cortex_m: poll S_REGRDY on register r/w
[fw/openocd] / src / target / cortex_m.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   This program is free software; you can redistribute it and/or modify  *
12  *   it under the terms of the GNU General Public License as published by  *
13  *   the Free Software Foundation; either version 2 of the License, or     *
14  *   (at your option) any later version.                                   *
15  *                                                                         *
16  *   This program is distributed in the hope that it will be useful,       *
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
19  *   GNU General Public License for more details.                          *
20  *                                                                         *
21  *   You should have received a copy of the GNU General Public License     *
22  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
23  *                                                                         *
24  *                                                                         *
25  *   Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0)              *
26  *                                                                         *
27  ***************************************************************************/
28 #ifdef HAVE_CONFIG_H
29 #include "config.h"
30 #endif
31
32 #include "jtag/interface.h"
33 #include "breakpoints.h"
34 #include "cortex_m.h"
35 #include "target_request.h"
36 #include "target_type.h"
37 #include "arm_adi_v5.h"
38 #include "arm_disassembler.h"
39 #include "register.h"
40 #include "arm_opcodes.h"
41 #include "arm_semihosting.h"
42 #include <helper/time_support.h>
43 #include <rtt/rtt.h>
44
45 /* NOTE:  most of this should work fine for the Cortex-M1 and
46  * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
47  * Some differences:  M0/M1 doesn't have FPB remapping or the
48  * DWT tracing/profiling support.  (So the cycle counter will
49  * not be usable; the other stuff isn't currently used here.)
50  *
51  * Although there are some workarounds for errata seen only in r0p0
52  * silicon, such old parts are hard to find and thus not much tested
53  * any longer.
54  */
55
56 /* Timeout for register r/w */
57 #define DHCSR_S_REGRDY_TIMEOUT (500)
58
59 /* Supported Cortex-M Cores */
60 static const struct cortex_m_part_info cortex_m_parts[] = {
61         {
62                 .partno = CORTEX_M0_PARTNO,
63                 .name = "Cortex-M0",
64                 .arch = ARM_ARCH_V6M,
65         },
66         {
67                 .partno = CORTEX_M0P_PARTNO,
68                 .name = "Cortex-M0+",
69                 .arch = ARM_ARCH_V6M,
70         },
71         {
72                 .partno = CORTEX_M1_PARTNO,
73                 .name = "Cortex-M1",
74                 .arch = ARM_ARCH_V6M,
75         },
76         {
77                 .partno = CORTEX_M3_PARTNO,
78                 .name = "Cortex-M3",
79                 .arch = ARM_ARCH_V7M,
80                 .flags = CORTEX_M_F_TAR_AUTOINCR_BLOCK_4K,
81         },
82         {
83                 .partno = CORTEX_M4_PARTNO,
84                 .name = "Cortex-M4",
85                 .arch = ARM_ARCH_V7M,
86                 .flags = CORTEX_M_F_HAS_FPV4 | CORTEX_M_F_TAR_AUTOINCR_BLOCK_4K,
87         },
88         {
89                 .partno = CORTEX_M7_PARTNO,
90                 .name = "Cortex-M7",
91                 .arch = ARM_ARCH_V7M,
92                 .flags = CORTEX_M_F_HAS_FPV5,
93         },
94         {
95                 .partno = CORTEX_M23_PARTNO,
96                 .name = "Cortex-M23",
97                 .arch = ARM_ARCH_V8M,
98         },
99         {
100                 .partno = CORTEX_M33_PARTNO,
101                 .name = "Cortex-M33",
102                 .arch = ARM_ARCH_V8M,
103                 .flags = CORTEX_M_F_HAS_FPV5,
104         },
105         {
106                 .partno = CORTEX_M35P_PARTNO,
107                 .name = "Cortex-M35P",
108                 .arch = ARM_ARCH_V8M,
109                 .flags = CORTEX_M_F_HAS_FPV5,
110         },
111         {
112                 .partno = CORTEX_M55_PARTNO,
113                 .name = "Cortex-M55",
114                 .arch = ARM_ARCH_V8M,
115                 .flags = CORTEX_M_F_HAS_FPV5,
116         },
117 };
118
119 /* forward declarations */
120 static int cortex_m_store_core_reg_u32(struct target *target,
121                 uint32_t num, uint32_t value);
122 static void cortex_m_dwt_free(struct target *target);
123
124 /** DCB DHCSR register contains S_RETIRE_ST and S_RESET_ST bits cleared
125  *  on a read. Call this helper function each time DHCSR is read
126  *  to preserve S_RESET_ST state in case of a reset event was detected.
