6b015ca0f5e268660b9b2ed63b623dc06215f45e
[fw/openocd] / src / target / cortex_m3.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   This program is free software; you can redistribute it and/or modify  *
12  *   it under the terms of the GNU General Public License as published by  *
13  *   the Free Software Foundation; either version 2 of the License, or     *
14  *   (at your option) any later version.                                   *
15  *                                                                         *
16  *   This program is distributed in the hope that it will be useful,       *
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
19  *   GNU General Public License for more details.                          *
20  *                                                                         *
21  *   You should have received a copy of the GNU General Public License     *
22  *   along with this program; if not, write to the                         *
23  *   Free Software Foundation, Inc.,                                       *
24  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
25  *                                                                         *
26  *                                                                         *
27  *   Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0)              *
28  *                                                                         *
29  ***************************************************************************/
30 #ifdef HAVE_CONFIG_H
31 #include "config.h"
32 #endif
33
34 #include "cortex_m3.h"
35 #include "target_request.h"
36 #include "target_type.h"
37 #include "arm_disassembler.h"
38
39
40 /* NOTE:  most of this should work fine for the Cortex-M1 and
41  * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
42  */
43
44 #define ARRAY_SIZE(x)   ((int)(sizeof(x)/sizeof((x)[0])))
45
46
47 /* forward declarations */
48 static int cortex_m3_set_breakpoint(struct target_s *target, breakpoint_t *breakpoint);
49 static int cortex_m3_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint);
50 static void cortex_m3_enable_watchpoints(struct target_s *target);
51 static int cortex_m3_store_core_reg_u32(target_t *target,
52                 enum armv7m_regtype type, uint32_t num, uint32_t value);
53
54 #ifdef ARMV7_GDB_HACKS
55 extern uint8_t armv7m_gdb_dummy_cpsr_value[];
56 extern reg_t armv7m_gdb_dummy_cpsr_reg;
57 #endif
58
59 static int cortex_m3_has_mmu(struct target_s *target, bool *has_mmu)
60 {
61         *has_mmu = false;
62         return ERROR_OK;
63 }
64
65 static int cortexm3_dap_read_coreregister_u32(swjdp_common_t *swjdp,
66                 uint32_t *value, int regnum)
67 {
68         int retval;
69         uint32_t dcrdr;
70
71         /* because the DCB_DCRDR is used for the emulated dcc channel
72          * we have to save/restore the DCB_DCRDR when used */
73
74         mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
75
76         swjdp->trans_mode = TRANS_MODE_COMPOSITE;
77
78         /* mem_ap_write_u32(swjdp, DCB_DCRSR, regnum); */
79         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
80         dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum);
81
82         /* mem_ap_read_u32(swjdp, DCB_DCRDR, value); */
83         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
84         dap_ap_read_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
85
86         retval = swjdp_transaction_endcheck(swjdp);
87
88         /* restore DCB_DCRDR - this needs to be in a seperate
89          * transaction otherwise the emulated DCC channel breaks */
90         if (retval == ERROR_OK)
91                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
92
93         return retval;
94 }
95
96 static int cortexm3_dap_write_coreregister_u32(swjdp_common_t *swjdp,
97                 uint32_t value, int regnum)
98 {
99         int retval;
100         uint32_t dcrdr;
101
102         /* because the DCB_DCRDR is used for the emulated dcc channel
103          * we have to save/restore the DCB_DCRDR when used */
104
105         mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
106
107         swjdp->trans_mode = TRANS_MODE_COMPOSITE;
108
109         /* mem_ap_write_u32(swjdp, DCB_DCRDR, core_regs[i]); */
110         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
111         dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
112
113         /* mem_ap_write_u32(swjdp, DCB_DCRSR, i | DCRSR_WnR); */
114         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
115         dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum | DCRSR_WnR);
116
117         retval = swjdp_transaction_endcheck(swjdp);
118
119         /* restore DCB_DCRDR - this needs to be in a seperate
120          * transaction otherwise the emulated DCC channel breaks */
121         if (retval == ERROR_OK)
122                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
123
124         return retval;
125 }
126
127 static int cortex_m3_write_debug_halt_mask(target_t *target,
128                 uint32_t mask_on, uint32_t mask_off)
129 {
130         struct cortex_m3_common_s *cortex_m3 = target_to_cm3(target);
131         struct swjdp_common_s *swjdp = &cortex_m3->armv7m.swjdp_info;
132
133         /* mask off status bits */
134         cortex_m3->dcb_dhcsr &= ~((0xFFFF << 16) | mask_off);
135         /* create new register mask */
136         cortex_m3->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
137
138         return mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, cortex_m3->dcb_dhcsr);
139 }
140
141 static int cortex_m3_clear_halt(target_t *target)
142 {
143         struct cortex_m3_common_s *cortex_m3 = target_to_cm3(target);
144         struct swjdp_common_s *swjdp = &cortex_m3->armv7m.swjdp_info;
145
146         /* clear step if any */
147         cortex_m3_write_debug_halt_mask(target, C_HALT, C_STEP);
148
149         /* Read Debug Fault Status Register */
150         mem_ap_read_atomic_u32(swjdp, NVIC_DFSR, &cortex_m3->nvic_dfsr);
151         /* Clear Debug Fault Status */
152         mem_ap_write_atomic_u32(swjdp, NVIC_DFSR, cortex_m3->nvic_dfsr);
153         LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m3->nvic_dfsr);
154
155         return ERROR_OK;
156 }
157
158 static int cortex_m3_single_step_core(target_t *target)
159 {
160         struct cortex_m3_common_s *cortex_m3 = target_to_cm3(target);
161         struct swjdp_common_s *swjdp = &cortex_m3->armv7m.swjdp_info;
162         uint32_t dhcsr_save;
163
164         /* backup dhcsr reg */
165         dhcsr_save = cortex_m3->dcb_dhcsr;
166
167         /* mask interrupts if not done already */
168         if (!(cortex_m3->dcb_dhcsr & C_MASKINTS))
169                 mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN);
170         mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN);
171         LOG_DEBUG(" ");
172
173         /* restore dhcsr reg */
174         cortex_m3->dcb_dhcsr = dhcsr_save;
175         cortex_m3_clear_halt(target);
176
177         return ERROR_OK;
178 }
179
180 static int cortex_m3_endreset_event(target_t *target)
181 {
182         int i;
183         uint32_t dcb_demcr;
184         struct cortex_m3_common_s *cortex_m3 = target_to_cm3(target);
185         struct swjdp_common_s *swjdp = &cortex_m3->armv7m.swjdp_info;
186         cortex_m3_fp_comparator_t *fp_list = cortex_m3->fp_comparator_list;
187         cortex_m3_dwt_comparator_t *dwt_list = cortex_m3->dwt_comparator_list;
188
189         mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &dcb_demcr);
190         LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "",dcb_demcr);
191
192         /* this regsiter is used for emulated dcc channel */
193         mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
194
195         /* Enable debug requests */
196         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
197         if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN))
198                 mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
199
200         /* clear any interrupt masking */
201         cortex_m3_write_debug_halt_mask(target, 0, C_MASKINTS);
202
203         /* Enable trace and dwt */
204         mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | VC_HARDERR | VC_BUSERR);
205         /* Monitor bus faults */
206         mem_ap_write_u32(swjdp, NVIC_SHCSR, SHCSR_BUSFAULTENA);
207
208         /* Enable FPB */
209         target_write_u32(target, FP_CTRL, 3);
210         cortex_m3->fpb_enabled = 1;
211
212         /* Restore FPB registers */
213         for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++)
214         {
215                 target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
216         }
217
218         /* Restore DWT registers */
219         for (i = 0; i < cortex_m3->dwt_num_comp; i++)
220         {
221                 target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
222                                 dwt_list[i].comp);
223                 target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
224                                 dwt_list[i].mask);
225                 target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
