target/cortex_m: remove fp_code_available counting
[fw/openocd] / src / target / cortex_m.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   This program is free software; you can redistribute it and/or modify  *
12  *   it under the terms of the GNU General Public License as published by  *
13  *   the Free Software Foundation; either version 2 of the License, or     *
14  *   (at your option) any later version.                                   *
15  *                                                                         *
16  *   This program is distributed in the hope that it will be useful,       *
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
19  *   GNU General Public License for more details.                          *
20  *                                                                         *
21  *   You should have received a copy of the GNU General Public License     *
22  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
23  *                                                                         *
24  *                                                                         *
25  *   Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0)              *
26  *                                                                         *
27  ***************************************************************************/
28 #ifdef HAVE_CONFIG_H
29 #include "config.h"
30 #endif
31
32 #include "jtag/interface.h"
33 #include "breakpoints.h"
34 #include "cortex_m.h"
35 #include "target_request.h"
36 #include "target_type.h"
37 #include "arm_disassembler.h"
38 #include "register.h"
39 #include "arm_opcodes.h"
40 #include "arm_semihosting.h"
41 #include <helper/time_support.h>
42
43 /* NOTE:  most of this should work fine for the Cortex-M1 and
44  * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
45  * Some differences:  M0/M1 doesn't have FPB remapping or the
46  * DWT tracing/profiling support.  (So the cycle counter will
47  * not be usable; the other stuff isn't currently used here.)
48  *
49  * Although there are some workarounds for errata seen only in r0p0
50  * silicon, such old parts are hard to find and thus not much tested
51  * any longer.
52  */
53
54 /* forward declarations */
55 static int cortex_m_store_core_reg_u32(struct target *target,
56                 uint32_t num, uint32_t value);
57 static void cortex_m_dwt_free(struct target *target);
58
59 static int cortexm_dap_read_coreregister_u32(struct target *target,
60         uint32_t *value, int regnum)
61 {
62         struct armv7m_common *armv7m = target_to_armv7m(target);
63         int retval;
64         uint32_t dcrdr;
65
66         /* because the DCB_DCRDR is used for the emulated dcc channel
67          * we have to save/restore the DCB_DCRDR when used */
68         if (target->dbg_msg_enabled) {
69                 retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DCRDR, &dcrdr);
70                 if (retval != ERROR_OK)
71                         return retval;
72         }
73
74         retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRSR, regnum);
75         if (retval != ERROR_OK)
76                 return retval;
77
78         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DCRDR, value);
79         if (retval != ERROR_OK)
80                 return retval;
81
82         if (target->dbg_msg_enabled) {
83                 /* restore DCB_DCRDR - this needs to be in a separate
84                  * transaction otherwise the emulated DCC channel breaks */
85                 if (retval == ERROR_OK)
86                         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRDR, dcrdr);
87         }
88
89         return retval;
90 }
91
92 static int cortexm_dap_write_coreregister_u32(struct target *target,
93         uint32_t value, int regnum)
94 {
95         struct armv7m_common *armv7m = target_to_armv7m(target);
96         int retval;
97         uint32_t dcrdr;
98
99         /* because the DCB_DCRDR is used for the emulated dcc channel
100          * we have to save/restore the DCB_DCRDR when used */
101         if (target->dbg_msg_enabled) {
102                 retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DCRDR, &dcrdr);
103                 if (retval != ERROR_OK)
104                         return retval;
105         }
106
107         retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, value);
108         if (retval != ERROR_OK)
109                 return retval;
110
111         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRSR, regnum | DCRSR_WnR);
112         if (retval != ERROR_OK)
113                 return retval;
114
115         if (target->dbg_msg_enabled) {
116                 /* restore DCB_DCRDR - this needs to be in a seperate
117                  * transaction otherwise the emulated DCC channel breaks */
118                 if (retval == ERROR_OK)
119                         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRDR, dcrdr);
120         }
121
122         return retval;
123 }
124
125 static int cortex_m_write_debug_halt_mask(struct target *target,
126         uint32_t mask_on, uint32_t mask_off)
127 {
128         struct cortex_m_common *cortex_m = target_to_cm(target);
129         struct armv7m_common *armv7m = &cortex_m->armv7m;
130
131         /* mask off status bits */
132         cortex_m->dcb_dhcsr &= ~((0xFFFF << 16) | mask_off);
133         /* create new register mask */
134         cortex_m->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
135
136         return mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR, cortex_m->dcb_dhcsr);
137 }
138
139 static int cortex_m_clear_halt(struct target *target)
140 {
141         struct cortex_m_common *cortex_m = target_to_cm(target);
142         struct armv7m_common *armv7m = &cortex_m->armv7m;
143         int retval;
144
145         /* clear step if any */
146         cortex_m_write_debug_halt_mask(target, C_HALT, C_STEP);
147
148         /* Read Debug Fault Status Register */
149         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_DFSR, &cortex_m->nvic_dfsr);
150         if (retval != ERROR_OK)
151                 return retval;
152
153         /* Clear Debug Fault Status */
154         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_DFSR, cortex_m->nvic_dfsr);
155         if (retval != ERROR_OK)
156                 return retval;
157         LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m->nvic_dfsr);
158
159         return ERROR_OK;
160 }
161
162 static int cortex_m_single_step_core(struct target *target)
163 {
164         struct cortex_m_common *cortex_m = target_to_cm(target);
165         struct armv7m_common *armv7m = &cortex_m->armv7m;
166         int retval;
167
168         /* Mask interrupts before clearing halt, if not done already.  This avoids
169          * Erratum 377497 (fixed in r1p0) where setting MASKINTS while clearing
170          * HALT can put the core into an unknown state.
171          */
172         if (!(cortex_m->dcb_dhcsr & C_MASKINTS)) {
173                 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR,
174                                 DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN);
175                 if (retval != ERROR_OK)
176                         return retval;
177         }
178         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR,
179                         DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN);
180         if (retval != ERROR_OK)
181                 return retval;
182         LOG_DEBUG(" ");
183
184         /* restore dhcsr reg */
185         cortex_m_clear_halt(target);
186
187         return ERROR_OK;
188 }
189
190 static int cortex_m_enable_fpb(struct target *target)
191 {
192         int retval = target_write_u32(target, FP_CTRL, 3);
193         if (retval != ERROR_OK)
194                 return retval;
195
196         /* check the fpb is actually enabled */
197         uint32_t fpctrl;
198         retval = target_read_u32(target, FP_CTRL, &fpctrl);
199         if (retval != ERROR_OK)
200                 return retval;
201
202         if (fpctrl & 1)
203                 return ERROR_OK;
204
205         return ERROR_FAIL;
206 }
207
208 static int cortex_m_endreset_event(struct target *target)
209 {
210         int i;
211         int retval;
212         uint32_t dcb_demcr;
213         struct cortex_m_common *cortex_m = target_to_cm(target);
214         struct armv7m_common *armv7m = &cortex_m->armv7m;
215         struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
216         struct cortex_m_fp_comparator *fp_list = cortex_m->fp_comparator_list;
217         struct cortex_m_dwt_comparator *dwt_list = cortex_m->dwt_comparator_list;
218
219         /* REVISIT The four debug monitor bits are currently ignored... */
220         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &dcb_demcr);
221         if (retval != ERROR_OK)
222                 return retval;
223         LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "", dcb_demcr);
224
225         /* this register is used for emulated dcc channel */
226         retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, 0);
227         if (retval != ERROR_OK)
228                 return retval;
229
230         /* Enable debug requests */
231         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
232         if (retval != ERROR_OK)
233                 return retval;
234         if (!(cortex_m->dcb_dhcsr & C_DEBUGEN)) {
235                 retval = cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP | C_MASKINTS);
236                 if (retval != ERROR_OK)
237                         return retval;
238         }
239
240         /* Restore proper interrupt masking setting. */
241         if (cortex_m->isrmasking_mode == CORTEX_M_ISRMASK_ON)
242                 cortex_m_write_debug_halt_mask(target, C_MASKINTS, 0);
243         else
244                 cortex_m_write_debug_halt_mask(target, 0, C_MASKINTS);
245
246         /* Enable features controlled by ITM and DWT blocks, and catch only
247          * the vectors we were told to pay attention to.
248          *
249          * Target firmware is responsible for all fault handling policy
250          * choices *EXCEPT* explicitly scripted overrides like "vector_catch"
251          * or manual updates to the NVIC SHCSR and CCR registers.
252          */
253         retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR, TRCENA | armv7m->demcr);
254         if (retval != ERROR_OK)
255                 return retval;
256
257         /* Paranoia: evidently some (early?) chips don't preserve all the
258          * debug state (including FPB, DWT, etc) across reset...