127  */
128 static inline void cortex_m_cumulate_dhcsr_sticky(struct cortex_m_common *cortex_m,
129                 uint32_t dhcsr)
130 {
131         cortex_m->dcb_dhcsr_cumulated_sticky |= dhcsr;
132 }
133
134 /** Read DCB DHCSR register to cortex_m->dcb_dhcsr and cumulate
135  * sticky bits in cortex_m->dcb_dhcsr_cumulated_sticky
136  */
137 static int cortex_m_read_dhcsr_atomic_sticky(struct target *target)
138 {
139         struct cortex_m_common *cortex_m = target_to_cm(target);
140         struct armv7m_common *armv7m = target_to_armv7m(target);
141
142         int retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR,
143                                 &cortex_m->dcb_dhcsr);
144         if (retval != ERROR_OK)
145                 return retval;
146
147         cortex_m_cumulate_dhcsr_sticky(cortex_m, cortex_m->dcb_dhcsr);
148         return ERROR_OK;
149 }
150
151 static int cortex_m_load_core_reg_u32(struct target *target,
152                 uint32_t regsel, uint32_t *value)
153 {
154         struct cortex_m_common *cortex_m = target_to_cm(target);
155         struct armv7m_common *armv7m = target_to_armv7m(target);
156         int retval;
157         uint32_t dcrdr, tmp_value;
158         int64_t then;
159
160         /* because the DCB_DCRDR is used for the emulated dcc channel
161          * we have to save/restore the DCB_DCRDR when used */
162         if (target->dbg_msg_enabled) {
163                 retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DCRDR, &dcrdr);
164                 if (retval != ERROR_OK)
165                         return retval;
166         }
167
168         retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRSR, regsel);
169         if (retval != ERROR_OK)
170                 return retval;
171
172         /* check if value from register is ready and pre-read it */
173         then = timeval_ms();
174         while (1) {
175                 retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DHCSR,
176                                                                  &cortex_m->dcb_dhcsr);
177                 if (retval != ERROR_OK)
178                         return retval;
179                 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DCRDR,
180                                                                                 &tmp_value);
181                 if (retval != ERROR_OK)
182                         return retval;
183                 cortex_m_cumulate_dhcsr_sticky(cortex_m, cortex_m->dcb_dhcsr);
184                 if (cortex_m->dcb_dhcsr & S_REGRDY)
185                         break;
186                 if (timeval_ms() > then + DHCSR_S_REGRDY_TIMEOUT) {
187                         LOG_ERROR("Timeout waiting for DCRDR transfer ready");
188                         return ERROR_TIMEOUT_REACHED;
189                 }
190                 keep_alive();
191         }
192
193         *value = tmp_value;
194
195         if (target->dbg_msg_enabled) {
196                 /* restore DCB_DCRDR - this needs to be in a separate
197                  * transaction otherwise the emulated DCC channel breaks */
198                 if (retval == ERROR_OK)
199                         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRDR, dcrdr);
200         }
201
202         return retval;
203 }
204
205 static int cortex_m_store_core_reg_u32(struct target *target,
206                 uint32_t regsel, uint32_t value)
207 {
208         struct cortex_m_common *cortex_m = target_to_cm(target);
209         struct armv7m_common *armv7m = target_to_armv7m(target);
210         int retval;
211         uint32_t dcrdr;
212         int64_t then;
213
214         /* because the DCB_DCRDR is used for the emulated dcc channel
215          * we have to save/restore the DCB_DCRDR when used */
216         if (target->dbg_msg_enabled) {
217                 retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DCRDR, &dcrdr);