226                                 dwt_list[i].function);
227         }
228         swjdp_transaction_endcheck(swjdp);
229
230         armv7m_invalidate_core_regs(target);
231
232         /* make sure we have latest dhcsr flags */
233         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
234
235         return ERROR_OK;
236 }
237
238 static int cortex_m3_examine_debug_reason(target_t *target)
239 {
240         struct cortex_m3_common_s *cortex_m3 = target_to_cm3(target);
241
242         /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason */
243         /* only check the debug reason if we don't know it already */
244
245         if ((target->debug_reason != DBG_REASON_DBGRQ)
246                 && (target->debug_reason != DBG_REASON_SINGLESTEP))
247         {
248                 if (cortex_m3->nvic_dfsr & DFSR_BKPT)
249                 {
250                         target->debug_reason = DBG_REASON_BREAKPOINT;
251                         if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
252                                 target->debug_reason = DBG_REASON_WPTANDBKPT;
253                 }
254                 else if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
255                         target->debug_reason = DBG_REASON_WATCHPOINT;
256                 else if (cortex_m3->nvic_dfsr & DFSR_VCATCH)
257                         target->debug_reason = DBG_REASON_BREAKPOINT;
258                 else /* EXTERNAL, HALTED */
259                         target->debug_reason = DBG_REASON_UNDEFINED;
260         }
261
262         return ERROR_OK;
263 }
264
265 static int cortex_m3_examine_exception_reason(target_t *target)
266 {
267         uint32_t shcsr, except_sr, cfsr = -1, except_ar = -1;
268         struct armv7m_common_s *armv7m = target_to_armv7m(target);
269         swjdp_common_t *swjdp = &armv7m->swjdp_info;
270
271         mem_ap_read_u32(swjdp, NVIC_SHCSR, &shcsr);
272         switch (armv7m->exception_number)
273         {
274                 case 2: /* NMI */
275                         break;
276                 case 3: /* Hard Fault */
277                         mem_ap_read_atomic_u32(swjdp, NVIC_HFSR, &except_sr);
278                         if (except_sr & 0x40000000)
279                         {
280                                 mem_ap_read_u32(swjdp, NVIC_CFSR, &cfsr);
281                         }
282                         break;
283                 case 4: /* Memory Management */
284                         mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
285                         mem_ap_read_u32(swjdp, NVIC_MMFAR, &except_ar);
286                         break;
287                 case 5: /* Bus Fault */
288                         mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
289                         mem_ap_read_u32(swjdp, NVIC_BFAR, &except_ar);
290                         break;
291                 case 6: /* Usage Fault */
292                         mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
293                         break;
294                 case 11:        /* SVCall */
295                         break;
296                 case 12:        /* Debug Monitor */
297                         mem_ap_read_u32(swjdp, NVIC_DFSR, &except_sr);
298                         break;
299                 case 14:        /* PendSV */
300                         break;
301                 case 15:        /* SysTick */
302                         break;
303                 default:
304                         except_sr = 0;
305                         break;
306         }
307         swjdp_transaction_endcheck(swjdp);
308         LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32 ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32 "", armv7m_exception_string(armv7m->exception_number), \
309                 shcsr, except_sr, cfsr, except_ar);
310         return ERROR_OK;
311 }
312
313 static int cortex_m3_debug_entry(target_t *target)
314 {
315         int i;
316         uint32_t xPSR;
317         int retval;
318         struct cortex_m3_common_s *cortex_m3 = target_to_cm3(target);
319         struct armv7m_common_s *armv7m = &cortex_m3->armv7m;
320         swjdp_common_t *swjdp = &armv7m->swjdp_info;
321
322         LOG_DEBUG(" ");
323
324         cortex_m3_clear_halt(target);
325         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
326
327         if ((retval = armv7m->examine_debug_reason(target)) != ERROR_OK)
328                 return retval;
329
330         /* Examine target state and mode */
331         /* First load register acessible through core debug port*/
332         int num_regs = armv7m->core_cache->num_regs;
333
334         for (i = 0; i < num_regs; i++)
335         {
336                 if (!armv7m->core_cache->reg_list[i].valid)
337                         armv7m->read_core_reg(target, i);
338         }
339
340         xPSR = buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32);
341
342 #ifdef ARMV7_GDB_HACKS
343         /* copy real xpsr reg for gdb, setting thumb bit */
344         buf_set_u32(armv7m_gdb_dummy_cpsr_value, 0, 32, xPSR);
345         buf_set_u32(armv7m_gdb_dummy_cpsr_value, 5, 1, 1);
346         armv7m_gdb_dummy_cpsr_reg.valid = armv7m->core_cache->reg_list[ARMV7M_xPSR].valid;
347         armv7m_gdb_dummy_cpsr_reg.dirty = armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty;
348 #endif
349
350         /* For IT instructions xPSR must be reloaded on resume and clear on debug exec */
351         if (xPSR & 0xf00)
352         {
353                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = armv7m->core_cache->reg_list[ARMV7M_xPSR].valid;
354                 cortex_m3_store_core_reg_u32(target, ARMV7M_REGISTER_CORE_GP, 16, xPSR &~ 0xff);
355         }
356
357         /* Are we in an exception handler */
358         if (xPSR & 0x1FF)
359         {
360                 armv7m->core_mode = ARMV7M_MODE_HANDLER;
361                 armv7m->exception_number = (xPSR & 0x1FF);
362         }
363         else
364         {
365                 armv7m->core_mode = buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_CONTROL].value, 0, 1);
366                 armv7m->exception_number = 0;
367         }
368
369         if (armv7m->exception_number)
370         {
371                 cortex_m3_examine_exception_reason(target);
372         }
373
374         LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", target->state: %s",
375                 armv7m_mode_strings[armv7m->core_mode],
376                 *(uint32_t*)(armv7m->core_cache->reg_list[15].value),
377                 target_state_name(target));
378
379         if (armv7m->post_debug_entry)
380                 armv7m->post_debug_entry(target);
381
382         return ERROR_OK;
383 }
384
385 static int cortex_m3_poll(target_t *target)
386 {
387         int retval;
388         enum target_state prev_target_state = target->state;
389         struct cortex_m3_common_s *cortex_m3 = target_to_cm3(target);
390         struct swjdp_common_s *swjdp = &cortex_m3->armv7m.swjdp_info;
391
392         /* Read from Debug Halting Control and Status Register */
393         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
394         if (retval != ERROR_OK)
395         {
396                 target->state = TARGET_UNKNOWN;
397                 return retval;
398         }
399
400         if (cortex_m3->dcb_dhcsr & S_RESET_ST)
401         {
402                 /* check if still in reset */
403                 mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
404
405                 if (cortex_m3->dcb_dhcsr & S_RESET_ST)
406                 {
407                         target->state = TARGET_RESET;
408                         return ERROR_OK;
409                 }
410         }
411
412         if (target->state == TARGET_RESET)
413         {
414                 /* Cannot switch context while running so endreset is called with target->state == TARGET_RESET */
415                 LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32 "", cortex_m3->dcb_dhcsr);
416                 cortex_m3_endreset_event(target);
417                 target->state = TARGET_RUNNING;
418                 prev_target_state = TARGET_RUNNING;
419         }
420
421         if (cortex_m3->dcb_dhcsr & S_HALT)
422         {
423                 target->state = TARGET_HALTED;
424
425                 if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET))
426                 {
427                         if ((retval = cortex_m3_debug_entry(target)) != ERROR_OK)
428                                 return retval;
429
430                         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
431                 }
432                 if (prev_target_state == TARGET_DEBUG_RUNNING)
433                 {
434                         LOG_DEBUG(" ");
435                         if ((retval = cortex_m3_debug_entry(target)) != ERROR_OK)
436                                 return retval;
437
438                         target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
439                 }
440         }
441
442         /* REVISIT when S_SLEEP is set, it's in a Sleep or DeepSleep state.
443          * How best to model low power modes?
