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1688                                 dwt_base_regs + reg);
1689
1690         comparator = cm3->dwt_comparator_list;
1691         for (i = 0; i < cm3->dwt_num_comp; i++, comparator++) {
1692                 int j;
1693
1694                 comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
1695                 for (j = 0; j < 3; j++, reg++)
1696                         cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1697                                         dwt_comp + 3 * i + j);
1698         }
1699
1700         *register_get_last_cache_p(&target->reg_cache) = cache;
1701         cm3->dwt_cache = cache;
1702
1703         LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
1704                         dwtcr, cm3->dwt_num_comp,
1705                         (dwtcr & (0xf << 24)) ? " only" : "/trigger");
1706
1707         /* REVISIT:  if num_comp > 1, check whether comparator #1 can
1708          * implement single-address data value watchpoints ... so we
1709          * won't need to check it later, when asked to set one up.
1710          */
1711 }
1712
1713 static int cortex_m3_examine(struct target *target)
1714 {
1715         int retval;
1716         uint32_t cpuid, fpcr;
1717         int i;
1718         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1719         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
1720
1721         if ((retval = ahbap_debugport_init(swjdp)) != ERROR_OK)
1722                 return retval;
1723
1724         if (!target_was_examined(target))
1725         {
1726                 target_set_examined(target);
1727
1728                 /* Read from Device Identification Registers */
1729                 retval = target_read_u32(target, CPUID, &cpuid);
1730                 if (retval != ERROR_OK)
1731                         return retval;
1732
1733                 if (((cpuid >> 4) & 0xc3f) == 0xc23)
1734                         LOG_DEBUG("Cortex-M3 r%" PRId8 "p%" PRId8 " processor detected",
1735                                 (uint8_t)((cpuid >> 20) & 0xf), (uint8_t)((cpuid >> 0) & 0xf));
1736                 LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid);
1737
1738                 /* NOTE: FPB and DWT are both optional. */
1739
1740                 /* Setup FPB */
1741                 target_read_u32(target, FP_CTRL, &fpcr);
1742                 cortex_m3->auto_bp_type = 1;
1743                 cortex_m3->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF); /* bits [14:12] and [7:4] */
1744                 cortex_m3->fp_num_lit = (fpcr >> 8) & 0xF;
1745                 cortex_m3->fp_code_available = cortex_m3->fp_num_code;
1746                 cortex_m3->fp_comparator_list = calloc(cortex_m3->fp_num_code + cortex_m3->fp_num_lit, sizeof(struct cortex_m3_fp_comparator));
1747                 cortex_m3->fpb_enabled = fpcr & 1;
1748                 for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++)
1749                 {
1750                         cortex_m3->fp_comparator_list[i].type = (i < cortex_m3->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
1751                         cortex_m3->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
1752                 }
1753                 LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i", fpcr, cortex_m3->fp_num_code, cortex_m3->fp_num_lit);
1754
1755                 /* Setup DWT */
1756                 cortex_m3_dwt_setup(cortex_m3, target);
1757
1758                 /* These hardware breakpoints only work for code in flash! */
1759                 LOG_INFO("%s: hardware has %d breakpoints, %d watchpoints",
1760                                 target_name(target),
1761                                 cortex_m3->fp_num_code,
1762                                 cortex_m3->dwt_num_comp);
1763         }
1764
1765         return ERROR_OK;
1766 }
1767
1768 static int cortex_m3_dcc_read(struct swjdp_common *swjdp, uint8_t *value, uint8_t *ctrl)
1769 {
1770         uint16_t dcrdr;
1771
1772         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1773         *ctrl = (uint8_t)dcrdr;
1774         *value = (uint8_t)(dcrdr >> 8);
1775
1776         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1777
1778         /* write ack back to software dcc register
1779          * signify we have read data */
1780         if (dcrdr & (1 << 0))
1781         {
1782                 dcrdr = 0;
1783                 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1784         }
1785
1786         return ERROR_OK;
1787 }
1788
1789 static int cortex_m3_target_request_data(struct target *target,
1790                 uint32_t size, uint8_t *buffer)
1791 {
1792         struct armv7m_common *armv7m = target_to_armv7m(target);
1793         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1794         uint8_t data;
1795         uint8_t ctrl;
1796         uint32_t i;
1797
1798         for (i = 0; i < (size * 4); i++)
1799         {
1800                 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1801                 buffer[i] = data;
1802         }
1803
1804         return ERROR_OK;
1805 }
1806
1807 static int cortex_m3_handle_target_request(void *priv)
1808 {
1809         struct target *target = priv;
1810         if (!target_was_examined(target))
1811                 return ERROR_OK;
1812         struct armv7m_common *armv7m = target_to_armv7m(target);
1813         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1814
1815         if (!target->dbg_msg_enabled)
1816                 return ERROR_OK;
1817
1818         if (target->state == TARGET_RUNNING)
1819         {
1820                 uint8_t data;
1821                 uint8_t ctrl;
1822
1823                 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1824
1825                 /* check if we have data */
1826                 if (ctrl & (1 << 0))
1827                 {
1828                         uint32_t request;
1829
1830                         /* we assume target is quick enough */
1831                         request = data;
