cortex_m: set C_DEBUGEN in soft_reset_halt
[fw/openocd] / src / target / cortex_m.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   This program is free software; you can redistribute it and/or modify  *
12  *   it under the terms of the GNU General Public License as published by  *
13  *   the Free Software Foundation; either version 2 of the License, or     *
14  *   (at your option) any later version.                                   *
15  *                                                                         *
16  *   This program is distributed in the hope that it will be useful,       *
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
19  *   GNU General Public License for more details.                          *
20  *                                                                         *
21  *   You should have received a copy of the GNU General Public License     *
22  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
23  *                                                                         *
24  *                                                                         *
25  *   Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0)              *
26  *                                                                         *
27  ***************************************************************************/
28 #ifdef HAVE_CONFIG_H
29 #include "config.h"
30 #endif
31
32 #include "jtag/interface.h"
33 #include "breakpoints.h"
34 #include "cortex_m.h"
35 #include "target_request.h"
36 #include "target_type.h"
37 #include "arm_disassembler.h"
38 #include "register.h"
39 #include "arm_opcodes.h"
40 #include "arm_semihosting.h"
41 #include <helper/time_support.h>
42
43 /* NOTE:  most of this should work fine for the Cortex-M1 and
44  * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
45  * Some differences:  M0/M1 doesn't have FPB remapping or the
46  * DWT tracing/profiling support.  (So the cycle counter will
47  * not be usable; the other stuff isn't currently used here.)
48  *
49  * Although there are some workarounds for errata seen only in r0p0
50  * silicon, such old parts are hard to find and thus not much tested
51  * any longer.
52  */
53
54 /* forward declarations */
55 static int cortex_m_store_core_reg_u32(struct target *target,
56                 uint32_t num, uint32_t value);
57 static void cortex_m_dwt_free(struct target *target);
58
59 static int cortexm_dap_read_coreregister_u32(struct target *target,
60         uint32_t *value, int regnum)
61 {
62         struct armv7m_common *armv7m = target_to_armv7m(target);
63         int retval;
64         uint32_t dcrdr;
65
66         /* because the DCB_DCRDR is used for the emulated dcc channel
67          * we have to save/restore the DCB_DCRDR when used */
68         if (target->dbg_msg_enabled) {
69                 retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DCRDR, &dcrdr);
70                 if (retval != ERROR_OK)
71                         return retval;
72         }
73
74         retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRSR, regnum);
75         if (retval != ERROR_OK)
76                 return retval;
77
78         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DCRDR, value);
79         if (retval != ERROR_OK)
80                 return retval;
81
82         if (target->dbg_msg_enabled) {
83                 /* restore DCB_DCRDR - this needs to be in a separate
84                  * transaction otherwise the emulated DCC channel breaks */
85                 if (retval == ERROR_OK)
86                         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRDR, dcrdr);
87         }
88
89         return retval;
90 }
91
92 static int cortexm_dap_write_coreregister_u32(struct target *target,
93         uint32_t value, int regnum)
94 {
95         struct armv7m_common *armv7m = target_to_armv7m(target);
96         int retval;
97         uint32_t dcrdr;
98
99         /* because the DCB_DCRDR is used for the emulated dcc channel
100          * we have to save/restore the DCB_DCRDR when used */
101         if (target->dbg_msg_enabled) {
102                 retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DCRDR, &dcrdr);
103                 if (retval != ERROR_OK)
104                         return retval;
105         }
106
107         retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, value);
108         if (retval != ERROR_OK)
109                 return retval;
110
111         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRSR, regnum | DCRSR_WnR);
112         if (retval != ERROR_OK)
113                 return retval;
114
115         if (target->dbg_msg_enabled) {
116                 /* restore DCB_DCRDR - this needs to be in a seperate
117                  * transaction otherwise the emulated DCC channel breaks */
118                 if (retval == ERROR_OK)
119                         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRDR, dcrdr);
120         }
121
122         return retval;
123 }
124
125 static int cortex_m_write_debug_halt_mask(struct target *target,
126         uint32_t mask_on, uint32_t mask_off)
127 {
128         struct cortex_m_common *cortex_m = target_to_cm(target);
129         struct armv7m_common *armv7m = &cortex_m->armv7m;
130
131         /* mask off status bits */
132         cortex_m->dcb_dhcsr &= ~((0xFFFF << 16) | mask_off);
133         /* create new register mask */
134         cortex_m->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
135
136         return mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR, cortex_m->dcb_dhcsr);
137 }
138
139 static int cortex_m_set_maskints(struct target *target, bool mask)
140 {
141         struct cortex_m_common *cortex_m = target_to_cm(target);
142         if (!!(cortex_m->dcb_dhcsr & C_MASKINTS) != mask)
143                 return cortex_m_write_debug_halt_mask(target, mask ? C_MASKINTS : 0, mask ? 0 : C_MASKINTS);
144         else
145                 return ERROR_OK;
146 }
147
148 static int cortex_m_set_maskints_for_halt(struct target *target)
149 {
150         struct cortex_m_common *cortex_m = target_to_cm(target);
151         switch (cortex_m->isrmasking_mode) {
152                 case CORTEX_M_ISRMASK_AUTO:
153                         /* interrupts taken at resume, whether for step or run -> no mask */
154                         return cortex_m_set_maskints(target, false);
155
156                 case CORTEX_M_ISRMASK_OFF:
157                         /* interrupts never masked */
158                         return cortex_m_set_maskints(target, false);
159
160                 case CORTEX_M_ISRMASK_ON:
161                         /* interrupts always masked */
162                         return cortex_m_set_maskints(target, true);
163
164                 case CORTEX_M_ISRMASK_STEPONLY:
165                         /* interrupts masked for single step only -> mask now if MASKINTS
166                          * erratum, otherwise only mask before stepping */
167                         return cortex_m_set_maskints(target, cortex_m->maskints_erratum);
168         }
169         return ERROR_OK;
170 }
171
172 static int cortex_m_set_maskints_for_run(struct target *target)
173 {
174         switch (target_to_cm(target)->isrmasking_mode) {
175                 case CORTEX_M_ISRMASK_AUTO:
176                         /* interrupts taken at resume, whether for step or run -> no mask */
177                         return cortex_m_set_maskints(target, false);
178
179                 case CORTEX_M_ISRMASK_OFF:
180                         /* interrupts never masked */
181                         return cortex_m_set_maskints(target, false);
182
183                 case CORTEX_M_ISRMASK_ON:
184                         /* interrupts always masked */
185                         return cortex_m_set_maskints(target, true);
186
187                 case CORTEX_M_ISRMASK_STEPONLY:
188                         /* interrupts masked for single step only -> no mask */
189                         return cortex_m_set_maskints(target, false);
190         }
191         return ERROR_OK;
192 }
193
194 static int cortex_m_set_maskints_for_step(struct target *target)
195 {
196         switch (target_to_cm(target)->isrmasking_mode) {
197                 case CORTEX_M_ISRMASK_AUTO:
198                         /* the auto-interrupt should already be done -> mask */
199                         return cortex_m_set_maskints(target, true);
200
201                 case CORTEX_M_ISRMASK_OFF:
202                         /* interrupts never masked */
203                         return cortex_m_set_maskints(target, false);
204
205                 case CORTEX_M_ISRMASK_ON:
206                         /* interrupts always masked */
207                         return cortex_m_set_maskints(target, true);
208
209                 case CORTEX_M_ISRMASK_STEPONLY:
210                         /* interrupts masked for single step only -> mask */
211                         return cortex_m_set_maskints(target, true);
212         }
213         return ERROR_OK;
214 }
215
216 static int cortex_m_clear_halt(struct target *target)
217 {
218         struct cortex_m_common *cortex_m = target_to_cm(target);
219         struct armv7m_common *armv7m = &cortex_m->armv7m;
220         int retval;
221
222         /* clear step if any */
223         cortex_m_write_debug_halt_mask(target, C_HALT, C_STEP);
224
225         /* Read Debug Fault Status Register */
226         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_DFSR, &cortex_m->nvic_dfsr);
227         if (retval != ERROR_OK)
228                 return retval;
229
230         /* Clear Debug Fault Status */
231         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_DFSR, cortex_m->nvic_dfsr);
232         if (retval != ERROR_OK)
233                 return retval;
234         LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m->nvic_dfsr);
235
236         return ERROR_OK;
237 }
238
239 static int cortex_m_single_step_core(struct target *target)
240 {
241         struct cortex_m_common *cortex_m = target_to_cm(target);
242         struct armv7m_common *armv7m = &cortex_m->armv7m;
243         int retval;
244
245         /* Mask interrupts before clearing halt, if not done already.  This avoids
246          * Erratum 377497 (fixed in r1p0) where setting MASKINTS while clearing
247          * HALT can put the core into an unknown state.
248          */
249         if (!(cortex_m->dcb_dhcsr & C_MASKINTS)) {
250                 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR,
251                                 DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN);
252                 if (retval != ERROR_OK)
253                         return retval;
254         }
255         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR,
256                         DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN);
257         if (retval != ERROR_OK)
258                 return retval;
259         LOG_DEBUG(" ");
260
261         /* restore dhcsr reg */
262         cortex_m_clear_halt(target);
263
264         return ERROR_OK;
265 }
266
267 static int cortex_m_enable_fpb(struct target *target)
268 {
269         int retval = target_write_u32(target, FP_CTRL, 3);
270         if (retval != ERROR_OK)
271                 return retval;
272
273         /* check the fpb is actually enabled */
274         uint32_t fpctrl;
275         retval = target_read_u32(target, FP_CTRL, &fpctrl);
276         if (retval != ERROR_OK)
277                 return retval;
278
279         if (fpctrl & 1)
280                 return ERROR_OK;
281
282         return ERROR_FAIL;
283 }
284
285 static int cortex_m_endreset_event(struct target *target)
286 {
287         int i;
288         int retval;
289         uint32_t dcb_demcr;
290         struct cortex_m_common *cortex_m = target_to_cm(target);
291         struct armv7m_common *armv7m = &cortex_m->armv7m;
292         struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
293         struct cortex_m_fp_comparator *fp_list = cortex_m->fp_comparator_list;
294         struct cortex_m_dwt_comparator *dwt_list = cortex_m->dwt_comparator_list;
295
296         /* REVISIT The four debug monitor bits are currently ignored... */
297         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &dcb_demcr);
298         if (retval != ERROR_OK)
299                 return retval;
300         LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "", dcb_demcr);
301
302         /* this register is used for emulated dcc channel */
303         retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, 0);
304         if (retval != ERROR_OK)
305                 return retval;
306
307         /* Enable debug requests */
308         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
309         if (retval != ERROR_OK)
310                 return retval;
311         if (!(cortex_m->dcb_dhcsr & C_DEBUGEN)) {
312                 retval = cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP | C_MASKINTS);
313                 if (retval != ERROR_OK)
314                         return retval;
315         }
316
317         /* Restore proper interrupt masking setting for running CPU. */
318         cortex_m_set_maskints_for_run(target);
319
320         /* Enable features controlled by ITM and DWT blocks, and catch only
321          * the vectors we were told to pay attention to.
322          *
323          * Target firmware is responsible for all fault handling policy
324          * choices *EXCEPT* explicitly scripted overrides like "vector_catch"
325          * or manual updates to the NVIC SHCSR and CCR registers.
326          */
327         retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR, TRCENA | armv7m->demcr);
328         if (retval != ERROR_OK)
329                 return retval;
330
331         /* Paranoia: evidently some (early?) chips don't preserve all the
332          * debug state (including FPB, DWT, etc) across reset...
