ARM: remove semihosting globals
[fw/openocd] / src / target / cortex_m3.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   This program is free software; you can redistribute it and/or modify  *
12  *   it under the terms of the GNU General Public License as published by  *
13  *   the Free Software Foundation; either version 2 of the License, or     *
14  *   (at your option) any later version.                                   *
15  *                                                                         *
16  *   This program is distributed in the hope that it will be useful,       *
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
19  *   GNU General Public License for more details.                          *
20  *                                                                         *
21  *   You should have received a copy of the GNU General Public License     *
22  *   along with this program; if not, write to the                         *
23  *   Free Software Foundation, Inc.,                                       *
24  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
25  *                                                                         *
26  *                                                                         *
27  *   Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0)              *
28  *                                                                         *
29  ***************************************************************************/
30 #ifdef HAVE_CONFIG_H
31 #include "config.h"
32 #endif
33
34 #include "breakpoints.h"
35 #include "cortex_m3.h"
36 #include "target_request.h"
37 #include "target_type.h"
38 #include "arm_disassembler.h"
39 #include "register.h"
40
41
42 /* NOTE:  most of this should work fine for the Cortex-M1 and
43  * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
44  */
45
46
47 /* forward declarations */
48 static int cortex_m3_set_breakpoint(struct target *target, struct breakpoint *breakpoint);
49 static int cortex_m3_unset_breakpoint(struct target *target, struct breakpoint *breakpoint);
50 static void cortex_m3_enable_watchpoints(struct target *target);
51 static int cortex_m3_store_core_reg_u32(struct target *target,
52                 enum armv7m_regtype type, uint32_t num, uint32_t value);
53
54 #ifdef ARMV7_GDB_HACKS
55 extern uint8_t armv7m_gdb_dummy_cpsr_value[];
56 extern struct reg armv7m_gdb_dummy_cpsr_reg;
57 #endif
58
59 static int cortexm3_dap_read_coreregister_u32(struct swjdp_common *swjdp,
60                 uint32_t *value, int regnum)
61 {
62         int retval;
63         uint32_t dcrdr;
64
65         /* because the DCB_DCRDR is used for the emulated dcc channel
66          * we have to save/restore the DCB_DCRDR when used */
67
68         mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
69
70         swjdp->trans_mode = TRANS_MODE_COMPOSITE;
71
72         /* mem_ap_write_u32(swjdp, DCB_DCRSR, regnum); */
73         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
74         dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum);
75
76         /* mem_ap_read_u32(swjdp, DCB_DCRDR, value); */
77         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
78         dap_ap_read_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
79
80         retval = swjdp_transaction_endcheck(swjdp);
81
82         /* restore DCB_DCRDR - this needs to be in a seperate
83          * transaction otherwise the emulated DCC channel breaks */
84         if (retval == ERROR_OK)
85                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
86
87         return retval;
88 }
89
90 static int cortexm3_dap_write_coreregister_u32(struct swjdp_common *swjdp,
91                 uint32_t value, int regnum)
92 {
93         int retval;
94         uint32_t dcrdr;
95
96         /* because the DCB_DCRDR is used for the emulated dcc channel
97          * we have to save/restore the DCB_DCRDR when used */
98
99         mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
100
101         swjdp->trans_mode = TRANS_MODE_COMPOSITE;
102
103         /* mem_ap_write_u32(swjdp, DCB_DCRDR, core_regs[i]); */
104         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
105         dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
106
107         /* mem_ap_write_u32(swjdp, DCB_DCRSR, i | DCRSR_WnR); */
108         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
109         dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum | DCRSR_WnR);
110
111         retval = swjdp_transaction_endcheck(swjdp);
112
113         /* restore DCB_DCRDR - this needs to be in a seperate
114          * transaction otherwise the emulated DCC channel breaks */
115         if (retval == ERROR_OK)
116                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
117
118         return retval;
119 }
120
121 static int cortex_m3_write_debug_halt_mask(struct target *target,
122                 uint32_t mask_on, uint32_t mask_off)
123 {
124         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
125         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
126
127         /* mask off status bits */
128         cortex_m3->dcb_dhcsr &= ~((0xFFFF << 16) | mask_off);
129         /* create new register mask */
130         cortex_m3->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
131
132         return mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, cortex_m3->dcb_dhcsr);
133 }
134
135 static int cortex_m3_clear_halt(struct target *target)
136 {
137         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
138         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
139
140         /* clear step if any */
141         cortex_m3_write_debug_halt_mask(target, C_HALT, C_STEP);
142
143         /* Read Debug Fault Status Register */
144         mem_ap_read_atomic_u32(swjdp, NVIC_DFSR, &cortex_m3->nvic_dfsr);
145         /* Clear Debug Fault Status */
146         mem_ap_write_atomic_u32(swjdp, NVIC_DFSR, cortex_m3->nvic_dfsr);
147         LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m3->nvic_dfsr);
148
149         return ERROR_OK;
150 }
151
152 static int cortex_m3_single_step_core(struct target *target)
153 {
154         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
155         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
156         uint32_t dhcsr_save;
157
158         /* backup dhcsr reg */
159         dhcsr_save = cortex_m3->dcb_dhcsr;
160
161         /* mask interrupts if not done already */
162         if (!(cortex_m3->dcb_dhcsr & C_MASKINTS))
163                 mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN);
164         mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN);
165         LOG_DEBUG(" ");
166
167         /* restore dhcsr reg */
168         cortex_m3->dcb_dhcsr = dhcsr_save;
169         cortex_m3_clear_halt(target);
170
171         return ERROR_OK;
172 }
173
174 static int cortex_m3_endreset_event(struct target *target)
175 {
176         int i;
177         uint32_t dcb_demcr;
178         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
179         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
180         struct cortex_m3_fp_comparator *fp_list = cortex_m3->fp_comparator_list;
181         struct cortex_m3_dwt_comparator *dwt_list = cortex_m3->dwt_comparator_list;
182
183         mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &dcb_demcr);
184         LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "",dcb_demcr);
185
186         /* this regsiter is used for emulated dcc channel */
187         mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
188
189         /* Enable debug requests */
190         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
191         if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN))
192                 mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
193
194         /* clear any interrupt masking */
195         cortex_m3_write_debug_halt_mask(target, 0, C_MASKINTS);
196
197         /* Enable trace and dwt */
198         mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | VC_HARDERR | VC_BUSERR);
199         /* Monitor bus faults */
200         mem_ap_write_u32(swjdp, NVIC_SHCSR, SHCSR_BUSFAULTENA);
201
202         /* Enable FPB */
203         target_write_u32(target, FP_CTRL, 3);
204         cortex_m3->fpb_enabled = 1;
205
206         /* Restore FPB registers */
207         for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++)
208         {
209                 target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
210         }
211
212         /* Restore DWT registers */
213         for (i = 0; i < cortex_m3->dwt_num_comp; i++)
214         {
215                 target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
216                                 dwt_list[i].comp);
217                 target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
218                                 dwt_list[i].mask);
219                 target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
220                                 dwt_list[i].function);
221         }
222         swjdp_transaction_endcheck(swjdp);
223
224         register_cache_invalidate(cortex_m3->armv7m.core_cache);