1832                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1833                         request |= (data << 8);
1834                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1835                         request |= (data << 16);
1836                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1837                         request |= (data << 24);
1838                         target_request(target, request);
1839                 }
1840         }
1841
1842         return ERROR_OK;
1843 }
1844
1845 static int cortex_m3_init_arch_info(struct target *target,
1846                 struct cortex_m3_common *cortex_m3, struct jtag_tap *tap)
1847 {
1848         int retval;
1849         struct armv7m_common *armv7m = &cortex_m3->armv7m;
1850
1851         armv7m_init_arch_info(target, armv7m);
1852
1853         /* prepare JTAG information for the new target */
1854         cortex_m3->jtag_info.tap = tap;
1855         cortex_m3->jtag_info.scann_size = 4;
1856
1857         /* Leave (only) generic DAP stuff for debugport_init(); */
1858         armv7m->swjdp_info.jtag_info = &cortex_m3->jtag_info;
1859         armv7m->swjdp_info.memaccess_tck = 8;
1860         /* Cortex-M3 has 4096 bytes autoincrement range */
1861         armv7m->swjdp_info.tar_autoincr_block = (1 << 12);
1862
1863         /* register arch-specific functions */
1864         armv7m->examine_debug_reason = cortex_m3_examine_debug_reason;
1865
1866         armv7m->post_debug_entry = NULL;
1867
1868         armv7m->pre_restore_context = NULL;
1869         armv7m->post_restore_context = NULL;
1870
1871         armv7m->load_core_reg_u32 = cortex_m3_load_core_reg_u32;
1872         armv7m->store_core_reg_u32 = cortex_m3_store_core_reg_u32;
1873
1874         target_register_timer_callback(cortex_m3_handle_target_request, 1, 1, target);
1875
1876         if ((retval = arm_jtag_setup_connection(&cortex_m3->jtag_info)) != ERROR_OK)
1877         {
1878                 return retval;
1879         }
1880
1881         return ERROR_OK;
1882 }
1883
1884 static int cortex_m3_target_create(struct target *target, Jim_Interp *interp)
1885 {
1886         struct cortex_m3_common *cortex_m3 = calloc(1,sizeof(struct cortex_m3_common));
1887
1888         cortex_m3->common_magic = CORTEX_M3_COMMON_MAGIC;
1889         cortex_m3_init_arch_info(target, cortex_m3, target->tap);
1890
1891         return ERROR_OK;
1892 }
1893
1894 /*--------------------------------------------------------------------------*/
1895
1896 static int cortex_m3_verify_pointer(struct command_context *cmd_ctx,
1897                 struct cortex_m3_common *cm3)
1898 {
1899         if (cm3->common_magic != CORTEX_M3_COMMON_MAGIC) {
1900                 command_print(cmd_ctx, "target is not a Cortex-M3");
1901                 return ERROR_TARGET_INVALID;
1902         }
1903         return ERROR_OK;
1904 }
1905
1906 /*
1907  * Only stuff below this line should need to verify that its target
1908  * is a Cortex-M3.  Everything else should have indirected through the
1909  * cortexm3_target structure, which is only used with CM3 targets.
1910  */
1911
1912 static const struct {
1913         char name[10];
1914         unsigned mask;
1915 } vec_ids[] = {
1916         { "hard_err",   VC_HARDERR, },
1917         { "int_err",    VC_INTERR, },
1918         { "bus_err",    VC_BUSERR, },
1919         { "state_err",  VC_STATERR, },
1920         { "chk_err",    VC_CHKERR, },
1921         { "nocp_err",   VC_NOCPERR, },
1922         { "mm_err",     VC_MMERR, },
1923         { "reset",      VC_CORERESET, },
1924 };
1925
1926 COMMAND_HANDLER(handle_cortex_m3_vector_catch_command)
1927 {
1928         struct target *target = get_current_target(CMD_CTX);
1929         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1930         struct armv7m_common *armv7m = &cortex_m3->armv7m;
1931         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1932         uint32_t demcr = 0;
1933         int retval;
1934
1935         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
1936         if (retval != ERROR_OK)
1937                 return retval;
1938
1939         mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
1940
1941         if (CMD_ARGC > 0) {
1942                 unsigned catch = 0;
1943
1944                 if (CMD_ARGC == 1) {
1945                         if (strcmp(CMD_ARGV[0], "all") == 0) {
1946                                 catch = VC_HARDERR | VC_INTERR | VC_BUSERR
1947                                         | VC_STATERR | VC_CHKERR | VC_NOCPERR
1948                                         | VC_MMERR | VC_CORERESET;
1949                                 goto write;
1950                         } else if (strcmp(CMD_ARGV[0], "none") == 0) {
1951                                 goto write;
1952                         }
1953                 }
1954                 while (CMD_ARGC-- > 0) {
1955                         unsigned i;
1956                         for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
1957                                 if (strcmp(CMD_ARGV[CMD_ARGC], vec_ids[i].name) != 0)
1958                                         continue;
1959                                 catch |= vec_ids[i].mask;
1960                                 break;
1961                         }
1962                         if (i == ARRAY_SIZE(vec_ids)) {
1963                                 LOG_ERROR("No CM3 vector '%s'", CMD_ARGV[CMD_ARGC]);
1964                                 return ERROR_INVALID_ARGUMENTS;
1965                         }
1966                 }
1967 write:
1968                 /* For now, armv7m->demcr only stores vector catch flags. */
1969                 armv7m->demcr = catch;
1970
1971                 demcr &= ~0xffff;
1972                 demcr |= catch;
1973
1974                 /* write, but don't assume it stuck (why not??) */
1975                 mem_ap_write_u32(swjdp, DCB_DEMCR, demcr);
1976                 mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
1977
1978                 /* FIXME be sure to clear DEMCR on clean server shutdown.