259          */
260
261         /* Enable FPB */
262         retval = cortex_m_enable_fpb(target);
263         if (retval != ERROR_OK) {
264                 LOG_ERROR("Failed to enable the FPB");
265                 return retval;
266         }
267
268         cortex_m->fpb_enabled = true;
269
270         /* Restore FPB registers */
271         for (i = 0; i < cortex_m->fp_num_code + cortex_m->fp_num_lit; i++) {
272                 retval = target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
273                 if (retval != ERROR_OK)
274                         return retval;
275         }
276
277         /* Restore DWT registers */
278         for (i = 0; i < cortex_m->dwt_num_comp; i++) {
279                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
280                                 dwt_list[i].comp);
281                 if (retval != ERROR_OK)
282                         return retval;
283                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
284                                 dwt_list[i].mask);
285                 if (retval != ERROR_OK)
286                         return retval;
287                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
288                                 dwt_list[i].function);
289                 if (retval != ERROR_OK)
290                         return retval;
291         }
292         retval = dap_run(swjdp);
293         if (retval != ERROR_OK)
294                 return retval;
295
296         register_cache_invalidate(armv7m->arm.core_cache);
297
298         /* make sure we have latest dhcsr flags */
299         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
300
301         return retval;
302 }
303
304 static int cortex_m_examine_debug_reason(struct target *target)
305 {
306         struct cortex_m_common *cortex_m = target_to_cm(target);
307
308         /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason
309          * only check the debug reason if we don't know it already */
310
311         if ((target->debug_reason != DBG_REASON_DBGRQ)
312                 && (target->debug_reason != DBG_REASON_SINGLESTEP)) {
313                 if (cortex_m->nvic_dfsr & DFSR_BKPT) {
314                         target->debug_reason = DBG_REASON_BREAKPOINT;
315                         if (cortex_m->nvic_dfsr & DFSR_DWTTRAP)
316                                 target->debug_reason = DBG_REASON_WPTANDBKPT;
317                 } else if (cortex_m->nvic_dfsr & DFSR_DWTTRAP)
318                         target->debug_reason = DBG_REASON_WATCHPOINT;
319                 else if (cortex_m->nvic_dfsr & DFSR_VCATCH)
320                         target->debug_reason = DBG_REASON_BREAKPOINT;
321                 else    /* EXTERNAL, HALTED */
322                         target->debug_reason = DBG_REASON_UNDEFINED;
323         }
324
325         return ERROR_OK;
326 }
327
328 static int cortex_m_examine_exception_reason(struct target *target)
329 {
330         uint32_t shcsr = 0, except_sr = 0, cfsr = -1, except_ar = -1;
331         struct armv7m_common *armv7m = target_to_armv7m(target);
332         struct adiv5_dap *swjdp = armv7m->arm.dap;
333         int retval;
334
335         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_SHCSR, &shcsr);
336         if (retval != ERROR_OK)
337                 return retval;
338         switch (armv7m->exception_number) {
339                 case 2: /* NMI */
340                         break;
341                 case 3: /* Hard Fault */
342                         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_HFSR, &except_sr);
343                         if (retval != ERROR_OK)
344                                 return retval;
345                         if (except_sr & 0x40000000) {
346                                 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &cfsr);
347                                 if (retval != ERROR_OK)
348                                         return retval;
349                         }
350                         break;
351                 case 4: /* Memory Management */
352                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
353                         if (retval != ERROR_OK)
354                                 return retval;
355                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_MMFAR, &except_ar);
356                         if (retval != ERROR_OK)
357                                 return retval;
358                         break;
359                 case 5: /* Bus Fault */
360                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
361                         if (retval != ERROR_OK)
362                                 return retval;
363                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_BFAR, &except_ar);
364                         if (retval != ERROR_OK)
365                                 return retval;
366                         break;
367                 case 6: /* Usage Fault */
368                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
369                         if (retval != ERROR_OK)
370                                 return retval;
371                         break;
372                 case 11:        /* SVCall */
373                         break;
374                 case 12:        /* Debug Monitor */
375                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_DFSR, &except_sr);
376                         if (retval != ERROR_OK)
377                                 return retval;
378                         break;
379                 case 14:        /* PendSV */
380                         break;
381                 case 15:        /* SysTick */
382                         break;
383                 default:
384                         except_sr = 0;
385                         break;
386         }
387         retval = dap_run(swjdp);
388         if (retval == ERROR_OK)
389                 LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32
390                         ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32,
391                         armv7m_exception_string(armv7m->exception_number),
392                         shcsr, except_sr, cfsr, except_ar);
393         return retval;
394 }
395
396 static int cortex_m_debug_entry(struct target *target)
397 {
398         int i;
399         uint32_t xPSR;
400         int retval;
401         struct cortex_m_common *cortex_m = target_to_cm(target);
402         struct armv7m_common *armv7m = &cortex_m->armv7m;
403         struct arm *arm = &armv7m->arm;
404         struct reg *r;
405
406         LOG_DEBUG(" ");
407
408         cortex_m_clear_halt(target);
409         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
410         if (retval != ERROR_OK)
411                 return retval;
412
413         retval = armv7m->examine_debug_reason(target);
414         if (retval != ERROR_OK)
415                 return retval;
416
417         /* Examine target state and mode
418          * First load register accessible through core debug port */
419         int num_regs = arm->core_cache->num_regs;
420
421         for (i = 0; i < num_regs; i++) {
422                 r = &armv7m->arm.core_cache->reg_list[i];
423                 if (!r->valid)
424                         arm->read_core_reg(target, r, i, ARM_MODE_ANY);
425         }
426
427         r = arm->cpsr;
428         xPSR = buf_get_u32(r->value, 0, 32);
429
430         /* For IT instructions xPSR must be reloaded on resume and clear on debug exec */
431         if (xPSR & 0xf00) {
432                 r->dirty = r->valid;
433                 cortex_m_store_core_reg_u32(target, 16, xPSR & ~0xff);
434         }
435
436         /* Are we in an exception handler */
437         if (xPSR & 0x1FF) {
438                 armv7m->exception_number = (xPSR & 0x1FF);
439
440                 arm->core_mode = ARM_MODE_HANDLER;
441                 arm->map = armv7m_msp_reg_map;
442         } else {
443                 unsigned control = buf_get_u32(arm->core_cache
444                                 ->reg_list[ARMV7M_CONTROL].value, 0, 2);
445
446                 /* is this thread privileged? */
447                 arm->core_mode = control & 1
448                         ? ARM_MODE_USER_THREAD
449                         : ARM_MODE_THREAD;
450
451                 /* which stack is it using? */
452                 if (control & 2)
453                         arm->map = armv7m_psp_reg_map;
454                 else
455                         arm->map = armv7m_msp_reg_map;
456
457                 armv7m->exception_number = 0;
458         }
459
460         if (armv7m->exception_number)
461                 cortex_m_examine_exception_reason(target);
462
463         LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", target->state: %s",
464                 arm_mode_name(arm->core_mode),
465                 buf_get_u32(arm->pc->value, 0, 32),
466                 target_state_name(target));
467
468         if (armv7m->post_debug_entry) {
469                 retval = armv7m->post_debug_entry(target);
470                 if (retval != ERROR_OK)
471                         return retval;
472         }
473
474         return ERROR_OK;
475 }
476
477 static int cortex_m_poll(struct target *target)
478 {
479         int detected_failure = ERROR_OK;
480         int retval = ERROR_OK;
481         enum target_state prev_target_state = target->state;
482         struct cortex_m_common *cortex_m = target_to_cm(target);
483         struct armv7m_common *armv7m = &cortex_m->armv7m;
484
485         /* Read from Debug Halting Control and Status Register */
486         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
487         if (retval != ERROR_OK) {
488                 target->state = TARGET_UNKNOWN;
489                 return retval;
490         }
491
492         /* Recover from lockup.  See ARMv7-M architecture spec,
493          * section B1.5.15 "Unrecoverable exception cases".
494          */
495         if (cortex_m->dcb_dhcsr & S_LOCKUP) {
496                 LOG_ERROR("%s -- clearing lockup after double fault",
497                         target_name(target));
498                 cortex_m_write_debug_halt_mask(target, C_HALT, 0);
499                 target->debug_reason = DBG_REASON_DBGRQ;
500
501                 /* We have to execute the rest (the "finally" equivalent, but
502                  * still throw this exception again).
503                  */
504                 detected_failure = ERROR_FAIL;
505
506                 /* refresh status bits */
507                 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
508                 if (retval != ERROR_OK)
509                         return retval;
510         }
511
512         if (cortex_m->dcb_dhcsr & S_RESET_ST) {
513                 if (target->state != TARGET_RESET) {
514                         target->state = TARGET_RESET;
515                         LOG_INFO("%s: external reset detected", target_name(target));
516                 }
517                 return ERROR_OK;
518         }
519
520         if (target->state == TARGET_RESET) {
521                 /* Cannot switch context while running so endreset is
522                  * called with target->state == TARGET_RESET
523                  */
524                 LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32,
525                         cortex_m->dcb_dhcsr);
526                 retval = cortex_m_endreset_event(target);
527                 if (retval != ERROR_OK) {
528                         target->state = TARGET_UNKNOWN;
529                         return retval;
530                 }
531                 target->state = TARGET_RUNNING;
532                 prev_target_state = TARGET_RUNNING;
533         }
534
535         if (cortex_m->dcb_dhcsr & S_HALT) {
536                 target->state = TARGET_HALTED;
537
538                 if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET)) {
539                         retval = cortex_m_debug_entry(target);
540                         if (retval != ERROR_OK)
541                                 return retval;
542
543                         if (arm_semihosting(target, &retval) != 0)
544                                 return retval;
545
546                         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
547                 }
548                 if (prev_target_state == TARGET_DEBUG_RUNNING) {
549                         LOG_DEBUG(" ");
550                         retval = cortex_m_debug_entry(target);
551                         if (retval != ERROR_OK)
552                                 return retval;
553
554                         target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
555                 }
556         }
557
558         /* REVISIT when S_SLEEP is set, it's in a Sleep or DeepSleep state.
559          * How best to model low power modes?
560          */
561
562         if (target->state == TARGET_UNKNOWN) {
563                 /* check if processor is retiring instructions */
564                 if (cortex_m->dcb_dhcsr & S_RETIRE_ST) {
565                         target->state = TARGET_RUNNING;
566                         retval = ERROR_OK;
567                 }
568         }
569
570         /* Check that target is truly halted, since the target could be resumed externally */
571         if ((prev_target_state == TARGET_HALTED) && !(cortex_m->dcb_dhcsr & S_HALT)) {
572                 /* registers are now invalid */
573                 register_cache_invalidate(armv7m->arm.core_cache);
574
575                 target->state = TARGET_RUNNING;
576                 LOG_WARNING("%s: external resume detected", target_name(target));
577                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
578                 retval = ERROR_OK;
579         }
580
581         /* Did we detect a failure condition that we cleared? */
582         if (detected_failure != ERROR_OK)
583                 retval = detected_failure;
584         return retval;
585 }
586
587 static int cortex_m_halt(struct target *target)
588 {
589         LOG_DEBUG("target->state: %s",
590                 target_state_name(target));
591
592         if (target->state == TARGET_HALTED) {
593                 LOG_DEBUG("target was already halted");
594                 return ERROR_OK;
595         }
596
597         if (target->state == TARGET_UNKNOWN)
598                 LOG_WARNING("target was in unknown state when halt was requested");
599
600         if (target->state == TARGET_RESET) {
601                 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst()) {
602                         LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
603                         return ERROR_TARGET_FAILURE;
604                 } else {
605                         /* we came here in a reset_halt or reset_init sequence
606                          * debug entry was already prepared in cortex_m3_assert_reset()
607                          */
608                         target->debug_reason = DBG_REASON_DBGRQ;
609
610                         return ERROR_OK;
611                 }
612         }
613
614         /* Write to Debug Halting Control and Status Register */
615         cortex_m_write_debug_halt_mask(target, C_HALT, 0);
616
617         target->debug_reason = DBG_REASON_DBGRQ;
618
619         return ERROR_OK;
620 }
621
622 static int cortex_m_soft_reset_halt(struct target *target)
623 {
624         struct cortex_m_common *cortex_m = target_to_cm(target);
625         struct armv7m_common *armv7m = &cortex_m->armv7m;
626         uint32_t dcb_dhcsr = 0;
627         int retval, timeout = 0;
628
629         /* soft_reset_halt is deprecated on cortex_m as the same functionality
630          * can be obtained by using 'reset halt' and 'cortex_m reset_config vectreset'
631          * As this reset only used VC_CORERESET it would only ever reset the cortex_m
632          * core, not the peripherals */
633         LOG_WARNING("soft_reset_halt is deprecated, please use 'reset halt' instead.");
634
635         /* Enter debug state on reset; restore DEMCR in endreset_event() */
636         retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR,
637                         TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
638         if (retval != ERROR_OK)
639                 return retval;
640
641         /* Request a core-only reset */
642         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_AIRCR,
643                         AIRCR_VECTKEY | AIRCR_VECTRESET);
644         if (retval != ERROR_OK)
645                 return retval;
646         target->state = TARGET_RESET;
647
648         /* registers are now invalid */
649         register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
650
651         while (timeout < 100) {
652                 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &dcb_dhcsr);
653                 if (retval == ERROR_OK) {
654                         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_DFSR,
655                                         &cortex_m->nvic_dfsr);
656                         if (retval != ERROR_OK)
657                                 return retval;
658                         if ((dcb_dhcsr & S_HALT)
659                                 && (cortex_m->nvic_dfsr & DFSR_VCATCH)) {
660                                 LOG_DEBUG("system reset-halted, DHCSR 0x%08x, "
661                                         "DFSR 0x%08x",
662                                         (unsigned) dcb_dhcsr,
663                                         (unsigned) cortex_m->nvic_dfsr);
664                                 cortex_m_poll(target);
665                                 /* FIXME restore user's vector catch config */
666                                 return ERROR_OK;
667                         } else
668                                 LOG_DEBUG("waiting for system reset-halt, "
669                                         "DHCSR 0x%08x, %d ms",
670                                         (unsigned) dcb_dhcsr, timeout);
671                 }
672                 timeout++;
673                 alive_sleep(1);
674         }
675
676         return ERROR_OK;
677 }
678
679 void cortex_m_enable_breakpoints(struct target *target)
680 {
681         struct breakpoint *breakpoint = target->breakpoints;
682
683         /* set any pending breakpoints */
684         while (breakpoint) {
685                 if (!breakpoint->set)
686                         cortex_m_set_breakpoint(target, breakpoint);
687                 breakpoint = breakpoint->next;
688         }
689 }
690
691 static int cortex_m_resume(struct target *target, int current,
692         target_addr_t address, int handle_breakpoints, int debug_execution)
693 {
694         struct armv7m_common *armv7m = target_to_armv7m(target);
695         struct breakpoint *breakpoint = NULL;
696         uint32_t resume_pc;
697         struct reg *r;
698
699         if (target->state != TARGET_HALTED) {
700                 LOG_WARNING("target not halted");
701                 return ERROR_TARGET_NOT_HALTED;
702         }
703
704         if (!debug_execution) {
705                 target_free_all_working_areas(target);
706                 cortex_m_enable_breakpoints(target);
707                 cortex_m_enable_watchpoints(target);
708         }
709
710         if (debug_execution) {
711                 r = armv7m->arm.core_cache->reg_list + ARMV7M_PRIMASK;
712
713                 /* Disable interrupts */
714                 /* We disable interrupts in the PRIMASK register instead of
715                  * masking with C_MASKINTS.  This is probably the same issue
716                  * as Cortex-M3 Erratum 377493 (fixed in r1p0):  C_MASKINTS
717                  * in parallel with disabled interrupts can cause local faults
718                  * to not be taken.