225
226         /* make sure we have latest dhcsr flags */
227         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
228
229         return ERROR_OK;
230 }
231
232 static int cortex_m3_examine_debug_reason(struct target *target)
233 {
234         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
235
236         /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason */
237         /* only check the debug reason if we don't know it already */
238
239         if ((target->debug_reason != DBG_REASON_DBGRQ)
240                 && (target->debug_reason != DBG_REASON_SINGLESTEP))
241         {
242                 if (cortex_m3->nvic_dfsr & DFSR_BKPT)
243                 {
244                         target->debug_reason = DBG_REASON_BREAKPOINT;
245                         if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
246                                 target->debug_reason = DBG_REASON_WPTANDBKPT;
247                 }
248                 else if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
249                         target->debug_reason = DBG_REASON_WATCHPOINT;
250                 else if (cortex_m3->nvic_dfsr & DFSR_VCATCH)
251                         target->debug_reason = DBG_REASON_BREAKPOINT;
252                 else /* EXTERNAL, HALTED */
253                         target->debug_reason = DBG_REASON_UNDEFINED;
254         }
255
256         return ERROR_OK;
257 }
258
259 static int cortex_m3_examine_exception_reason(struct target *target)
260 {
261         uint32_t shcsr, except_sr, cfsr = -1, except_ar = -1;
262         struct armv7m_common *armv7m = target_to_armv7m(target);
263         struct swjdp_common *swjdp = &armv7m->swjdp_info;
264
265         mem_ap_read_u32(swjdp, NVIC_SHCSR, &shcsr);
266         switch (armv7m->exception_number)
267         {
268                 case 2: /* NMI */
269                         break;
270                 case 3: /* Hard Fault */
271                         mem_ap_read_atomic_u32(swjdp, NVIC_HFSR, &except_sr);
272                         if (except_sr & 0x40000000)
273                         {
274                                 mem_ap_read_u32(swjdp, NVIC_CFSR, &cfsr);
275                         }
276                         break;
277                 case 4: /* Memory Management */
278                         mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
279                         mem_ap_read_u32(swjdp, NVIC_MMFAR, &except_ar);
280                         break;
281                 case 5: /* Bus Fault */
282                         mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
283                         mem_ap_read_u32(swjdp, NVIC_BFAR, &except_ar);
284                         break;
285                 case 6: /* Usage Fault */
286                         mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
287                         break;
288                 case 11:        /* SVCall */
289                         break;
290                 case 12:        /* Debug Monitor */
291                         mem_ap_read_u32(swjdp, NVIC_DFSR, &except_sr);
292                         break;
293                 case 14:        /* PendSV */
294                         break;
295                 case 15:        /* SysTick */
296                         break;
297                 default:
298                         except_sr = 0;
299                         break;
300         }
301         swjdp_transaction_endcheck(swjdp);
302         LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32 ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32 "", armv7m_exception_string(armv7m->exception_number), \
303                 shcsr, except_sr, cfsr, except_ar);
304         return ERROR_OK;
305 }
306
307 static int cortex_m3_debug_entry(struct target *target)
308 {
309         int i;
310         uint32_t xPSR;
311         int retval;
312         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
313         struct armv7m_common *armv7m = &cortex_m3->armv7m;
314         struct swjdp_common *swjdp = &armv7m->swjdp_info;
315
316         LOG_DEBUG(" ");
317
318         cortex_m3_clear_halt(target);
319         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
320
321         if ((retval = armv7m->examine_debug_reason(target)) != ERROR_OK)
322                 return retval;
323
324         /* Examine target state and mode */
325         /* First load register acessible through core debug port*/
326         int num_regs = armv7m->core_cache->num_regs;
327
328         for (i = 0; i < num_regs; i++)
329         {
330                 if (!armv7m->core_cache->reg_list[i].valid)
331                         armv7m->read_core_reg(target, i);
332         }
333
334         xPSR = buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32);
335
336 #ifdef ARMV7_GDB_HACKS
337         /* FIXME this breaks on scan chains with more than one Cortex-M3.
338          * Instead, each CM3 should have its own dummy value...
339          */
340         /* copy real xpsr reg for gdb, setting thumb bit */
341         buf_set_u32(armv7m_gdb_dummy_cpsr_value, 0, 32, xPSR);
342         buf_set_u32(armv7m_gdb_dummy_cpsr_value, 5, 1, 1);
343         armv7m_gdb_dummy_cpsr_reg.valid = armv7m->core_cache->reg_list[ARMV7M_xPSR].valid;
344         armv7m_gdb_dummy_cpsr_reg.dirty = armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty;
345 #endif
346
347         /* For IT instructions xPSR must be reloaded on resume and clear on debug exec */
348         if (xPSR & 0xf00)
349         {
350                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = armv7m->core_cache->reg_list[ARMV7M_xPSR].valid;
351                 cortex_m3_store_core_reg_u32(target, ARMV7M_REGISTER_CORE_GP, 16, xPSR &~ 0xff);
352         }
353
354         /* Are we in an exception handler */
355         if (xPSR & 0x1FF)
356         {
357                 armv7m->core_mode = ARMV7M_MODE_HANDLER;
358                 armv7m->exception_number = (xPSR & 0x1FF);
359         }
360         else
361         {
362                 armv7m->core_mode = buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_CONTROL].value, 0, 1);
363                 armv7m->exception_number = 0;
364         }
365
366         if (armv7m->exception_number)
367         {
368                 cortex_m3_examine_exception_reason(target);
369         }
370
371         LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", target->state: %s",
372                 armv7m_mode_strings[armv7m->core_mode],
373                 *(uint32_t*)(armv7m->core_cache->reg_list[15].value),
374                 target_state_name(target));
375
376         if (armv7m->post_debug_entry)
377                 armv7m->post_debug_entry(target);
378
379         return ERROR_OK;
380 }
381
382 static int cortex_m3_poll(struct target *target)
383 {
384         int retval;
385         enum target_state prev_target_state = target->state;
386         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
387         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
388
389         /* Read from Debug Halting Control and Status Register */
390         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
391         if (retval != ERROR_OK)
392         {
393                 target->state = TARGET_UNKNOWN;
394                 return retval;
395         }
396
397         if (cortex_m3->dcb_dhcsr & S_RESET_ST)
398         {
399                 /* check if still in reset */
400                 mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
401
402                 if (cortex_m3->dcb_dhcsr & S_RESET_ST)
403                 {
404                         target->state = TARGET_RESET;
405                         return ERROR_OK;
406                 }
407         }
408
409         if (target->state == TARGET_RESET)
410         {
411                 /* Cannot switch context while running so endreset is called with target->state == TARGET_RESET */
412                 LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32 "", cortex_m3->dcb_dhcsr);
413                 cortex_m3_endreset_event(target);
414                 target->state = TARGET_RUNNING;
415                 prev_target_state = TARGET_RUNNING;
416         }
417
418         if (cortex_m3->dcb_dhcsr & S_HALT)
419         {
420                 target->state = TARGET_HALTED;
421
422                 if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET))
423                 {
424                         if ((retval = cortex_m3_debug_entry(target)) != ERROR_OK)
425                                 return retval;
426
427                         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
428                 }
429                 if (prev_target_state == TARGET_DEBUG_RUNNING)
430                 {
431                         LOG_DEBUG(" ");
432                         if ((retval = cortex_m3_debug_entry(target)) != ERROR_OK)
433                                 return retval;
434
435                         target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
436                 }
437         }
438
439         /* REVISIT when S_SLEEP is set, it's in a Sleep or DeepSleep state.
440          * How best to model low power modes?