333          */
334
335         /* Enable FPB */
336         retval = cortex_m_enable_fpb(target);
337         if (retval != ERROR_OK) {
338                 LOG_ERROR("Failed to enable the FPB");
339                 return retval;
340         }
341
342         cortex_m->fpb_enabled = true;
343
344         /* Restore FPB registers */
345         for (i = 0; i < cortex_m->fp_num_code + cortex_m->fp_num_lit; i++) {
346                 retval = target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
347                 if (retval != ERROR_OK)
348                         return retval;
349         }
350
351         /* Restore DWT registers */
352         for (i = 0; i < cortex_m->dwt_num_comp; i++) {
353                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
354                                 dwt_list[i].comp);
355                 if (retval != ERROR_OK)
356                         return retval;
357                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
358                                 dwt_list[i].mask);
359                 if (retval != ERROR_OK)
360                         return retval;
361                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
362                                 dwt_list[i].function);
363                 if (retval != ERROR_OK)
364                         return retval;
365         }
366         retval = dap_run(swjdp);
367         if (retval != ERROR_OK)
368                 return retval;
369
370         register_cache_invalidate(armv7m->arm.core_cache);
371
372         /* make sure we have latest dhcsr flags */
373         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
374
375         return retval;
376 }
377
378 static int cortex_m_examine_debug_reason(struct target *target)
379 {
380         struct cortex_m_common *cortex_m = target_to_cm(target);
381
382         /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason
383          * only check the debug reason if we don't know it already */
384
385         if ((target->debug_reason != DBG_REASON_DBGRQ)
386                 && (target->debug_reason != DBG_REASON_SINGLESTEP)) {
387                 if (cortex_m->nvic_dfsr & DFSR_BKPT) {
388                         target->debug_reason = DBG_REASON_BREAKPOINT;
389                         if (cortex_m->nvic_dfsr & DFSR_DWTTRAP)
390                                 target->debug_reason = DBG_REASON_WPTANDBKPT;
391                 } else if (cortex_m->nvic_dfsr & DFSR_DWTTRAP)
392                         target->debug_reason = DBG_REASON_WATCHPOINT;
393                 else if (cortex_m->nvic_dfsr & DFSR_VCATCH)
394                         target->debug_reason = DBG_REASON_BREAKPOINT;
395                 else if (cortex_m->nvic_dfsr & DFSR_EXTERNAL)
396                         target->debug_reason = DBG_REASON_DBGRQ;
397                 else    /* HALTED */
398                         target->debug_reason = DBG_REASON_UNDEFINED;
399         }
400
401         return ERROR_OK;
402 }
403
404 static int cortex_m_examine_exception_reason(struct target *target)
405 {
406         uint32_t shcsr = 0, except_sr = 0, cfsr = -1, except_ar = -1;
407         struct armv7m_common *armv7m = target_to_armv7m(target);
408         struct adiv5_dap *swjdp = armv7m->arm.dap;
409         int retval;
410
411         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_SHCSR, &shcsr);
412         if (retval != ERROR_OK)
413                 return retval;
414         switch (armv7m->exception_number) {
415                 case 2: /* NMI */
416                         break;
417                 case 3: /* Hard Fault */
418                         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_HFSR, &except_sr);
419                         if (retval != ERROR_OK)
420                                 return retval;
421                         if (except_sr & 0x40000000) {
422                                 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &cfsr);
423                                 if (retval != ERROR_OK)
424                                         return retval;
425                         }
426                         break;
427                 case 4: /* Memory Management */
428                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
429                         if (retval != ERROR_OK)
430                                 return retval;
431                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_MMFAR, &except_ar);
432                         if (retval != ERROR_OK)
433                                 return retval;
434                         break;
435                 case 5: /* Bus Fault */
436                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
437                         if (retval != ERROR_OK)
438                                 return retval;
439                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_BFAR, &except_ar);
440                         if (retval != ERROR_OK)
441                                 return retval;
442                         break;
443                 case 6: /* Usage Fault */
444                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
445                         if (retval != ERROR_OK)
446                                 return retval;
447                         break;
448                 case 11:        /* SVCall */
449                         break;
450                 case 12:        /* Debug Monitor */
451                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_DFSR, &except_sr);
452                         if (retval != ERROR_OK)
453                                 return retval;
454                         break;
455                 case 14:        /* PendSV */
456                         break;
457                 case 15:        /* SysTick */
458                         break;
459                 default:
460                         except_sr = 0;
461                         break;
462         }
463         retval = dap_run(swjdp);
464         if (retval == ERROR_OK)
465                 LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32
466                         ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32,
467                         armv7m_exception_string(armv7m->exception_number),
468                         shcsr, except_sr, cfsr, except_ar);
469         return retval;
470 }
471
472 static int cortex_m_debug_entry(struct target *target)
473 {
474         int i;
475         uint32_t xPSR;
476         int retval;
477         struct cortex_m_common *cortex_m = target_to_cm(target);
478         struct armv7m_common *armv7m = &cortex_m->armv7m;
479         struct arm *arm = &armv7m->arm;
480         struct reg *r;
481
482         LOG_DEBUG(" ");
483
484         /* Do this really early to minimize the window where the MASKINTS erratum
485          * can pile up pending interrupts. */
486         cortex_m_set_maskints_for_halt(target);
487
488         cortex_m_clear_halt(target);
489         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
490         if (retval != ERROR_OK)
491                 return retval;
492
493         retval = armv7m->examine_debug_reason(target);
494         if (retval != ERROR_OK)
495                 return retval;
496
497         /* Examine target state and mode
498          * First load register accessible through core debug port */
499         int num_regs = arm->core_cache->num_regs;
500
501         for (i = 0; i < num_regs; i++) {
502                 r = &armv7m->arm.core_cache->reg_list[i];
503                 if (!r->valid)
504                         arm->read_core_reg(target, r, i, ARM_MODE_ANY);
505         }
506
507         r = arm->cpsr;
508         xPSR = buf_get_u32(r->value, 0, 32);
509
510         /* For IT instructions xPSR must be reloaded on resume and clear on debug exec */
511         if (xPSR & 0xf00) {
512                 r->dirty = r->valid;
513                 cortex_m_store_core_reg_u32(target, 16, xPSR & ~0xff);
514         }
515
516         /* Are we in an exception handler */
517         if (xPSR & 0x1FF) {
518                 armv7m->exception_number = (xPSR & 0x1FF);
519
520                 arm->core_mode = ARM_MODE_HANDLER;
521                 arm->map = armv7m_msp_reg_map;
522         } else {
523                 unsigned control = buf_get_u32(arm->core_cache
524                                 ->reg_list[ARMV7M_CONTROL].value, 0, 2);
525
526                 /* is this thread privileged? */
527                 arm->core_mode = control & 1
528                         ? ARM_MODE_USER_THREAD
529                         : ARM_MODE_THREAD;
530
531                 /* which stack is it using? */
532                 if (control & 2)
533                         arm->map = armv7m_psp_reg_map;
534                 else
535                         arm->map = armv7m_msp_reg_map;
536
537                 armv7m->exception_number = 0;
538         }
539
540         if (armv7m->exception_number)
541                 cortex_m_examine_exception_reason(target);
542
543         LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", target->state: %s",
544                 arm_mode_name(arm->core_mode),
545                 buf_get_u32(arm->pc->value, 0, 32),
546                 target_state_name(target));
547
548         if (armv7m->post_debug_entry) {
549                 retval = armv7m->post_debug_entry(target);
550                 if (retval != ERROR_OK)
551                         return retval;
552         }
553
554         return ERROR_OK;
555 }
556
557 static int cortex_m_poll(struct target *target)
558 {
559         int detected_failure = ERROR_OK;
560         int retval = ERROR_OK;
561         enum target_state prev_target_state = target->state;
562         struct cortex_m_common *cortex_m = target_to_cm(target);
563         struct armv7m_common *armv7m = &cortex_m->armv7m;
564
565         /* Read from Debug Halting Control and Status Register */
566         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
567         if (retval != ERROR_OK) {
568                 target->state = TARGET_UNKNOWN;
569                 return retval;
570         }
571
572         /* Recover from lockup.  See ARMv7-M architecture spec,
573          * section B1.5.15 "Unrecoverable exception cases".
574          */
575         if (cortex_m->dcb_dhcsr & S_LOCKUP) {
576                 LOG_ERROR("%s -- clearing lockup after double fault",
577                         target_name(target));
578                 cortex_m_write_debug_halt_mask(target, C_HALT, 0);
579                 target->debug_reason = DBG_REASON_DBGRQ;
580
581                 /* We have to execute the rest (the "finally" equivalent, but
582                  * still throw this exception again).
583                  */
584                 detected_failure = ERROR_FAIL;
585
586                 /* refresh status bits */
587                 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
588                 if (retval != ERROR_OK)
589                         return retval;
590         }
591
592         if (cortex_m->dcb_dhcsr & S_RESET_ST) {
593                 if (target->state != TARGET_RESET) {
594                         target->state = TARGET_RESET;
595                         LOG_INFO("%s: external reset detected", target_name(target));
596                 }
597                 return ERROR_OK;
598         }
599
600         if (target->state == TARGET_RESET) {
601                 /* Cannot switch context while running so endreset is
602                  * called with target->state == TARGET_RESET
603                  */
604                 LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32,
605                         cortex_m->dcb_dhcsr);
606                 retval = cortex_m_endreset_event(target);
607                 if (retval != ERROR_OK) {
608                         target->state = TARGET_UNKNOWN;
609                         return retval;
610                 }
611                 target->state = TARGET_RUNNING;
612                 prev_target_state = TARGET_RUNNING;
613         }
614
615         if (cortex_m->dcb_dhcsr & S_HALT) {
616                 target->state = TARGET_HALTED;
617
618                 if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET)) {
619                         retval = cortex_m_debug_entry(target);
620                         if (retval != ERROR_OK)
621                                 return retval;
622
623                         if (arm_semihosting(target, &retval) != 0)
624                                 return retval;
625
626                         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
627                 }
628                 if (prev_target_state == TARGET_DEBUG_RUNNING) {
629                         LOG_DEBUG(" ");
630                         retval = cortex_m_debug_entry(target);
631                         if (retval != ERROR_OK)
632                                 return retval;
633
634                         target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
635                 }
636         }
637
638         /* REVISIT when S_SLEEP is set, it's in a Sleep or DeepSleep state.
639          * How best to model low power modes?
640          */
641
642         if (target->state == TARGET_UNKNOWN) {
643                 /* check if processor is retiring instructions */
644                 if (cortex_m->dcb_dhcsr & S_RETIRE_ST) {
645                         target->state = TARGET_RUNNING;
646                         retval = ERROR_OK;
647                 }
648         }
649
650         /* Check that target is truly halted, since the target could be resumed externally */
651         if ((prev_target_state == TARGET_HALTED) && !(cortex_m->dcb_dhcsr & S_HALT)) {
652                 /* registers are now invalid */
653                 register_cache_invalidate(armv7m->arm.core_cache);
654
655                 target->state = TARGET_RUNNING;
656                 LOG_WARNING("%s: external resume detected", target_name(target));
657                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
658                 retval = ERROR_OK;
659         }
660
661         /* Did we detect a failure condition that we cleared? */
662         if (detected_failure != ERROR_OK)
663                 retval = detected_failure;
664         return retval;
665 }
666
667 static int cortex_m_halt(struct target *target)
668 {
669         LOG_DEBUG("target->state: %s",
670                 target_state_name(target));
671
672         if (target->state == TARGET_HALTED) {
673                 LOG_DEBUG("target was already halted");
674                 return ERROR_OK;
675         }
676
677         if (target->state == TARGET_UNKNOWN)
678                 LOG_WARNING("target was in unknown state when halt was requested");
679
680         if (target->state == TARGET_RESET) {
681                 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst()) {
682                         LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
683                         return ERROR_TARGET_FAILURE;
684                 } else {
685                         /* we came here in a reset_halt or reset_init sequence
686                          * debug entry was already prepared in cortex_m3_assert_reset()
687                          */
688                         target->debug_reason = DBG_REASON_DBGRQ;
689
690                         return ERROR_OK;
691                 }
692         }
693
694         /* Write to Debug Halting Control and Status Register */
695         cortex_m_write_debug_halt_mask(target, C_HALT, 0);
696
697         /* Do this really early to minimize the window where the MASKINTS erratum
698          * can pile up pending interrupts. */
699         cortex_m_set_maskints_for_halt(target);
700
701         target->debug_reason = DBG_REASON_DBGRQ;
702
703         return ERROR_OK;
704 }
705
706 static int cortex_m_soft_reset_halt(struct target *target)
707 {
708         struct cortex_m_common *cortex_m = target_to_cm(target);
709         struct armv7m_common *armv7m = &cortex_m->armv7m;
710         uint32_t dcb_dhcsr = 0;
711         int retval, timeout = 0;
712
713         /* soft_reset_halt is deprecated on cortex_m as the same functionality
714          * can be obtained by using 'reset halt' and 'cortex_m reset_config vectreset'
715          * As this reset only used VC_CORERESET it would only ever reset the cortex_m
716          * core, not the peripherals */
717         LOG_WARNING("soft_reset_halt is deprecated, please use 'reset halt' instead.");
718
719         /* Set C_DEBUGEN */
720         retval = cortex_m_write_debug_halt_mask(target, 0, C_STEP | C_MASKINTS);
721         if (retval != ERROR_OK)
722                 return retval;
723
724         /* Enter debug state on reset; restore DEMCR in endreset_event() */
725         retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR,
726                         TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
727         if (retval != ERROR_OK)
728                 return retval;
729
730         /* Request a core-only reset */
731         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_AIRCR,
732                         AIRCR_VECTKEY | AIRCR_VECTRESET);
733         if (retval != ERROR_OK)
734                 return retval;
735         target->state = TARGET_RESET;
736
737         /* registers are now invalid */
738         register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
739
740         while (timeout < 100) {
741                 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &dcb_dhcsr);
742                 if (retval == ERROR_OK) {
743                         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_DFSR,
744                                         &cortex_m->nvic_dfsr);
745                         if (retval != ERROR_OK)
746                                 return retval;
747                         if ((dcb_dhcsr & S_HALT)
748                                 && (cortex_m->nvic_dfsr & DFSR_VCATCH)) {
749                                 LOG_DEBUG("system reset-halted, DHCSR 0x%08x, "
750                                         "DFSR 0x%08x",
751                                         (unsigned) dcb_dhcsr,
752                                         (unsigned) cortex_m->nvic_dfsr);
753                                 cortex_m_poll(target);
754                                 /* FIXME restore user's vector catch config */
755                                 return ERROR_OK;
756                         } else
757                                 LOG_DEBUG("waiting for system reset-halt, "
758                                         "DHCSR 0x%08x, %d ms",
759                                         (unsigned) dcb_dhcsr, timeout);
760                 }
761                 timeout++;
762                 alive_sleep(1);
763         }
764
765         return ERROR_OK;
766 }
767
768 void cortex_m_enable_breakpoints(struct target *target)
769 {
770         struct breakpoint *breakpoint = target->breakpoints;
771
772         /* set any pending breakpoints */
773         while (breakpoint) {
774                 if (!breakpoint->set)
775                         cortex_m_set_breakpoint(target, breakpoint);
776                 breakpoint = breakpoint->next;
777         }
778 }
779
780 static int cortex_m_resume(struct target *target, int current,
781         target_addr_t address, int handle_breakpoints, int debug_execution)
782 {
783         struct armv7m_common *armv7m = target_to_armv7m(target);
784         struct breakpoint *breakpoint = NULL;
785         uint32_t resume_pc;
786         struct reg *r;
787
788         if (target->state != TARGET_HALTED) {
789                 LOG_WARNING("target not halted");
790                 return ERROR_TARGET_NOT_HALTED;
791         }
792
793         if (!debug_execution) {
794                 target_free_all_working_areas(target);
795                 cortex_m_enable_breakpoints(target);
796                 cortex_m_enable_watchpoints(target);
797         }
798
799         if (debug_execution) {
800                 r = armv7m->arm.core_cache->reg_list + ARMV7M_PRIMASK;
801
802                 /* Disable interrupts */
803                 /* We disable interrupts in the PRIMASK register instead of
804                  * masking with C_MASKINTS.  This is probably the same issue
805                  * as Cortex-M3 Erratum 377493 (fixed in r1p0):  C_MASKINTS
806                  * in parallel with disabled interrupts can cause local faults
807                  * to not be taken.