444          */
445
446         if (target->state == TARGET_UNKNOWN)
447         {
448                 /* check if processor is retiring instructions */
449                 if (cortex_m3->dcb_dhcsr & S_RETIRE_ST)
450                 {
451                         target->state = TARGET_RUNNING;
452                         return ERROR_OK;
453                 }
454         }
455
456         return ERROR_OK;
457 }
458
459 static int cortex_m3_halt(target_t *target)
460 {
461         LOG_DEBUG("target->state: %s",
462                 target_state_name(target));
463
464         if (target->state == TARGET_HALTED)
465         {
466                 LOG_DEBUG("target was already halted");
467                 return ERROR_OK;
468         }
469
470         if (target->state == TARGET_UNKNOWN)
471         {
472                 LOG_WARNING("target was in unknown state when halt was requested");
473         }
474
475         if (target->state == TARGET_RESET)
476         {
477                 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst())
478                 {
479                         LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
480                         return ERROR_TARGET_FAILURE;
481                 }
482                 else
483                 {
484                         /* we came here in a reset_halt or reset_init sequence
485                          * debug entry was already prepared in cortex_m3_prepare_reset_halt()
486                          */
487                         target->debug_reason = DBG_REASON_DBGRQ;
488
489                         return ERROR_OK;
490                 }
491         }
492
493         /* Write to Debug Halting Control and Status Register */
494         cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
495
496         target->debug_reason = DBG_REASON_DBGRQ;
497
498         return ERROR_OK;
499 }
500
501 static int cortex_m3_soft_reset_halt(struct target_s *target)
502 {
503         struct cortex_m3_common_s *cortex_m3 = target_to_cm3(target);
504         struct swjdp_common_s *swjdp = &cortex_m3->armv7m.swjdp_info;
505         uint32_t dcb_dhcsr = 0;
506         int retval, timeout = 0;
507
508         /* Enter debug state on reset, cf. end_reset_event() */
509         mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
510
511         /* Request a reset */
512         mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR, AIRCR_VECTKEY | AIRCR_VECTRESET);
513         target->state = TARGET_RESET;
514
515         /* registers are now invalid */
516         armv7m_invalidate_core_regs(target);
517
518         while (timeout < 100)
519         {
520                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &dcb_dhcsr);
521                 if (retval == ERROR_OK)
522                 {
523                         mem_ap_read_atomic_u32(swjdp, NVIC_DFSR, &cortex_m3->nvic_dfsr);
524                         if ((dcb_dhcsr & S_HALT) && (cortex_m3->nvic_dfsr & DFSR_VCATCH))
525                         {
526                                 LOG_DEBUG("system reset-halted, dcb_dhcsr 0x%" PRIx32 ", nvic_dfsr 0x%" PRIx32 "", dcb_dhcsr, cortex_m3->nvic_dfsr);
527                                 cortex_m3_poll(target);
528                                 return ERROR_OK;
529                         }
530                         else
531                                 LOG_DEBUG("waiting for system reset-halt, dcb_dhcsr 0x%" PRIx32 ", %i ms", dcb_dhcsr, timeout);
532                 }
533                 timeout++;
534                 alive_sleep(1);
535         }
536
537         return ERROR_OK;
538 }
539
540 static void cortex_m3_enable_breakpoints(struct target_s *target)
541 {
542         breakpoint_t *breakpoint = target->breakpoints;
543
544         /* set any pending breakpoints */
545         while (breakpoint)
546         {
547                 if (breakpoint->set == 0)
548                         cortex_m3_set_breakpoint(target, breakpoint);
549                 breakpoint = breakpoint->next;
550         }
551 }
552
553 static int cortex_m3_resume(struct target_s *target, int current,
554                 uint32_t address, int handle_breakpoints, int debug_execution)
555 {
556         struct armv7m_common_s *armv7m = target_to_armv7m(target);
557         breakpoint_t *breakpoint = NULL;
558         uint32_t resume_pc;
559
560         if (target->state != TARGET_HALTED)
561         {
562                 LOG_WARNING("target not halted");
563                 return ERROR_TARGET_NOT_HALTED;
564         }
565
566         if (!debug_execution)
567         {
568                 target_free_all_working_areas(target);
569                 cortex_m3_enable_breakpoints(target);
570                 cortex_m3_enable_watchpoints(target);
571         }
572
573         if (debug_execution)
574         {
575                 /* Disable interrupts */
576                 /* We disable interrupts in the PRIMASK register instead of masking with C_MASKINTS,
577                  * This is probably the same issue as Cortex-M3 Errata  377493:
578                  * C_MASKINTS in parallel with disabled interrupts can cause local faults to not be taken. */
579                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
580                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
581                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
582
583                 /* Make sure we are in Thumb mode */
584                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
585                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
586                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
587                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
588         }
589
590         /* current = 1: continue on current pc, otherwise continue at <address> */
591         if (!current)
592         {
593                 buf_set_u32(armv7m->core_cache->reg_list[15].value, 0, 32, address);
594                 armv7m->core_cache->reg_list[15].dirty = 1;
595                 armv7m->core_cache->reg_list[15].valid = 1;
596         }
597
598         resume_pc = buf_get_u32(armv7m->core_cache->reg_list[15].value, 0, 32);
599
600         armv7m_restore_context(target);
601
602         /* the front-end may request us not to handle breakpoints */
603         if (handle_breakpoints)
604         {
605                 /* Single step past breakpoint at current address */
606                 if ((breakpoint = breakpoint_find(target, resume_pc)))
607                 {
608                         LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (ID: %d)",
609                                           breakpoint->address,
610                                           breakpoint->unique_id);
611                         cortex_m3_unset_breakpoint(target, breakpoint);
612                         cortex_m3_single_step_core(target);
613                         cortex_m3_set_breakpoint(target, breakpoint);
614                 }
615         }
616
617         /* Restart core */
618         cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
619
620         target->debug_reason = DBG_REASON_NOTHALTED;
621
622         /* registers are now invalid */
623         armv7m_invalidate_core_regs(target);
624         if (!debug_execution)
625         {
626                 target->state = TARGET_RUNNING;
627                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
628                 LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc);
629         }
630         else
631         {
632                 target->state = TARGET_DEBUG_RUNNING;
633                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
634                 LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc);
635         }
636
637         return ERROR_OK;
638 }
639
640 /* int irqstepcount = 0; */
641 static int cortex_m3_step(struct target_s *target, int current,
642                 uint32_t address, int handle_breakpoints)
643 {
644         struct cortex_m3_common_s *cortex_m3 = target_to_cm3(target);
645         struct armv7m_common_s *armv7m = &cortex_m3->armv7m;
646         swjdp_common_t *swjdp = &armv7m->swjdp_info;
647         breakpoint_t *breakpoint = NULL;
648
649         if (target->state != TARGET_HALTED)
650         {
651                 LOG_WARNING("target not halted");
652                 return ERROR_TARGET_NOT_HALTED;
653         }
654
655         /* current = 1: continue on current pc, otherwise continue at <address> */
656         if (!current)
657                 buf_set_u32(cortex_m3->armv7m.core_cache->reg_list[15].value,
658                                 0, 32, address);
659
660         /* the front-end may request us not to handle breakpoints */
661         if (handle_breakpoints) {
662                 breakpoint = breakpoint_find(target, buf_get_u32(armv7m
663                                 ->core_cache->reg_list[15].value, 0, 32));
664                 if (breakpoint)
665                         cortex_m3_unset_breakpoint(target, breakpoint);
666         }
667
668         target->debug_reason = DBG_REASON_SINGLESTEP;
669
670         armv7m_restore_context(target);
671
672         target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
673
674         /* set step and clear halt */
675         cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
676         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
677
678         /* registers are now invalid */
679         armv7m_invalidate_core_regs(target);
680
681         if (breakpoint)
682                 cortex_m3_set_breakpoint(target, breakpoint);
683
684         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32 " nvic_icsr = 0x%" PRIx32 "", cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
685
686         cortex_m3_debug_entry(target);
687         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
688
689         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32 " nvic_icsr = 0x%" PRIx32 "", cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
690         return ERROR_OK;
691 }
692
693 static int cortex_m3_assert_reset(target_t *target)
694 {
695         struct cortex_m3_common_s *cortex_m3 = target_to_cm3(target);
696         struct swjdp_common_s *swjdp = &cortex_m3->armv7m.swjdp_info;
697         int assert_srst = 1;
698
699         LOG_DEBUG("target->state: %s",
700                 target_state_name(target));
701
702         enum reset_types jtag_reset_config = jtag_get_reset_config();
703
704         /*
705          * We can reset Cortex-M3 targets using just the NVIC without
706          * requiring SRST, getting a SoC reset (or a core-only reset)
707          * instead of a system reset.
708          */
709         if (!(jtag_reset_config & RESET_HAS_SRST))
710                 assert_srst = 0;
711
712         /* Enable debug requests */
713         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
714         if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN))
715                 mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
716
717         mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
718
719         if (!target->reset_halt)
720         {
721                 /* Set/Clear C_MASKINTS in a separate operation */
722                 if (cortex_m3->dcb_dhcsr & C_MASKINTS)
723                         mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN | C_HALT);
724
725                 /* clear any debug flags before resuming */
726                 cortex_m3_clear_halt(target);
727
728                 /* clear C_HALT in dhcsr reg */
729                 cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
730
731                 /* Enter debug state on reset, cf. end_reset_event() */
732                 mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | VC_HARDERR | VC_BUSERR);
733         }
734         else
735         {
736                 /* Enter debug state on reset, cf. end_reset_event() */
737                 mem_ap_write_atomic_u32(swjdp, DCB_DEMCR, TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
738         }
739
740         /*
741          * When nRST is asserted on most Stellaris devices, it clears some of
742          * the debug state.  The ARMv7M and Cortex-M3 TRMs say that's wrong;
743          * and OpenOCD depends on those TRMs.  So we won't use SRST on those
744          * chips.  (Only power-on reset should affect debug state, beyond a
745          * few specified bits; not the chip's nRST input, wired to SRST.)
746          *
747          * REVISIT current errata specs don't seem to cover this issue.
748          * Do we have more details than this email?
749          *   https://lists.berlios.de/pipermail
750          *      /openocd-development/2008-August/003065.html
751          */
752         if (strcmp(target->variant, "lm3s") == 0)
753         {
754                 /* Check for silicon revisions with the issue. */
755                 uint32_t did0;
756
757                 if (target_read_u32(target, 0x400fe000, &did0) == ERROR_OK)
758                 {
759                         switch ((did0 >> 16) & 0xff)
760                         {
761                                 case 0:
762                                         /* all Sandstorm suffer issue */
763                                         assert_srst = 0;
764                                         break;
765
766                                 case 1:
767                                 case 3:
768                                         /* Fury and DustDevil rev A have
769                                          * this nRST problem.  It should
770                                          * be fixed in rev B silicon.