441          */
442
443         if (target->state == TARGET_UNKNOWN)
444         {
445                 /* check if processor is retiring instructions */
446                 if (cortex_m3->dcb_dhcsr & S_RETIRE_ST)
447                 {
448                         target->state = TARGET_RUNNING;
449                         return ERROR_OK;
450                 }
451         }
452
453         return ERROR_OK;
454 }
455
456 static int cortex_m3_halt(struct target *target)
457 {
458         LOG_DEBUG("target->state: %s",
459                 target_state_name(target));
460
461         if (target->state == TARGET_HALTED)
462         {
463                 LOG_DEBUG("target was already halted");
464                 return ERROR_OK;
465         }
466
467         if (target->state == TARGET_UNKNOWN)
468         {
469                 LOG_WARNING("target was in unknown state when halt was requested");
470         }
471
472         if (target->state == TARGET_RESET)
473         {
474                 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst())
475                 {
476                         LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
477                         return ERROR_TARGET_FAILURE;
478                 }
479                 else
480                 {
481                         /* we came here in a reset_halt or reset_init sequence
482                          * debug entry was already prepared in cortex_m3_prepare_reset_halt()
483                          */
484                         target->debug_reason = DBG_REASON_DBGRQ;
485
486                         return ERROR_OK;
487                 }
488         }
489
490         /* Write to Debug Halting Control and Status Register */
491         cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
492
493         target->debug_reason = DBG_REASON_DBGRQ;
494
495         return ERROR_OK;
496 }
497
498 static int cortex_m3_soft_reset_halt(struct target *target)
499 {
500         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
501         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
502         uint32_t dcb_dhcsr = 0;
503         int retval, timeout = 0;
504
505         /* Enter debug state on reset, cf. end_reset_event() */
506         mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
507
508         /* Request a reset */
509         mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR, AIRCR_VECTKEY | AIRCR_VECTRESET);
510         target->state = TARGET_RESET;
511
512         /* registers are now invalid */
513         register_cache_invalidate(cortex_m3->armv7m.core_cache);
514
515         while (timeout < 100)
516         {
517                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &dcb_dhcsr);
518                 if (retval == ERROR_OK)
519                 {
520                         mem_ap_read_atomic_u32(swjdp, NVIC_DFSR, &cortex_m3->nvic_dfsr);
521                         if ((dcb_dhcsr & S_HALT) && (cortex_m3->nvic_dfsr & DFSR_VCATCH))
522                         {
523                                 LOG_DEBUG("system reset-halted, dcb_dhcsr 0x%" PRIx32 ", nvic_dfsr 0x%" PRIx32 "", dcb_dhcsr, cortex_m3->nvic_dfsr);
524                                 cortex_m3_poll(target);
525                                 return ERROR_OK;
526                         }
527                         else
528                                 LOG_DEBUG("waiting for system reset-halt, dcb_dhcsr 0x%" PRIx32 ", %i ms", dcb_dhcsr, timeout);
529                 }
530                 timeout++;
531                 alive_sleep(1);
532         }
533
534         return ERROR_OK;
535 }
536
537 static void cortex_m3_enable_breakpoints(struct target *target)
538 {
539         struct breakpoint *breakpoint = target->breakpoints;
540
541         /* set any pending breakpoints */
542         while (breakpoint)
543         {
544                 if (breakpoint->set == 0)
545                         cortex_m3_set_breakpoint(target, breakpoint);
546                 breakpoint = breakpoint->next;
547         }
548 }
549
550 static int cortex_m3_resume(struct target *target, int current,
551                 uint32_t address, int handle_breakpoints, int debug_execution)
552 {
553         struct armv7m_common *armv7m = target_to_armv7m(target);
554         struct breakpoint *breakpoint = NULL;
555         uint32_t resume_pc;
556
557         if (target->state != TARGET_HALTED)
558         {
559                 LOG_WARNING("target not halted");
560                 return ERROR_TARGET_NOT_HALTED;
561         }
562
563         if (!debug_execution)
564         {
565                 target_free_all_working_areas(target);
566                 cortex_m3_enable_breakpoints(target);
567                 cortex_m3_enable_watchpoints(target);
568         }
569
570         if (debug_execution)
571         {
572                 /* Disable interrupts */
573                 /* We disable interrupts in the PRIMASK register instead of masking with C_MASKINTS,
574                  * This is probably the same issue as Cortex-M3 Errata  377493:
575                  * C_MASKINTS in parallel with disabled interrupts can cause local faults to not be taken. */
576                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
577                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
578                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
579
580                 /* Make sure we are in Thumb mode */
581                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
582                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
583                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
584                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
585         }
586
587         /* current = 1: continue on current pc, otherwise continue at <address> */
588         if (!current)
589         {
590                 buf_set_u32(armv7m->core_cache->reg_list[15].value, 0, 32, address);
591                 armv7m->core_cache->reg_list[15].dirty = 1;
592                 armv7m->core_cache->reg_list[15].valid = 1;
593         }
594
595         resume_pc = buf_get_u32(armv7m->core_cache->reg_list[15].value, 0, 32);
596
597         armv7m_restore_context(target);
598
599         /* the front-end may request us not to handle breakpoints */
600         if (handle_breakpoints)
601         {
602                 /* Single step past breakpoint at current address */
603                 if ((breakpoint = breakpoint_find(target, resume_pc)))
604                 {
605                         LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (ID: %d)",
606                                           breakpoint->address,
607                                           breakpoint->unique_id);
608                         cortex_m3_unset_breakpoint(target, breakpoint);
609                         cortex_m3_single_step_core(target);
610                         cortex_m3_set_breakpoint(target, breakpoint);
611                 }
612         }
613
614         /* Restart core */
615         cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
616
617         target->debug_reason = DBG_REASON_NOTHALTED;
618
619         /* registers are now invalid */
620         register_cache_invalidate(armv7m->core_cache);
621
622         if (!debug_execution)
623         {
624                 target->state = TARGET_RUNNING;
625                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
626                 LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc);
627         }
628         else
629         {
630                 target->state = TARGET_DEBUG_RUNNING;
631                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
632                 LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc);
633         }
634
635         return ERROR_OK;
636 }
637
638 /* int irqstepcount = 0; */
639 static int cortex_m3_step(struct target *target, int current,
640                 uint32_t address, int handle_breakpoints)
641 {
642         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
643         struct armv7m_common *armv7m = &cortex_m3->armv7m;
644         struct swjdp_common *swjdp = &armv7m->swjdp_info;
645         struct breakpoint *breakpoint = NULL;
646
647         if (target->state != TARGET_HALTED)
648         {
649                 LOG_WARNING("target not halted");
650                 return ERROR_TARGET_NOT_HALTED;
651         }
652
653         /* current = 1: continue on current pc, otherwise continue at <address> */
654         if (!current)
655                 buf_set_u32(cortex_m3->armv7m.core_cache->reg_list[15].value,
656                                 0, 32, address);
657
658         /* the front-end may request us not to handle breakpoints */
659         if (handle_breakpoints) {
660                 breakpoint = breakpoint_find(target, buf_get_u32(armv7m
661                                 ->core_cache->reg_list[15].value, 0, 32));
662                 if (breakpoint)
663                         cortex_m3_unset_breakpoint(target, breakpoint);
664         }
665
666         target->debug_reason = DBG_REASON_SINGLESTEP;
667
668         armv7m_restore_context(target);
669
670         target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
671
672         /* set step and clear halt */
673         cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
674         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
675
676         /* registers are now invalid */
677         register_cache_invalidate(cortex_m3->armv7m.core_cache);
678
679         if (breakpoint)
680                 cortex_m3_set_breakpoint(target, breakpoint);
681
682         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32 " nvic_icsr = 0x%" PRIx32 "", cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
683
684         cortex_m3_debug_entry(target);
685         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
686
687         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32 " nvic_icsr = 0x%" PRIx32 "", cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
688         return ERROR_OK;
689 }
690
691 static int cortex_m3_assert_reset(struct target *target)
692 {
693         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
694         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
695         int assert_srst = 1;
696
697         LOG_DEBUG("target->state: %s",
698                 target_state_name(target));
699
700         enum reset_types jtag_reset_config = jtag_get_reset_config();
701
702         /*
703          * We can reset Cortex-M3 targets using just the NVIC without
704          * requiring SRST, getting a SoC reset (or a core-only reset)
705          * instead of a system reset.
706          */
707         if (!(jtag_reset_config & RESET_HAS_SRST))
708                 assert_srst = 0;
709
710         /* Enable debug requests */
711         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
712         if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN))
713                 mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
714
715         mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
716
717         if (!target->reset_halt)
718         {
719                 /* Set/Clear C_MASKINTS in a separate operation */
720                 if (cortex_m3->dcb_dhcsr & C_MASKINTS)
721                         mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN | C_HALT);
722
723                 /* clear any debug flags before resuming */
724                 cortex_m3_clear_halt(target);
725
726                 /* clear C_HALT in dhcsr reg */
727                 cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
728
729                 /* Enter debug state on reset, cf. end_reset_event() */
730                 mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | VC_HARDERR | VC_BUSERR);
731         }
732         else
733         {
734                 /* Enter debug state on reset, cf. end_reset_event() */
735                 mem_ap_write_atomic_u32(swjdp, DCB_DEMCR, TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
736         }
737
738         /*
739          * When nRST is asserted on most Stellaris devices, it clears some of
740          * the debug state.  The ARMv7M and Cortex-M3 TRMs say that's wrong;
741          * and OpenOCD depends on those TRMs.  So we won't use SRST on those
742          * chips.  (Only power-on reset should affect debug state, beyond a
743          * few specified bits; not the chip's nRST input, wired to SRST.)
744          *
745          * REVISIT current errata specs don't seem to cover this issue.
746          * Do we have more details than this email?
747          *   https://lists.berlios.de/pipermail
748          *      /openocd-development/2008-August/003065.html
749          */
750         if (strcmp(target->variant, "lm3s") == 0)
751         {
752                 /* Check for silicon revisions with the issue. */
753                 uint32_t did0;
754
755                 if (target_read_u32(target, 0x400fe000, &did0) == ERROR_OK)
756                 {
757                         switch ((did0 >> 16) & 0xff)
758                         {
759                                 case 0:
760                                         /* all Sandstorm suffer issue */
761                                         assert_srst = 0;
762                                         break;
763
764                                 case 1:
765                                 case 3:
766                                         /* Fury and DustDevil rev A have
767                                          * this nRST problem.  It should
768                                          * be fixed in rev B silicon.