719                  *
720                  * REVISIT this clearly breaks non-debug execution, since the
721                  * PRIMASK register state isn't saved/restored...  workaround
722                  * by never resuming app code after debug execution.
723                  */
724                 buf_set_u32(r->value, 0, 1, 1);
725                 r->dirty = true;
726                 r->valid = true;
727
728                 /* Make sure we are in Thumb mode */
729                 r = armv7m->arm.cpsr;
730                 buf_set_u32(r->value, 24, 1, 1);
731                 r->dirty = true;
732                 r->valid = true;
733         }
734
735         /* current = 1: continue on current pc, otherwise continue at <address> */
736         r = armv7m->arm.pc;
737         if (!current) {
738                 buf_set_u32(r->value, 0, 32, address);
739                 r->dirty = true;
740                 r->valid = true;
741         }
742
743         /* if we halted last time due to a bkpt instruction
744          * then we have to manually step over it, otherwise
745          * the core will break again */
746
747         if (!breakpoint_find(target, buf_get_u32(r->value, 0, 32))
748                 && !debug_execution)
749                 armv7m_maybe_skip_bkpt_inst(target, NULL);
750
751         resume_pc = buf_get_u32(r->value, 0, 32);
752
753         armv7m_restore_context(target);
754
755         /* the front-end may request us not to handle breakpoints */
756         if (handle_breakpoints) {
757                 /* Single step past breakpoint at current address */
758                 breakpoint = breakpoint_find(target, resume_pc);
759                 if (breakpoint) {
760                         LOG_DEBUG("unset breakpoint at " TARGET_ADDR_FMT " (ID: %" PRIu32 ")",
761                                 breakpoint->address,
762                                 breakpoint->unique_id);
763                         cortex_m_unset_breakpoint(target, breakpoint);
764                         cortex_m_single_step_core(target);
765                         cortex_m_set_breakpoint(target, breakpoint);
766                 }
767         }
768
769         /* Restart core */
770         cortex_m_write_debug_halt_mask(target, 0, C_HALT);
771
772         target->debug_reason = DBG_REASON_NOTHALTED;
773
774         /* registers are now invalid */
775         register_cache_invalidate(armv7m->arm.core_cache);
776
777         if (!debug_execution) {
778                 target->state = TARGET_RUNNING;
779                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
780                 LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc);
781         } else {
782                 target->state = TARGET_DEBUG_RUNNING;
783                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
784                 LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc);
785         }
786
787         return ERROR_OK;
788 }
789
790 /* int irqstepcount = 0; */
791 static int cortex_m_step(struct target *target, int current,
792         target_addr_t address, int handle_breakpoints)
793 {
794         struct cortex_m_common *cortex_m = target_to_cm(target);
795         struct armv7m_common *armv7m = &cortex_m->armv7m;
796         struct breakpoint *breakpoint = NULL;
797         struct reg *pc = armv7m->arm.pc;
798         bool bkpt_inst_found = false;
799         int retval;
800         bool isr_timed_out = false;
801
802         if (target->state != TARGET_HALTED) {
803                 LOG_WARNING("target not halted");
804                 return ERROR_TARGET_NOT_HALTED;
805         }
806
807         /* current = 1: continue on current pc, otherwise continue at <address> */
808         if (!current)
809                 buf_set_u32(pc->value, 0, 32, address);
810
811         uint32_t pc_value = buf_get_u32(pc->value, 0, 32);
812
813         /* the front-end may request us not to handle breakpoints */
814         if (handle_breakpoints) {
815                 breakpoint = breakpoint_find(target, pc_value);
816                 if (breakpoint)
817                         cortex_m_unset_breakpoint(target, breakpoint);
818         }
819
820         armv7m_maybe_skip_bkpt_inst(target, &bkpt_inst_found);
821
822         target->debug_reason = DBG_REASON_SINGLESTEP;
823
824         armv7m_restore_context(target);
825
826         target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
827
828         /* if no bkpt instruction is found at pc then we can perform
829          * a normal step, otherwise we have to manually step over the bkpt
830          * instruction - as such simulate a step */
831         if (bkpt_inst_found == false) {
832                 /* Automatic ISR masking mode off: Just step over the next instruction */
833                 if ((cortex_m->isrmasking_mode != CORTEX_M_ISRMASK_AUTO))
834                         cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
835                 else {
836                         /* Process interrupts during stepping in a way they don't interfere
837                          * debugging.
838                          *
839                          * Principle:
840                          *
841                          * Set a temporary break point at the current pc and let the core run
842                          * with interrupts enabled. Pending interrupts get served and we run
843                          * into the breakpoint again afterwards. Then we step over the next
844                          * instruction with interrupts disabled.
845                          *
846                          * If the pending interrupts don't complete within time, we leave the
847                          * core running. This may happen if the interrupts trigger faster
848                          * than the core can process them or the handler doesn't return.
849                          *
850                          * If no more breakpoints are available we simply do a step with
851                          * interrupts enabled.
852                          *
853                          */
854
855                         /* 2012-09-29 ph
856                          *
857                          * If a break point is already set on the lower half word then a break point on
858                          * the upper half word will not break again when the core is restarted. So we
859                          * just step over the instruction with interrupts disabled.
860                          *
861                          * The documentation has no information about this, it was found by observation
862                          * on STM32F1 and STM32F2. Proper explanation welcome. STM32F0 dosen't seem to
863                          * suffer from this problem.
864                          *
865                          * To add some confusion: pc_value has bit 0 always set, while the breakpoint
866                          * address has it always cleared. The former is done to indicate thumb mode
867                          * to gdb.
868                          *
869                          */
870                         if ((pc_value & 0x02) && breakpoint_find(target, pc_value & ~0x03)) {
871                                 LOG_DEBUG("Stepping over next instruction with interrupts disabled");
872                                 cortex_m_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
873                                 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
874                                 /* Re-enable interrupts */
875                                 cortex_m_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
876                         }
877                         else {
878
879                                 /* Set a temporary break point */
880                                 if (breakpoint) {
881                                         retval = cortex_m_set_breakpoint(target, breakpoint);
882                                 } else {
883                                         enum breakpoint_type type = BKPT_HARD;
884                                         if (cortex_m->fp_rev == 0 && pc_value > 0x1FFFFFFF) {
885                                                 /* FPB rev.1 cannot handle such addr, try BKPT instr */
886                                                 type = BKPT_SOFT;
887                                         }
888                                         retval = breakpoint_add(target, pc_value, 2, type);
889                                 }
890
891                                 bool tmp_bp_set = (retval == ERROR_OK);
892
893                                 /* No more breakpoints left, just do a step */
894                                 if (!tmp_bp_set)
895                                         cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
896                                 else {
897                                         /* Start the core */
898                                         LOG_DEBUG("Starting core to serve pending interrupts");
899                                         int64_t t_start = timeval_ms();
900                                         cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP);
901
902                                         /* Wait for pending handlers to complete or timeout */
903                                         do {
904                                                 retval = mem_ap_read_atomic_u32(armv7m->debug_ap,
905                                                                 DCB_DHCSR,
906                                                                 &cortex_m->dcb_dhcsr);
907                                                 if (retval != ERROR_OK) {
908                                                         target->state = TARGET_UNKNOWN;
909                                                         return retval;
910                                                 }
911                                                 isr_timed_out = ((timeval_ms() - t_start) > 500);
912                                         } while (!((cortex_m->dcb_dhcsr & S_HALT) || isr_timed_out));
913
914                                         /* only remove breakpoint if we created it */
915                                         if (breakpoint)
916                                                 cortex_m_unset_breakpoint(target, breakpoint);
917                                         else {
918                                                 /* Remove the temporary breakpoint */
919                                                 breakpoint_remove(target, pc_value);
920                                         }
921
922                                         if (isr_timed_out) {
923                                                 LOG_DEBUG("Interrupt handlers didn't complete within time, "
924                                                         "leaving target running");
925                                         } else {
926                                                 /* Step over next instruction with interrupts disabled */
927                                                 cortex_m_write_debug_halt_mask(target,
928                                                         C_HALT | C_MASKINTS,
929                                                         0);
930                                                 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
931                                                 /* Re-enable interrupts */
932                                                 cortex_m_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
933                                         }
934                                 }
935                         }
936                 }
937         }
938
939         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
940         if (retval != ERROR_OK)
941                 return retval;
942
943         /* registers are now invalid */
944         register_cache_invalidate(armv7m->arm.core_cache);
945
946         if (breakpoint)
947                 cortex_m_set_breakpoint(target, breakpoint);
948
949         if (isr_timed_out) {
950                 /* Leave the core running. The user has to stop execution manually. */
951                 target->debug_reason = DBG_REASON_NOTHALTED;
952                 target->state = TARGET_RUNNING;
953                 return ERROR_OK;
954         }
955
956         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
957                 " nvic_icsr = 0x%" PRIx32,
958                 cortex_m->dcb_dhcsr, cortex_m->nvic_icsr);
959
960         retval = cortex_m_debug_entry(target);
961         if (retval != ERROR_OK)
962                 return retval;
963         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
964
965         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
966                 " nvic_icsr = 0x%" PRIx32,
967                 cortex_m->dcb_dhcsr, cortex_m->nvic_icsr);
968
969         return ERROR_OK;
970 }
971
972 static int cortex_m_assert_reset(struct target *target)
973 {
974         struct cortex_m_common *cortex_m = target_to_cm(target);
975         struct armv7m_common *armv7m = &cortex_m->armv7m;
976         enum cortex_m_soft_reset_config reset_config = cortex_m->soft_reset_config;
977
978         LOG_DEBUG("target->state: %s",
979                 target_state_name(target));
980
981         enum reset_types jtag_reset_config = jtag_get_reset_config();
982
983         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
984                 /* allow scripts to override the reset event */
985
986                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
987                 register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
988                 target->state = TARGET_RESET;
989
990                 return ERROR_OK;
991         }
992
993         /* some cores support connecting while srst is asserted
994          * use that mode is it has been configured */
995
996         bool srst_asserted = false;
997
998         if (!target_was_examined(target)) {
999                 if (jtag_reset_config & RESET_HAS_SRST) {
1000                         adapter_assert_reset();
1001                         if (target->reset_halt)
1002                                 LOG_ERROR("Target not examined, will not halt after reset!");
1003                         return ERROR_OK;
1004                 } else {
1005                         LOG_ERROR("Target not examined, reset NOT asserted!");
1006                         return ERROR_FAIL;
1007                 }
1008         }
1009
1010         if ((jtag_reset_config & RESET_HAS_SRST) &&
1011             (jtag_reset_config & RESET_SRST_NO_GATING)) {
1012                 adapter_assert_reset();
1013                 srst_asserted = true;
1014         }
1015
1016         /* Enable debug requests */
1017         int retval;
1018         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
1019         /* Store important errors instead of failing and proceed to reset assert */
1020
1021         if (retval != ERROR_OK || !(cortex_m->dcb_dhcsr & C_DEBUGEN))
1022                 retval = cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP | C_MASKINTS);
1023
1024         /* If the processor is sleeping in a WFI or WFE instruction, the
1025          * C_HALT bit must be asserted to regain control */
1026         if (retval == ERROR_OK && (cortex_m->dcb_dhcsr & S_SLEEP))
1027                 retval = cortex_m_write_debug_halt_mask(target, C_HALT, 0);
1028
1029         mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, 0);
1030         /* Ignore less important errors */
1031
1032         if (!target->reset_halt) {
1033                 /* Set/Clear C_MASKINTS in a separate operation */
1034                 if (cortex_m->dcb_dhcsr & C_MASKINTS)
1035                         cortex_m_write_debug_halt_mask(target, 0, C_MASKINTS);
1036
1037                 /* clear any debug flags before resuming */
1038                 cortex_m_clear_halt(target);
1039
1040                 /* clear C_HALT in dhcsr reg */
1041                 cortex_m_write_debug_halt_mask(target, 0, C_HALT);
1042         } else {
1043                 /* Halt in debug on reset; endreset_event() restores DEMCR.