808                  *
809                  * REVISIT this clearly breaks non-debug execution, since the
810                  * PRIMASK register state isn't saved/restored...  workaround
811                  * by never resuming app code after debug execution.
812                  */
813                 buf_set_u32(r->value, 0, 1, 1);
814                 r->dirty = true;
815                 r->valid = true;
816
817                 /* Make sure we are in Thumb mode */
818                 r = armv7m->arm.cpsr;
819                 buf_set_u32(r->value, 24, 1, 1);
820                 r->dirty = true;
821                 r->valid = true;
822         }
823
824         /* current = 1: continue on current pc, otherwise continue at <address> */
825         r = armv7m->arm.pc;
826         if (!current) {
827                 buf_set_u32(r->value, 0, 32, address);
828                 r->dirty = true;
829                 r->valid = true;
830         }
831
832         /* if we halted last time due to a bkpt instruction
833          * then we have to manually step over it, otherwise
834          * the core will break again */
835
836         if (!breakpoint_find(target, buf_get_u32(r->value, 0, 32))
837                 && !debug_execution)
838                 armv7m_maybe_skip_bkpt_inst(target, NULL);
839
840         resume_pc = buf_get_u32(r->value, 0, 32);
841
842         armv7m_restore_context(target);
843
844         /* the front-end may request us not to handle breakpoints */
845         if (handle_breakpoints) {
846                 /* Single step past breakpoint at current address */
847                 breakpoint = breakpoint_find(target, resume_pc);
848                 if (breakpoint) {
849                         LOG_DEBUG("unset breakpoint at " TARGET_ADDR_FMT " (ID: %" PRIu32 ")",
850                                 breakpoint->address,
851                                 breakpoint->unique_id);
852                         cortex_m_unset_breakpoint(target, breakpoint);
853                         cortex_m_single_step_core(target);
854                         cortex_m_set_breakpoint(target, breakpoint);
855                 }
856         }
857
858         /* Restart core */
859         cortex_m_set_maskints_for_run(target);
860         cortex_m_write_debug_halt_mask(target, 0, C_HALT);
861
862         target->debug_reason = DBG_REASON_NOTHALTED;
863
864         /* registers are now invalid */
865         register_cache_invalidate(armv7m->arm.core_cache);
866
867         if (!debug_execution) {
868                 target->state = TARGET_RUNNING;
869                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
870                 LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc);
871         } else {
872                 target->state = TARGET_DEBUG_RUNNING;
873                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
874                 LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc);
875         }
876
877         return ERROR_OK;
878 }
879
880 /* int irqstepcount = 0; */
881 static int cortex_m_step(struct target *target, int current,
882         target_addr_t address, int handle_breakpoints)
883 {
884         struct cortex_m_common *cortex_m = target_to_cm(target);
885         struct armv7m_common *armv7m = &cortex_m->armv7m;
886         struct breakpoint *breakpoint = NULL;
887         struct reg *pc = armv7m->arm.pc;
888         bool bkpt_inst_found = false;
889         int retval;
890         bool isr_timed_out = false;
891
892         if (target->state != TARGET_HALTED) {
893                 LOG_WARNING("target not halted");
894                 return ERROR_TARGET_NOT_HALTED;
895         }
896
897         /* current = 1: continue on current pc, otherwise continue at <address> */
898         if (!current)
899                 buf_set_u32(pc->value, 0, 32, address);
900
901         uint32_t pc_value = buf_get_u32(pc->value, 0, 32);
902
903         /* the front-end may request us not to handle breakpoints */
904         if (handle_breakpoints) {
905                 breakpoint = breakpoint_find(target, pc_value);
906                 if (breakpoint)
907                         cortex_m_unset_breakpoint(target, breakpoint);
908         }
909
910         armv7m_maybe_skip_bkpt_inst(target, &bkpt_inst_found);
911
912         target->debug_reason = DBG_REASON_SINGLESTEP;
913
914         armv7m_restore_context(target);
915
916         target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
917
918         /* if no bkpt instruction is found at pc then we can perform
919          * a normal step, otherwise we have to manually step over the bkpt
920          * instruction - as such simulate a step */
921         if (bkpt_inst_found == false) {
922                 if ((cortex_m->isrmasking_mode != CORTEX_M_ISRMASK_AUTO)) {
923                         /* Automatic ISR masking mode off: Just step over the next
924                          * instruction, with interrupts on or off as appropriate. */
925                         cortex_m_set_maskints_for_step(target);
926                         cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
927                 } else {
928                         /* Process interrupts during stepping in a way they don't interfere
929                          * debugging.
930                          *
931                          * Principle:
932                          *
933                          * Set a temporary break point at the current pc and let the core run
934                          * with interrupts enabled. Pending interrupts get served and we run
935                          * into the breakpoint again afterwards. Then we step over the next
936                          * instruction with interrupts disabled.
937                          *
938                          * If the pending interrupts don't complete within time, we leave the
939                          * core running. This may happen if the interrupts trigger faster
940                          * than the core can process them or the handler doesn't return.
941                          *
942                          * If no more breakpoints are available we simply do a step with
943                          * interrupts enabled.
944                          *
945                          */
946
947                         /* 2012-09-29 ph
948                          *
949                          * If a break point is already set on the lower half word then a break point on
950                          * the upper half word will not break again when the core is restarted. So we
951                          * just step over the instruction with interrupts disabled.
952                          *
953                          * The documentation has no information about this, it was found by observation
954                          * on STM32F1 and STM32F2. Proper explanation welcome. STM32F0 dosen't seem to
955                          * suffer from this problem.
956                          *
957                          * To add some confusion: pc_value has bit 0 always set, while the breakpoint
958                          * address has it always cleared. The former is done to indicate thumb mode
959                          * to gdb.
960                          *
961                          */
962                         if ((pc_value & 0x02) && breakpoint_find(target, pc_value & ~0x03)) {
963                                 LOG_DEBUG("Stepping over next instruction with interrupts disabled");
964                                 cortex_m_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
965                                 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
966                                 /* Re-enable interrupts if appropriate */
967                                 cortex_m_write_debug_halt_mask(target, C_HALT, 0);
968                                 cortex_m_set_maskints_for_halt(target);
969                         }
970                         else {
971
972                                 /* Set a temporary break point */
973                                 if (breakpoint) {
974                                         retval = cortex_m_set_breakpoint(target, breakpoint);
975                                 } else {
976                                         enum breakpoint_type type = BKPT_HARD;
977                                         if (cortex_m->fp_rev == 0 && pc_value > 0x1FFFFFFF) {
978                                                 /* FPB rev.1 cannot handle such addr, try BKPT instr */
979                                                 type = BKPT_SOFT;
980                                         }
981                                         retval = breakpoint_add(target, pc_value, 2, type);
982                                 }
983
984                                 bool tmp_bp_set = (retval == ERROR_OK);
985
986                                 /* No more breakpoints left, just do a step */
987                                 if (!tmp_bp_set) {
988                                         cortex_m_set_maskints_for_step(target);
989                                         cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
990                                         /* Re-enable interrupts if appropriate */
991                                         cortex_m_write_debug_halt_mask(target, C_HALT, 0);
992                                         cortex_m_set_maskints_for_halt(target);
993                                 } else {
994                                         /* Start the core */
995                                         LOG_DEBUG("Starting core to serve pending interrupts");
996                                         int64_t t_start = timeval_ms();
997                                         cortex_m_set_maskints_for_run(target);
998                                         cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP);
999
1000                                         /* Wait for pending handlers to complete or timeout */
1001                                         do {
1002                                                 retval = mem_ap_read_atomic_u32(armv7m->debug_ap,
1003                                                                 DCB_DHCSR,
1004                                                                 &cortex_m->dcb_dhcsr);
1005                                                 if (retval != ERROR_OK) {
1006                                                         target->state = TARGET_UNKNOWN;
1007                                                         return retval;
1008                                                 }
1009                                                 isr_timed_out = ((timeval_ms() - t_start) > 500);
1010                                         } while (!((cortex_m->dcb_dhcsr & S_HALT) || isr_timed_out));
1011
1012                                         /* only remove breakpoint if we created it */
1013                                         if (breakpoint)
1014                                                 cortex_m_unset_breakpoint(target, breakpoint);
1015                                         else {
1016                                                 /* Remove the temporary breakpoint */
1017                                                 breakpoint_remove(target, pc_value);
1018                                         }
1019
1020                                         if (isr_timed_out) {
1021                                                 LOG_DEBUG("Interrupt handlers didn't complete within time, "
1022                                                         "leaving target running");
1023                                         } else {
1024                                                 /* Step over next instruction with interrupts disabled */
1025                                                 cortex_m_set_maskints_for_step(target);
1026                                                 cortex_m_write_debug_halt_mask(target,
1027                                                         C_HALT | C_MASKINTS,
1028                                                         0);
1029                                                 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
1030                                                 /* Re-enable interrupts if appropriate */
1031                                                 cortex_m_write_debug_halt_mask(target, C_HALT, 0);
1032                                                 cortex_m_set_maskints_for_halt(target);
1033                                         }
1034                                 }
1035                         }
1036                 }
1037         }
1038
1039         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
1040         if (retval != ERROR_OK)
1041                 return retval;
1042
1043         /* registers are now invalid */
1044         register_cache_invalidate(armv7m->arm.core_cache);
1045
1046         if (breakpoint)
1047                 cortex_m_set_breakpoint(target, breakpoint);
1048
1049         if (isr_timed_out) {
1050                 /* Leave the core running. The user has to stop execution manually. */
1051                 target->debug_reason = DBG_REASON_NOTHALTED;
1052                 target->state = TARGET_RUNNING;
1053                 return ERROR_OK;
1054         }
1055
1056         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
1057                 " nvic_icsr = 0x%" PRIx32,
1058                 cortex_m->dcb_dhcsr, cortex_m->nvic_icsr);
1059
1060         retval = cortex_m_debug_entry(target);
1061         if (retval != ERROR_OK)
1062                 return retval;
1063         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
1064
1065         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
1066                 " nvic_icsr = 0x%" PRIx32,
1067                 cortex_m->dcb_dhcsr, cortex_m->nvic_icsr);
1068
1069         return ERROR_OK;
1070 }
1071
1072 static int cortex_m_assert_reset(struct target *target)
1073 {
1074         struct cortex_m_common *cortex_m = target_to_cm(target);
1075         struct armv7m_common *armv7m = &cortex_m->armv7m;
1076         enum cortex_m_soft_reset_config reset_config = cortex_m->soft_reset_config;
1077
1078         LOG_DEBUG("target->state: %s",
1079                 target_state_name(target));
1080
1081         enum reset_types jtag_reset_config = jtag_get_reset_config();
1082
1083         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
1084                 /* allow scripts to override the reset event */
1085
1086                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1087                 register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
1088                 target->state = TARGET_RESET;
1089
1090                 return ERROR_OK;
1091         }
1092
1093         /* some cores support connecting while srst is asserted
1094          * use that mode is it has been configured */
1095
1096         bool srst_asserted = false;
1097
1098         if (!target_was_examined(target)) {
1099                 if (jtag_reset_config & RESET_HAS_SRST) {
1100                         adapter_assert_reset();
1101                         if (target->reset_halt)
1102                                 LOG_ERROR("Target not examined, will not halt after reset!");
1103                         return ERROR_OK;
1104                 } else {
1105                         LOG_ERROR("Target not examined, reset NOT asserted!");
1106                         return ERROR_FAIL;
1107                 }
1108         }
1109
1110         if ((jtag_reset_config & RESET_HAS_SRST) &&
1111             (jtag_reset_config & RESET_SRST_NO_GATING)) {
1112                 adapter_assert_reset();
1113                 srst_asserted = true;
1114         }
1115
1116         /* Enable debug requests */
1117         int retval;
1118         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
1119         /* Store important errors instead of failing and proceed to reset assert */
1120
1121         if (retval != ERROR_OK || !(cortex_m->dcb_dhcsr & C_DEBUGEN))
1122                 retval = cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP | C_MASKINTS);
1123
1124         /* If the processor is sleeping in a WFI or WFE instruction, the
1125          * C_HALT bit must be asserted to regain control */
1126         if (retval == ERROR_OK && (cortex_m->dcb_dhcsr & S_SLEEP))
1127                 retval = cortex_m_write_debug_halt_mask(target, C_HALT, 0);
1128
1129         mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, 0);
1130         /* Ignore less important errors */
1131
1132         if (!target->reset_halt) {
1133                 /* Set/Clear C_MASKINTS in a separate operation */
1134                 cortex_m_set_maskints_for_run(target);
1135
1136                 /* clear any debug flags before resuming */
1137                 cortex_m_clear_halt(target);
1138
1139                 /* clear C_HALT in dhcsr reg */
1140                 cortex_m_write_debug_halt_mask(target, 0, C_HALT);
1141         } else {
1142                 /* Halt in debug on reset; endreset_event() restores DEMCR.