1979                  * Otherwise the vector catch hardware could fire when there's
1980                  * no debugger hooked up, causing much confusion...
1981                  */
1982         }
1983
1984         for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++)
1985         {
1986                 command_print(CMD_CTX, "%9s: %s", vec_ids[i].name,
1987                         (demcr & vec_ids[i].mask) ? "catch" : "ignore");
1988         }
1989
1990         return ERROR_OK;
1991 }
1992
1993 COMMAND_HANDLER(handle_cortex_m3_mask_interrupts_command)
1994 {
1995         struct target *target = get_current_target(CMD_CTX);
1996         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1997         int retval;
1998
1999         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2000         if (retval != ERROR_OK)
2001                 return retval;
2002
2003         if (target->state != TARGET_HALTED)
2004         {
2005                 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
2006                 return ERROR_OK;
2007         }
2008
2009         if (CMD_ARGC > 0)
2010         {
2011                 bool enable;
2012                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2013                 uint32_t mask_on = C_HALT | (enable ? C_MASKINTS : 0);
2014                 uint32_t mask_off = enable ? 0 : C_MASKINTS;
2015                 cortex_m3_write_debug_halt_mask(target, mask_on, mask_off);
2016         }
2017
2018         command_print(CMD_CTX, "cortex_m3 interrupt mask %s",
2019                         (cortex_m3->dcb_dhcsr & C_MASKINTS) ? "on" : "off");
2020
2021         return ERROR_OK;
2022 }
2023
2024 static const struct command_registration cortex_m3_exec_command_handlers[] = {
2025         {
2026                 .name = "maskisr",
2027                 .handler = handle_cortex_m3_mask_interrupts_command,
2028                 .mode = COMMAND_EXEC,
2029                 .help = "mask cortex_m3 interrupts",
2030                 .usage = "['on'|'off']",
2031         },
2032         {
2033                 .name = "vector_catch",
2034                 .handler = handle_cortex_m3_vector_catch_command,
2035                 .mode = COMMAND_EXEC,
2036                 .help = "configure hardware vectors to trigger debug entry",
2037                 .usage = "['all'|'none'|('bus_err'|'chk_err'|...)*]",
2038         },
2039         COMMAND_REGISTRATION_DONE
2040 };
2041 static const struct command_registration cortex_m3_command_handlers[] = {
2042         {
2043                 .chain = armv7m_command_handlers,
2044         },
2045         {
2046                 .name = "cortex_m3",
2047                 .mode = COMMAND_EXEC,
2048                 .help = "Cortex-M3 command group",
2049                 .chain = cortex_m3_exec_command_handlers,
2050         },
2051         COMMAND_REGISTRATION_DONE
2052 };
2053
2054 struct target_type cortexm3_target =
2055 {
2056         .name = "cortex_m3",
2057
2058         .poll = cortex_m3_poll,
2059         .arch_state = armv7m_arch_state,
2060
2061         .target_request_data = cortex_m3_target_request_data,
2062
2063         .halt = cortex_m3_halt,
2064         .resume = cortex_m3_resume,
2065         .step = cortex_m3_step,
2066
2067         .assert_reset = cortex_m3_assert_reset,
2068         .deassert_reset = cortex_m3_deassert_reset,
2069         .soft_reset_halt = cortex_m3_soft_reset_halt,
2070
2071         .get_gdb_reg_list = armv7m_get_gdb_reg_list,
2072
2073         .read_memory = cortex_m3_read_memory,
2074         .write_memory = cortex_m3_write_memory,
2075         .bulk_write_memory = cortex_m3_bulk_write_memory,
2076         .checksum_memory = armv7m_checksum_memory,
2077         .blank_check_memory = armv7m_blank_check_memory,
2078
2079         .run_algorithm = armv7m_run_algorithm,
2080
2081         .add_breakpoint = cortex_m3_add_breakpoint,
2082         .remove_breakpoint = cortex_m3_remove_breakpoint,
2083         .add_watchpoint = cortex_m3_add_watchpoint,
2084         .remove_watchpoint = cortex_m3_remove_watchpoint,
2085
2086         .commands = cortex_m3_command_handlers,
2087         .target_create = cortex_m3_target_create,
2088         .init_target = cortex_m3_init_target,
2089         .examine = cortex_m3_examine,
2090 };