769                                          */
770                                         if (((did0 >> 8) & 0xff) == 0)
771                                                 assert_srst = 0;
772                                         break;
773                                 case 4:
774                                         /* Tempest should be fine. */
775                                         break;
776                         }
777                 }
778         }
779
780         if (assert_srst)
781         {
782                 /* default to asserting srst */
783                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
784                 {
785                         jtag_add_reset(1, 1);
786                 }
787                 else
788                 {
789                         jtag_add_reset(0, 1);
790                 }
791         }
792         else
793         {
794                 /* Use a standard Cortex-M3 software reset mechanism.
795                  * SYSRESETREQ will reset SoC peripherals outside the
796                  * core, like watchdog timers, if the SoC wires it up
797                  * correctly.  Else VECRESET can reset just the core.
798                  */
799                 mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
800                                 AIRCR_VECTKEY | AIRCR_SYSRESETREQ);
801                 LOG_DEBUG("Using Cortex-M3 SYSRESETREQ");
802
803                 {
804                         /* I do not know why this is necessary, but it
805                          * fixes strange effects (step/resume cause NMI
806                          * after reset) on LM3S6918 -- Michael Schwingen
807                          */
808                         uint32_t tmp;
809                         mem_ap_read_atomic_u32(swjdp, NVIC_AIRCR, &tmp);
810                 }
811         }
812
813         target->state = TARGET_RESET;
814         jtag_add_sleep(50000);
815
816         register_cache_invalidate(cortex_m3->armv7m.core_cache);
817
818         if (target->reset_halt)
819         {
820                 int retval;
821                 if ((retval = target_halt(target)) != ERROR_OK)
822                         return retval;
823         }
824
825         return ERROR_OK;
826 }
827
828 static int cortex_m3_deassert_reset(struct target *target)
829 {
830         LOG_DEBUG("target->state: %s",
831                 target_state_name(target));
832
833         /* deassert reset lines */
834         jtag_add_reset(0, 0);
835
836         return ERROR_OK;
837 }
838
839 static int
840 cortex_m3_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
841 {
842         int retval;
843         int fp_num = 0;
844         uint32_t hilo;
845         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
846         struct cortex_m3_fp_comparator *comparator_list = cortex_m3->fp_comparator_list;
847
848         if (breakpoint->set)
849         {
850                 LOG_WARNING("breakpoint (BPID: %d) already set", breakpoint->unique_id);
851                 return ERROR_OK;
852         }
853
854         if (cortex_m3->auto_bp_type)
855         {
856                 breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
857         }
858
859         if (breakpoint->type == BKPT_HARD)
860         {
861                 while (comparator_list[fp_num].used && (fp_num < cortex_m3->fp_num_code))
862                         fp_num++;
863                 if (fp_num >= cortex_m3->fp_num_code)
864                 {
865                         LOG_ERROR("Can not find free FPB Comparator!");
866                         return ERROR_FAIL;
867                 }
868                 breakpoint->set = fp_num + 1;
869                 hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
870                 comparator_list[fp_num].used = 1;
871                 comparator_list[fp_num].fpcr_value = (breakpoint->address & 0x1FFFFFFC) | hilo | 1;
872                 target_write_u32(target, comparator_list[fp_num].fpcr_address, comparator_list[fp_num].fpcr_value);
873                 LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "", fp_num, comparator_list[fp_num].fpcr_value);
874                 if (!cortex_m3->fpb_enabled)
875                 {
876                         LOG_DEBUG("FPB wasn't enabled, do it now");
877                         target_write_u32(target, FP_CTRL, 3);
878                 }
879         }
880         else if (breakpoint->type == BKPT_SOFT)
881         {
882                 uint8_t code[4];
883                 buf_set_u32(code, 0, 32, ARMV7M_T_BKPT(0x11));
884                 if ((retval = target_read_memory(target, breakpoint->address & 0xFFFFFFFE, breakpoint->length, 1, breakpoint->orig_instr)) != ERROR_OK)
885                 {
886                         return retval;
887                 }
888                 if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, breakpoint->length, 1, code)) != ERROR_OK)
889                 {
890                         return retval;
891                 }
892                 breakpoint->set = 0x11; /* Any nice value but 0 */
893         }
894
895         LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
896                           breakpoint->unique_id,
897                           (int)(breakpoint->type),
898                           breakpoint->address,
899                           breakpoint->length,
900                           breakpoint->set);
901
902         return ERROR_OK;
903 }
904
905 static int
906 cortex_m3_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
907 {
908         int retval;
909         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
910         struct cortex_m3_fp_comparator * comparator_list = cortex_m3->fp_comparator_list;
911
912         if (!breakpoint->set)
913         {
914                 LOG_WARNING("breakpoint not set");
915                 return ERROR_OK;
916         }
917
918         LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
919                           breakpoint->unique_id,
920                           (int)(breakpoint->type),
921                           breakpoint->address,
922                           breakpoint->length,
923                           breakpoint->set);
924
925         if (breakpoint->type == BKPT_HARD)
926         {
927                 int fp_num = breakpoint->set - 1;
928                 if ((fp_num < 0) || (fp_num >= cortex_m3->fp_num_code))
929                 {
930                         LOG_DEBUG("Invalid FP Comparator number in breakpoint");
931                         return ERROR_OK;
932                 }
933                 comparator_list[fp_num].used = 0;
934                 comparator_list[fp_num].fpcr_value = 0;
935                 target_write_u32(target, comparator_list[fp_num].fpcr_address, comparator_list[fp_num].fpcr_value);
936         }
937         else
938         {
939                 /* restore original instruction (kept in target endianness) */
940                 if (breakpoint->length == 4)
941                 {
942                         if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
943                         {
944                                 return retval;
945                         }
946                 }
947                 else
948                 {
949                         if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
950                         {
951                                 return retval;
952                         }
953                 }
954         }
955         breakpoint->set = 0;
956
957         return ERROR_OK;
958 }
959
960 static int
961 cortex_m3_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
962 {
963         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
964
965         if (cortex_m3->auto_bp_type)
966         {
967                 breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
968 #ifdef ARMV7_GDB_HACKS
969                 if (breakpoint->length != 2) {
970                         /* XXX Hack: Replace all breakpoints with length != 2 with
971                          * a hardware breakpoint. */
972                         breakpoint->type = BKPT_HARD;
973                         breakpoint->length = 2;
974                 }
975 #endif
976         }
977
978         if ((breakpoint->type == BKPT_HARD) && (breakpoint->address >= 0x20000000))
979         {
980                 LOG_INFO("flash patch comparator requested outside code memory region");
981                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
982         }
983
984         if ((breakpoint->type == BKPT_SOFT) && (breakpoint->address < 0x20000000))
985         {
986                 LOG_INFO("soft breakpoint requested in code (flash) memory region");
987                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
988         }
989
990         if ((breakpoint->type == BKPT_HARD) && (cortex_m3->fp_code_available < 1))
991         {
992                 LOG_INFO("no flash patch comparator unit available for hardware breakpoint");
993                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
994         }
995
996         if ((breakpoint->length != 2))
997         {
998                 LOG_INFO("only breakpoints of two bytes length supported");
999                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1000         }
1001
1002         if (breakpoint->type == BKPT_HARD)
1003                 cortex_m3->fp_code_available--;
1004         cortex_m3_set_breakpoint(target, breakpoint);
1005
1006         return ERROR_OK;
1007 }
1008
1009 static int
1010 cortex_m3_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1011 {
1012         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1013
1014         /* REVISIT why check? FBP can be updated with core running ... */
1015         if (target->state != TARGET_HALTED)
1016         {
1017                 LOG_WARNING("target not halted");
1018                 return ERROR_TARGET_NOT_HALTED;
1019         }
1020
1021         if (cortex_m3->auto_bp_type)
1022         {
1023                 breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
1024         }
1025
1026         if (breakpoint->set)
1027         {
1028                 cortex_m3_unset_breakpoint(target, breakpoint);
1029         }
1030
1031         if (breakpoint->type == BKPT_HARD)
1032                 cortex_m3->fp_code_available++;
1033
1034         return ERROR_OK;
1035 }
1036
1037 static int