1143                  *
1144                  * REVISIT catching BUSERR presumably helps to defend against
1145                  * bad vector table entries.  Should this include MMERR or
1146                  * other flags too?
1147                  */
1148                 int retval2;
1149                 retval2 = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DEMCR,
1150                                 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
1151                 if (retval != ERROR_OK || retval2 != ERROR_OK)
1152                         LOG_INFO("AP write error, reset will not halt");
1153         }
1154
1155         if (jtag_reset_config & RESET_HAS_SRST) {
1156                 /* default to asserting srst */
1157                 if (!srst_asserted)
1158                         adapter_assert_reset();
1159
1160                 /* srst is asserted, ignore AP access errors */
1161                 retval = ERROR_OK;
1162         } else {
1163                 /* Use a standard Cortex-M3 software reset mechanism.
1164                  * We default to using VECRESET as it is supported on all current cores
1165                  * (except Cortex-M0, M0+ and M1 which support SYSRESETREQ only!)
1166                  * This has the disadvantage of not resetting the peripherals, so a
1167                  * reset-init event handler is needed to perform any peripheral resets.
1168                  */
1169                 if (!cortex_m->vectreset_supported
1170                                 && reset_config == CORTEX_M_RESET_VECTRESET) {
1171                         reset_config = CORTEX_M_RESET_SYSRESETREQ;
1172                         LOG_WARNING("VECTRESET is not supported on this Cortex-M core, using SYSRESETREQ instead.");
1173                         LOG_WARNING("Set 'cortex_m reset_config sysresetreq'.");
1174                 }
1175
1176                 LOG_DEBUG("Using Cortex-M %s", (reset_config == CORTEX_M_RESET_SYSRESETREQ)
1177                         ? "SYSRESETREQ" : "VECTRESET");
1178
1179                 if (reset_config == CORTEX_M_RESET_VECTRESET) {
1180                         LOG_WARNING("Only resetting the Cortex-M core, use a reset-init event "
1181                                 "handler to reset any peripherals or configure hardware srst support.");
1182                 }
1183
1184                 int retval3;
1185                 retval3 = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_AIRCR,
1186                                 AIRCR_VECTKEY | ((reset_config == CORTEX_M_RESET_SYSRESETREQ)
1187                                 ? AIRCR_SYSRESETREQ : AIRCR_VECTRESET));
1188                 if (retval3 != ERROR_OK)
1189                         LOG_DEBUG("Ignoring AP write error right after reset");
1190
1191                 retval3 = dap_dp_init(armv7m->debug_ap->dap);
1192                 if (retval3 != ERROR_OK)
1193                         LOG_ERROR("DP initialisation failed");
1194
1195                 else {
1196                         /* I do not know why this is necessary, but it
1197                          * fixes strange effects (step/resume cause NMI
1198                          * after reset) on LM3S6918 -- Michael Schwingen
1199                          */
1200                         uint32_t tmp;
1201                         mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_AIRCR, &tmp);
1202                 }
1203         }
1204
1205         target->state = TARGET_RESET;
1206         jtag_sleep(50000);
1207
1208         register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
1209
1210         /* now return stored error code if any */
1211         if (retval != ERROR_OK)
1212                 return retval;
1213
1214         if (target->reset_halt) {
1215                 retval = target_halt(target);
1216                 if (retval != ERROR_OK)
1217                         return retval;
1218         }
1219
1220         return ERROR_OK;
1221 }
1222
1223 static int cortex_m_deassert_reset(struct target *target)
1224 {
1225         struct armv7m_common *armv7m = &target_to_cm(target)->armv7m;
1226
1227         LOG_DEBUG("target->state: %s",
1228                 target_state_name(target));
1229
1230         /* deassert reset lines */
1231         adapter_deassert_reset();
1232
1233         enum reset_types jtag_reset_config = jtag_get_reset_config();
1234
1235         if ((jtag_reset_config & RESET_HAS_SRST) &&
1236             !(jtag_reset_config & RESET_SRST_NO_GATING) &&
1237                 target_was_examined(target)) {
1238                 int retval = dap_dp_init(armv7m->debug_ap->dap);
1239                 if (retval != ERROR_OK) {
1240                         LOG_ERROR("DP initialisation failed");
1241                         return retval;
1242                 }
1243         }
1244
1245         return ERROR_OK;
1246 }
1247
1248 int cortex_m_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
1249 {
1250         int retval;
1251         int fp_num = 0;
1252         struct cortex_m_common *cortex_m = target_to_cm(target);
1253         struct cortex_m_fp_comparator *comparator_list = cortex_m->fp_comparator_list;
1254
1255         if (breakpoint->set) {
1256                 LOG_WARNING("breakpoint (BPID: %" PRIu32 ") already set", breakpoint->unique_id);
1257                 return ERROR_OK;
1258         }
1259
1260         if (breakpoint->type == BKPT_HARD) {
1261                 uint32_t fpcr_value;
1262                 while (comparator_list[fp_num].used && (fp_num < cortex_m->fp_num_code))
1263                         fp_num++;
1264                 if (fp_num >= cortex_m->fp_num_code) {
1265                         LOG_ERROR("Can not find free FPB Comparator!");
1266                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1267                 }
1268                 breakpoint->set = fp_num + 1;
1269                 fpcr_value = breakpoint->address | 1;
1270                 if (cortex_m->fp_rev == 0) {
1271                         if (breakpoint->address > 0x1FFFFFFF) {
1272                                 LOG_ERROR("Cortex-M Flash Patch Breakpoint rev.1 cannot handle HW breakpoint above address 0x1FFFFFFE");
1273                                 return ERROR_FAIL;
1274                         }
1275                         uint32_t hilo;
1276                         hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
1277                         fpcr_value = (fpcr_value & 0x1FFFFFFC) | hilo | 1;
1278                 } else if (cortex_m->fp_rev > 1) {
1279                         LOG_ERROR("Unhandled Cortex-M Flash Patch Breakpoint architecture revision");
1280                         return ERROR_FAIL;
1281                 }
1282                 comparator_list[fp_num].used = true;
1283                 comparator_list[fp_num].fpcr_value = fpcr_value;
1284                 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1285                         comparator_list[fp_num].fpcr_value);
1286                 LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "",
1287                         fp_num,
1288                         comparator_list[fp_num].fpcr_value);
1289                 if (!cortex_m->fpb_enabled) {
1290                         LOG_DEBUG("FPB wasn't enabled, do it now");
1291                         retval = cortex_m_enable_fpb(target);
1292                         if (retval != ERROR_OK) {
1293                                 LOG_ERROR("Failed to enable the FPB");
1294                                 return retval;
1295                         }
1296
1297                         cortex_m->fpb_enabled = true;
1298                 }
1299         } else if (breakpoint->type == BKPT_SOFT) {
1300                 uint8_t code[4];
1301
1302                 /* NOTE: on ARMv6-M and ARMv7-M, BKPT(0xab) is used for
1303                  * semihosting; don't use that.  Otherwise the BKPT
1304                  * parameter is arbitrary.