1044                  *
1045                  * REVISIT catching BUSERR presumably helps to defend against
1046                  * bad vector table entries.  Should this include MMERR or
1047                  * other flags too?
1048                  */
1049                 int retval2;
1050                 retval2 = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DEMCR,
1051                                 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
1052                 if (retval != ERROR_OK || retval2 != ERROR_OK)
1053                         LOG_INFO("AP write error, reset will not halt");
1054         }
1055
1056         if (jtag_reset_config & RESET_HAS_SRST) {
1057                 /* default to asserting srst */
1058                 if (!srst_asserted)
1059                         adapter_assert_reset();
1060
1061                 /* srst is asserted, ignore AP access errors */
1062                 retval = ERROR_OK;
1063         } else {
1064                 /* Use a standard Cortex-M3 software reset mechanism.
1065                  * We default to using VECRESET as it is supported on all current cores
1066                  * (except Cortex-M0, M0+ and M1 which support SYSRESETREQ only!)
1067                  * This has the disadvantage of not resetting the peripherals, so a
1068                  * reset-init event handler is needed to perform any peripheral resets.
1069                  */
1070                 if (!cortex_m->vectreset_supported
1071                                 && reset_config == CORTEX_M_RESET_VECTRESET) {
1072                         reset_config = CORTEX_M_RESET_SYSRESETREQ;
1073                         LOG_WARNING("VECTRESET is not supported on this Cortex-M core, using SYSRESETREQ instead.");
1074                         LOG_WARNING("Set 'cortex_m reset_config sysresetreq'.");
1075                 }
1076
1077                 LOG_DEBUG("Using Cortex-M %s", (reset_config == CORTEX_M_RESET_SYSRESETREQ)
1078                         ? "SYSRESETREQ" : "VECTRESET");
1079
1080                 if (reset_config == CORTEX_M_RESET_VECTRESET) {
1081                         LOG_WARNING("Only resetting the Cortex-M core, use a reset-init event "
1082                                 "handler to reset any peripherals or configure hardware srst support.");
1083                 }
1084
1085                 int retval3;
1086                 retval3 = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_AIRCR,
1087                                 AIRCR_VECTKEY | ((reset_config == CORTEX_M_RESET_SYSRESETREQ)
1088                                 ? AIRCR_SYSRESETREQ : AIRCR_VECTRESET));
1089                 if (retval3 != ERROR_OK)
1090                         LOG_DEBUG("Ignoring AP write error right after reset");
1091
1092                 retval3 = dap_dp_init(armv7m->debug_ap->dap);
1093                 if (retval3 != ERROR_OK)
1094                         LOG_ERROR("DP initialisation failed");
1095
1096                 else {
1097                         /* I do not know why this is necessary, but it
1098                          * fixes strange effects (step/resume cause NMI
1099                          * after reset) on LM3S6918 -- Michael Schwingen
1100                          */
1101                         uint32_t tmp;
1102                         mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_AIRCR, &tmp);
1103                 }
1104         }
1105
1106         target->state = TARGET_RESET;
1107         jtag_add_sleep(50000);
1108
1109         register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
1110
1111         /* now return stored error code if any */
1112         if (retval != ERROR_OK)
1113                 return retval;
1114
1115         if (target->reset_halt) {
1116                 retval = target_halt(target);
1117                 if (retval != ERROR_OK)
1118                         return retval;
1119         }
1120
1121         return ERROR_OK;
1122 }
1123
1124 static int cortex_m_deassert_reset(struct target *target)
1125 {
1126         struct armv7m_common *armv7m = &target_to_cm(target)->armv7m;
1127
1128         LOG_DEBUG("target->state: %s",
1129                 target_state_name(target));
1130
1131         /* deassert reset lines */
1132         adapter_deassert_reset();
1133
1134         enum reset_types jtag_reset_config = jtag_get_reset_config();
1135
1136         if ((jtag_reset_config & RESET_HAS_SRST) &&
1137             !(jtag_reset_config & RESET_SRST_NO_GATING) &&
1138                 target_was_examined(target)) {
1139                 int retval = dap_dp_init(armv7m->debug_ap->dap);
1140                 if (retval != ERROR_OK) {
1141                         LOG_ERROR("DP initialisation failed");
1142                         return retval;
1143                 }
1144         }
1145
1146         return ERROR_OK;
1147 }
1148
1149 int cortex_m_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
1150 {
1151         int retval;
1152         int fp_num = 0;
1153         struct cortex_m_common *cortex_m = target_to_cm(target);
1154         struct cortex_m_fp_comparator *comparator_list = cortex_m->fp_comparator_list;
1155
1156         if (breakpoint->set) {
1157                 LOG_WARNING("breakpoint (BPID: %" PRIu32 ") already set", breakpoint->unique_id);
1158                 return ERROR_OK;
1159         }
1160
1161         if (breakpoint->type == BKPT_HARD) {
1162                 uint32_t fpcr_value;
1163                 while (comparator_list[fp_num].used && (fp_num < cortex_m->fp_num_code))
1164                         fp_num++;
1165                 if (fp_num >= cortex_m->fp_num_code) {
1166                         LOG_ERROR("Can not find free FPB Comparator!");
1167                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1168                 }
1169                 breakpoint->set = fp_num + 1;
1170                 fpcr_value = breakpoint->address | 1;
1171                 if (cortex_m->fp_rev == 0) {
1172                         if (breakpoint->address > 0x1FFFFFFF) {
1173                                 LOG_ERROR("Cortex-M Flash Patch Breakpoint rev.1 cannot handle HW breakpoint above address 0x1FFFFFFE");
1174                                 return ERROR_FAIL;
1175                         }
1176                         uint32_t hilo;
1177                         hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
1178                         fpcr_value = (fpcr_value & 0x1FFFFFFC) | hilo | 1;
1179                 } else if (cortex_m->fp_rev > 1) {
1180                         LOG_ERROR("Unhandled Cortex-M Flash Patch Breakpoint architecture revision");
1181                         return ERROR_FAIL;
1182                 }
1183                 comparator_list[fp_num].used = true;
1184                 comparator_list[fp_num].fpcr_value = fpcr_value;
1185                 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1186                         comparator_list[fp_num].fpcr_value);
1187                 LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "",
1188                         fp_num,
1189                         comparator_list[fp_num].fpcr_value);
1190                 if (!cortex_m->fpb_enabled) {
1191                         LOG_DEBUG("FPB wasn't enabled, do it now");
1192                         retval = cortex_m_enable_fpb(target);
1193                         if (retval != ERROR_OK) {
1194                                 LOG_ERROR("Failed to enable the FPB");
1195                                 return retval;
1196                         }
1197
1198                         cortex_m->fpb_enabled = true;
1199                 }
1200         } else if (breakpoint->type == BKPT_SOFT) {
1201                 uint8_t code[4];
1202
1203                 /* NOTE: on ARMv6-M and ARMv7-M, BKPT(0xab) is used for
1204                  * semihosting; don't use that.  Otherwise the BKPT
1205                  * parameter is arbitrary.
1206                  */
1207                 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1208                 retval = target_read_memory(target,
1209                                 breakpoint->address & 0xFFFFFFFE,
1210                                 breakpoint->length, 1,
1211                                 breakpoint->orig_instr);
1212                 if (retval != ERROR_OK)
1213                         return retval;
1214                 retval = target_write_memory(target,
1215                                 breakpoint->address & 0xFFFFFFFE,
1216                                 breakpoint->length, 1,
1217                                 code);
1218                 if (retval != ERROR_OK)
1219                         return retval;
1220                 breakpoint->set = true;
1221         }
1222
1223         LOG_DEBUG("BPID: %" PRIu32 ", Type: %d, Address: " TARGET_ADDR_FMT " Length: %d (set=%d)",
1224                 breakpoint->unique_id,
1225                 (int)(breakpoint->type),
1226                 breakpoint->address,
1227                 breakpoint->length,
1228                 breakpoint->set);
1229
1230         return ERROR_OK;
1231 }
1232
1233 int cortex_m_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1234 {
1235         int retval;
1236         struct cortex_m_common *cortex_m = target_to_cm(target);
1237         struct cortex_m_fp_comparator *comparator_list = cortex_m->fp_comparator_list;
1238
1239         if (!breakpoint->set) {
1240                 LOG_WARNING("breakpoint not set");
1241                 return ERROR_OK;
1242         }
1243
1244         LOG_DEBUG("BPID: %" PRIu32 ", Type: %d, Address: " TARGET_ADDR_FMT " Length: %d (set=%d)",
1245                 breakpoint->unique_id,
1246                 (int)(breakpoint->type),
1247                 breakpoint->address,
1248                 breakpoint->length,
1249                 breakpoint->set);
1250
1251         if (breakpoint->type == BKPT_HARD) {
1252                 int fp_num = breakpoint->set - 1;
1253                 if ((fp_num < 0) || (fp_num >= cortex_m->fp_num_code)) {
1254                         LOG_DEBUG("Invalid FP Comparator number in breakpoint");
1255                         return ERROR_OK;
1256                 }
1257                 comparator_list[fp_num].used = false;
1258                 comparator_list[fp_num].fpcr_value = 0;
1259                 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1260                         comparator_list[fp_num].fpcr_value);
1261         } else {
1262                 /* restore original instruction (kept in target endianness) */
1263                 retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE,
1264                                         breakpoint->length, 1,
1265                                         breakpoint->orig_instr);
1266                 if (retval != ERROR_OK)
1267                         return retval;
1268         }
1269         breakpoint->set = false;
1270
1271         return ERROR_OK;
1272 }
1273
1274 int cortex_m_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1275 {
1276         if (breakpoint->length == 3) {
1277                 LOG_DEBUG("Using a two byte breakpoint for 32bit Thumb-2 request");
1278                 breakpoint->length = 2;
1279         }
1280
1281         if ((breakpoint->length != 2)) {
1282                 LOG_INFO("only breakpoints of two bytes length supported");
1283                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1284         }
1285
1286         return cortex_m_set_breakpoint(target, breakpoint);
1287 }
1288
1289 int cortex_m_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1290 {
1291         /* REVISIT why check? FPB can be updated with core running ... */
1292         if (target->state != TARGET_HALTED) {
1293                 LOG_WARNING("target not halted");
1294                 return ERROR_TARGET_NOT_HALTED;
1295         }
1296
1297         if (breakpoint->set)
1298                 cortex_m_unset_breakpoint(target, breakpoint);
1299
1300         return ERROR_OK;
1301 }
1302
1303 int cortex_m_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1304 {
1305         int dwt_num = 0;
1306         uint32_t mask, temp;
1307         struct cortex_m_common *cortex_m = target_to_cm(target);
1308
1309         /* watchpoint params were validated earlier */
1310         mask = 0;
1311         temp = watchpoint->length;
1312         while (temp) {
1313                 temp >>= 1;
1314                 mask++;
1315         }
1316         mask--;
1317
1318         /* REVISIT Don't fully trust these "not used" records ... users
1319          * may set up breakpoints by hand, e.g. dual-address data value
1320          * watchpoint using comparator #1; comparator #0 matching cycle
1321          * count; send data trace info through ITM and TPIU; etc
1322          */
1323         struct cortex_m_dwt_comparator *comparator;
1324
1325         for (comparator = cortex_m->dwt_comparator_list;
1326                 comparator->used && dwt_num < cortex_m->dwt_num_comp;
1327                 comparator++, dwt_num++)
1328                 continue;
1329         if (dwt_num >= cortex_m->dwt_num_comp) {
1330                 LOG_ERROR("Can not find free DWT Comparator");
1331                 return ERROR_FAIL;
1332         }
1333         comparator->used = true;
1334         watchpoint->set = dwt_num + 1;
1335
1336         comparator->comp = watchpoint->address;
1337         target_write_u32(target, comparator->dwt_comparator_address + 0,
1338                 comparator->comp);
1339
1340         comparator->mask = mask;
1341         target_write_u32(target, comparator->dwt_comparator_address + 4,
1342                 comparator->mask);
1343
1344         switch (watchpoint->rw) {
1345                 case WPT_READ:
1346                         comparator->function = 5;
1347                         break;
1348                 case WPT_WRITE:
1349                         comparator->function = 6;
1350                         break;
1351                 case WPT_ACCESS:
1352                         comparator->function = 7;
1353                         break;
1354         }
1355         target_write_u32(target, comparator->dwt_comparator_address + 8,
1356                 comparator->function);
1357
1358         LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
1359                 watchpoint->unique_id, dwt_num,
1360                 (unsigned) comparator->comp,
1361                 (unsigned) comparator->mask,
1362                 (unsigned) comparator->function);
1363         return ERROR_OK;
1364 }
1365
1366 int cortex_m_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1367 {
1368         struct cortex_m_common *cortex_m = target_to_cm(target);
1369         struct cortex_m_dwt_comparator *comparator;
1370         int dwt_num;
1371
1372         if (!watchpoint->set) {
1373                 LOG_WARNING("watchpoint (wpid: %d) not set",
1374                         watchpoint->unique_id);
1375                 return ERROR_OK;
1376         }
1377
1378         dwt_num = watchpoint->set - 1;
1379
1380         LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear",
1381                 watchpoint->unique_id, dwt_num,
1382                 (unsigned) watchpoint->address);
1383
1384         if ((dwt_num < 0) || (dwt_num >= cortex_m->dwt_num_comp)) {
1385                 LOG_DEBUG("Invalid DWT Comparator number in watchpoint");
1386                 return ERROR_OK;
1387         }
1388
1389         comparator = cortex_m->dwt_comparator_list + dwt_num;
1390         comparator->used = false;
1391         comparator->function = 0;
1392         target_write_u32(target, comparator->dwt_comparator_address + 8,
1393                 comparator->function);
1394
1395         watchpoint->set = false;
1396
1397         return ERROR_OK;
1398 }
1399
1400 int cortex_m_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1401 {
1402         struct cortex_m_common *cortex_m = target_to_cm(target);
1403
1404         if (cortex_m->dwt_comp_available < 1) {
1405                 LOG_DEBUG("no comparators?");
1406                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1407         }
1408
1409         /* hardware doesn't support data value masking */
1410         if (watchpoint->mask != ~(uint32_t)0) {
1411                 LOG_DEBUG("watchpoint value masks not supported");
1412                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1413         }
1414
1415         /* hardware allows address masks of up to 32K */
1416         unsigned mask;
1417
1418         for (mask = 0; mask < 16; mask++) {
1419                 if ((1u << mask) == watchpoint->length)
1420                         break;
1421         }
1422         if (mask == 16) {
1423                 LOG_DEBUG("unsupported watchpoint length");
1424                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1425         }
1426         if (watchpoint->address & ((1 << mask) - 1)) {
1427                 LOG_DEBUG("watchpoint address is unaligned");
1428                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1429         }
1430
1431         /* Caller doesn't seem to be able to describe watching for data
1432          * values of zero; that flags "no value".