771                                          */
772                                         if (((did0 >> 8) & 0xff) == 0)
773                                                 assert_srst = 0;
774                                         break;
775                                 case 4:
776                                         /* Tempest should be fine. */
777                                         break;
778                         }
779                 }
780         }
781
782         if (assert_srst)
783         {
784                 /* default to asserting srst */
785                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
786                 {
787                         jtag_add_reset(1, 1);
788                 }
789                 else
790                 {
791                         jtag_add_reset(0, 1);
792                 }
793         }
794         else
795         {
796                 /* Use a standard Cortex-M3 software reset mechanism.
797                  * SYSRESETREQ will reset SoC peripherals outside the
798                  * core, like watchdog timers, if the SoC wires it up
799                  * correctly.  Else VECRESET can reset just the core.
800                  */
801                 mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
802                                 AIRCR_VECTKEY | AIRCR_SYSRESETREQ);
803                 LOG_DEBUG("Using Cortex-M3 SYSRESETREQ");
804
805                 {
806                         /* I do not know why this is necessary, but it
807                          * fixes strange effects (step/resume cause NMI
808                          * after reset) on LM3S6918 -- Michael Schwingen
809                          */
810                         uint32_t tmp;
811                         mem_ap_read_atomic_u32(swjdp, NVIC_AIRCR, &tmp);
812                 }
813         }
814
815         target->state = TARGET_RESET;
816         jtag_add_sleep(50000);
817
818         armv7m_invalidate_core_regs(target);
819
820         if (target->reset_halt)
821         {
822                 int retval;
823                 if ((retval = target_halt(target)) != ERROR_OK)
824                         return retval;
825         }
826
827         return ERROR_OK;
828 }
829
830 static int cortex_m3_deassert_reset(target_t *target)
831 {
832         LOG_DEBUG("target->state: %s",
833                 target_state_name(target));
834
835         /* deassert reset lines */
836         jtag_add_reset(0, 0);
837
838         return ERROR_OK;
839 }
840
841 static int
842 cortex_m3_set_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
843 {
844         int retval;
845         int fp_num = 0;
846         uint32_t hilo;
847         struct cortex_m3_common_s *cortex_m3 = target_to_cm3(target);
848         cortex_m3_fp_comparator_t *comparator_list = cortex_m3->fp_comparator_list;
849
850         if (breakpoint->set)
851         {
852                 LOG_WARNING("breakpoint (BPID: %d) already set", breakpoint->unique_id);
853                 return ERROR_OK;
854         }
855
856         if (cortex_m3->auto_bp_type)
857         {
858                 breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
859         }
860
861         if (breakpoint->type == BKPT_HARD)
862         {
863                 while (comparator_list[fp_num].used && (fp_num < cortex_m3->fp_num_code))
864                         fp_num++;
865                 if (fp_num >= cortex_m3->fp_num_code)
866                 {
867                         LOG_DEBUG("ERROR Can not find free FP Comparator");
868                         LOG_WARNING("ERROR Can not find free FP Comparator");
869                         exit(-1);
870                 }
871                 breakpoint->set = fp_num + 1;
872                 hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
873                 comparator_list[fp_num].used = 1;
874                 comparator_list[fp_num].fpcr_value = (breakpoint->address & 0x1FFFFFFC) | hilo | 1;
875                 target_write_u32(target, comparator_list[fp_num].fpcr_address, comparator_list[fp_num].fpcr_value);
876                 LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "", fp_num, comparator_list[fp_num].fpcr_value);
877                 if (!cortex_m3->fpb_enabled)
878                 {
879                         LOG_DEBUG("FPB wasn't enabled, do it now");
880                         target_write_u32(target, FP_CTRL, 3);
881                 }
882         }
883         else if (breakpoint->type == BKPT_SOFT)
884         {
885                 uint8_t code[4];
886                 buf_set_u32(code, 0, 32, ARMV7M_T_BKPT(0x11));
887                 if ((retval = target_read_memory(target, breakpoint->address & 0xFFFFFFFE, breakpoint->length, 1, breakpoint->orig_instr)) != ERROR_OK)
888                 {
889                         return retval;
890                 }
891                 if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, breakpoint->length, 1, code)) != ERROR_OK)
892                 {
893                         return retval;
894                 }
895                 breakpoint->set = 0x11; /* Any nice value but 0 */
896         }
897
898         LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
899                           breakpoint->unique_id,
900                           (int)(breakpoint->type),
901                           breakpoint->address,
902                           breakpoint->length,
903                           breakpoint->set);
904
905         return ERROR_OK;
906 }
907
908 static int
909 cortex_m3_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
910 {
911         int retval;
912         struct cortex_m3_common_s *cortex_m3 = target_to_cm3(target);
913         cortex_m3_fp_comparator_t * comparator_list = cortex_m3->fp_comparator_list;
914
915         if (!breakpoint->set)
916         {
917                 LOG_WARNING("breakpoint not set");
918                 return ERROR_OK;
919         }
920
921         LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
922                           breakpoint->unique_id,
923                           (int)(breakpoint->type),
924                           breakpoint->address,
925                           breakpoint->length,
926                           breakpoint->set);
927
928         if (breakpoint->type == BKPT_HARD)
929         {
930                 int fp_num = breakpoint->set - 1;
931                 if ((fp_num < 0) || (fp_num >= cortex_m3->fp_num_code))
932                 {
933                         LOG_DEBUG("Invalid FP Comparator number in breakpoint");
934                         return ERROR_OK;
935                 }
936                 comparator_list[fp_num].used = 0;
937                 comparator_list[fp_num].fpcr_value = 0;
938                 target_write_u32(target, comparator_list[fp_num].fpcr_address, comparator_list[fp_num].fpcr_value);
939         }
940         else
941         {
942                 /* restore original instruction (kept in target endianness) */
943                 if (breakpoint->length == 4)
944                 {
945                         if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
946                         {
947                                 return retval;
948                         }
949                 }
950                 else
951                 {
952                         if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
953                         {
954                                 return retval;
955                         }
956                 }
957         }
958         breakpoint->set = 0;
959
960         return ERROR_OK;
961 }
962
963 static int
964 cortex_m3_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
965 {
966         struct cortex_m3_common_s *cortex_m3 = target_to_cm3(target);
967
968         if (cortex_m3->auto_bp_type)
969         {
970                 breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
971 #ifdef ARMV7_GDB_HACKS
972                 if (breakpoint->length != 2) {
973                         /* XXX Hack: Replace all breakpoints with length != 2 with
974                          * a hardware breakpoint. */
975                         breakpoint->type = BKPT_HARD;
976                         breakpoint->length = 2;
977                 }
978 #endif
979         }
980
981         if ((breakpoint->type == BKPT_HARD) && (breakpoint->address >= 0x20000000))
982         {
983                 LOG_INFO("flash patch comparator requested outside code memory region");
984                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
985         }
986
987         if ((breakpoint->type == BKPT_SOFT) && (breakpoint->address < 0x20000000))
988         {
989                 LOG_INFO("soft breakpoint requested in code (flash) memory region");
990                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
991         }
992
993         if ((breakpoint->type == BKPT_HARD) && (cortex_m3->fp_code_available < 1))
994         {
995                 LOG_INFO("no flash patch comparator unit available for hardware breakpoint");
996                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
997         }
998
999         if ((breakpoint->length != 2))
1000         {
1001                 LOG_INFO("only breakpoints of two bytes length supported");
1002                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1003         }
1004
1005         if (breakpoint->type == BKPT_HARD)
1006                 cortex_m3->fp_code_available--;
1007         cortex_m3_set_breakpoint(target, breakpoint);
1008
1009         return ERROR_OK;
1010 }
1011
1012 static int
1013 cortex_m3_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
1014 {
1015         struct cortex_m3_common_s *cortex_m3 = target_to_cm3(target);
1016
1017         /* REVISIT why check? FBP can be updated with core running ... */
1018         if (target->state != TARGET_HALTED)
1019         {
1020                 LOG_WARNING("target not halted");
1021                 return ERROR_TARGET_NOT_HALTED;
1022         }
1023
1024         if (cortex_m3->auto_bp_type)
1025         {
1026                 breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
1027         }
1028
1029         if (breakpoint->set)
1030         {
1031                 cortex_m3_unset_breakpoint(target, breakpoint);
1032         }
1033
1034         if (breakpoint->type == BKPT_HARD)
1035                 cortex_m3->fp_code_available++;
1036
1037         return ERROR_OK;
1038 }
1039
1040 static int
1041 cortex_m3_set_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
1042 {
1043         int dwt_num = 0;