1305                  */
1306                 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1307                 retval = target_read_memory(target,
1308                                 breakpoint->address & 0xFFFFFFFE,
1309                                 breakpoint->length, 1,
1310                                 breakpoint->orig_instr);
1311                 if (retval != ERROR_OK)
1312                         return retval;
1313                 retval = target_write_memory(target,
1314                                 breakpoint->address & 0xFFFFFFFE,
1315                                 breakpoint->length, 1,
1316                                 code);
1317                 if (retval != ERROR_OK)
1318                         return retval;
1319                 breakpoint->set = true;
1320         }
1321
1322         LOG_DEBUG("BPID: %" PRIu32 ", Type: %d, Address: " TARGET_ADDR_FMT " Length: %d (set=%d)",
1323                 breakpoint->unique_id,
1324                 (int)(breakpoint->type),
1325                 breakpoint->address,
1326                 breakpoint->length,
1327                 breakpoint->set);
1328
1329         return ERROR_OK;
1330 }
1331
1332 int cortex_m_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1333 {
1334         int retval;
1335         struct cortex_m_common *cortex_m = target_to_cm(target);
1336         struct cortex_m_fp_comparator *comparator_list = cortex_m->fp_comparator_list;
1337
1338         if (!breakpoint->set) {
1339                 LOG_WARNING("breakpoint not set");
1340                 return ERROR_OK;
1341         }
1342
1343         LOG_DEBUG("BPID: %" PRIu32 ", Type: %d, Address: " TARGET_ADDR_FMT " Length: %d (set=%d)",
1344                 breakpoint->unique_id,
1345                 (int)(breakpoint->type),
1346                 breakpoint->address,
1347                 breakpoint->length,
1348                 breakpoint->set);
1349
1350         if (breakpoint->type == BKPT_HARD) {
1351                 int fp_num = breakpoint->set - 1;
1352                 if ((fp_num < 0) || (fp_num >= cortex_m->fp_num_code)) {
1353                         LOG_DEBUG("Invalid FP Comparator number in breakpoint");
1354                         return ERROR_OK;
1355                 }
1356                 comparator_list[fp_num].used = false;
1357                 comparator_list[fp_num].fpcr_value = 0;
1358                 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1359                         comparator_list[fp_num].fpcr_value);
1360         } else {
1361                 /* restore original instruction (kept in target endianness) */
1362                 retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE,
1363                                         breakpoint->length, 1,
1364                                         breakpoint->orig_instr);
1365                 if (retval != ERROR_OK)
1366                         return retval;
1367         }
1368         breakpoint->set = false;
1369
1370         return ERROR_OK;
1371 }
1372
1373 int cortex_m_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1374 {
1375         if (breakpoint->length == 3) {
1376                 LOG_DEBUG("Using a two byte breakpoint for 32bit Thumb-2 request");
1377                 breakpoint->length = 2;
1378         }
1379
1380         if ((breakpoint->length != 2)) {
1381                 LOG_INFO("only breakpoints of two bytes length supported");
1382                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1383         }
1384
1385         return cortex_m_set_breakpoint(target, breakpoint);
1386 }
1387
1388 int cortex_m_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1389 {
1390         if (!breakpoint->set)
1391                 return ERROR_OK;
1392
1393         return cortex_m_unset_breakpoint(target, breakpoint);
1394 }
1395
1396 int cortex_m_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1397 {
1398         int dwt_num = 0;
1399         struct cortex_m_common *cortex_m = target_to_cm(target);
1400
1401         /* REVISIT Don't fully trust these "not used" records ... users
1402          * may set up breakpoints by hand, e.g. dual-address data value
1403          * watchpoint using comparator #1; comparator #0 matching cycle
1404          * count; send data trace info through ITM and TPIU; etc
1405          */
1406         struct cortex_m_dwt_comparator *comparator;
1407
1408         for (comparator = cortex_m->dwt_comparator_list;
1409                 comparator->used && dwt_num < cortex_m->dwt_num_comp;
1410                 comparator++, dwt_num++)
1411                 continue;
1412         if (dwt_num >= cortex_m->dwt_num_comp) {
1413                 LOG_ERROR("Can not find free DWT Comparator");
1414                 return ERROR_FAIL;
1415         }
1416         comparator->used = true;
1417         watchpoint->set = dwt_num + 1;
1418
1419         comparator->comp = watchpoint->address;
1420         target_write_u32(target, comparator->dwt_comparator_address + 0,
1421                 comparator->comp);
1422
1423         if ((cortex_m->dwt_devarch & 0x1FFFFF) != DWT_DEVARCH_ARMV8M) {
1424                 uint32_t mask = 0, temp;
1425
1426                 /* watchpoint params were validated earlier */
1427                 temp = watchpoint->length;
1428                 while (temp) {
1429                         temp >>= 1;
1430                         mask++;
1431                 }
1432                 mask--;
1433
1434                 comparator->mask = mask;
1435                 target_write_u32(target, comparator->dwt_comparator_address + 4,
1436                         comparator->mask);
1437
1438                 switch (watchpoint->rw) {
1439                 case WPT_READ:
1440                         comparator->function = 5;
1441                         break;
1442                 case WPT_WRITE:
1443                         comparator->function = 6;
1444                         break;
1445                 case WPT_ACCESS:
1446                         comparator->function = 7;
1447                         break;
1448                 }
1449         } else {
1450                 uint32_t data_size = watchpoint->length >> 1;
1451                 comparator->mask = (watchpoint->length >> 1) | 1;
1452
1453                 switch (watchpoint->rw) {
1454                 case WPT_ACCESS:
1455                         comparator->function = 4;
1456                         break;
1457                 case WPT_WRITE:
1458                         comparator->function = 5;
1459                         break;
1460                 case WPT_READ:
1461                         comparator->function = 6;
1462                         break;
1463                 }
1464                 comparator->function = comparator->function | (1 << 4) |
1465                                 (data_size << 10);
1466         }
1467
1468         target_write_u32(target, comparator->dwt_comparator_address + 8,
1469                 comparator->function);
1470
1471         LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
1472                 watchpoint->unique_id, dwt_num,
1473                 (unsigned) comparator->comp,
1474                 (unsigned) comparator->mask,
1475                 (unsigned) comparator->function);
1476         return ERROR_OK;
1477 }
1478
1479 int cortex_m_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1480 {
1481         struct cortex_m_common *cortex_m = target_to_cm(target);
1482         struct cortex_m_dwt_comparator *comparator;
1483         int dwt_num;
1484
1485         if (!watchpoint->set) {
1486                 LOG_WARNING("watchpoint (wpid: %d) not set",
1487                         watchpoint->unique_id);
1488                 return ERROR_OK;
1489         }
1490
1491         dwt_num = watchpoint->set - 1;
1492
1493         LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear",
1494                 watchpoint->unique_id, dwt_num,
1495                 (unsigned) watchpoint->address);
1496
1497         if ((dwt_num < 0) || (dwt_num >= cortex_m->dwt_num_comp)) {
1498                 LOG_DEBUG("Invalid DWT Comparator number in watchpoint");
1499                 return ERROR_OK;
1500         }
1501
1502         comparator = cortex_m->dwt_comparator_list + dwt_num;
1503         comparator->used = false;
1504         comparator->function = 0;
1505         target_write_u32(target, comparator->dwt_comparator_address + 8,
1506                 comparator->function);
1507
1508         watchpoint->set = false;
1509
1510         return ERROR_OK;
1511 }
1512
1513 int cortex_m_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1514 {
1515         struct cortex_m_common *cortex_m = target_to_cm(target);
1516
1517         if (cortex_m->dwt_comp_available < 1) {
1518                 LOG_DEBUG("no comparators?");
1519                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1520         }
1521
1522         /* hardware doesn't support data value masking */
1523         if (watchpoint->mask != ~(uint32_t)0) {
1524                 LOG_DEBUG("watchpoint value masks not supported");
1525                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1526         }
1527
1528         /* hardware allows address masks of up to 32K */
1529         unsigned mask;
1530
1531         for (mask = 0; mask < 16; mask++) {
1532                 if ((1u << mask) == watchpoint->length)
1533                         break;
1534         }
1535         if (mask == 16) {
1536                 LOG_DEBUG("unsupported watchpoint length");
1537                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1538         }
1539         if (watchpoint->address & ((1 << mask) - 1)) {
1540                 LOG_DEBUG("watchpoint address is unaligned");
1541                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1542         }
1543
1544         /* Caller doesn't seem to be able to describe watching for data
1545          * values of zero; that flags "no value".
1546          *
1547          * REVISIT This DWT may well be able to watch for specific data
1548          * values.  Requires comparator #1 to set DATAVMATCH and match
1549          * the data, and another comparator (DATAVADDR0) matching addr.
1550          */
1551         if (watchpoint->value) {
1552                 LOG_DEBUG("data value watchpoint not YET supported");
1553                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1554         }
1555
1556         cortex_m->dwt_comp_available--;
1557         LOG_DEBUG("dwt_comp_available: %d", cortex_m->dwt_comp_available);
1558
1559         return ERROR_OK;
1560 }
1561
1562 int cortex_m_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1563 {
1564         struct cortex_m_common *cortex_m = target_to_cm(target);
1565
1566         /* REVISIT why check? DWT can be updated with core running ... */
1567         if (target->state != TARGET_HALTED) {
1568                 LOG_WARNING("target not halted");
1569                 return ERROR_TARGET_NOT_HALTED;
1570         }
1571
1572         if (watchpoint->set)
1573                 cortex_m_unset_watchpoint(target, watchpoint);
1574
1575         cortex_m->dwt_comp_available++;
1576         LOG_DEBUG("dwt_comp_available: %d", cortex_m->dwt_comp_available);
1577
1578         return ERROR_OK;
1579 }
1580
1581 void cortex_m_enable_watchpoints(struct target *target)
1582 {
1583         struct watchpoint *watchpoint = target->watchpoints;
1584
1585         /* set any pending watchpoints */
1586         while (watchpoint) {
1587                 if (!watchpoint->set)
1588                         cortex_m_set_watchpoint(target, watchpoint);
1589                 watchpoint = watchpoint->next;
1590         }
1591 }
1592
1593 static int cortex_m_load_core_reg_u32(struct target *target,
1594                 uint32_t num, uint32_t *value)
1595 {
1596         int retval;
1597
1598         /* NOTE:  we "know" here that the register identifiers used
1599          * in the v7m header match the Cortex-M3 Debug Core Register
1600          * Selector values for R0..R15, xPSR, MSP, and PSP.
1601          */
1602         switch (num) {
1603                 case 0 ... 18:
1604                         /* read a normal core register */
1605                         retval = cortexm_dap_read_coreregister_u32(target, value, num);
1606
1607                         if (retval != ERROR_OK) {
1608                                 LOG_ERROR("JTAG failure %i", retval);
1609                                 return ERROR_JTAG_DEVICE_ERROR;
1610                         }
1611                         LOG_DEBUG("load from core reg %i  value 0x%" PRIx32 "", (int)num, *value);
1612                         break;
1613
1614                 case ARMV7M_FPSCR:
1615                         /* Floating-point Status and Registers */
1616                         retval = target_write_u32(target, DCB_DCRSR, 0x21);
1617                         if (retval != ERROR_OK)
1618                                 return retval;
1619                         retval = target_read_u32(target, DCB_DCRDR, value);
1620                         if (retval != ERROR_OK)
1621                                 return retval;
1622                         LOG_DEBUG("load from FPSCR  value 0x%" PRIx32, *value);
1623                         break;
1624
1625                 case ARMV7M_S0 ... ARMV7M_S31:
1626                         /* Floating-point Status and Registers */
1627                         retval = target_write_u32(target, DCB_DCRSR, num - ARMV7M_S0 + 0x40);
1628                         if (retval != ERROR_OK)
1629                                 return retval;
1630                         retval = target_read_u32(target, DCB_DCRDR, value);
1631                         if (retval != ERROR_OK)
1632                                 return retval;
1633                         LOG_DEBUG("load from FPU reg S%d  value 0x%" PRIx32,
1634                                   (int)(num - ARMV7M_S0), *value);
1635                         break;
1636
1637                 case ARMV7M_PRIMASK:
1638                 case ARMV7M_BASEPRI:
1639                 case ARMV7M_FAULTMASK:
1640                 case ARMV7M_CONTROL:
1641                         /* Cortex-M3 packages these four registers as bitfields
1642                          * in one Debug Core register.  So say r0 and r2 docs;
1643                          * it was removed from r1 docs, but still works.
1644                          */
1645                         cortexm_dap_read_coreregister_u32(target, value, 20);
1646
1647                         switch (num) {
1648                                 case ARMV7M_PRIMASK:
1649                                         *value = buf_get_u32((uint8_t *)value, 0, 1);
1650                                         break;
1651
1652                                 case ARMV7M_BASEPRI:
1653                                         *value = buf_get_u32((uint8_t *)value, 8, 8);
1654                                         break;
1655
1656                                 case ARMV7M_FAULTMASK:
1657                                         *value = buf_get_u32((uint8_t *)value, 16, 1);
1658                                         break;
1659
1660                                 case ARMV7M_CONTROL:
1661                                         *value = buf_get_u32((uint8_t *)value, 24, 2);
1662                                         break;
1663                         }
1664
1665                         LOG_DEBUG("load from special reg %i value 0x%" PRIx32 "", (int)num, *value);
1666                         break;
1667
1668                 default:
1669                         return ERROR_COMMAND_SYNTAX_ERROR;
1670         }
1671
1672         return ERROR_OK;
1673 }
1674
1675 static int cortex_m_store_core_reg_u32(struct target *target,
1676                 uint32_t num, uint32_t value)
1677 {
1678         int retval;
1679         uint32_t reg;
1680         struct armv7m_common *armv7m = target_to_armv7m(target);
1681
1682         /* NOTE:  we "know" here that the register identifiers used
1683          * in the v7m header match the Cortex-M3 Debug Core Register
1684          * Selector values for R0..R15, xPSR, MSP, and PSP.
1685          */
1686         switch (num) {
1687                 case 0 ... 18:
1688                         retval = cortexm_dap_write_coreregister_u32(target, value, num);
1689                         if (retval != ERROR_OK) {
1690                                 struct reg *r;
1691
1692                                 LOG_ERROR("JTAG failure");
1693                                 r = armv7m->arm.core_cache->reg_list + num;
1694                                 r->dirty = r->valid;
1695                                 return ERROR_JTAG_DEVICE_ERROR;
1696                         }
1697                         LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value);
1698                         break;
1699
1700                 case ARMV7M_FPSCR:
1701                         /* Floating-point Status and Registers */
1702                         retval = target_write_u32(target, DCB_DCRDR, value);
1703                         if (retval != ERROR_OK)
1704                                 return retval;
1705                         retval = target_write_u32(target, DCB_DCRSR, 0x21 | (1<<16));
1706                         if (retval != ERROR_OK)
1707                                 return retval;
1708                         LOG_DEBUG("write FPSCR value 0x%" PRIx32, value);
1709                         break;
1710
1711                 case ARMV7M_S0 ... ARMV7M_S31:
1712                         /* Floating-point Status and Registers */
1713                         retval = target_write_u32(target, DCB_DCRDR, value);
1714                         if (retval != ERROR_OK)
1715                                 return retval;
1716                         retval = target_write_u32(target, DCB_DCRSR, (num - ARMV7M_S0 + 0x40) | (1<<16));
1717                         if (retval != ERROR_OK)
1718                                 return retval;
1719                         LOG_DEBUG("write FPU reg S%d  value 0x%" PRIx32,
1720                                   (int)(num - ARMV7M_S0), value);
1721                         break;
1722
1723                 case ARMV7M_PRIMASK:
1724                 case ARMV7M_BASEPRI:
1725                 case ARMV7M_FAULTMASK:
1726                 case ARMV7M_CONTROL:
1727                         /* Cortex-M3 packages these four registers as bitfields
1728                          * in one Debug Core register.  So say r0 and r2 docs;
1729                          * it was removed from r1 docs, but still works.