1433          *
1434          * REVISIT This DWT may well be able to watch for specific data
1435          * values.  Requires comparator #1 to set DATAVMATCH and match
1436          * the data, and another comparator (DATAVADDR0) matching addr.
1437          */
1438         if (watchpoint->value) {
1439                 LOG_DEBUG("data value watchpoint not YET supported");
1440                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1441         }
1442
1443         cortex_m->dwt_comp_available--;
1444         LOG_DEBUG("dwt_comp_available: %d", cortex_m->dwt_comp_available);
1445
1446         return ERROR_OK;
1447 }
1448
1449 int cortex_m_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1450 {
1451         struct cortex_m_common *cortex_m = target_to_cm(target);
1452
1453         /* REVISIT why check? DWT can be updated with core running ... */
1454         if (target->state != TARGET_HALTED) {
1455                 LOG_WARNING("target not halted");
1456                 return ERROR_TARGET_NOT_HALTED;
1457         }
1458
1459         if (watchpoint->set)
1460                 cortex_m_unset_watchpoint(target, watchpoint);
1461
1462         cortex_m->dwt_comp_available++;
1463         LOG_DEBUG("dwt_comp_available: %d", cortex_m->dwt_comp_available);
1464
1465         return ERROR_OK;
1466 }
1467
1468 void cortex_m_enable_watchpoints(struct target *target)
1469 {
1470         struct watchpoint *watchpoint = target->watchpoints;
1471
1472         /* set any pending watchpoints */
1473         while (watchpoint) {
1474                 if (!watchpoint->set)
1475                         cortex_m_set_watchpoint(target, watchpoint);
1476                 watchpoint = watchpoint->next;
1477         }
1478 }
1479
1480 static int cortex_m_load_core_reg_u32(struct target *target,
1481                 uint32_t num, uint32_t *value)
1482 {
1483         int retval;
1484
1485         /* NOTE:  we "know" here that the register identifiers used
1486          * in the v7m header match the Cortex-M3 Debug Core Register
1487          * Selector values for R0..R15, xPSR, MSP, and PSP.
1488          */
1489         switch (num) {
1490                 case 0 ... 18:
1491                         /* read a normal core register */
1492                         retval = cortexm_dap_read_coreregister_u32(target, value, num);
1493
1494                         if (retval != ERROR_OK) {
1495                                 LOG_ERROR("JTAG failure %i", retval);
1496                                 return ERROR_JTAG_DEVICE_ERROR;
1497                         }
1498                         LOG_DEBUG("load from core reg %i  value 0x%" PRIx32 "", (int)num, *value);
1499                         break;
1500
1501                 case ARMV7M_FPSCR:
1502                         /* Floating-point Status and Registers */
1503                         retval = target_write_u32(target, DCB_DCRSR, 0x21);
1504                         if (retval != ERROR_OK)
1505                                 return retval;
1506                         retval = target_read_u32(target, DCB_DCRDR, value);
1507                         if (retval != ERROR_OK)
1508                                 return retval;
1509                         LOG_DEBUG("load from FPSCR  value 0x%" PRIx32, *value);
1510                         break;
1511
1512                 case ARMV7M_S0 ... ARMV7M_S31:
1513                         /* Floating-point Status and Registers */
1514                         retval = target_write_u32(target, DCB_DCRSR, num - ARMV7M_S0 + 0x40);
1515                         if (retval != ERROR_OK)
1516                                 return retval;
1517                         retval = target_read_u32(target, DCB_DCRDR, value);
1518                         if (retval != ERROR_OK)
1519                                 return retval;
1520                         LOG_DEBUG("load from FPU reg S%d  value 0x%" PRIx32,
1521                                   (int)(num - ARMV7M_S0), *value);
1522                         break;
1523
1524                 case ARMV7M_PRIMASK:
1525                 case ARMV7M_BASEPRI:
1526                 case ARMV7M_FAULTMASK:
1527                 case ARMV7M_CONTROL:
1528                         /* Cortex-M3 packages these four registers as bitfields
1529                          * in one Debug Core register.  So say r0 and r2 docs;
1530                          * it was removed from r1 docs, but still works.
1531                          */
1532                         cortexm_dap_read_coreregister_u32(target, value, 20);
1533
1534                         switch (num) {
1535                                 case ARMV7M_PRIMASK:
1536                                         *value = buf_get_u32((uint8_t *)value, 0, 1);
1537                                         break;
1538
1539                                 case ARMV7M_BASEPRI:
1540                                         *value = buf_get_u32((uint8_t *)value, 8, 8);
1541                                         break;
1542
1543                                 case ARMV7M_FAULTMASK:
1544                                         *value = buf_get_u32((uint8_t *)value, 16, 1);
1545                                         break;
1546
1547                                 case ARMV7M_CONTROL:
1548                                         *value = buf_get_u32((uint8_t *)value, 24, 2);
1549                                         break;
1550                         }
1551
1552                         LOG_DEBUG("load from special reg %i value 0x%" PRIx32 "", (int)num, *value);
1553                         break;
1554
1555                 default:
1556                         return ERROR_COMMAND_SYNTAX_ERROR;
1557         }
1558
1559         return ERROR_OK;
1560 }
1561
1562 static int cortex_m_store_core_reg_u32(struct target *target,
1563                 uint32_t num, uint32_t value)
1564 {
1565         int retval;
1566         uint32_t reg;
1567         struct armv7m_common *armv7m = target_to_armv7m(target);
1568
1569         /* NOTE:  we "know" here that the register identifiers used
1570          * in the v7m header match the Cortex-M3 Debug Core Register
1571          * Selector values for R0..R15, xPSR, MSP, and PSP.
1572          */
1573         switch (num) {
1574                 case 0 ... 18:
1575                         retval = cortexm_dap_write_coreregister_u32(target, value, num);
1576                         if (retval != ERROR_OK) {
1577                                 struct reg *r;
1578
1579                                 LOG_ERROR("JTAG failure");
1580                                 r = armv7m->arm.core_cache->reg_list + num;
1581                                 r->dirty = r->valid;
1582                                 return ERROR_JTAG_DEVICE_ERROR;
1583                         }
1584                         LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value);
1585                         break;
1586
1587                 case ARMV7M_FPSCR:
1588                         /* Floating-point Status and Registers */
1589                         retval = target_write_u32(target, DCB_DCRDR, value);
1590                         if (retval != ERROR_OK)
1591                                 return retval;
1592                         retval = target_write_u32(target, DCB_DCRSR, 0x21 | (1<<16));
1593                         if (retval != ERROR_OK)
1594                                 return retval;
1595                         LOG_DEBUG("write FPSCR value 0x%" PRIx32, value);
1596                         break;
1597
1598                 case ARMV7M_S0 ... ARMV7M_S31:
1599                         /* Floating-point Status and Registers */
1600                         retval = target_write_u32(target, DCB_DCRDR, value);
1601                         if (retval != ERROR_OK)
1602                                 return retval;
1603                         retval = target_write_u32(target, DCB_DCRSR, (num - ARMV7M_S0 + 0x40) | (1<<16));
1604                         if (retval != ERROR_OK)
1605                                 return retval;
1606                         LOG_DEBUG("write FPU reg S%d  value 0x%" PRIx32,
1607                                   (int)(num - ARMV7M_S0), value);
1608                         break;
1609
1610                 case ARMV7M_PRIMASK:
1611                 case ARMV7M_BASEPRI:
1612                 case ARMV7M_FAULTMASK:
1613                 case ARMV7M_CONTROL:
1614                         /* Cortex-M3 packages these four registers as bitfields
1615                          * in one Debug Core register.  So say r0 and r2 docs;
1616                          * it was removed from r1 docs, but still works.