1038 cortex_m3_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1039 {
1040         int dwt_num = 0;
1041         uint32_t mask, temp;
1042         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1043
1044         /* watchpoint params were validated earlier */
1045         mask = 0;
1046         temp = watchpoint->length;
1047         while (temp) {
1048                 temp >>= 1;
1049                 mask++;
1050         }
1051         mask--;
1052
1053         /* REVISIT Don't fully trust these "not used" records ... users
1054          * may set up breakpoints by hand, e.g. dual-address data value
1055          * watchpoint using comparator #1; comparator #0 matching cycle
1056          * count; send data trace info through ITM and TPIU; etc
1057          */
1058         struct cortex_m3_dwt_comparator *comparator;
1059
1060         for (comparator = cortex_m3->dwt_comparator_list;
1061                         comparator->used && dwt_num < cortex_m3->dwt_num_comp;
1062                         comparator++, dwt_num++)
1063                 continue;
1064         if (dwt_num >= cortex_m3->dwt_num_comp)
1065         {
1066                 LOG_ERROR("Can not find free DWT Comparator");
1067                 return ERROR_FAIL;
1068         }
1069         comparator->used = 1;
1070         watchpoint->set = dwt_num + 1;
1071
1072         comparator->comp = watchpoint->address;
1073         target_write_u32(target, comparator->dwt_comparator_address + 0,
1074                         comparator->comp);
1075
1076         comparator->mask = mask;
1077         target_write_u32(target, comparator->dwt_comparator_address + 4,
1078                         comparator->mask);
1079
1080         switch (watchpoint->rw) {
1081         case WPT_READ:
1082                 comparator->function = 5;
1083                 break;
1084         case WPT_WRITE:
1085                 comparator->function = 6;
1086                 break;
1087         case WPT_ACCESS:
1088                 comparator->function = 7;
1089                 break;
1090         }
1091         target_write_u32(target, comparator->dwt_comparator_address + 8,
1092                         comparator->function);
1093
1094         LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
1095                         watchpoint->unique_id, dwt_num,
1096                         (unsigned) comparator->comp,
1097                         (unsigned) comparator->mask,
1098                         (unsigned) comparator->function);
1099         return ERROR_OK;
1100 }
1101
1102 static int
1103 cortex_m3_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1104 {
1105         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1106         struct cortex_m3_dwt_comparator *comparator;
1107         int dwt_num;
1108
1109         if (!watchpoint->set)
1110         {
1111                 LOG_WARNING("watchpoint (wpid: %d) not set",
1112                                 watchpoint->unique_id);
1113                 return ERROR_OK;
1114         }
1115
1116         dwt_num = watchpoint->set - 1;
1117
1118         LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear",
1119                         watchpoint->unique_id, dwt_num,
1120                         (unsigned) watchpoint->address);
1121
1122         if ((dwt_num < 0) || (dwt_num >= cortex_m3->dwt_num_comp))
1123         {
1124                 LOG_DEBUG("Invalid DWT Comparator number in watchpoint");
1125                 return ERROR_OK;
1126         }
1127
1128         comparator = cortex_m3->dwt_comparator_list + dwt_num;
1129         comparator->used = 0;
1130         comparator->function = 0;
1131         target_write_u32(target, comparator->dwt_comparator_address + 8,
1132                         comparator->function);
1133
1134         watchpoint->set = 0;
1135
1136         return ERROR_OK;
1137 }
1138
1139 static int
1140 cortex_m3_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1141 {
1142         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1143
1144         if (cortex_m3->dwt_comp_available < 1)
1145         {
1146                 LOG_DEBUG("no comparators?");
1147                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1148         }
1149
1150         /* hardware doesn't support data value masking */
1151         if (watchpoint->mask != ~(uint32_t)0) {
1152                 LOG_DEBUG("watchpoint value masks not supported");
1153                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1154         }
1155
1156         /* hardware allows address masks of up to 32K */
1157         unsigned mask;
1158
1159         for (mask = 0; mask < 16; mask++) {
1160                 if ((1u << mask) == watchpoint->length)
1161                         break;
1162         }
1163         if (mask == 16) {
1164                 LOG_DEBUG("unsupported watchpoint length");
1165                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1166         }
1167         if (watchpoint->address & ((1 << mask) - 1)) {
1168                 LOG_DEBUG("watchpoint address is unaligned");
1169                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1170         }
1171
1172         /* Caller doesn't seem to be able to describe watching for data
1173          * values of zero; that flags "no value".
1174          *
1175          * REVISIT This DWT may well be able to watch for specific data
1176          * values.  Requires comparator #1 to set DATAVMATCH and match
1177          * the data, and another comparator (DATAVADDR0) matching addr.
1178          */
1179         if (watchpoint->value) {
1180                 LOG_DEBUG("data value watchpoint not YET supported");
1181                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1182         }
1183
1184         cortex_m3->dwt_comp_available--;
1185         LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1186
1187         return ERROR_OK;
1188 }
1189
1190 static int
1191 cortex_m3_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1192 {
1193         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1194
1195         /* REVISIT why check? DWT can be updated with core running ... */
1196         if (target->state != TARGET_HALTED)
1197         {
1198                 LOG_WARNING("target not halted");
1199                 return ERROR_TARGET_NOT_HALTED;
1200         }
1201
1202         if (watchpoint->set)
1203         {
1204                 cortex_m3_unset_watchpoint(target, watchpoint);
1205         }
1206
1207         cortex_m3->dwt_comp_available++;
1208         LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1209
1210         return ERROR_OK;
1211 }
1212
1213 static void cortex_m3_enable_watchpoints(struct target *target)
1214 {
1215         struct watchpoint *watchpoint = target->watchpoints;
1216
1217         /* set any pending watchpoints */
1218         while (watchpoint)
1219         {
1220                 if (watchpoint->set == 0)
1221                         cortex_m3_set_watchpoint(target, watchpoint);
1222                 watchpoint = watchpoint->next;
1223         }
1224 }
1225
1226 static int cortex_m3_load_core_reg_u32(struct target *target,
1227                 enum armv7m_regtype type, uint32_t num, uint32_t * value)
1228 {
1229         int retval;
1230         struct armv7m_common *armv7m = target_to_armv7m(target);
1231         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1232
1233         /* NOTE:  we "know" here that the register identifiers used
1234          * in the v7m header match the Cortex-M3 Debug Core Register
1235          * Selector values for R0..R15, xPSR, MSP, and PSP.
1236          */
1237         switch (num) {
1238         case 0 ... 18:
1239                 /* read a normal core register */
1240                 retval = cortexm3_dap_read_coreregister_u32(swjdp, value, num);
1241
1242                 if (retval != ERROR_OK)
1243                 {
1244                         LOG_ERROR("JTAG failure %i",retval);
1245                         return ERROR_JTAG_DEVICE_ERROR;
1246                 }
1247                 LOG_DEBUG("load from core reg %i  value 0x%" PRIx32 "",(int)num,*value);
1248                 break;
1249
1250         case ARMV7M_PRIMASK:
1251         case ARMV7M_BASEPRI:
1252         case ARMV7M_FAULTMASK:
1253         case ARMV7M_CONTROL:
1254                 /* Cortex-M3 packages these four registers as bitfields
1255                  * in one Debug Core register.  So say r0 and r2 docs;
1256                  * it was removed from r1 docs, but still works.
1257                  */
1258                 cortexm3_dap_read_coreregister_u32(swjdp, value, 20);
1259
1260                 switch (num)
1261                 {
1262                         case ARMV7M_PRIMASK:
1263                                 *value = buf_get_u32((uint8_t*)value, 0, 1);
1264                                 break;
1265
1266                         case ARMV7M_BASEPRI:
1267                                 *value = buf_get_u32((uint8_t*)value, 8, 8);
1268                                 break;
1269
1270                         case ARMV7M_FAULTMASK:
1271                                 *value = buf_get_u32((uint8_t*)value, 16, 1);
1272                                 break;
1273
1274                         case ARMV7M_CONTROL:
1275                                 *value = buf_get_u32((uint8_t*)value, 24, 2);
1276                                 break;
1277                 }
1278
1279                 LOG_DEBUG("load from special reg %i value 0x%" PRIx32 "", (int)num, *value);
1280                 break;
1281
1282         default:
1283                 return ERROR_INVALID_ARGUMENTS;
1284         }
1285
1286         return ERROR_OK;
1287 }
1288
1289 static int cortex_m3_store_core_reg_u32(struct target *target,
1290                 enum armv7m_regtype type, uint32_t num, uint32_t value)
1291 {
1292         int retval;
1293         uint32_t reg;
1294         struct armv7m_common *armv7m = target_to_armv7m(target);
1295         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1296
1297 #ifdef ARMV7_GDB_HACKS
1298         /* If the LR register is being modified, make sure it will put us
1299          * in "thumb" mode, or an INVSTATE exception will occur. This is a
1300          * hack to deal with the fact that gdb will sometimes "forge"
1301          * return addresses, and doesn't set the LSB correctly (i.e., when
1302          * printing expressions containing function calls, it sets LR = 0.)