1044         uint32_t mask, temp;
1045         struct cortex_m3_common_s *cortex_m3 = target_to_cm3(target);
1046
1047         /* watchpoint params were validated earlier */
1048         mask = 0;
1049         temp = watchpoint->length;
1050         while (temp) {
1051                 temp >>= 1;
1052                 mask++;
1053         }
1054         mask--;
1055
1056         /* REVISIT Don't fully trust these "not used" records ... users
1057          * may set up breakpoints by hand, e.g. dual-address data value
1058          * watchpoint using comparator #1; comparator #0 matching cycle
1059          * count; send data trace info through ITM and TPIU; etc
1060          */
1061         cortex_m3_dwt_comparator_t *comparator;
1062
1063         for (comparator = cortex_m3->dwt_comparator_list;
1064                         comparator->used && dwt_num < cortex_m3->dwt_num_comp;
1065                         comparator++, dwt_num++)
1066                 continue;
1067         if (dwt_num >= cortex_m3->dwt_num_comp)
1068         {
1069                 LOG_ERROR("Can not find free DWT Comparator");
1070                 return ERROR_FAIL;
1071         }
1072         comparator->used = 1;
1073         watchpoint->set = dwt_num + 1;
1074
1075         comparator->comp = watchpoint->address;
1076         target_write_u32(target, comparator->dwt_comparator_address + 0,
1077                         comparator->comp);
1078
1079         comparator->mask = mask;
1080         target_write_u32(target, comparator->dwt_comparator_address + 4,
1081                         comparator->mask);
1082
1083         switch (watchpoint->rw) {
1084         case WPT_READ:
1085                 comparator->function = 5;
1086                 break;
1087         case WPT_WRITE:
1088                 comparator->function = 6;
1089                 break;
1090         case WPT_ACCESS:
1091                 comparator->function = 7;
1092                 break;
1093         }
1094         target_write_u32(target, comparator->dwt_comparator_address + 8,
1095                         comparator->function);
1096
1097         LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
1098                         watchpoint->unique_id, dwt_num,
1099                         (unsigned) comparator->comp,
1100                         (unsigned) comparator->mask,
1101                         (unsigned) comparator->function);
1102         return ERROR_OK;
1103 }
1104
1105 static int
1106 cortex_m3_unset_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
1107 {
1108         struct cortex_m3_common_s *cortex_m3 = target_to_cm3(target);
1109         cortex_m3_dwt_comparator_t *comparator;
1110         int dwt_num;
1111
1112         if (!watchpoint->set)
1113         {
1114                 LOG_WARNING("watchpoint (wpid: %d) not set",
1115                                 watchpoint->unique_id);
1116                 return ERROR_OK;
1117         }
1118
1119         dwt_num = watchpoint->set - 1;
1120
1121         LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear",
1122                         watchpoint->unique_id, dwt_num,
1123                         (unsigned) watchpoint->address);
1124
1125         if ((dwt_num < 0) || (dwt_num >= cortex_m3->dwt_num_comp))
1126         {
1127                 LOG_DEBUG("Invalid DWT Comparator number in watchpoint");
1128                 return ERROR_OK;
1129         }
1130
1131         comparator = cortex_m3->dwt_comparator_list + dwt_num;
1132         comparator->used = 0;
1133         comparator->function = 0;
1134         target_write_u32(target, comparator->dwt_comparator_address + 8,
1135                         comparator->function);
1136
1137         watchpoint->set = 0;
1138
1139         return ERROR_OK;
1140 }
1141
1142 static int
1143 cortex_m3_add_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
1144 {
1145         struct cortex_m3_common_s *cortex_m3 = target_to_cm3(target);
1146
1147         /* REVISIT why check? DWT can be updated with core running ... */
1148         if (target->state != TARGET_HALTED)
1149         {
1150                 LOG_WARNING("target not halted");
1151                 return ERROR_TARGET_NOT_HALTED;
1152         }
1153
1154         if (cortex_m3->dwt_comp_available < 1)
1155         {
1156                 LOG_DEBUG("no comparators?");
1157                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1158         }
1159
1160         /* hardware doesn't support data value masking */
1161         if (watchpoint->mask != ~(uint32_t)0) {
1162                 LOG_DEBUG("watchpoint value masks not supported");
1163                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1164         }
1165
1166         /* hardware allows address masks of up to 32K */
1167         unsigned mask;
1168
1169         for (mask = 0; mask < 16; mask++) {
1170                 if ((1u << mask) == watchpoint->length)
1171                         break;
1172         }
1173         if (mask == 16) {
1174                 LOG_DEBUG("unsupported watchpoint length");
1175                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1176         }
1177         if (watchpoint->address & ((1 << mask) - 1)) {
1178                 LOG_DEBUG("watchpoint address is unaligned");
1179                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1180         }
1181
1182         /* Caller doesn't seem to be able to describe watching for data
1183          * values of zero; that flags "no value".
1184          *
1185          * REVISIT This DWT may well be able to watch for specific data
1186          * values.  Requires comparator #1 to set DATAVMATCH and match
1187          * the data, and another comparator (DATAVADDR0) matching addr.
1188          */
1189         if (watchpoint->value) {
1190                 LOG_DEBUG("data value watchpoint not YET supported");
1191                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1192         }
1193
1194         cortex_m3->dwt_comp_available--;
1195         LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1196
1197         return ERROR_OK;
1198 }
1199
1200 static int
1201 cortex_m3_remove_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
1202 {
1203         struct cortex_m3_common_s *cortex_m3 = target_to_cm3(target);
1204
1205         /* REVISIT why check? DWT can be updated with core running ... */
1206         if (target->state != TARGET_HALTED)
1207         {
1208                 LOG_WARNING("target not halted");
1209                 return ERROR_TARGET_NOT_HALTED;
1210         }
1211
1212         if (watchpoint->set)
1213         {
1214                 cortex_m3_unset_watchpoint(target, watchpoint);
1215         }
1216
1217         cortex_m3->dwt_comp_available++;
1218         LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1219
1220         return ERROR_OK;
1221 }
1222
1223 static void cortex_m3_enable_watchpoints(struct target_s *target)
1224 {
1225         watchpoint_t *watchpoint = target->watchpoints;
1226
1227         /* set any pending watchpoints */
1228         while (watchpoint)
1229         {
1230                 if (watchpoint->set == 0)
1231                         cortex_m3_set_watchpoint(target, watchpoint);
1232                 watchpoint = watchpoint->next;
1233         }
1234 }
1235
1236 static int cortex_m3_load_core_reg_u32(struct target_s *target,
1237                 enum armv7m_regtype type, uint32_t num, uint32_t * value)
1238 {
1239         int retval;
1240         struct armv7m_common_s *armv7m = target_to_armv7m(target);
1241         swjdp_common_t *swjdp = &armv7m->swjdp_info;
1242
1243         /* NOTE:  we "know" here that the register identifiers used
1244          * in the v7m header match the Cortex-M3 Debug Core Register
1245          * Selector values for R0..R15, xPSR, MSP, and PSP.
1246          */
1247         switch (num) {
1248         case 0 ... 18:
1249                 /* read a normal core register */
1250                 retval = cortexm3_dap_read_coreregister_u32(swjdp, value, num);
1251
1252                 if (retval != ERROR_OK)
1253                 {
1254                         LOG_ERROR("JTAG failure %i",retval);
1255                         return ERROR_JTAG_DEVICE_ERROR;
1256                 }
1257                 LOG_DEBUG("load from core reg %i  value 0x%" PRIx32 "",(int)num,*value);
1258                 break;
1259
1260         case ARMV7M_PRIMASK:
1261         case ARMV7M_BASEPRI:
1262         case ARMV7M_FAULTMASK:
1263         case ARMV7M_CONTROL:
1264                 /* Cortex-M3 packages these four registers as bitfields
1265                  * in one Debug Core register.  So say r0 and r2 docs;
1266                  * it was removed from r1 docs, but still works.
1267                  */
1268                 cortexm3_dap_read_coreregister_u32(swjdp, value, 20);
1269
1270                 switch (num)
1271                 {
1272                         case ARMV7M_PRIMASK:
1273                                 *value = buf_get_u32((uint8_t*)value, 0, 1);
1274                                 break;
1275
1276                         case ARMV7M_BASEPRI:
1277                                 *value = buf_get_u32((uint8_t*)value, 8, 8);
1278                                 break;
1279
1280                         case ARMV7M_FAULTMASK:
1281                                 *value = buf_get_u32((uint8_t*)value, 16, 1);
1282                                 break;
1283
1284                         case ARMV7M_CONTROL:
1285                                 *value = buf_get_u32((uint8_t*)value, 24, 2);
1286                                 break;
1287                 }
1288
1289                 LOG_DEBUG("load from special reg %i value 0x%" PRIx32 "", (int)num, *value);
1290                 break;
1291
1292         default:
1293                 return ERROR_INVALID_ARGUMENTS;
1294         }
1295
1296         return ERROR_OK;
1297 }
1298
1299 static int cortex_m3_store_core_reg_u32(struct target_s *target,
1300                 enum armv7m_regtype type, uint32_t num, uint32_t value)
1301 {
1302         int retval;
1303         uint32_t reg;
1304         struct armv7m_common_s *armv7m = target_to_armv7m(target);
1305         swjdp_common_t *swjdp = &armv7m->swjdp_info;
1306
1307 #ifdef ARMV7_GDB_HACKS
1308         /* If the LR register is being modified, make sure it will put us
1309          * in "thumb" mode, or an INVSTATE exception will occur. This is a
1310          * hack to deal with the fact that gdb will sometimes "forge"
1311          * return addresses, and doesn't set the LSB correctly (i.e., when
1312          * printing expressions containing function calls, it sets LR = 0.)