1617                          */
1618                         cortexm_dap_read_coreregister_u32(target, &reg, 20);
1619
1620                         switch (num) {
1621                                 case ARMV7M_PRIMASK:
1622                                         buf_set_u32((uint8_t *)&reg, 0, 1, value);
1623                                         break;
1624
1625                                 case ARMV7M_BASEPRI:
1626                                         buf_set_u32((uint8_t *)&reg, 8, 8, value);
1627                                         break;
1628
1629                                 case ARMV7M_FAULTMASK:
1630                                         buf_set_u32((uint8_t *)&reg, 16, 1, value);
1631                                         break;
1632
1633                                 case ARMV7M_CONTROL:
1634                                         buf_set_u32((uint8_t *)&reg, 24, 2, value);
1635                                         break;
1636                         }
1637
1638                         cortexm_dap_write_coreregister_u32(target, reg, 20);
1639
1640                         LOG_DEBUG("write special reg %i value 0x%" PRIx32 " ", (int)num, value);
1641                         break;
1642
1643                 default:
1644                         return ERROR_COMMAND_SYNTAX_ERROR;
1645         }
1646
1647         return ERROR_OK;
1648 }
1649
1650 static int cortex_m_read_memory(struct target *target, target_addr_t address,
1651         uint32_t size, uint32_t count, uint8_t *buffer)
1652 {
1653         struct armv7m_common *armv7m = target_to_armv7m(target);
1654
1655         if (armv7m->arm.is_armv6m) {
1656                 /* armv6m does not handle unaligned memory access */
1657                 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1658                         return ERROR_TARGET_UNALIGNED_ACCESS;
1659         }
1660
1661         return mem_ap_read_buf(armv7m->debug_ap, buffer, size, count, address);
1662 }
1663
1664 static int cortex_m_write_memory(struct target *target, target_addr_t address,
1665         uint32_t size, uint32_t count, const uint8_t *buffer)
1666 {
1667         struct armv7m_common *armv7m = target_to_armv7m(target);
1668
1669         if (armv7m->arm.is_armv6m) {
1670                 /* armv6m does not handle unaligned memory access */
1671                 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1672                         return ERROR_TARGET_UNALIGNED_ACCESS;
1673         }
1674
1675         return mem_ap_write_buf(armv7m->debug_ap, buffer, size, count, address);
1676 }
1677
1678 static int cortex_m_init_target(struct command_context *cmd_ctx,
1679         struct target *target)
1680 {
1681         armv7m_build_reg_cache(target);
1682         arm_semihosting_init(target);
1683         return ERROR_OK;
1684 }
1685
1686 void cortex_m_deinit_target(struct target *target)
1687 {
1688         struct cortex_m_common *cortex_m = target_to_cm(target);
1689
1690         free(cortex_m->fp_comparator_list);
1691
1692         cortex_m_dwt_free(target);
1693         armv7m_free_reg_cache(target);
1694
1695         free(target->private_config);
1696         free(cortex_m);
1697 }
1698
1699 int cortex_m_profiling(struct target *target, uint32_t *samples,
1700                               uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1701 {
1702         struct timeval timeout, now;
1703         struct armv7m_common *armv7m = target_to_armv7m(target);
1704         uint32_t reg_value;
1705         bool use_pcsr = false;
1706         int retval = ERROR_OK;
1707         struct reg *reg;
1708
1709         gettimeofday(&timeout, NULL);
1710         timeval_add_time(&timeout, seconds, 0);
1711
1712         retval = target_read_u32(target, DWT_PCSR, &reg_value);
1713         if (retval != ERROR_OK) {
1714                 LOG_ERROR("Error while reading PCSR");
1715                 return retval;
1716         }
1717
1718         if (reg_value != 0) {
1719                 use_pcsr = true;
1720                 LOG_INFO("Starting Cortex-M profiling. Sampling DWT_PCSR as fast as we can...");
1721         } else {
1722                 LOG_INFO("Starting profiling. Halting and resuming the"
1723                          " target as often as we can...");
1724                 reg = register_get_by_name(target->reg_cache, "pc", 1);
1725         }
1726
1727         /* Make sure the target is running */
1728         target_poll(target);
1729         if (target->state == TARGET_HALTED)
1730                 retval = target_resume(target, 1, 0, 0, 0);
1731
1732         if (retval != ERROR_OK) {
1733                 LOG_ERROR("Error while resuming target");
1734                 return retval;
1735         }
1736
1737         uint32_t sample_count = 0;
1738
1739         for (;;) {
1740                 if (use_pcsr) {
1741                         if (armv7m && armv7m->debug_ap) {
1742                                 uint32_t read_count = max_num_samples - sample_count;
1743                                 if (read_count > 1024)
1744                                         read_count = 1024;
1745
1746                                 retval = mem_ap_read_buf_noincr(armv7m->debug_ap,
1747                                                         (void *)&samples[sample_count],
1748                                                         4, read_count, DWT_PCSR);
1749                                 sample_count += read_count;
1750                         } else {
1751                                 target_read_u32(target, DWT_PCSR, &samples[sample_count++]);
1752                         }
1753                 } else {
1754                         target_poll(target);
1755                         if (target->state == TARGET_HALTED) {
1756                                 reg_value = buf_get_u32(reg->value, 0, 32);
1757                                 /* current pc, addr = 0, do not handle breakpoints, not debugging */
1758                                 retval = target_resume(target, 1, 0, 0, 0);
1759                                 samples[sample_count++] = reg_value;
1760                                 target_poll(target);
1761                                 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
1762                         } else if (target->state == TARGET_RUNNING) {
1763                                 /* We want to quickly sample the PC. */
1764                                 retval = target_halt(target);
1765                         } else {
1766                                 LOG_INFO("Target not halted or running");
1767                                 retval = ERROR_OK;
1768                                 break;
1769                         }
1770                 }
1771
1772                 if (retval != ERROR_OK) {
1773                         LOG_ERROR("Error while reading %s", use_pcsr ? "PCSR" : "target pc");
1774                         return retval;
1775                 }
1776
1777
1778                 gettimeofday(&now, NULL);
1779                 if (sample_count >= max_num_samples || timeval_compare(&now, &timeout) > 0) {
1780                         LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
1781                         break;
1782                 }
1783         }
1784
1785         *num_samples = sample_count;
1786         return retval;
1787 }
1788
1789
1790 /* REVISIT cache valid/dirty bits are unmaintained.  We could set "valid"
1791  * on r/w if the core is not running, and clear on resume or reset ... or
1792  * at least, in a post_restore_context() method.
1793  */
1794
1795 struct dwt_reg_state {
1796         struct target *target;
1797         uint32_t addr;
1798         uint8_t value[4];               /* scratch/cache */
1799 };
1800
1801 static int cortex_m_dwt_get_reg(struct reg *reg)
1802 {
1803         struct dwt_reg_state *state = reg->arch_info;
1804
1805         uint32_t tmp;
1806         int retval = target_read_u32(state->target, state->addr, &tmp);
1807         if (retval != ERROR_OK)
1808                 return retval;
1809
1810         buf_set_u32(state->value, 0, 32, tmp);
1811         return ERROR_OK;
1812 }
1813
1814 static int cortex_m_dwt_set_reg(struct reg *reg, uint8_t *buf)
1815 {
1816         struct dwt_reg_state *state = reg->arch_info;
1817
1818         return target_write_u32(state->target, state->addr,
1819                         buf_get_u32(buf, 0, reg->size));
1820 }
1821
1822 struct dwt_reg {
1823         uint32_t addr;
1824         const char *name;
1825         unsigned size;
1826 };
1827
1828 static const struct dwt_reg dwt_base_regs[] = {
1829         { DWT_CTRL, "dwt_ctrl", 32, },
1830         /* NOTE that Erratum 532314 (fixed r2p0) affects CYCCNT:  it wrongly
1831          * increments while the core is asleep.
1832          */
1833         { DWT_CYCCNT, "dwt_cyccnt", 32, },
1834         /* plus some 8 bit counters, useful for profiling with TPIU */
1835 };
1836
1837 static const struct dwt_reg dwt_comp[] = {
1838 #define DWT_COMPARATOR(i) \
1839                 { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
1840                 { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
1841                 { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
1842         DWT_COMPARATOR(0),
1843         DWT_COMPARATOR(1),
1844         DWT_COMPARATOR(2),
1845         DWT_COMPARATOR(3),
1846         DWT_COMPARATOR(4),
1847         DWT_COMPARATOR(5),
1848         DWT_COMPARATOR(6),
1849         DWT_COMPARATOR(7),
1850         DWT_COMPARATOR(8),
1851         DWT_COMPARATOR(9),
1852         DWT_COMPARATOR(10),
1853         DWT_COMPARATOR(11),
1854         DWT_COMPARATOR(12),
1855         DWT_COMPARATOR(13),
1856         DWT_COMPARATOR(14),
1857         DWT_COMPARATOR(15),
1858 #undef DWT_COMPARATOR
1859 };
1860
1861 static const struct reg_arch_type dwt_reg_type = {
1862         .get = cortex_m_dwt_get_reg,
1863         .set = cortex_m_dwt_set_reg,
1864 };
1865
1866 static void cortex_m_dwt_addreg(struct target *t, struct reg *r, const struct dwt_reg *d)
1867 {
1868         struct dwt_reg_state *state;
1869
1870         state = calloc(1, sizeof *state);
1871         if (!state)
1872                 return;
1873         state->addr = d->addr;
1874         state->target = t;
1875
1876         r->name = d->name;
1877         r->size = d->size;
1878         r->value = state->value;
1879         r->arch_info = state;
1880         r->type = &dwt_reg_type;
1881 }
1882
1883 void cortex_m_dwt_setup(struct cortex_m_common *cm, struct target *target)
1884 {
1885         uint32_t dwtcr;
1886         struct reg_cache *cache;
1887         struct cortex_m_dwt_comparator *comparator;
1888         int reg, i;
1889
1890         target_read_u32(target, DWT_CTRL, &dwtcr);
1891         LOG_DEBUG("DWT_CTRL: 0x%" PRIx32, dwtcr);
1892         if (!dwtcr) {
1893                 LOG_DEBUG("no DWT");
1894                 return;
1895         }
1896
1897         cm->dwt_num_comp = (dwtcr >> 28) & 0xF;
1898         cm->dwt_comp_available = cm->dwt_num_comp;
1899         cm->dwt_comparator_list = calloc(cm->dwt_num_comp,
1900                         sizeof(struct cortex_m_dwt_comparator));
1901         if (!cm->dwt_comparator_list) {
1902 fail0:
1903                 cm->dwt_num_comp = 0;
1904                 LOG_ERROR("out of mem");
1905                 return;
1906         }
1907
1908         cache = calloc(1, sizeof *cache);
1909         if (!cache) {
1910 fail1:
1911                 free(cm->dwt_comparator_list);
1912                 goto fail0;
1913         }
1914         cache->name = "Cortex-M DWT registers";
1915         cache->num_regs = 2 + cm->dwt_num_comp * 3;
1916         cache->reg_list = calloc(cache->num_regs, sizeof *cache->reg_list);
1917         if (!cache->reg_list) {
1918                 free(cache);
1919                 goto fail1;
1920         }
1921
1922         for (reg = 0; reg < 2; reg++)
1923                 cortex_m_dwt_addreg(target, cache->reg_list + reg,
1924                         dwt_base_regs + reg);
1925
1926         comparator = cm->dwt_comparator_list;
1927         for (i = 0; i < cm->dwt_num_comp; i++, comparator++) {
1928                 int j;
1929
1930                 comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
1931                 for (j = 0; j < 3; j++, reg++)
1932                         cortex_m_dwt_addreg(target, cache->reg_list + reg,
1933                                 dwt_comp + 3 * i + j);
1934
1935                 /* make sure we clear any watchpoints enabled on the target */
1936                 target_write_u32(target, comparator->dwt_comparator_address + 8, 0);
1937         }
1938
1939         *register_get_last_cache_p(&target->reg_cache) = cache;
1940         cm->dwt_cache = cache;
1941
1942         LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
1943                 dwtcr, cm->dwt_num_comp,
1944                 (dwtcr & (0xf << 24)) ? " only" : "/trigger");
1945
1946         /* REVISIT:  if num_comp > 1, check whether comparator #1 can
1947          * implement single-address data value watchpoints ... so we
1948          * won't need to check it later, when asked to set one up.