1303          * Valid exception return codes have bit 0 set too.
1304          */
1305         if (num == ARMV7M_R14)
1306                 value |= 0x01;
1307 #endif
1308
1309         /* NOTE:  we "know" here that the register identifiers used
1310          * in the v7m header match the Cortex-M3 Debug Core Register
1311          * Selector values for R0..R15, xPSR, MSP, and PSP.
1312          */
1313         switch (num) {
1314         case 0 ... 18:
1315                 retval = cortexm3_dap_write_coreregister_u32(swjdp, value, num);
1316                 if (retval != ERROR_OK)
1317                 {
1318                         LOG_ERROR("JTAG failure %i", retval);
1319                         armv7m->core_cache->reg_list[num].dirty = armv7m->core_cache->reg_list[num].valid;
1320                         return ERROR_JTAG_DEVICE_ERROR;
1321                 }
1322                 LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value);
1323                 break;
1324
1325         case ARMV7M_PRIMASK:
1326         case ARMV7M_BASEPRI:
1327         case ARMV7M_FAULTMASK:
1328         case ARMV7M_CONTROL:
1329                 /* Cortex-M3 packages these four registers as bitfields
1330                  * in one Debug Core register.  So say r0 and r2 docs;
1331                  * it was removed from r1 docs, but still works.
1332                  */
1333                 cortexm3_dap_read_coreregister_u32(swjdp, &reg, 20);
1334
1335                 switch (num)
1336                 {
1337                         case ARMV7M_PRIMASK:
1338                                 buf_set_u32((uint8_t*)&reg, 0, 1, value);
1339                                 break;
1340
1341                         case ARMV7M_BASEPRI:
1342                                 buf_set_u32((uint8_t*)&reg, 8, 8, value);
1343                                 break;
1344
1345                         case ARMV7M_FAULTMASK:
1346                                 buf_set_u32((uint8_t*)&reg, 16, 1, value);
1347                                 break;
1348
1349                         case ARMV7M_CONTROL:
1350                                 buf_set_u32((uint8_t*)&reg, 24, 2, value);
1351                                 break;
1352                 }
1353
1354                 cortexm3_dap_write_coreregister_u32(swjdp, reg, 20);
1355
1356                 LOG_DEBUG("write special reg %i value 0x%" PRIx32 " ", (int)num, value);
1357                 break;
1358
1359         default:
1360                 return ERROR_INVALID_ARGUMENTS;
1361         }
1362
1363         return ERROR_OK;
1364 }
1365
1366 static int cortex_m3_read_memory(struct target *target, uint32_t address,
1367                 uint32_t size, uint32_t count, uint8_t *buffer)
1368 {
1369         struct armv7m_common *armv7m = target_to_armv7m(target);
1370         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1371         int retval = ERROR_INVALID_ARGUMENTS;
1372
1373         /* cortex_m3 handles unaligned memory access */
1374         if (count && buffer) {
1375                 switch (size) {
1376                 case 4:
1377                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1378                         break;
1379                 case 2:
1380                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1381                         break;
1382                 case 1:
1383                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1384                         break;
1385                 }
1386         }
1387
1388         return retval;
1389 }
1390
1391 static int cortex_m3_write_memory(struct target *target, uint32_t address,
1392                 uint32_t size, uint32_t count, uint8_t *buffer)
1393 {
1394         struct armv7m_common *armv7m = target_to_armv7m(target);
1395         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1396         int retval = ERROR_INVALID_ARGUMENTS;
1397
1398         if (count && buffer) {
1399                 switch (size) {
1400                 case 4:
1401                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1402                         break;
1403                 case 2:
1404                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1405                         break;
1406                 case 1:
1407                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1408                         break;
1409                 }
1410         }
1411
1412         return retval;
1413 }
1414
1415 static int cortex_m3_bulk_write_memory(struct target *target, uint32_t address,
1416                 uint32_t count, uint8_t *buffer)
1417 {
1418         return cortex_m3_write_memory(target, address, 4, count, buffer);
1419 }
1420
1421 static int cortex_m3_init_target(struct command_context *cmd_ctx,
1422                 struct target *target)
1423 {
1424         armv7m_build_reg_cache(target);
1425         return ERROR_OK;
1426 }
1427
1428 /* REVISIT cache valid/dirty bits are unmaintained.  We could set "valid"
1429  * on r/w if the core is not running, and clear on resume or reset ... or
1430  * at least, in a post_restore_context() method.
1431  */
1432
1433 struct dwt_reg_state {
1434         struct target   *target;
1435         uint32_t        addr;
1436         uint32_t        value;  /* scratch/cache */
1437 };
1438
1439 static int cortex_m3_dwt_get_reg(struct reg *reg)
1440 {
1441         struct dwt_reg_state *state = reg->arch_info;
1442
1443         return target_read_u32(state->target, state->addr, &state->value);
1444 }
1445
1446 static int cortex_m3_dwt_set_reg(struct reg *reg, uint8_t *buf)
1447 {
1448         struct dwt_reg_state *state = reg->arch_info;
1449
1450         return target_write_u32(state->target, state->addr,
1451                         buf_get_u32(buf, 0, reg->size));
1452 }
1453
1454 struct dwt_reg {
1455         uint32_t        addr;
1456         char            *name;
1457         unsigned        size;
1458 };
1459
1460 static struct dwt_reg dwt_base_regs[] = {
1461         { DWT_CTRL, "dwt_ctrl", 32, },
1462         { DWT_CYCCNT, "dwt_cyccnt", 32, },
1463         /* plus some 8 bit counters, useful for profiling with TPIU */
1464 };
1465
1466 static struct dwt_reg dwt_comp[] = {
1467 #define DWT_COMPARATOR(i) \
1468                 { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
1469                 { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
1470                 { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
1471         DWT_COMPARATOR(0),
1472         DWT_COMPARATOR(1),
1473         DWT_COMPARATOR(2),
1474         DWT_COMPARATOR(3),
1475 #undef DWT_COMPARATOR
1476 };
1477
1478 static const struct reg_arch_type dwt_reg_type = {
1479         .get = cortex_m3_dwt_get_reg,
1480         .set = cortex_m3_dwt_set_reg,
1481 };
1482
1483 static void
1484 cortex_m3_dwt_addreg(struct target *t, struct reg *r, struct dwt_reg *d)
1485 {
1486         struct dwt_reg_state *state;
1487
1488         state = calloc(1, sizeof *state);
1489         if (!state)
1490                 return;
1491         state->addr = d->addr;
1492         state->target = t;
1493
1494         r->name = d->name;
1495         r->size = d->size;
1496         r->value = &state->value;
1497         r->arch_info = state;
1498         r->type = &dwt_reg_type;
1499 }
1500
1501 static void
1502 cortex_m3_dwt_setup(struct cortex_m3_common *cm3, struct target *target)
1503 {
1504         uint32_t dwtcr;
1505         struct reg_cache *cache;
1506         struct cortex_m3_dwt_comparator *comparator;
1507         int reg, i;
1508
1509         target_read_u32(target, DWT_CTRL, &dwtcr);
1510         if (!dwtcr) {
1511                 LOG_DEBUG("no DWT");
1512                 return;
1513         }
1514
1515         cm3->dwt_num_comp = (dwtcr >> 28) & 0xF;
1516         cm3->dwt_comp_available = cm3->dwt_num_comp;
1517         cm3->dwt_comparator_list = calloc(cm3->dwt_num_comp,
1518                         sizeof(struct cortex_m3_dwt_comparator));
1519         if (!cm3->dwt_comparator_list) {
1520 fail0:
1521                 cm3->dwt_num_comp = 0;
1522                 LOG_ERROR("out of mem");
1523                 return;
1524         }
1525
1526         cache = calloc(1, sizeof *cache);
1527         if (!cache) {
1528 fail1:
1529                 free(cm3->dwt_comparator_list);
1530                 goto fail0;
1531         }
1532         cache->name = "cortex-m3 dwt registers";
1533         cache->num_regs = 2 + cm3->dwt_num_comp * 3;
1534         cache->reg_list = calloc(cache->num_regs, sizeof *cache->reg_list);
1535         if (!cache->reg_list) {
1536                 free(cache);
1537                 goto fail1;
1538         }
1539
1540         for (reg = 0; reg < 2; reg++)
1541                 cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1542                                 dwt_base_regs + reg);
1543
1544         comparator = cm3->dwt_comparator_list;
1545         for (i = 0; i < cm3->dwt_num_comp; i++, comparator++) {
1546                 int j;
1547
1548                 comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
1549                 for (j = 0; j < 3; j++, reg++)
1550                         cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1551                                         dwt_comp + 3 * i + j);
1552         }
1553
1554         *register_get_last_cache_p(&target->reg_cache) = cache;
1555         cm3->dwt_cache = cache;
1556
1557         LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
1558                         dwtcr, cm3->dwt_num_comp,
1559                         (dwtcr & (0xf << 24)) ? " only" : "/trigger");
1560
1561         /* REVISIT:  if num_comp > 1, check whether comparator #1 can
1562          * implement single-address data value watchpoints ... so we
1563          * won't need to check it later, when asked to set one up.