1730                          */
1731                         cortexm_dap_read_coreregister_u32(target, &reg, 20);
1732
1733                         switch (num) {
1734                                 case ARMV7M_PRIMASK:
1735                                         buf_set_u32((uint8_t *)&reg, 0, 1, value);
1736                                         break;
1737
1738                                 case ARMV7M_BASEPRI:
1739                                         buf_set_u32((uint8_t *)&reg, 8, 8, value);
1740                                         break;
1741
1742                                 case ARMV7M_FAULTMASK:
1743                                         buf_set_u32((uint8_t *)&reg, 16, 1, value);
1744                                         break;
1745
1746                                 case ARMV7M_CONTROL:
1747                                         buf_set_u32((uint8_t *)&reg, 24, 2, value);
1748                                         break;
1749                         }
1750
1751                         cortexm_dap_write_coreregister_u32(target, reg, 20);
1752
1753                         LOG_DEBUG("write special reg %i value 0x%" PRIx32 " ", (int)num, value);
1754                         break;
1755
1756                 default:
1757                         return ERROR_COMMAND_SYNTAX_ERROR;
1758         }
1759
1760         return ERROR_OK;
1761 }
1762
1763 static int cortex_m_read_memory(struct target *target, target_addr_t address,
1764         uint32_t size, uint32_t count, uint8_t *buffer)
1765 {
1766         struct armv7m_common *armv7m = target_to_armv7m(target);
1767
1768         if (armv7m->arm.is_armv6m) {
1769                 /* armv6m does not handle unaligned memory access */
1770                 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1771                         return ERROR_TARGET_UNALIGNED_ACCESS;
1772         }
1773
1774         return mem_ap_read_buf(armv7m->debug_ap, buffer, size, count, address);
1775 }
1776
1777 static int cortex_m_write_memory(struct target *target, target_addr_t address,
1778         uint32_t size, uint32_t count, const uint8_t *buffer)
1779 {
1780         struct armv7m_common *armv7m = target_to_armv7m(target);
1781
1782         if (armv7m->arm.is_armv6m) {
1783                 /* armv6m does not handle unaligned memory access */
1784                 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1785                         return ERROR_TARGET_UNALIGNED_ACCESS;
1786         }
1787
1788         return mem_ap_write_buf(armv7m->debug_ap, buffer, size, count, address);
1789 }
1790
1791 static int cortex_m_init_target(struct command_context *cmd_ctx,
1792         struct target *target)
1793 {
1794         armv7m_build_reg_cache(target);
1795         arm_semihosting_init(target);
1796         return ERROR_OK;
1797 }
1798
1799 void cortex_m_deinit_target(struct target *target)
1800 {
1801         struct cortex_m_common *cortex_m = target_to_cm(target);
1802
1803         free(cortex_m->fp_comparator_list);
1804
1805         cortex_m_dwt_free(target);
1806         armv7m_free_reg_cache(target);
1807
1808         free(target->private_config);
1809         free(cortex_m);
1810 }
1811
1812 int cortex_m_profiling(struct target *target, uint32_t *samples,
1813                               uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1814 {
1815         struct timeval timeout, now;
1816         struct armv7m_common *armv7m = target_to_armv7m(target);
1817         uint32_t reg_value;
1818         bool use_pcsr = false;
1819         int retval = ERROR_OK;
1820         struct reg *reg;
1821
1822         gettimeofday(&timeout, NULL);
1823         timeval_add_time(&timeout, seconds, 0);
1824
1825         retval = target_read_u32(target, DWT_PCSR, &reg_value);
1826         if (retval != ERROR_OK) {
1827                 LOG_ERROR("Error while reading PCSR");
1828                 return retval;
1829         }
1830
1831         if (reg_value != 0) {
1832                 use_pcsr = true;
1833                 LOG_INFO("Starting Cortex-M profiling. Sampling DWT_PCSR as fast as we can...");
1834         } else {
1835                 LOG_INFO("Starting profiling. Halting and resuming the"
1836                          " target as often as we can...");
1837                 reg = register_get_by_name(target->reg_cache, "pc", 1);
1838         }
1839
1840         /* Make sure the target is running */
1841         target_poll(target);
1842         if (target->state == TARGET_HALTED)
1843                 retval = target_resume(target, 1, 0, 0, 0);
1844
1845         if (retval != ERROR_OK) {
1846                 LOG_ERROR("Error while resuming target");
1847                 return retval;
1848         }
1849
1850         uint32_t sample_count = 0;
1851
1852         for (;;) {
1853                 if (use_pcsr) {
1854                         if (armv7m && armv7m->debug_ap) {
1855                                 uint32_t read_count = max_num_samples - sample_count;
1856                                 if (read_count > 1024)
1857                                         read_count = 1024;
1858
1859                                 retval = mem_ap_read_buf_noincr(armv7m->debug_ap,
1860                                                         (void *)&samples[sample_count],
1861                                                         4, read_count, DWT_PCSR);
1862                                 sample_count += read_count;
1863                         } else {
1864                                 target_read_u32(target, DWT_PCSR, &samples[sample_count++]);
1865                         }
1866                 } else {
1867                         target_poll(target);
1868                         if (target->state == TARGET_HALTED) {
1869                                 reg_value = buf_get_u32(reg->value, 0, 32);
1870                                 /* current pc, addr = 0, do not handle breakpoints, not debugging */
1871                                 retval = target_resume(target, 1, 0, 0, 0);
1872                                 samples[sample_count++] = reg_value;
1873                                 target_poll(target);
1874                                 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
1875                         } else if (target->state == TARGET_RUNNING) {
1876                                 /* We want to quickly sample the PC. */
1877                                 retval = target_halt(target);
1878                         } else {
1879                                 LOG_INFO("Target not halted or running");
1880                                 retval = ERROR_OK;
1881                                 break;
1882                         }
1883                 }
1884
1885                 if (retval != ERROR_OK) {
1886                         LOG_ERROR("Error while reading %s", use_pcsr ? "PCSR" : "target pc");
1887                         return retval;
1888                 }
1889
1890
1891                 gettimeofday(&now, NULL);
1892                 if (sample_count >= max_num_samples || timeval_compare(&now, &timeout) > 0) {
1893                         LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
1894                         break;
1895                 }
1896         }
1897
1898         *num_samples = sample_count;
1899         return retval;
1900 }
1901
1902
1903 /* REVISIT cache valid/dirty bits are unmaintained.  We could set "valid"
1904  * on r/w if the core is not running, and clear on resume or reset ... or
1905  * at least, in a post_restore_context() method.
1906  */
1907
1908 struct dwt_reg_state {
1909         struct target *target;
1910         uint32_t addr;
1911         uint8_t value[4];               /* scratch/cache */
1912 };
1913
1914 static int cortex_m_dwt_get_reg(struct reg *reg)
1915 {
1916         struct dwt_reg_state *state = reg->arch_info;
1917
1918         uint32_t tmp;
1919         int retval = target_read_u32(state->target, state->addr, &tmp);
1920         if (retval != ERROR_OK)
1921                 return retval;
1922
1923         buf_set_u32(state->value, 0, 32, tmp);
1924         return ERROR_OK;
1925 }
1926
1927 static int cortex_m_dwt_set_reg(struct reg *reg, uint8_t *buf)
1928 {
1929         struct dwt_reg_state *state = reg->arch_info;
1930
1931         return target_write_u32(state->target, state->addr,
1932                         buf_get_u32(buf, 0, reg->size));
1933 }
1934
1935 struct dwt_reg {
1936         uint32_t addr;
1937         const char *name;
1938         unsigned size;
1939 };
1940
1941 static const struct dwt_reg dwt_base_regs[] = {
1942         { DWT_CTRL, "dwt_ctrl", 32, },
1943         /* NOTE that Erratum 532314 (fixed r2p0) affects CYCCNT:  it wrongly
1944          * increments while the core is asleep.
1945          */
1946         { DWT_CYCCNT, "dwt_cyccnt", 32, },
1947         /* plus some 8 bit counters, useful for profiling with TPIU */
1948 };
1949
1950 static const struct dwt_reg dwt_comp[] = {
1951 #define DWT_COMPARATOR(i) \
1952                 { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
1953                 { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
1954                 { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
1955         DWT_COMPARATOR(0),
1956         DWT_COMPARATOR(1),
1957         DWT_COMPARATOR(2),
1958         DWT_COMPARATOR(3),
1959         DWT_COMPARATOR(4),
1960         DWT_COMPARATOR(5),
1961         DWT_COMPARATOR(6),
1962         DWT_COMPARATOR(7),
1963         DWT_COMPARATOR(8),
1964         DWT_COMPARATOR(9),
1965         DWT_COMPARATOR(10),
1966         DWT_COMPARATOR(11),
1967         DWT_COMPARATOR(12),
1968         DWT_COMPARATOR(13),
1969         DWT_COMPARATOR(14),
1970         DWT_COMPARATOR(15),
1971 #undef DWT_COMPARATOR
1972 };
1973
1974 static const struct reg_arch_type dwt_reg_type = {
1975         .get = cortex_m_dwt_get_reg,
1976         .set = cortex_m_dwt_set_reg,
1977 };
1978
1979 static void cortex_m_dwt_addreg(struct target *t, struct reg *r, const struct dwt_reg *d)
1980 {
1981         struct dwt_reg_state *state;
1982
1983         state = calloc(1, sizeof *state);
1984         if (!state)
1985                 return;
1986         state->addr = d->addr;
1987         state->target = t;
1988
1989         r->name = d->name;
1990         r->size = d->size;
1991         r->value = state->value;
1992         r->arch_info = state;
1993         r->type = &dwt_reg_type;
1994 }
1995
1996 void cortex_m_dwt_setup(struct cortex_m_common *cm, struct target *target)
1997 {
1998         uint32_t dwtcr;
1999         struct reg_cache *cache;
2000         struct cortex_m_dwt_comparator *comparator;
2001         int reg, i;
2002
2003         target_read_u32(target, DWT_CTRL, &dwtcr);
2004         LOG_DEBUG("DWT_CTRL: 0x%" PRIx32, dwtcr);
2005         if (!dwtcr) {
2006                 LOG_DEBUG("no DWT");
2007                 return;
2008         }
2009
2010         target_read_u32(target, DWT_DEVARCH, &cm->dwt_devarch);
2011         LOG_DEBUG("DWT_DEVARCH: 0x%" PRIx32, cm->dwt_devarch);
2012
2013         cm->dwt_num_comp = (dwtcr >> 28) & 0xF;
2014         cm->dwt_comp_available = cm->dwt_num_comp;
2015         cm->dwt_comparator_list = calloc(cm->dwt_num_comp,
2016                         sizeof(struct cortex_m_dwt_comparator));
2017         if (!cm->dwt_comparator_list) {
2018 fail0:
2019                 cm->dwt_num_comp = 0;
2020                 LOG_ERROR("out of mem");
2021                 return;
2022         }
2023
2024         cache = calloc(1, sizeof *cache);
2025         if (!cache) {
2026 fail1:
2027                 free(cm->dwt_comparator_list);
2028                 goto fail0;
2029         }
2030         cache->name = "Cortex-M DWT registers";
2031         cache->num_regs = 2 + cm->dwt_num_comp * 3;
2032         cache->reg_list = calloc(cache->num_regs, sizeof *cache->reg_list);
2033         if (!cache->reg_list) {
2034                 free(cache);
2035                 goto fail1;
2036         }
2037
2038         for (reg = 0; reg < 2; reg++)
2039                 cortex_m_dwt_addreg(target, cache->reg_list + reg,
2040                         dwt_base_regs + reg);
2041
2042         comparator = cm->dwt_comparator_list;
2043         for (i = 0; i < cm->dwt_num_comp; i++, comparator++) {
2044                 int j;
2045
2046                 comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
2047                 for (j = 0; j < 3; j++, reg++)
2048                         cortex_m_dwt_addreg(target, cache->reg_list + reg,
2049                                 dwt_comp + 3 * i + j);
2050
2051                 /* make sure we clear any watchpoints enabled on the target */
2052                 target_write_u32(target, comparator->dwt_comparator_address + 8, 0);
2053         }
2054
2055         *register_get_last_cache_p(&target->reg_cache) = cache;
2056         cm->dwt_cache = cache;
2057
2058         LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
2059                 dwtcr, cm->dwt_num_comp,
2060                 (dwtcr & (0xf << 24)) ? " only" : "/trigger");
2061
2062         /* REVISIT:  if num_comp > 1, check whether comparator #1 can
2063          * implement single-address data value watchpoints ... so we
2064          * won't need to check it later, when asked to set one up.