1949          */
1950 }
1951
1952 static void cortex_m_dwt_free(struct target *target)
1953 {
1954         struct cortex_m_common *cm = target_to_cm(target);
1955         struct reg_cache *cache = cm->dwt_cache;
1956
1957         free(cm->dwt_comparator_list);
1958         cm->dwt_comparator_list = NULL;
1959         cm->dwt_num_comp = 0;
1960
1961         if (cache) {
1962                 register_unlink_cache(&target->reg_cache, cache);
1963
1964                 if (cache->reg_list) {
1965                         for (size_t i = 0; i < cache->num_regs; i++)
1966                                 free(cache->reg_list[i].arch_info);
1967                         free(cache->reg_list);
1968                 }
1969                 free(cache);
1970         }
1971         cm->dwt_cache = NULL;
1972 }
1973
1974 #define MVFR0 0xe000ef40
1975 #define MVFR1 0xe000ef44
1976
1977 #define MVFR0_DEFAULT_M4 0x10110021
1978 #define MVFR1_DEFAULT_M4 0x11000011
1979
1980 #define MVFR0_DEFAULT_M7_SP 0x10110021
1981 #define MVFR0_DEFAULT_M7_DP 0x10110221
1982 #define MVFR1_DEFAULT_M7_SP 0x11000011
1983 #define MVFR1_DEFAULT_M7_DP 0x12000011
1984
1985 int cortex_m_examine(struct target *target)
1986 {
1987         int retval;
1988         uint32_t cpuid, fpcr, mvfr0, mvfr1;
1989         int i;
1990         struct cortex_m_common *cortex_m = target_to_cm(target);
1991         struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
1992         struct armv7m_common *armv7m = target_to_armv7m(target);
1993
1994         /* stlink shares the examine handler but does not support
1995          * all its calls */
1996         if (!armv7m->stlink) {
1997                 if (cortex_m->apsel == DP_APSEL_INVALID) {
1998                         /* Search for the MEM-AP */
1999                         retval = dap_find_ap(swjdp, AP_TYPE_AHB_AP, &armv7m->debug_ap);
2000                         if (retval != ERROR_OK) {
2001                                 LOG_ERROR("Could not find MEM-AP to control the core");
2002                                 return retval;
2003                         }
2004                 } else {
2005                         armv7m->debug_ap = dap_ap(swjdp, cortex_m->apsel);
2006                 }
2007
2008                 /* Leave (only) generic DAP stuff for debugport_init(); */
2009                 armv7m->debug_ap->memaccess_tck = 8;
2010
2011                 retval = mem_ap_init(armv7m->debug_ap);
2012                 if (retval != ERROR_OK)
2013                         return retval;
2014         }
2015
2016         if (!target_was_examined(target)) {
2017                 target_set_examined(target);
2018
2019                 /* Read from Device Identification Registers */
2020                 retval = target_read_u32(target, CPUID, &cpuid);
2021                 if (retval != ERROR_OK)
2022                         return retval;
2023
2024                 /* Get CPU Type */
2025                 i = (cpuid >> 4) & 0xf;
2026
2027                 LOG_DEBUG("Cortex-M%d r%" PRId8 "p%" PRId8 " processor detected",
2028                                 i, (uint8_t)((cpuid >> 20) & 0xf), (uint8_t)((cpuid >> 0) & 0xf));
2029                 if (i == 7) {
2030                         uint8_t rev, patch;
2031                         rev = (cpuid >> 20) & 0xf;
2032                         patch = (cpuid >> 0) & 0xf;
2033                         if ((rev == 0) && (patch < 2))
2034                                 LOG_WARNING("Silicon bug: single stepping will enter pending exception handler!");
2035                 }
2036                 LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid);
2037
2038                 /* VECTRESET is not supported on Cortex-M0, M0+ and M1 */
2039                 cortex_m->vectreset_supported = i > 1;
2040
2041                 if (i == 4) {
2042                         target_read_u32(target, MVFR0, &mvfr0);
2043                         target_read_u32(target, MVFR1, &mvfr1);
2044
2045                         /* test for floating point feature on Cortex-M4 */
2046                         if ((mvfr0 == MVFR0_DEFAULT_M4) && (mvfr1 == MVFR1_DEFAULT_M4)) {
2047                                 LOG_DEBUG("Cortex-M%d floating point feature FPv4_SP found", i);
2048                                 armv7m->fp_feature = FPv4_SP;
2049                         }
2050                 } else if (i == 7) {
2051                         target_read_u32(target, MVFR0, &mvfr0);
2052                         target_read_u32(target, MVFR1, &mvfr1);
2053
2054                         /* test for floating point features on Cortex-M7 */
2055                         if ((mvfr0 == MVFR0_DEFAULT_M7_SP) && (mvfr1 == MVFR1_DEFAULT_M7_SP)) {
2056                                 LOG_DEBUG("Cortex-M%d floating point feature FPv5_SP found", i);
2057                                 armv7m->fp_feature = FPv5_SP;
2058                         } else if ((mvfr0 == MVFR0_DEFAULT_M7_DP) && (mvfr1 == MVFR1_DEFAULT_M7_DP)) {
2059                                 LOG_DEBUG("Cortex-M%d floating point feature FPv5_DP found", i);
2060                                 armv7m->fp_feature = FPv5_DP;
2061                         }
2062                 } else if (i == 0) {
2063                         /* Cortex-M0 does not support unaligned memory access */
2064                         armv7m->arm.is_armv6m = true;
2065                 }
2066
2067                 if (armv7m->fp_feature == FP_NONE &&
2068                     armv7m->arm.core_cache->num_regs > ARMV7M_NUM_CORE_REGS_NOFP) {
2069                         /* free unavailable FPU registers */
2070                         size_t idx;
2071
2072                         for (idx = ARMV7M_NUM_CORE_REGS_NOFP;
2073                              idx < armv7m->arm.core_cache->num_regs;
2074                              idx++) {
2075                                 free(armv7m->arm.core_cache->reg_list[idx].value);
2076                                 free(armv7m->arm.core_cache->reg_list[idx].feature);
2077                                 free(armv7m->arm.core_cache->reg_list[idx].reg_data_type);
2078                         }
2079                         armv7m->arm.core_cache->num_regs = ARMV7M_NUM_CORE_REGS_NOFP;
2080                 }
2081
2082                 if (!armv7m->stlink) {
2083                         if (i == 3 || i == 4)
2084                                 /* Cortex-M3/M4 have 4096 bytes autoincrement range,
2085                                  * s. ARM IHI 0031C: MEM-AP 7.2.2 */
2086                                 armv7m->debug_ap->tar_autoincr_block = (1 << 12);
2087                         else if (i == 7)
2088                                 /* Cortex-M7 has only 1024 bytes autoincrement range */
2089                                 armv7m->debug_ap->tar_autoincr_block = (1 << 10);
2090                 }
2091
2092                 /* Configure trace modules */
2093                 retval = target_write_u32(target, DCB_DEMCR, TRCENA | armv7m->demcr);
2094                 if (retval != ERROR_OK)
2095                         return retval;
2096
2097                 if (armv7m->trace_config.config_type != TRACE_CONFIG_TYPE_DISABLED) {
2098                         armv7m_trace_tpiu_config(target);
2099                         armv7m_trace_itm_config(target);
2100                 }
2101
2102                 /* NOTE: FPB and DWT are both optional. */
2103
2104                 /* Setup FPB */
2105                 target_read_u32(target, FP_CTRL, &fpcr);
2106                 /* bits [14:12] and [7:4] */
2107                 cortex_m->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF);
2108                 cortex_m->fp_num_lit = (fpcr >> 8) & 0xF;
2109                 /* Detect flash patch revision, see RM DDI 0403E.b page C1-817.
2110                    Revision is zero base, fp_rev == 1 means Rev.2 ! */
2111                 cortex_m->fp_rev = (fpcr >> 28) & 0xf;
2112                 free(cortex_m->fp_comparator_list);
2113                 cortex_m->fp_comparator_list = calloc(
2114                                 cortex_m->fp_num_code + cortex_m->fp_num_lit,
2115                                 sizeof(struct cortex_m_fp_comparator));
2116                 cortex_m->fpb_enabled = fpcr & 1;
2117                 for (i = 0; i < cortex_m->fp_num_code + cortex_m->fp_num_lit; i++) {
2118                         cortex_m->fp_comparator_list[i].type =
2119                                 (i < cortex_m->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
2120                         cortex_m->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
2121
2122                         /* make sure we clear any breakpoints enabled on the target */
2123                         target_write_u32(target, cortex_m->fp_comparator_list[i].fpcr_address, 0);
2124                 }
2125                 LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i",
2126                         fpcr,
2127                         cortex_m->fp_num_code,
2128                         cortex_m->fp_num_lit);
2129
2130                 /* Setup DWT */
2131                 cortex_m_dwt_free(target);
2132                 cortex_m_dwt_setup(cortex_m, target);
2133
2134                 /* These hardware breakpoints only work for code in flash! */
2135                 LOG_INFO("%s: hardware has %d breakpoints, %d watchpoints",
2136                         target_name(target),
2137                         cortex_m->fp_num_code,
2138                         cortex_m->dwt_num_comp);
2139         }
2140
2141         return ERROR_OK;
2142 }
2143
2144 static int cortex_m_dcc_read(struct target *target, uint8_t *value, uint8_t *ctrl)
2145 {
2146         struct armv7m_common *armv7m = target_to_armv7m(target);
2147         uint16_t dcrdr;
2148         uint8_t buf[2];
2149         int retval;
2150
2151         retval = mem_ap_read_buf_noincr(armv7m->debug_ap, buf, 2, 1, DCB_DCRDR);
2152         if (retval != ERROR_OK)
2153                 return retval;
2154
2155         dcrdr = target_buffer_get_u16(target, buf);
2156         *ctrl = (uint8_t)dcrdr;
2157         *value = (uint8_t)(dcrdr >> 8);
2158
2159         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
2160
2161         /* write ack back to software dcc register
2162          * signify we have read data */
2163         if (dcrdr & (1 << 0)) {
2164                 target_buffer_set_u16(target, buf, 0);
2165                 retval = mem_ap_write_buf_noincr(armv7m->debug_ap, buf, 2, 1, DCB_DCRDR);
2166                 if (retval != ERROR_OK)
2167                         return retval;
2168         }
2169
2170         return ERROR_OK;
2171 }
2172
2173 static int cortex_m_target_request_data(struct target *target,
2174         uint32_t size, uint8_t *buffer)
2175 {
2176         uint8_t data;
2177         uint8_t ctrl;
2178         uint32_t i;
2179
2180         for (i = 0; i < (size * 4); i++) {
2181                 int retval = cortex_m_dcc_read(target, &data, &ctrl);
2182                 if (retval != ERROR_OK)
2183                         return retval;
2184                 buffer[i] = data;
2185         }
2186
2187         return ERROR_OK;
2188 }
2189
2190 static int cortex_m_handle_target_request(void *priv)
2191 {
2192         struct target *target = priv;
2193         if (!target_was_examined(target))
2194                 return ERROR_OK;
2195
2196         if (!target->dbg_msg_enabled)
2197                 return ERROR_OK;
2198
2199         if (target->state == TARGET_RUNNING) {
2200                 uint8_t data;
2201                 uint8_t ctrl;
2202                 int retval;
2203
2204                 retval = cortex_m_dcc_read(target, &data, &ctrl);
2205                 if (retval != ERROR_OK)
2206                         return retval;
2207
2208                 /* check if we have data */
2209                 if (ctrl & (1 << 0)) {
2210                         uint32_t request;
2211
2212                         /* we assume target is quick enough */
2213                         request = data;
2214                         for (int i = 1; i <= 3; i++) {
2215                                 retval = cortex_m_dcc_read(target, &data, &ctrl);
2216                                 if (retval != ERROR_OK)
2217                                         return retval;
2218                                 request |= ((uint32_t)data << (i * 8));
2219                         }
2220                         target_request(target, request);
2221                 }
2222         }
2223
2224         return ERROR_OK;
2225 }
2226
2227 static int cortex_m_init_arch_info(struct target *target,
2228         struct cortex_m_common *cortex_m, struct adiv5_dap *dap)
2229 {
2230         struct armv7m_common *armv7m = &cortex_m->armv7m;
2231
2232         armv7m_init_arch_info(target, armv7m);
2233
2234         /* default reset mode is to use srst if fitted
2235          * if not it will use CORTEX_M3_RESET_VECTRESET */
2236         cortex_m->soft_reset_config = CORTEX_M_RESET_VECTRESET;
2237
2238         armv7m->arm.dap = dap;
2239
2240         /* register arch-specific functions */
2241         armv7m->examine_debug_reason = cortex_m_examine_debug_reason;
2242
2243         armv7m->post_debug_entry = NULL;
2244
2245         armv7m->pre_restore_context = NULL;
2246
2247         armv7m->load_core_reg_u32 = cortex_m_load_core_reg_u32;
2248         armv7m->store_core_reg_u32 = cortex_m_store_core_reg_u32;
2249
2250         target_register_timer_callback(cortex_m_handle_target_request, 1,
2251                 TARGET_TIMER_TYPE_PERIODIC, target);
2252
2253         return ERROR_OK;
2254 }
2255
2256 static int cortex_m_target_create(struct target *target, Jim_Interp *interp)
2257 {
2258         struct adiv5_private_config *pc;
2259
2260         pc = (struct adiv5_private_config *)target->private_config;
2261         if (adiv5_verify_config(pc) != ERROR_OK)
2262                 return ERROR_FAIL;
2263
2264         struct cortex_m_common *cortex_m = calloc(1, sizeof(struct cortex_m_common));
2265         if (cortex_m == NULL) {
2266                 LOG_ERROR("No memory creating target");
2267                 return ERROR_FAIL;
2268         }
2269
2270         cortex_m->common_magic = CORTEX_M_COMMON_MAGIC;
2271         cortex_m->apsel = pc->ap_num;
2272
2273         cortex_m_init_arch_info(target, cortex_m, pc->dap);
2274
2275         return ERROR_OK;
2276 }
2277
2278 /*--------------------------------------------------------------------------*/
2279
2280 static int cortex_m_verify_pointer(struct command_context *cmd_ctx,
2281         struct cortex_m_common *cm)
2282 {
2283         if (cm->common_magic != CORTEX_M_COMMON_MAGIC) {
2284                 command_print(cmd_ctx, "target is not a Cortex-M");
2285                 return ERROR_TARGET_INVALID;
2286         }
2287         return ERROR_OK;
2288 }
2289
2290 /*
2291  * Only stuff below this line should need to verify that its target
2292  * is a Cortex-M3.  Everything else should have indirected through the
2293  * cortexm3_target structure, which is only used with CM3 targets.