1564          */
1565 }
1566
1567 static int cortex_m3_examine(struct target *target)
1568 {
1569         int retval;
1570         uint32_t cpuid, fpcr;
1571         int i;
1572         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1573         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
1574
1575         if ((retval = ahbap_debugport_init(swjdp)) != ERROR_OK)
1576                 return retval;
1577
1578         if (!target_was_examined(target))
1579         {
1580                 target_set_examined(target);
1581
1582                 /* Read from Device Identification Registers */
1583                 retval = target_read_u32(target, CPUID, &cpuid);
1584                 if (retval != ERROR_OK)
1585                         return retval;
1586
1587                 if (((cpuid >> 4) & 0xc3f) == 0xc23)
1588                         LOG_DEBUG("CORTEX-M3 processor detected");
1589                 LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid);
1590
1591                 /* NOTE: FPB and DWT are both optional. */
1592
1593                 /* Setup FPB */
1594                 target_read_u32(target, FP_CTRL, &fpcr);
1595                 cortex_m3->auto_bp_type = 1;
1596                 cortex_m3->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF); /* bits [14:12] and [7:4] */
1597                 cortex_m3->fp_num_lit = (fpcr >> 8) & 0xF;
1598                 cortex_m3->fp_code_available = cortex_m3->fp_num_code;
1599                 cortex_m3->fp_comparator_list = calloc(cortex_m3->fp_num_code + cortex_m3->fp_num_lit, sizeof(struct cortex_m3_fp_comparator));
1600                 cortex_m3->fpb_enabled = fpcr & 1;
1601                 for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++)
1602                 {
1603                         cortex_m3->fp_comparator_list[i].type = (i < cortex_m3->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
1604                         cortex_m3->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
1605                 }
1606                 LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i", fpcr, cortex_m3->fp_num_code, cortex_m3->fp_num_lit);
1607
1608                 /* Setup DWT */
1609                 cortex_m3_dwt_setup(cortex_m3, target);
1610         }
1611
1612         return ERROR_OK;
1613 }
1614
1615 static int cortex_m3_dcc_read(struct swjdp_common *swjdp, uint8_t *value, uint8_t *ctrl)
1616 {
1617         uint16_t dcrdr;
1618
1619         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1620         *ctrl = (uint8_t)dcrdr;
1621         *value = (uint8_t)(dcrdr >> 8);
1622
1623         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1624
1625         /* write ack back to software dcc register
1626          * signify we have read data */
1627         if (dcrdr & (1 << 0))
1628         {
1629                 dcrdr = 0;
1630                 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1631         }
1632
1633         return ERROR_OK;
1634 }
1635
1636 static int cortex_m3_target_request_data(struct target *target,
1637                 uint32_t size, uint8_t *buffer)
1638 {
1639         struct armv7m_common *armv7m = target_to_armv7m(target);
1640         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1641         uint8_t data;
1642         uint8_t ctrl;
1643         uint32_t i;
1644
1645         for (i = 0; i < (size * 4); i++)
1646         {
1647                 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1648                 buffer[i] = data;
1649         }
1650
1651         return ERROR_OK;
1652 }
1653
1654 static int cortex_m3_handle_target_request(void *priv)
1655 {
1656         struct target *target = priv;
1657         if (!target_was_examined(target))
1658                 return ERROR_OK;
1659         struct armv7m_common *armv7m = target_to_armv7m(target);
1660         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1661
1662         if (!target->dbg_msg_enabled)
1663                 return ERROR_OK;
1664
1665         if (target->state == TARGET_RUNNING)
1666         {
1667                 uint8_t data;
1668                 uint8_t ctrl;
1669
1670                 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1671
1672                 /* check if we have data */
1673                 if (ctrl & (1 << 0))
1674                 {
1675                         uint32_t request;
1676
1677                         /* we assume target is quick enough */
1678                         request = data;
1679                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1680                         request |= (data << 8);
1681                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1682                         request |= (data << 16);
1683                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1684                         request |= (data << 24);
1685                         target_request(target, request);
1686                 }
1687         }
1688
1689         return ERROR_OK;
1690 }
1691
1692 static int cortex_m3_init_arch_info(struct target *target,
1693                 struct cortex_m3_common *cortex_m3, struct jtag_tap *tap)
1694 {
1695         int retval;
1696         struct armv7m_common *armv7m = &cortex_m3->armv7m;
1697
1698         armv7m_init_arch_info(target, armv7m);
1699
1700         /* prepare JTAG information for the new target */
1701         cortex_m3->jtag_info.tap = tap;
1702         cortex_m3->jtag_info.scann_size = 4;
1703
1704         armv7m->swjdp_info.dp_select_value = -1;
1705         armv7m->swjdp_info.ap_csw_value = -1;
1706         armv7m->swjdp_info.ap_tar_value = -1;
1707         armv7m->swjdp_info.jtag_info = &cortex_m3->jtag_info;
1708         armv7m->swjdp_info.memaccess_tck = 8;
1709         armv7m->swjdp_info.tar_autoincr_block = (1 << 12);      /* Cortex-M3 has 4096 bytes autoincrement range */
1710
1711         /* register arch-specific functions */
1712         armv7m->examine_debug_reason = cortex_m3_examine_debug_reason;
1713
1714         armv7m->post_debug_entry = NULL;
1715
1716         armv7m->pre_restore_context = NULL;
1717         armv7m->post_restore_context = NULL;
1718
1719         armv7m->load_core_reg_u32 = cortex_m3_load_core_reg_u32;
1720         armv7m->store_core_reg_u32 = cortex_m3_store_core_reg_u32;
1721
1722         target_register_timer_callback(cortex_m3_handle_target_request, 1, 1, target);
1723
1724         if ((retval = arm_jtag_setup_connection(&cortex_m3->jtag_info)) != ERROR_OK)
1725         {
1726                 return retval;
1727         }
1728
1729         return ERROR_OK;
1730 }
1731
1732 static int cortex_m3_target_create(struct target *target, Jim_Interp *interp)
1733 {
1734         struct cortex_m3_common *cortex_m3 = calloc(1,sizeof(struct cortex_m3_common));
1735
1736         cortex_m3->common_magic = CORTEX_M3_COMMON_MAGIC;
1737         cortex_m3_init_arch_info(target, cortex_m3, target->tap);
1738
1739         return ERROR_OK;
1740 }
1741
1742 /*--------------------------------------------------------------------------*/
1743
1744 static int cortex_m3_verify_pointer(struct command_context *cmd_ctx,
1745                 struct cortex_m3_common *cm3)
1746 {
1747         if (cm3->common_magic != CORTEX_M3_COMMON_MAGIC) {
1748                 command_print(cmd_ctx, "target is not a Cortex-M3");
1749                 return ERROR_TARGET_INVALID;
1750         }
1751         return ERROR_OK;
1752 }
1753
1754 /*
1755  * Only stuff below this line should need to verify that its target
1756  * is a Cortex-M3.  Everything else should have indirected through the
1757  * cortexm3_target structure, which is only used with CM3 targets.