2065          */
2066 }
2067
2068 static void cortex_m_dwt_free(struct target *target)
2069 {
2070         struct cortex_m_common *cm = target_to_cm(target);
2071         struct reg_cache *cache = cm->dwt_cache;
2072
2073         free(cm->dwt_comparator_list);
2074         cm->dwt_comparator_list = NULL;
2075         cm->dwt_num_comp = 0;
2076
2077         if (cache) {
2078                 register_unlink_cache(&target->reg_cache, cache);
2079
2080                 if (cache->reg_list) {
2081                         for (size_t i = 0; i < cache->num_regs; i++)
2082                                 free(cache->reg_list[i].arch_info);
2083                         free(cache->reg_list);
2084                 }
2085                 free(cache);
2086         }
2087         cm->dwt_cache = NULL;
2088 }
2089
2090 #define MVFR0 0xe000ef40
2091 #define MVFR1 0xe000ef44
2092
2093 #define MVFR0_DEFAULT_M4 0x10110021
2094 #define MVFR1_DEFAULT_M4 0x11000011
2095
2096 #define MVFR0_DEFAULT_M7_SP 0x10110021
2097 #define MVFR0_DEFAULT_M7_DP 0x10110221
2098 #define MVFR1_DEFAULT_M7_SP 0x11000011
2099 #define MVFR1_DEFAULT_M7_DP 0x12000011
2100
2101 static int cortex_m_find_mem_ap(struct adiv5_dap *swjdp,
2102                 struct adiv5_ap **debug_ap)
2103 {
2104         if (dap_find_ap(swjdp, AP_TYPE_AHB3_AP, debug_ap) == ERROR_OK)
2105                 return ERROR_OK;
2106
2107         return dap_find_ap(swjdp, AP_TYPE_AHB5_AP, debug_ap);
2108 }
2109
2110 int cortex_m_examine(struct target *target)
2111 {
2112         int retval;
2113         uint32_t cpuid, fpcr, mvfr0, mvfr1;
2114         int i;
2115         struct cortex_m_common *cortex_m = target_to_cm(target);
2116         struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
2117         struct armv7m_common *armv7m = target_to_armv7m(target);
2118
2119         /* stlink shares the examine handler but does not support
2120          * all its calls */
2121         if (!armv7m->stlink) {
2122                 if (cortex_m->apsel == DP_APSEL_INVALID) {
2123                         /* Search for the MEM-AP */
2124                         retval = cortex_m_find_mem_ap(swjdp, &armv7m->debug_ap);
2125                         if (retval != ERROR_OK) {
2126                                 LOG_ERROR("Could not find MEM-AP to control the core");
2127                                 return retval;
2128                         }
2129                 } else {
2130                         armv7m->debug_ap = dap_ap(swjdp, cortex_m->apsel);
2131                 }
2132
2133                 /* Leave (only) generic DAP stuff for debugport_init(); */
2134                 armv7m->debug_ap->memaccess_tck = 8;
2135
2136                 retval = mem_ap_init(armv7m->debug_ap);
2137                 if (retval != ERROR_OK)
2138                         return retval;
2139         }
2140
2141         if (!target_was_examined(target)) {
2142                 target_set_examined(target);
2143
2144                 /* Read from Device Identification Registers */
2145                 retval = target_read_u32(target, CPUID, &cpuid);
2146                 if (retval != ERROR_OK)
2147                         return retval;
2148
2149                 /* Get CPU Type */
2150                 i = (cpuid >> 4) & 0xf;
2151
2152                 switch (cpuid & ARM_CPUID_PARTNO_MASK) {
2153                         case CORTEX_M23_PARTNO:
2154                                 i = 23;
2155                                 break;
2156
2157                         case CORTEX_M33_PARTNO:
2158                                 i = 33;
2159                                 break;
2160
2161                         default:
2162                                 break;
2163                 }
2164
2165
2166                 LOG_DEBUG("Cortex-M%d r%" PRId8 "p%" PRId8 " processor detected",
2167                                 i, (uint8_t)((cpuid >> 20) & 0xf), (uint8_t)((cpuid >> 0) & 0xf));
2168                 cortex_m->maskints_erratum = false;
2169                 if (i == 7) {
2170                         uint8_t rev, patch;
2171                         rev = (cpuid >> 20) & 0xf;
2172                         patch = (cpuid >> 0) & 0xf;
2173                         if ((rev == 0) && (patch < 2)) {
2174                                 LOG_WARNING("Silicon bug: single stepping may enter pending exception handler!");
2175                                 cortex_m->maskints_erratum = true;
2176                         }
2177                 }
2178                 LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid);
2179
2180                 /* VECTRESET is not supported on Cortex-M0, M0+ and M1 */
2181                 cortex_m->vectreset_supported = i > 1;
2182
2183                 if (i == 4) {
2184                         target_read_u32(target, MVFR0, &mvfr0);
2185                         target_read_u32(target, MVFR1, &mvfr1);
2186
2187                         /* test for floating point feature on Cortex-M4 */
2188                         if ((mvfr0 == MVFR0_DEFAULT_M4) && (mvfr1 == MVFR1_DEFAULT_M4)) {
2189                                 LOG_DEBUG("Cortex-M%d floating point feature FPv4_SP found", i);
2190                                 armv7m->fp_feature = FPv4_SP;
2191                         }
2192                 } else if (i == 7 || i == 33) {
2193                         target_read_u32(target, MVFR0, &mvfr0);
2194                         target_read_u32(target, MVFR1, &mvfr1);
2195
2196                         /* test for floating point features on Cortex-M7 */
2197                         if ((mvfr0 == MVFR0_DEFAULT_M7_SP) && (mvfr1 == MVFR1_DEFAULT_M7_SP)) {
2198                                 LOG_DEBUG("Cortex-M%d floating point feature FPv5_SP found", i);
2199                                 armv7m->fp_feature = FPv5_SP;
2200                         } else if ((mvfr0 == MVFR0_DEFAULT_M7_DP) && (mvfr1 == MVFR1_DEFAULT_M7_DP)) {
2201                                 LOG_DEBUG("Cortex-M%d floating point feature FPv5_DP found", i);
2202                                 armv7m->fp_feature = FPv5_DP;
2203                         }
2204                 } else if (i == 0) {
2205                         /* Cortex-M0 does not support unaligned memory access */
2206                         armv7m->arm.is_armv6m = true;
2207                 }
2208
2209                 if (armv7m->fp_feature == FP_NONE &&
2210                     armv7m->arm.core_cache->num_regs > ARMV7M_NUM_CORE_REGS_NOFP) {
2211                         /* free unavailable FPU registers */
2212                         size_t idx;
2213
2214                         for (idx = ARMV7M_NUM_CORE_REGS_NOFP;
2215                              idx < armv7m->arm.core_cache->num_regs;
2216                              idx++) {
2217                                 free(armv7m->arm.core_cache->reg_list[idx].value);
2218                                 free(armv7m->arm.core_cache->reg_list[idx].feature);
2219                                 free(armv7m->arm.core_cache->reg_list[idx].reg_data_type);
2220                         }
2221                         armv7m->arm.core_cache->num_regs = ARMV7M_NUM_CORE_REGS_NOFP;
2222                 }
2223
2224                 if (!armv7m->stlink) {
2225                         if (i == 3 || i == 4)
2226                                 /* Cortex-M3/M4 have 4096 bytes autoincrement range,
2227                                  * s. ARM IHI 0031C: MEM-AP 7.2.2 */
2228                                 armv7m->debug_ap->tar_autoincr_block = (1 << 12);
2229                         else if (i == 7)
2230                                 /* Cortex-M7 has only 1024 bytes autoincrement range */
2231                                 armv7m->debug_ap->tar_autoincr_block = (1 << 10);
2232                 }
2233
2234                 /* Configure trace modules */
2235                 retval = target_write_u32(target, DCB_DEMCR, TRCENA | armv7m->demcr);
2236                 if (retval != ERROR_OK)
2237                         return retval;
2238
2239                 if (armv7m->trace_config.config_type != TRACE_CONFIG_TYPE_DISABLED) {
2240                         armv7m_trace_tpiu_config(target);
2241                         armv7m_trace_itm_config(target);
2242                 }
2243
2244                 /* NOTE: FPB and DWT are both optional. */
2245
2246                 /* Setup FPB */
2247                 target_read_u32(target, FP_CTRL, &fpcr);
2248                 /* bits [14:12] and [7:4] */
2249                 cortex_m->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF);
2250                 cortex_m->fp_num_lit = (fpcr >> 8) & 0xF;
2251                 /* Detect flash patch revision, see RM DDI 0403E.b page C1-817.
2252                    Revision is zero base, fp_rev == 1 means Rev.2 ! */
2253                 cortex_m->fp_rev = (fpcr >> 28) & 0xf;
2254                 free(cortex_m->fp_comparator_list);
2255                 cortex_m->fp_comparator_list = calloc(
2256                                 cortex_m->fp_num_code + cortex_m->fp_num_lit,
2257                                 sizeof(struct cortex_m_fp_comparator));
2258                 cortex_m->fpb_enabled = fpcr & 1;
2259                 for (i = 0; i < cortex_m->fp_num_code + cortex_m->fp_num_lit; i++) {
2260                         cortex_m->fp_comparator_list[i].type =
2261                                 (i < cortex_m->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
2262                         cortex_m->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
2263
2264                         /* make sure we clear any breakpoints enabled on the target */
2265                         target_write_u32(target, cortex_m->fp_comparator_list[i].fpcr_address, 0);
2266                 }
2267                 LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i",
2268                         fpcr,
2269                         cortex_m->fp_num_code,
2270                         cortex_m->fp_num_lit);
2271
2272                 /* Setup DWT */
2273                 cortex_m_dwt_free(target);
2274                 cortex_m_dwt_setup(cortex_m, target);
2275
2276                 /* These hardware breakpoints only work for code in flash! */
2277                 LOG_INFO("%s: hardware has %d breakpoints, %d watchpoints",
2278                         target_name(target),
2279                         cortex_m->fp_num_code,
2280                         cortex_m->dwt_num_comp);
2281         }
2282
2283         return ERROR_OK;
2284 }
2285
2286 static int cortex_m_dcc_read(struct target *target, uint8_t *value, uint8_t *ctrl)
2287 {
2288         struct armv7m_common *armv7m = target_to_armv7m(target);
2289         uint16_t dcrdr;
2290         uint8_t buf[2];
2291         int retval;
2292
2293         retval = mem_ap_read_buf_noincr(armv7m->debug_ap, buf, 2, 1, DCB_DCRDR);
2294         if (retval != ERROR_OK)
2295                 return retval;
2296
2297         dcrdr = target_buffer_get_u16(target, buf);
2298         *ctrl = (uint8_t)dcrdr;
2299         *value = (uint8_t)(dcrdr >> 8);
2300
2301         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
2302
2303         /* write ack back to software dcc register
2304          * signify we have read data */
2305         if (dcrdr & (1 << 0)) {
2306                 target_buffer_set_u16(target, buf, 0);
2307                 retval = mem_ap_write_buf_noincr(armv7m->debug_ap, buf, 2, 1, DCB_DCRDR);
2308                 if (retval != ERROR_OK)
2309                         return retval;
2310         }
2311
2312         return ERROR_OK;
2313 }
2314
2315 static int cortex_m_target_request_data(struct target *target,
2316         uint32_t size, uint8_t *buffer)
2317 {
2318         uint8_t data;
2319         uint8_t ctrl;
2320         uint32_t i;
2321
2322         for (i = 0; i < (size * 4); i++) {
2323                 int retval = cortex_m_dcc_read(target, &data, &ctrl);
2324                 if (retval != ERROR_OK)
2325                         return retval;
2326                 buffer[i] = data;
2327         }
2328
2329         return ERROR_OK;
2330 }
2331
2332 static int cortex_m_handle_target_request(void *priv)
2333 {
2334         struct target *target = priv;
2335         if (!target_was_examined(target))
2336                 return ERROR_OK;
2337
2338         if (!target->dbg_msg_enabled)
2339                 return ERROR_OK;
2340
2341         if (target->state == TARGET_RUNNING) {
2342                 uint8_t data;
2343                 uint8_t ctrl;
2344                 int retval;
2345
2346                 retval = cortex_m_dcc_read(target, &data, &ctrl);
2347                 if (retval != ERROR_OK)
2348                         return retval;
2349
2350                 /* check if we have data */
2351                 if (ctrl & (1 << 0)) {
2352                         uint32_t request;
2353
2354                         /* we assume target is quick enough */
2355                         request = data;
2356                         for (int i = 1; i <= 3; i++) {
2357                                 retval = cortex_m_dcc_read(target, &data, &ctrl);
2358                                 if (retval != ERROR_OK)
2359                                         return retval;
2360                                 request |= ((uint32_t)data << (i * 8));
2361                         }
2362                         target_request(target, request);
2363                 }
2364         }
2365
2366         return ERROR_OK;
2367 }
2368
2369 static int cortex_m_init_arch_info(struct target *target,
2370         struct cortex_m_common *cortex_m, struct adiv5_dap *dap)
2371 {
2372         struct armv7m_common *armv7m = &cortex_m->armv7m;
2373
2374         armv7m_init_arch_info(target, armv7m);
2375
2376         /* default reset mode is to use srst if fitted
2377          * if not it will use CORTEX_M3_RESET_VECTRESET */
2378         cortex_m->soft_reset_config = CORTEX_M_RESET_VECTRESET;
2379
2380         armv7m->arm.dap = dap;
2381
2382         /* register arch-specific functions */
2383         armv7m->examine_debug_reason = cortex_m_examine_debug_reason;
2384
2385         armv7m->post_debug_entry = NULL;
2386
2387         armv7m->pre_restore_context = NULL;
2388
2389         armv7m->load_core_reg_u32 = cortex_m_load_core_reg_u32;
2390         armv7m->store_core_reg_u32 = cortex_m_store_core_reg_u32;
2391
2392         target_register_timer_callback(cortex_m_handle_target_request, 1,
2393                 TARGET_TIMER_TYPE_PERIODIC, target);
2394
2395         return ERROR_OK;
2396 }
2397
2398 static int cortex_m_target_create(struct target *target, Jim_Interp *interp)
2399 {
2400         struct adiv5_private_config *pc;
2401
2402         pc = (struct adiv5_private_config *)target->private_config;
2403         if (adiv5_verify_config(pc) != ERROR_OK)
2404                 return ERROR_FAIL;
2405
2406         struct cortex_m_common *cortex_m = calloc(1, sizeof(struct cortex_m_common));
2407         if (cortex_m == NULL) {
2408                 LOG_ERROR("No memory creating target");
2409                 return ERROR_FAIL;
2410         }
2411
2412         cortex_m->common_magic = CORTEX_M_COMMON_MAGIC;
2413         cortex_m->apsel = pc->ap_num;
2414
2415         cortex_m_init_arch_info(target, cortex_m, pc->dap);
2416
2417         return ERROR_OK;
2418 }
2419
2420 /*--------------------------------------------------------------------------*/
2421
2422 static int cortex_m_verify_pointer(struct command_invocation *cmd,
2423         struct cortex_m_common *cm)
2424 {
2425         if (cm->common_magic != CORTEX_M_COMMON_MAGIC) {
2426                 command_print(cmd, "target is not a Cortex-M");
2427                 return ERROR_TARGET_INVALID;
2428         }
2429         return ERROR_OK;
2430 }
2431
2432 /*
2433  * Only stuff below this line should need to verify that its target
2434  * is a Cortex-M3.  Everything else should have indirected through the
2435  * cortexm3_target structure, which is only used with CM3 targets.