2294  */
2295
2296 COMMAND_HANDLER(handle_cortex_m_vector_catch_command)
2297 {
2298         struct target *target = get_current_target(CMD_CTX);
2299         struct cortex_m_common *cortex_m = target_to_cm(target);
2300         struct armv7m_common *armv7m = &cortex_m->armv7m;
2301         uint32_t demcr = 0;
2302         int retval;
2303
2304         static const struct {
2305                 char name[10];
2306                 unsigned mask;
2307         } vec_ids[] = {
2308                 { "hard_err",   VC_HARDERR, },
2309                 { "int_err",    VC_INTERR, },
2310                 { "bus_err",    VC_BUSERR, },
2311                 { "state_err",  VC_STATERR, },
2312                 { "chk_err",    VC_CHKERR, },
2313                 { "nocp_err",   VC_NOCPERR, },
2314                 { "mm_err",     VC_MMERR, },
2315                 { "reset",      VC_CORERESET, },
2316         };
2317
2318         retval = cortex_m_verify_pointer(CMD_CTX, cortex_m);
2319         if (retval != ERROR_OK)
2320                 return retval;
2321
2322         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &demcr);
2323         if (retval != ERROR_OK)
2324                 return retval;
2325
2326         if (CMD_ARGC > 0) {
2327                 unsigned catch = 0;
2328
2329                 if (CMD_ARGC == 1) {
2330                         if (strcmp(CMD_ARGV[0], "all") == 0) {
2331                                 catch = VC_HARDERR | VC_INTERR | VC_BUSERR
2332                                         | VC_STATERR | VC_CHKERR | VC_NOCPERR
2333                                         | VC_MMERR | VC_CORERESET;
2334                                 goto write;
2335                         } else if (strcmp(CMD_ARGV[0], "none") == 0)
2336                                 goto write;
2337                 }
2338                 while (CMD_ARGC-- > 0) {
2339                         unsigned i;
2340                         for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2341                                 if (strcmp(CMD_ARGV[CMD_ARGC], vec_ids[i].name) != 0)
2342                                         continue;
2343                                 catch |= vec_ids[i].mask;
2344                                 break;
2345                         }
2346                         if (i == ARRAY_SIZE(vec_ids)) {
2347                                 LOG_ERROR("No CM3 vector '%s'", CMD_ARGV[CMD_ARGC]);
2348                                 return ERROR_COMMAND_SYNTAX_ERROR;
2349                         }
2350                 }
2351 write:
2352                 /* For now, armv7m->demcr only stores vector catch flags. */
2353                 armv7m->demcr = catch;
2354
2355                 demcr &= ~0xffff;
2356                 demcr |= catch;
2357
2358                 /* write, but don't assume it stuck (why not??) */
2359                 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR, demcr);
2360                 if (retval != ERROR_OK)
2361                         return retval;
2362                 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &demcr);
2363                 if (retval != ERROR_OK)
2364                         return retval;
2365
2366                 /* FIXME be sure to clear DEMCR on clean server shutdown.
2367                  * Otherwise the vector catch hardware could fire when there's
2368                  * no debugger hooked up, causing much confusion...
2369                  */
2370         }
2371
2372         for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2373                 command_print(CMD_CTX, "%9s: %s", vec_ids[i].name,
2374                         (demcr & vec_ids[i].mask) ? "catch" : "ignore");
2375         }
2376
2377         return ERROR_OK;
2378 }
2379
2380 COMMAND_HANDLER(handle_cortex_m_mask_interrupts_command)
2381 {
2382         struct target *target = get_current_target(CMD_CTX);
2383         struct cortex_m_common *cortex_m = target_to_cm(target);
2384         int retval;
2385
2386         static const Jim_Nvp nvp_maskisr_modes[] = {
2387                 { .name = "auto", .value = CORTEX_M_ISRMASK_AUTO },
2388                 { .name = "off", .value = CORTEX_M_ISRMASK_OFF },
2389                 { .name = "on", .value = CORTEX_M_ISRMASK_ON },
2390                 { .name = NULL, .value = -1 },
2391         };
2392         const Jim_Nvp *n;
2393
2394
2395         retval = cortex_m_verify_pointer(CMD_CTX, cortex_m);
2396         if (retval != ERROR_OK)
2397                 return retval;
2398
2399         if (target->state != TARGET_HALTED) {
2400                 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
2401                 return ERROR_OK;
2402         }
2403
2404         if (CMD_ARGC > 0) {
2405                 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
2406                 if (n->name == NULL)
2407                         return ERROR_COMMAND_SYNTAX_ERROR;
2408                 cortex_m->isrmasking_mode = n->value;
2409
2410
2411                 if (cortex_m->isrmasking_mode == CORTEX_M_ISRMASK_ON)
2412                         cortex_m_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
2413                 else
2414                         cortex_m_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
2415         }
2416
2417         n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_m->isrmasking_mode);
2418         command_print(CMD_CTX, "cortex_m interrupt mask %s", n->name);
2419
2420         return ERROR_OK;
2421 }
2422
2423 COMMAND_HANDLER(handle_cortex_m_reset_config_command)
2424 {
2425         struct target *target = get_current_target(CMD_CTX);
2426         struct cortex_m_common *cortex_m = target_to_cm(target);
2427         int retval;
2428         char *reset_config;
2429
2430         retval = cortex_m_verify_pointer(CMD_CTX, cortex_m);
2431         if (retval != ERROR_OK)
2432                 return retval;
2433
2434         if (CMD_ARGC > 0) {
2435                 if (strcmp(*CMD_ARGV, "sysresetreq") == 0)
2436                         cortex_m->soft_reset_config = CORTEX_M_RESET_SYSRESETREQ;
2437
2438                 else if (strcmp(*CMD_ARGV, "vectreset") == 0) {
2439                         if (target_was_examined(target)
2440                                         && !cortex_m->vectreset_supported)
2441                                 LOG_WARNING("VECTRESET is not supported on your Cortex-M core!");
2442                         else
2443                                 cortex_m->soft_reset_config = CORTEX_M_RESET_VECTRESET;
2444
2445                 } else
2446                         return ERROR_COMMAND_SYNTAX_ERROR;
2447         }
2448
2449         switch (cortex_m->soft_reset_config) {
2450                 case CORTEX_M_RESET_SYSRESETREQ:
2451                         reset_config = "sysresetreq";
2452                         break;
2453
2454                 case CORTEX_M_RESET_VECTRESET:
2455                         reset_config = "vectreset";
2456                         break;
2457
2458                 default:
2459                         reset_config = "unknown";
2460                         break;
2461         }
2462
2463         command_print(CMD_CTX, "cortex_m reset_config %s", reset_config);
2464
2465         return ERROR_OK;
2466 }
2467
2468 static const struct command_registration cortex_m_exec_command_handlers[] = {
2469         {
2470                 .name = "maskisr",
2471                 .handler = handle_cortex_m_mask_interrupts_command,
2472                 .mode = COMMAND_EXEC,
2473                 .help = "mask cortex_m interrupts",
2474                 .usage = "['auto'|'on'|'off']",
2475         },
2476         {
2477                 .name = "vector_catch",
2478                 .handler = handle_cortex_m_vector_catch_command,
2479                 .mode = COMMAND_EXEC,
2480                 .help = "configure hardware vectors to trigger debug entry",
2481                 .usage = "['all'|'none'|('bus_err'|'chk_err'|...)*]",
2482         },
2483         {
2484                 .name = "reset_config",
2485                 .handler = handle_cortex_m_reset_config_command,
2486                 .mode = COMMAND_ANY,
2487                 .help = "configure software reset handling",
2488                 .usage = "['sysresetreq'|'vectreset']",
2489         },
2490         COMMAND_REGISTRATION_DONE
2491 };
2492 static const struct command_registration cortex_m_command_handlers[] = {
2493         {
2494                 .chain = armv7m_command_handlers,
2495         },
2496         {
2497                 .chain = armv7m_trace_command_handlers,
2498         },
2499         {
2500                 .name = "cortex_m",
2501                 .mode = COMMAND_EXEC,
2502                 .help = "Cortex-M command group",
2503                 .usage = "",
2504                 .chain = cortex_m_exec_command_handlers,
2505         },
2506         COMMAND_REGISTRATION_DONE
2507 };
2508
2509 struct target_type cortexm_target = {
2510         .name = "cortex_m",
2511         .deprecated_name = "cortex_m3",
2512
2513         .poll = cortex_m_poll,
2514         .arch_state = armv7m_arch_state,
2515
2516         .target_request_data = cortex_m_target_request_data,
2517
2518         .halt = cortex_m_halt,
2519         .resume = cortex_m_resume,
2520         .step = cortex_m_step,
2521
2522         .assert_reset = cortex_m_assert_reset,
2523         .deassert_reset = cortex_m_deassert_reset,
2524         .soft_reset_halt = cortex_m_soft_reset_halt,
2525
2526         .get_gdb_arch = arm_get_gdb_arch,
2527         .get_gdb_reg_list = armv7m_get_gdb_reg_list,
2528
2529         .read_memory = cortex_m_read_memory,
2530         .write_memory = cortex_m_write_memory,
2531         .checksum_memory = armv7m_checksum_memory,
2532         .blank_check_memory = armv7m_blank_check_memory,
2533
2534         .run_algorithm = armv7m_run_algorithm,
2535         .start_algorithm = armv7m_start_algorithm,
2536         .wait_algorithm = armv7m_wait_algorithm,
2537
2538         .add_breakpoint = cortex_m_add_breakpoint,
2539         .remove_breakpoint = cortex_m_remove_breakpoint,
2540         .add_watchpoint = cortex_m_add_watchpoint,
2541         .remove_watchpoint = cortex_m_remove_watchpoint,
2542
2543         .commands = cortex_m_command_handlers,
2544         .target_create = cortex_m_target_create,
2545         .target_jim_configure = adiv5_jim_configure,
2546         .init_target = cortex_m_init_target,
2547         .examine = cortex_m_examine,
2548         .deinit_target = cortex_m_deinit_target,
2549
2550         .profiling = cortex_m_profiling,
2551 };