1758  */
1759
1760 /*
1761  * REVISIT Thumb2 disassembly should work for all ARMv7 cores, as well
1762  * as at least ARM-1156T2.  The interesting thing about Cortex-M is
1763  * that *only* Thumb2 disassembly matters.  There are also some small
1764  * additions to Thumb2 that are specific to ARMv7-M.
1765  */
1766 COMMAND_HANDLER(handle_cortex_m3_disassemble_command)
1767 {
1768         int retval;
1769         struct target *target = get_current_target(CMD_CTX);
1770         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1771         uint32_t address;
1772         unsigned long count = 1;
1773         struct arm_instruction cur_instruction;
1774
1775         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
1776         if (retval != ERROR_OK)
1777                 return retval;
1778
1779         errno = 0;
1780         switch (CMD_ARGC) {
1781         case 2:
1782                 COMMAND_PARSE_NUMBER(ulong, CMD_ARGV[1], count);
1783                 /* FALL THROUGH */
1784         case 1:
1785                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
1786                 break;
1787         default:
1788                 command_print(CMD_CTX,
1789                         "usage: cortex_m3 disassemble <address> [<count>]");
1790                 return ERROR_OK;
1791         }
1792
1793         while (count--) {
1794                 retval = thumb2_opcode(target, address, &cur_instruction);
1795                 if (retval != ERROR_OK)
1796                         return retval;
1797                 command_print(CMD_CTX, "%s", cur_instruction.text);
1798                 address += cur_instruction.instruction_size;
1799         }
1800
1801         return ERROR_OK;
1802 }
1803
1804 static const struct {
1805         char name[10];
1806         unsigned mask;
1807 } vec_ids[] = {
1808         { "hard_err",   VC_HARDERR, },
1809         { "int_err",    VC_INTERR, },
1810         { "bus_err",    VC_BUSERR, },
1811         { "state_err",  VC_STATERR, },
1812         { "chk_err",    VC_CHKERR, },
1813         { "nocp_err",   VC_NOCPERR, },
1814         { "mm_err",     VC_MMERR, },
1815         { "reset",      VC_CORERESET, },
1816 };
1817
1818 COMMAND_HANDLER(handle_cortex_m3_vector_catch_command)
1819 {
1820         struct target *target = get_current_target(CMD_CTX);
1821         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1822         struct armv7m_common *armv7m = &cortex_m3->armv7m;
1823         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1824         uint32_t demcr = 0;
1825         int retval;
1826
1827         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
1828         if (retval != ERROR_OK)
1829                 return retval;
1830
1831         mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
1832
1833         if (CMD_ARGC > 0) {
1834                 unsigned catch = 0;
1835
1836                 if (CMD_ARGC == 1) {
1837                         if (strcmp(CMD_ARGV[0], "all") == 0) {
1838                                 catch = VC_HARDERR | VC_INTERR | VC_BUSERR
1839                                         | VC_STATERR | VC_CHKERR | VC_NOCPERR
1840                                         | VC_MMERR | VC_CORERESET;
1841                                 goto write;
1842                         } else if (strcmp(CMD_ARGV[0], "none") == 0) {
1843                                 goto write;
1844                         }
1845                 }
1846                 while (CMD_ARGC-- > 0) {
1847                         unsigned i;
1848                         for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
1849                                 if (strcmp(CMD_ARGV[CMD_ARGC], vec_ids[i].name) != 0)
1850                                         continue;
1851                                 catch |= vec_ids[i].mask;
1852                                 break;
1853                         }
1854                         if (i == ARRAY_SIZE(vec_ids)) {
1855                                 LOG_ERROR("No CM3 vector '%s'", CMD_ARGV[CMD_ARGC]);
1856                                 return ERROR_INVALID_ARGUMENTS;
1857                         }
1858                 }
1859 write:
1860                 demcr &= ~0xffff;
1861                 demcr |= catch;
1862
1863                 /* write, but don't assume it stuck */
1864                 mem_ap_write_u32(swjdp, DCB_DEMCR, demcr);
1865                 mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
1866         }
1867
1868         for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++)
1869         {
1870                 command_print(CMD_CTX, "%9s: %s", vec_ids[i].name,
1871                         (demcr & vec_ids[i].mask) ? "catch" : "ignore");
1872         }
1873
1874         return ERROR_OK;
1875 }
1876
1877 COMMAND_HANDLER(handle_cortex_m3_mask_interrupts_command)
1878 {
1879         struct target *target = get_current_target(CMD_CTX);
1880         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1881         int retval;
1882
1883         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
1884         if (retval != ERROR_OK)
1885                 return retval;
1886
1887         if (target->state != TARGET_HALTED)
1888         {
1889                 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
1890                 return ERROR_OK;
1891         }
1892
1893         if (CMD_ARGC > 0)
1894         {
1895                 bool enable;
1896                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
1897                 uint32_t mask_on = C_HALT | (enable ? C_MASKINTS : 0);
1898                 uint32_t mask_off = enable ? 0 : C_MASKINTS;
1899                 cortex_m3_write_debug_halt_mask(target, mask_on, mask_off);
1900         }
1901
1902         command_print(CMD_CTX, "cortex_m3 interrupt mask %s",
1903                         (cortex_m3->dcb_dhcsr & C_MASKINTS) ? "on" : "off");
1904
1905         return ERROR_OK;
1906 }
1907
1908 static const struct command_registration cortex_m3_exec_command_handlers[] = {
1909         {
1910                 .name = "disassemble",
1911                 .handler = &handle_cortex_m3_disassemble_command,
1912                 .mode = COMMAND_EXEC,
1913                 .help = "disassemble Thumb2 instructions",
1914                 .usage = "<address> [<count>]",
1915         },
1916         {
1917                 .name = "maskisr",
1918                 .handler = &handle_cortex_m3_mask_interrupts_command,
1919                 .mode = COMMAND_EXEC,
1920                 .help = "mask cortex_m3 interrupts",
1921                 .usage = "['on'|'off']",
1922         },
1923         {
1924                 .name = "vector_catch",
1925                 .handler = &handle_cortex_m3_vector_catch_command,
1926                 .mode = COMMAND_EXEC,
1927                 .help = "catch hardware vectors",
1928                 .usage = "['all'|'none'|<list>]",
1929         },
1930         COMMAND_REGISTRATION_DONE
1931 };
1932 static const struct command_registration cortex_m3_command_handlers[] = {
1933         {
1934                 .chain = armv7m_command_handlers,
1935         },
1936         {
1937                 .name = "cortex_m3",
1938                 .mode = COMMAND_ANY,
1939                 .help = "Cortex-M3 command group",
1940                 .chain = cortex_m3_exec_command_handlers,
1941         },
1942         COMMAND_REGISTRATION_DONE
1943 };
1944
1945 struct target_type cortexm3_target =
1946 {
1947         .name = "cortex_m3",
1948
1949         .poll = cortex_m3_poll,
1950         .arch_state = armv7m_arch_state,
1951
1952         .target_request_data = cortex_m3_target_request_data,
1953
1954         .halt = cortex_m3_halt,
1955         .resume = cortex_m3_resume,
1956         .step = cortex_m3_step,
1957
1958         .assert_reset = cortex_m3_assert_reset,
1959         .deassert_reset = cortex_m3_deassert_reset,
1960         .soft_reset_halt = cortex_m3_soft_reset_halt,
1961
1962         .get_gdb_reg_list = armv7m_get_gdb_reg_list,
1963
1964         .read_memory = cortex_m3_read_memory,
1965         .write_memory = cortex_m3_write_memory,
1966         .bulk_write_memory = cortex_m3_bulk_write_memory,
1967         .checksum_memory = armv7m_checksum_memory,
1968         .blank_check_memory = armv7m_blank_check_memory,
1969
1970         .run_algorithm = armv7m_run_algorithm,
1971
1972         .add_breakpoint = cortex_m3_add_breakpoint,
1973         .remove_breakpoint = cortex_m3_remove_breakpoint,
1974         .add_watchpoint = cortex_m3_add_watchpoint,
1975         .remove_watchpoint = cortex_m3_remove_watchpoint,
1976
1977         .commands = cortex_m3_command_handlers,
1978         .target_create = cortex_m3_target_create,
1979         .init_target = cortex_m3_init_target,
1980         .examine = cortex_m3_examine,
1981 };