2436  */
2437
2438 COMMAND_HANDLER(handle_cortex_m_vector_catch_command)
2439 {
2440         struct target *target = get_current_target(CMD_CTX);
2441         struct cortex_m_common *cortex_m = target_to_cm(target);
2442         struct armv7m_common *armv7m = &cortex_m->armv7m;
2443         uint32_t demcr = 0;
2444         int retval;
2445
2446         static const struct {
2447                 char name[10];
2448                 unsigned mask;
2449         } vec_ids[] = {
2450                 { "hard_err",   VC_HARDERR, },
2451                 { "int_err",    VC_INTERR, },
2452                 { "bus_err",    VC_BUSERR, },
2453                 { "state_err",  VC_STATERR, },
2454                 { "chk_err",    VC_CHKERR, },
2455                 { "nocp_err",   VC_NOCPERR, },
2456                 { "mm_err",     VC_MMERR, },
2457                 { "reset",      VC_CORERESET, },
2458         };
2459
2460         retval = cortex_m_verify_pointer(CMD, cortex_m);
2461         if (retval != ERROR_OK)
2462                 return retval;
2463
2464         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &demcr);
2465         if (retval != ERROR_OK)
2466                 return retval;
2467
2468         if (CMD_ARGC > 0) {
2469                 unsigned catch = 0;
2470
2471                 if (CMD_ARGC == 1) {
2472                         if (strcmp(CMD_ARGV[0], "all") == 0) {
2473                                 catch = VC_HARDERR | VC_INTERR | VC_BUSERR
2474                                         | VC_STATERR | VC_CHKERR | VC_NOCPERR
2475                                         | VC_MMERR | VC_CORERESET;
2476                                 goto write;
2477                         } else if (strcmp(CMD_ARGV[0], "none") == 0)
2478                                 goto write;
2479                 }
2480                 while (CMD_ARGC-- > 0) {
2481                         unsigned i;
2482                         for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2483                                 if (strcmp(CMD_ARGV[CMD_ARGC], vec_ids[i].name) != 0)
2484                                         continue;
2485                                 catch |= vec_ids[i].mask;
2486                                 break;
2487                         }
2488                         if (i == ARRAY_SIZE(vec_ids)) {
2489                                 LOG_ERROR("No CM3 vector '%s'", CMD_ARGV[CMD_ARGC]);
2490                                 return ERROR_COMMAND_SYNTAX_ERROR;
2491                         }
2492                 }
2493 write:
2494                 /* For now, armv7m->demcr only stores vector catch flags. */
2495                 armv7m->demcr = catch;
2496
2497                 demcr &= ~0xffff;
2498                 demcr |= catch;
2499
2500                 /* write, but don't assume it stuck (why not??) */
2501                 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR, demcr);
2502                 if (retval != ERROR_OK)
2503                         return retval;
2504                 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &demcr);
2505                 if (retval != ERROR_OK)
2506                         return retval;
2507
2508                 /* FIXME be sure to clear DEMCR on clean server shutdown.
2509                  * Otherwise the vector catch hardware could fire when there's
2510                  * no debugger hooked up, causing much confusion...
2511                  */
2512         }
2513
2514         for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2515                 command_print(CMD, "%9s: %s", vec_ids[i].name,
2516                         (demcr & vec_ids[i].mask) ? "catch" : "ignore");
2517         }
2518
2519         return ERROR_OK;
2520 }
2521
2522 COMMAND_HANDLER(handle_cortex_m_mask_interrupts_command)
2523 {
2524         struct target *target = get_current_target(CMD_CTX);
2525         struct cortex_m_common *cortex_m = target_to_cm(target);
2526         int retval;
2527
2528         static const Jim_Nvp nvp_maskisr_modes[] = {
2529                 { .name = "auto", .value = CORTEX_M_ISRMASK_AUTO },
2530                 { .name = "off", .value = CORTEX_M_ISRMASK_OFF },
2531                 { .name = "on", .value = CORTEX_M_ISRMASK_ON },
2532                 { .name = "steponly", .value = CORTEX_M_ISRMASK_STEPONLY },
2533                 { .name = NULL, .value = -1 },
2534         };
2535         const Jim_Nvp *n;
2536
2537
2538         retval = cortex_m_verify_pointer(CMD, cortex_m);
2539         if (retval != ERROR_OK)
2540                 return retval;
2541
2542         if (target->state != TARGET_HALTED) {
2543                 command_print(CMD, "target must be stopped for \"%s\" command", CMD_NAME);
2544                 return ERROR_OK;
2545         }
2546
2547         if (CMD_ARGC > 0) {
2548                 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
2549                 if (n->name == NULL)
2550                         return ERROR_COMMAND_SYNTAX_ERROR;
2551                 cortex_m->isrmasking_mode = n->value;
2552                 cortex_m_set_maskints_for_halt(target);
2553         }
2554
2555         n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_m->isrmasking_mode);
2556         command_print(CMD, "cortex_m interrupt mask %s", n->name);
2557
2558         return ERROR_OK;
2559 }
2560
2561 COMMAND_HANDLER(handle_cortex_m_reset_config_command)
2562 {
2563         struct target *target = get_current_target(CMD_CTX);
2564         struct cortex_m_common *cortex_m = target_to_cm(target);
2565         int retval;
2566         char *reset_config;
2567
2568         retval = cortex_m_verify_pointer(CMD, cortex_m);
2569         if (retval != ERROR_OK)
2570                 return retval;
2571
2572         if (CMD_ARGC > 0) {
2573                 if (strcmp(*CMD_ARGV, "sysresetreq") == 0)
2574                         cortex_m->soft_reset_config = CORTEX_M_RESET_SYSRESETREQ;
2575
2576                 else if (strcmp(*CMD_ARGV, "vectreset") == 0) {
2577                         if (target_was_examined(target)
2578                                         && !cortex_m->vectreset_supported)
2579                                 LOG_WARNING("VECTRESET is not supported on your Cortex-M core!");
2580                         else
2581                                 cortex_m->soft_reset_config = CORTEX_M_RESET_VECTRESET;
2582
2583                 } else
2584                         return ERROR_COMMAND_SYNTAX_ERROR;
2585         }
2586
2587         switch (cortex_m->soft_reset_config) {
2588                 case CORTEX_M_RESET_SYSRESETREQ:
2589                         reset_config = "sysresetreq";
2590                         break;
2591
2592                 case CORTEX_M_RESET_VECTRESET:
2593                         reset_config = "vectreset";
2594                         break;
2595
2596                 default:
2597                         reset_config = "unknown";
2598                         break;
2599         }
2600
2601         command_print(CMD, "cortex_m reset_config %s", reset_config);
2602
2603         return ERROR_OK;
2604 }
2605
2606 static const struct command_registration cortex_m_exec_command_handlers[] = {
2607         {
2608                 .name = "maskisr",
2609                 .handler = handle_cortex_m_mask_interrupts_command,
2610                 .mode = COMMAND_EXEC,
2611                 .help = "mask cortex_m interrupts",
2612                 .usage = "['auto'|'on'|'off'|'steponly']",
2613         },
2614         {
2615                 .name = "vector_catch",
2616                 .handler = handle_cortex_m_vector_catch_command,
2617                 .mode = COMMAND_EXEC,
2618                 .help = "configure hardware vectors to trigger debug entry",
2619                 .usage = "['all'|'none'|('bus_err'|'chk_err'|...)*]",
2620         },
2621         {
2622                 .name = "reset_config",
2623                 .handler = handle_cortex_m_reset_config_command,
2624                 .mode = COMMAND_ANY,
2625                 .help = "configure software reset handling",
2626                 .usage = "['sysresetreq'|'vectreset']",
2627         },
2628         COMMAND_REGISTRATION_DONE
2629 };
2630 static const struct command_registration cortex_m_command_handlers[] = {
2631         {
2632                 .chain = armv7m_command_handlers,
2633         },
2634         {
2635                 .chain = armv7m_trace_command_handlers,
2636         },
2637         {
2638                 .name = "cortex_m",
2639                 .mode = COMMAND_EXEC,
2640                 .help = "Cortex-M command group",
2641                 .usage = "",
2642                 .chain = cortex_m_exec_command_handlers,
2643         },
2644         COMMAND_REGISTRATION_DONE
2645 };
2646
2647 struct target_type cortexm_target = {
2648         .name = "cortex_m",
2649         .deprecated_name = "cortex_m3",
2650
2651         .poll = cortex_m_poll,
2652         .arch_state = armv7m_arch_state,
2653
2654         .target_request_data = cortex_m_target_request_data,
2655
2656         .halt = cortex_m_halt,
2657         .resume = cortex_m_resume,
2658         .step = cortex_m_step,
2659
2660         .assert_reset = cortex_m_assert_reset,
2661         .deassert_reset = cortex_m_deassert_reset,
2662         .soft_reset_halt = cortex_m_soft_reset_halt,
2663
2664         .get_gdb_arch = arm_get_gdb_arch,
2665         .get_gdb_reg_list = armv7m_get_gdb_reg_list,
2666
2667         .read_memory = cortex_m_read_memory,
2668         .write_memory = cortex_m_write_memory,
2669         .checksum_memory = armv7m_checksum_memory,
2670         .blank_check_memory = armv7m_blank_check_memory,
2671
2672         .run_algorithm = armv7m_run_algorithm,
2673         .start_algorithm = armv7m_start_algorithm,
2674         .wait_algorithm = armv7m_wait_algorithm,
2675
2676         .add_breakpoint = cortex_m_add_breakpoint,
2677         .remove_breakpoint = cortex_m_remove_breakpoint,
2678         .add_watchpoint = cortex_m_add_watchpoint,
2679         .remove_watchpoint = cortex_m_remove_watchpoint,
2680
2681         .commands = cortex_m_command_handlers,
2682         .target_create = cortex_m_target_create,
2683         .target_jim_configure = adiv5_jim_configure,
2684         .init_target = cortex_m_init_target,
2685         .examine = cortex_m_examine,
2686         .deinit_target = cortex_m_deinit_target,
2687
2688         .profiling = cortex_m_profiling,
2689 };