1313          * Valid exception return codes have bit 0 set too.
1314          */
1315         if (num == ARMV7M_R14)
1316                 value |= 0x01;
1317 #endif
1318
1319         /* NOTE:  we "know" here that the register identifiers used
1320          * in the v7m header match the Cortex-M3 Debug Core Register
1321          * Selector values for R0..R15, xPSR, MSP, and PSP.
1322          */
1323         switch (num) {
1324         case 0 ... 18:
1325                 retval = cortexm3_dap_write_coreregister_u32(swjdp, value, num);
1326                 if (retval != ERROR_OK)
1327                 {
1328                         LOG_ERROR("JTAG failure %i", retval);
1329                         armv7m->core_cache->reg_list[num].dirty = armv7m->core_cache->reg_list[num].valid;
1330                         return ERROR_JTAG_DEVICE_ERROR;
1331                 }
1332                 LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value);
1333                 break;
1334
1335         case ARMV7M_PRIMASK:
1336         case ARMV7M_BASEPRI:
1337         case ARMV7M_FAULTMASK:
1338         case ARMV7M_CONTROL:
1339                 /* Cortex-M3 packages these four registers as bitfields
1340                  * in one Debug Core register.  So say r0 and r2 docs;
1341                  * it was removed from r1 docs, but still works.
1342                  */
1343                 cortexm3_dap_read_coreregister_u32(swjdp, &reg, 20);
1344
1345                 switch (num)
1346                 {
1347                         case ARMV7M_PRIMASK:
1348                                 buf_set_u32((uint8_t*)&reg, 0, 1, value);
1349                                 break;
1350
1351                         case ARMV7M_BASEPRI:
1352                                 buf_set_u32((uint8_t*)&reg, 8, 8, value);
1353                                 break;
1354
1355                         case ARMV7M_FAULTMASK:
1356                                 buf_set_u32((uint8_t*)&reg, 16, 1, value);
1357                                 break;
1358
1359                         case ARMV7M_CONTROL:
1360                                 buf_set_u32((uint8_t*)&reg, 24, 2, value);
1361                                 break;
1362                 }
1363
1364                 cortexm3_dap_write_coreregister_u32(swjdp, reg, 20);
1365
1366                 LOG_DEBUG("write special reg %i value 0x%" PRIx32 " ", (int)num, value);
1367                 break;
1368
1369         default:
1370                 return ERROR_INVALID_ARGUMENTS;
1371         }
1372
1373         return ERROR_OK;
1374 }
1375
1376 static int cortex_m3_read_memory(struct target_s *target, uint32_t address,
1377                 uint32_t size, uint32_t count, uint8_t *buffer)
1378 {
1379         struct armv7m_common_s *armv7m = target_to_armv7m(target);
1380         swjdp_common_t *swjdp = &armv7m->swjdp_info;
1381         int retval;
1382
1383         /* sanitize arguments */
1384         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
1385                 return ERROR_INVALID_ARGUMENTS;
1386
1387         /* cortex_m3 handles unaligned memory access */
1388
1389         switch (size)
1390         {
1391                 case 4:
1392                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1393                         break;
1394                 case 2:
1395                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1396                         break;
1397                 case 1:
1398                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1399                         break;
1400                 default:
1401                         LOG_ERROR("BUG: we shouldn't get here");
1402                         exit(-1);
1403         }
1404
1405         return retval;
1406 }
1407
1408 static int cortex_m3_write_memory(struct target_s *target, uint32_t address,
1409                 uint32_t size, uint32_t count, uint8_t *buffer)
1410 {
1411         struct armv7m_common_s *armv7m = target_to_armv7m(target);
1412         swjdp_common_t *swjdp = &armv7m->swjdp_info;
1413         int retval;
1414
1415         /* sanitize arguments */
1416         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
1417                 return ERROR_INVALID_ARGUMENTS;
1418
1419         switch (size)
1420         {
1421                 case 4:
1422                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1423                         break;
1424                 case 2:
1425                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1426                         break;
1427                 case 1:
1428                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1429                         break;
1430                 default:
1431                         LOG_ERROR("BUG: we shouldn't get here");
1432                         exit(-1);
1433         }
1434
1435         return retval;
1436 }
1437
1438 static int cortex_m3_bulk_write_memory(target_t *target, uint32_t address,
1439                 uint32_t count, uint8_t *buffer)
1440 {
1441         return cortex_m3_write_memory(target, address, 4, count, buffer);
1442 }
1443
1444 static int cortex_m3_init_target(struct command_context_s *cmd_ctx,
1445                 struct target_s *target)
1446 {
1447         armv7m_build_reg_cache(target);
1448         return ERROR_OK;
1449 }
1450
1451 /* REVISIT cache valid/dirty bits are unmaintained.  We could set "valid"
1452  * on r/w if the core is not running, and clear on resume or reset ... or
1453  * at least, in a post_restore_context() method.
1454  */
1455
1456 struct dwt_reg_state {
1457         struct target_s *target;
1458         uint32_t        addr;
1459         uint32_t        value;  /* scratch/cache */
1460 };
1461
1462 static int cortex_m3_dwt_get_reg(struct reg_s *reg)
1463 {
1464         struct dwt_reg_state *state = reg->arch_info;
1465
1466         return target_read_u32(state->target, state->addr, &state->value);
1467 }
1468
1469 static int cortex_m3_dwt_set_reg(struct reg_s *reg, uint8_t *buf)
1470 {
1471         struct dwt_reg_state *state = reg->arch_info;
1472
1473         return target_write_u32(state->target, state->addr,
1474                         buf_get_u32(buf, 0, reg->size));
1475 }
1476
1477 struct dwt_reg {
1478         uint32_t        addr;
1479         char            *name;
1480         unsigned        size;
1481 };
1482
1483 static struct dwt_reg dwt_base_regs[] = {
1484         { DWT_CTRL, "dwt_ctrl", 32, },
1485         { DWT_CYCCNT, "dwt_cyccnt", 32, },
1486         /* plus some 8 bit counters, useful for profiling with TPIU */
1487 };
1488
1489 static struct dwt_reg dwt_comp[] = {
1490 #define DWT_COMPARATOR(i) \
1491                 { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
1492                 { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
1493                 { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
1494         DWT_COMPARATOR(0),
1495         DWT_COMPARATOR(1),
1496         DWT_COMPARATOR(2),
1497         DWT_COMPARATOR(3),
1498 #undef DWT_COMPARATOR
1499 };
1500
1501 static int dwt_reg_type = -1;
1502
1503 static void
1504 cortex_m3_dwt_addreg(struct target_s *t, struct reg_s *r, struct dwt_reg *d)
1505 {
1506         struct dwt_reg_state *state;
1507
1508         state = calloc(1, sizeof *state);
1509         if (!state)
1510                 return;
1511         state->addr = d->addr;
1512         state->target = t;
1513
1514         r->name = d->name;
1515         r->size = d->size;
1516         r->value = &state->value;
1517         r->arch_info = state;
1518         r->arch_type = dwt_reg_type;
1519 }
1520
1521 static void
1522 cortex_m3_dwt_setup(cortex_m3_common_t *cm3, struct target_s *target)
1523 {
1524         uint32_t dwtcr;
1525         struct reg_cache_s *cache;
1526         cortex_m3_dwt_comparator_t *comparator;
1527         int reg, i;
1528
1529         target_read_u32(target, DWT_CTRL, &dwtcr);
1530         if (!dwtcr) {
1531                 LOG_DEBUG("no DWT");
1532                 return;
1533         }
1534
1535         if (dwt_reg_type < 0)
1536                 dwt_reg_type = register_reg_arch_type(cortex_m3_dwt_get_reg,
1537                                 cortex_m3_dwt_set_reg);
1538
1539         cm3->dwt_num_comp = (dwtcr >> 28) & 0xF;
1540         cm3->dwt_comp_available = cm3->dwt_num_comp;
1541         cm3->dwt_comparator_list = calloc(cm3->dwt_num_comp,
1542                         sizeof(cortex_m3_dwt_comparator_t));
1543         if (!cm3->dwt_comparator_list) {
1544 fail0:
1545                 cm3->dwt_num_comp = 0;
1546                 LOG_ERROR("out of mem");
1547                 return;
1548         }
1549
1550         cache = calloc(1, sizeof *cache);
1551         if (!cache) {
1552 fail1:
1553                 free(cm3->dwt_comparator_list);
1554                 goto fail0;
1555         }
1556         cache->name = "cortex-m3 dwt registers";
1557         cache->num_regs = 2 + cm3->dwt_num_comp * 3;
1558         cache->reg_list = calloc(cache->num_regs, sizeof *cache->reg_list);
1559         if (!cache->reg_list) {
1560                 free(cache);
1561                 goto fail1;
1562         }
1563
1564         for (reg = 0; reg < 2; reg++)
1565                 cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1566                                 dwt_base_regs + reg);
1567
1568         comparator = cm3->dwt_comparator_list;
1569         for (i = 0; i < cm3->dwt_num_comp; i++, comparator++) {
1570                 int j;
1571
1572                 comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
1573                 for (j = 0; j < 3; j++, reg++)
1574                         cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1575                                         dwt_comp + 3 * i + j);
1576         }
1577
1578         *register_get_last_cache_p(&target->reg_cache) = cache;
1579         cm3->dwt_cache = cache;
1580
1581         LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
1582                         dwtcr, cm3->dwt_num_comp,
1583                         (dwtcr & (0xf << 24)) ? " only" : "/trigger");
1584
1585         /* REVISIT:  if num_comp > 1, check whether comparator #1 can
1586          * implement single-address data value watchpoints ... so we
1587          * won't need to check it later, when asked to set one up.
1588          */
1589 }
1590
1591 static int cortex_m3_examine(struct target_s *target)
1592 {
1593         int retval;
1594         uint32_t cpuid, fpcr;
1595         int i;
1596         struct cortex_m3_common_s *cortex_m3 = target_to_cm3(target);
1597         struct swjdp_common_s *swjdp = &cortex_m3->armv7m.swjdp_info;
1598
1599         if ((retval = ahbap_debugport_init(swjdp)) != ERROR_OK)
1600                 return retval;
1601
1602         if (!target_was_examined(target))
1603         {
1604                 target_set_examined(target);
1605
1606                 /* Read from Device Identification Registers */
1607                 retval = target_read_u32(target, CPUID, &cpuid);
1608                 if (retval != ERROR_OK)
1609                         return retval;
1610
1611                 if (((cpuid >> 4) & 0xc3f) == 0xc23)
1612                         LOG_DEBUG("CORTEX-M3 processor detected");
1613                 LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid);
1614
1615                 /* NOTE: FPB and DWT are both optional. */
1616
1617                 /* Setup FPB */
1618                 target_read_u32(target, FP_CTRL, &fpcr);
1619                 cortex_m3->auto_bp_type = 1;
1620                 cortex_m3->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF); /* bits [14:12] and [7:4] */
1621                 cortex_m3->fp_num_lit = (fpcr >> 8) & 0xF;
1622                 cortex_m3->fp_code_available = cortex_m3->fp_num_code;
1623                 cortex_m3->fp_comparator_list = calloc(cortex_m3->fp_num_code + cortex_m3->fp_num_lit, sizeof(cortex_m3_fp_comparator_t));
1624                 cortex_m3->fpb_enabled = fpcr & 1;
1625                 for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++)
1626                 {
1627                         cortex_m3->fp_comparator_list[i].type = (i < cortex_m3->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
1628                         cortex_m3->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
1629                 }
1630                 LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i", fpcr, cortex_m3->fp_num_code, cortex_m3->fp_num_lit);
1631
1632                 /* Setup DWT */
1633                 cortex_m3_dwt_setup(cortex_m3, target);
1634         }
1635
1636         return ERROR_OK;
1637 }
1638
1639 static int cortex_m3_dcc_read(swjdp_common_t *swjdp, uint8_t *value, uint8_t *ctrl)
1640 {
1641         uint16_t dcrdr;
1642
1643         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1644         *ctrl = (uint8_t)dcrdr;
1645         *value = (uint8_t)(dcrdr >> 8);
1646
1647         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1648
1649         /* write ack back to software dcc register
1650          * signify we have read data */
1651         if (dcrdr & (1 << 0))
1652         {
1653                 dcrdr = 0;
1654                 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1655         }
1656
1657         return ERROR_OK;
1658 }
1659
1660 static int cortex_m3_target_request_data(target_t *target,
1661                 uint32_t size, uint8_t *buffer)
1662 {
1663         struct armv7m_common_s *armv7m = target_to_armv7m(target);
1664         swjdp_common_t *swjdp = &armv7m->swjdp_info;
1665         uint8_t data;
1666         uint8_t ctrl;
1667         uint32_t i;
1668
1669         for (i = 0; i < (size * 4); i++)
1670         {
1671                 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1672                 buffer[i] = data;
1673         }
1674
1675         return ERROR_OK;
1676 }
1677
1678 static int cortex_m3_handle_target_request(void *priv)
1679 {
1680         target_t *target = priv;
1681         if (!target_was_examined(target))
1682                 return ERROR_OK;
1683         struct armv7m_common_s *armv7m = target_to_armv7m(target);
1684         swjdp_common_t *swjdp = &armv7m->swjdp_info;
1685
1686         if (!target->dbg_msg_enabled)
1687                 return ERROR_OK;
1688
1689         if (target->state == TARGET_RUNNING)
1690         {
1691                 uint8_t data;
1692                 uint8_t ctrl;
1693
1694                 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1695
1696                 /* check if we have data */
1697                 if (ctrl & (1 << 0))
1698                 {
1699                         uint32_t request;
1700
1701                         /* we assume target is quick enough */
1702                         request = data;
1703                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1704                         request |= (data << 8);
1705                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1706                         request |= (data << 16);
1707                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1708                         request |= (data << 24);
1709                         target_request(target, request);
1710                 }
1711         }
1712
1713         return ERROR_OK;
1714 }
1715
1716 static int cortex_m3_init_arch_info(target_t *target,
1717                 cortex_m3_common_t *cortex_m3, jtag_tap_t *tap)
1718 {
1719         int retval;
1720         struct armv7m_common_s *armv7m = &cortex_m3->armv7m;
1721
1722         armv7m_init_arch_info(target, armv7m);
1723
1724         /* prepare JTAG information for the new target */
1725         cortex_m3->jtag_info.tap = tap;
1726         cortex_m3->jtag_info.scann_size = 4;
1727
1728         armv7m->swjdp_info.dp_select_value = -1;
1729         armv7m->swjdp_info.ap_csw_value = -1;
1730         armv7m->swjdp_info.ap_tar_value = -1;
1731         armv7m->swjdp_info.jtag_info = &cortex_m3->jtag_info;
1732         armv7m->swjdp_info.memaccess_tck = 8;
1733         armv7m->swjdp_info.tar_autoincr_block = (1 << 12);      /* Cortex-M3 has 4096 bytes autoincrement range */
1734
1735         /* register arch-specific functions */
1736         armv7m->examine_debug_reason = cortex_m3_examine_debug_reason;
1737
1738         armv7m->post_debug_entry = NULL;
1739
1740         armv7m->pre_restore_context = NULL;
1741         armv7m->post_restore_context = NULL;
1742
1743         armv7m->load_core_reg_u32 = cortex_m3_load_core_reg_u32;
1744         armv7m->store_core_reg_u32 = cortex_m3_store_core_reg_u32;
1745
1746         target_register_timer_callback(cortex_m3_handle_target_request, 1, 1, target);
1747
1748         if ((retval = arm_jtag_setup_connection(&cortex_m3->jtag_info)) != ERROR_OK)
1749         {
1750                 return retval;
1751         }
1752
1753         return ERROR_OK;
1754 }
1755
1756 static int cortex_m3_target_create(struct target_s *target, Jim_Interp *interp)
1757 {
1758         cortex_m3_common_t *cortex_m3 = calloc(1,sizeof(cortex_m3_common_t));
1759
1760         cortex_m3->common_magic = CORTEX_M3_COMMON_MAGIC;
1761         cortex_m3_init_arch_info(target, cortex_m3, target->tap);
1762
1763         return ERROR_OK;
1764 }
1765
1766 /*--------------------------------------------------------------------------*/
1767
1768 static int cortex_m3_verify_pointer(struct command_context_s *cmd_ctx,
1769                 struct cortex_m3_common_s *cm3)
1770 {
1771         if (cm3->common_magic != CORTEX_M3_COMMON_MAGIC) {
1772                 command_print(cmd_ctx, "target is not a Cortex-M3");
1773                 return ERROR_TARGET_INVALID;
1774         }
1775         return ERROR_OK;
1776 }
1777
1778 /*
1779  * Only stuff below this line should need to verify that its target
1780  * is a Cortex-M3.  Everything else should have indirected through the
1781  * cortexm3_target structure, which is only used with CM3 targets.
1782  */
1783
1784 /*
1785  * REVISIT Thumb2 disassembly should work for all ARMv7 cores, as well
1786  * as at least ARM-1156T2.  The interesting thing about Cortex-M is
1787  * that *only* Thumb2 disassembly matters.  There are also some small
1788  * additions to Thumb2 that are specific to ARMv7-M.
1789  */
1790 static int
1791 handle_cortex_m3_disassemble_command(struct command_context_s *cmd_ctx,
1792                 char *cmd, char **args, int argc)
1793 {
1794         int retval;
1795         target_t *target = get_current_target(cmd_ctx);
1796         struct cortex_m3_common_s *cortex_m3 = target_to_cm3(target);
1797         uint32_t address;
1798         unsigned long count = 1;
1799         arm_instruction_t cur_instruction;
1800
1801         retval = cortex_m3_verify_pointer(cmd_ctx, cortex_m3);
1802         if (retval != ERROR_OK)
1803                 return retval;
1804
1805         errno = 0;
1806         switch (argc) {
1807         case 2:
1808                 COMMAND_PARSE_NUMBER(ulong, args[1], count);
1809                 /* FALL THROUGH */
1810         case 1:
1811                 COMMAND_PARSE_NUMBER(u32, args[0], address);
1812                 break;
1813         default:
1814                 command_print(cmd_ctx,
1815                         "usage: cortex_m3 disassemble <address> [<count>]");
1816                 return ERROR_OK;
1817         }
1818
1819         while (count--) {
1820                 retval = thumb2_opcode(target, address, &cur_instruction);
1821                 if (retval != ERROR_OK)
1822                         return retval;
1823                 command_print(cmd_ctx, "%s", cur_instruction.text);
1824                 address += cur_instruction.instruction_size;
1825         }
1826
1827         return ERROR_OK;
1828 }
1829
1830 static const struct {
1831         char name[10];
1832         unsigned mask;
1833 } vec_ids[] = {
1834         { "hard_err",   VC_HARDERR, },
1835         { "int_err",    VC_INTERR, },
1836         { "bus_err",    VC_BUSERR, },
1837         { "state_err",  VC_STATERR, },
1838         { "chk_err",    VC_CHKERR, },
1839         { "nocp_err",   VC_NOCPERR, },
1840         { "mm_err",     VC_MMERR, },
1841         { "reset",      VC_CORERESET, },
1842 };
1843
1844 static int
1845 handle_cortex_m3_vector_catch_command(struct command_context_s *cmd_ctx,
1846                 char *cmd, char **argv, int argc)
1847 {
1848         target_t *target = get_current_target(cmd_ctx);
1849         struct cortex_m3_common_s *cortex_m3 = target_to_cm3(target);
1850         struct armv7m_common_s *armv7m = &cortex_m3->armv7m;
1851         swjdp_common_t *swjdp = &armv7m->swjdp_info;
1852         uint32_t demcr = 0;
1853         int retval;
1854         int i;
1855
1856         retval = cortex_m3_verify_pointer(cmd_ctx, cortex_m3);
1857         if (retval != ERROR_OK)
1858                 return retval;
1859
1860         mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
1861
1862         if (argc > 0) {
1863                 unsigned catch = 0;
1864
1865                 if (argc == 1) {
1866                         if (strcmp(argv[0], "all") == 0) {
1867                                 catch = VC_HARDERR | VC_INTERR | VC_BUSERR
1868                                         | VC_STATERR | VC_CHKERR | VC_NOCPERR
1869                                         | VC_MMERR | VC_CORERESET;
1870                                 goto write;
1871                         } else if (strcmp(argv[0], "none") == 0) {
1872                                 goto write;
1873                         }
1874                 }
1875                 while (argc-- > 0) {
1876                         for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
1877                                 if (strcmp(argv[argc], vec_ids[i].name) != 0)
1878                                         continue;
1879                                 catch |= vec_ids[i].mask;
1880                                 break;
1881                         }
1882                         if (i == ARRAY_SIZE(vec_ids)) {
1883                                 LOG_ERROR("No CM3 vector '%s'", argv[argc]);
1884                                 return ERROR_INVALID_ARGUMENTS;
1885                         }
1886                 }
1887 write:
1888                 demcr &= ~0xffff;
1889                 demcr |= catch;
1890
1891                 /* write, but don't assume it stuck */
1892                 mem_ap_write_u32(swjdp, DCB_DEMCR, demcr);
1893                 mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
1894         }
1895
1896         for (i = 0; i < ARRAY_SIZE(vec_ids); i++)
1897                 command_print(cmd_ctx, "%9s: %s", vec_ids[i].name,
1898                         (demcr & vec_ids[i].mask) ? "catch" : "ignore");
1899
1900         return ERROR_OK;
1901 }
1902
1903 static int
1904 handle_cortex_m3_mask_interrupts_command(struct command_context_s *cmd_ctx,
1905                 char *cmd, char **args, int argc)
1906 {
1907         target_t *target = get_current_target(cmd_ctx);
1908         struct cortex_m3_common_s *cortex_m3 = target_to_cm3(target);
1909         int retval;
1910
1911         retval = cortex_m3_verify_pointer(cmd_ctx, cortex_m3);
1912         if (retval != ERROR_OK)
1913                 return retval;
1914
1915         if (target->state != TARGET_HALTED)
1916         {
1917                 command_print(cmd_ctx, "target must be stopped for \"%s\" command", cmd);
1918                 return ERROR_OK;
1919         }
1920
1921         if (argc > 0)
1922         {
1923                 if (!strcmp(args[0], "on"))
1924                 {
1925                         cortex_m3_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
1926                 }
1927                 else if (!strcmp(args[0], "off"))
1928                 {
1929                         cortex_m3_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
1930                 }
1931                 else
1932                 {
1933                         command_print(cmd_ctx, "usage: cortex_m3 maskisr ['on'|'off']");
1934                 }
1935         }
1936
1937         command_print(cmd_ctx, "cortex_m3 interrupt mask %s",
1938                         (cortex_m3->dcb_dhcsr & C_MASKINTS) ? "on" : "off");
1939
1940         return ERROR_OK;
1941 }
1942
1943 static int cortex_m3_register_commands(struct command_context_s *cmd_ctx)
1944 {
1945         int retval;
1946         command_t *cortex_m3_cmd;
1947
1948         retval = armv7m_register_commands(cmd_ctx);
1949
1950         cortex_m3_cmd = register_command(cmd_ctx, NULL, "cortex_m3",
1951                         NULL, COMMAND_ANY, "cortex_m3 specific commands");
1952
1953         register_command(cmd_ctx, cortex_m3_cmd, "disassemble",
1954                         handle_cortex_m3_disassemble_command, COMMAND_EXEC,
1955                         "disassemble Thumb2 instructions <address> [<count>]");
1956         register_command(cmd_ctx, cortex_m3_cmd, "maskisr",
1957                         handle_cortex_m3_mask_interrupts_command, COMMAND_EXEC,
1958                         "mask cortex_m3 interrupts ['on'|'off']");
1959         register_command(cmd_ctx, cortex_m3_cmd, "vector_catch",
1960                         handle_cortex_m3_vector_catch_command, COMMAND_EXEC,
1961                         "catch hardware vectors ['all'|'none'|<list>]");
1962
1963         return retval;
1964 }
1965
1966 target_type_t cortexm3_target =
1967 {
1968         .name = "cortex_m3",
1969
1970         .poll = cortex_m3_poll,
1971         .arch_state = armv7m_arch_state,
1972
1973         .target_request_data = cortex_m3_target_request_data,
1974
1975         .halt = cortex_m3_halt,
1976         .resume = cortex_m3_resume,
1977         .step = cortex_m3_step,
1978
1979         .assert_reset = cortex_m3_assert_reset,
1980         .deassert_reset = cortex_m3_deassert_reset,
1981         .soft_reset_halt = cortex_m3_soft_reset_halt,
1982
1983         .get_gdb_reg_list = armv7m_get_gdb_reg_list,
1984
1985         .read_memory = cortex_m3_read_memory,
1986         .write_memory = cortex_m3_write_memory,
1987         .bulk_write_memory = cortex_m3_bulk_write_memory,
1988         .checksum_memory = armv7m_checksum_memory,
1989         .blank_check_memory = armv7m_blank_check_memory,
1990
1991         .run_algorithm = armv7m_run_algorithm,
1992
1993         .add_breakpoint = cortex_m3_add_breakpoint,
1994         .remove_breakpoint = cortex_m3_remove_breakpoint,
1995         .add_watchpoint = cortex_m3_add_watchpoint,
1996         .remove_watchpoint = cortex_m3_remove_watchpoint,
1997
1998         .register_commands = cortex_m3_register_commands,
1999         .target_create = cortex_m3_target_create,
2000         .init_target = cortex_m3_init_target,
2001         .has_mmu = cortex_m3_has_mmu,
2002         .examine = cortex_m3_examine,
2003 };