218                 if (retval != ERROR_OK)
219                         return retval;
220         }
221
222         retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, value);
223         if (retval != ERROR_OK)
224                 return retval;
225
226         retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRSR, regsel | DCRSR_WNR);
227         if (retval != ERROR_OK)
228                 return retval;
229
230         /* check if value is written into register */
231         then = timeval_ms();
232         while (1) {
233                 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR,
234                                                                                 &cortex_m->dcb_dhcsr);
235                 if (retval != ERROR_OK)
236                         return retval;
237                 cortex_m_cumulate_dhcsr_sticky(cortex_m, cortex_m->dcb_dhcsr);
238                 if (cortex_m->dcb_dhcsr & S_REGRDY)
239                         break;
240                 if (timeval_ms() > then + DHCSR_S_REGRDY_TIMEOUT) {
241                         LOG_ERROR("Timeout waiting for DCRDR transfer ready");
242                         return ERROR_TIMEOUT_REACHED;
243                 }
244                 keep_alive();
245         }
246
247         if (target->dbg_msg_enabled) {
248                 /* restore DCB_DCRDR - this needs to be in a separate
249                  * transaction otherwise the emulated DCC channel breaks */
250                 if (retval == ERROR_OK)
251                         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRDR, dcrdr);
252         }
253
254         return retval;
255 }
256
257 static int cortex_m_write_debug_halt_mask(struct target *target,
258         uint32_t mask_on, uint32_t mask_off)
259 {
260         struct cortex_m_common *cortex_m = target_to_cm(target);
261         struct armv7m_common *armv7m = &cortex_m->armv7m;
262
263         /* mask off status bits */
264         cortex_m->dcb_dhcsr &= ~((0xFFFFul << 16) | mask_off);
265         /* create new register mask */
266         cortex_m->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
267
268         return mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR, cortex_m->dcb_dhcsr);
269 }
270
271 static int cortex_m_set_maskints(struct target *target, bool mask)
272 {
273         struct cortex_m_common *cortex_m = target_to_cm(target);
274         if (!!(cortex_m->dcb_dhcsr & C_MASKINTS) != mask)
275                 return cortex_m_write_debug_halt_mask(target, mask ? C_MASKINTS : 0, mask ? 0 : C_MASKINTS);
276         else
277                 return ERROR_OK;
278 }
279
280 static int cortex_m_set_maskints_for_halt(struct target *target)
281 {
282         struct cortex_m_common *cortex_m = target_to_cm(target);
283         switch (cortex_m->isrmasking_mode) {
284                 case CORTEX_M_ISRMASK_AUTO:
285                         /* interrupts taken at resume, whether for step or run -> no mask */
286                         return cortex_m_set_maskints(target, false);
287
288                 case CORTEX_M_ISRMASK_OFF:
289                         /* interrupts never masked */
290                         return cortex_m_set_maskints(target, false);
291
292                 case CORTEX_M_ISRMASK_ON:
293                         /* interrupts always masked */
294                         return cortex_m_set_maskints(target, true);
295
296                 case CORTEX_M_ISRMASK_STEPONLY:
297                         /* interrupts masked for single step only -> mask now if MASKINTS
298                          * erratum, otherwise only mask before stepping */
299                         return cortex_m_set_maskints(target, cortex_m->maskints_erratum);
300         }
301         return ERROR_OK;
302 }
303
304 static int cortex_m_set_maskints_for_run(struct target *target)
305 {
306         switch (target_to_cm(target)->isrmasking_mode) {
307                 case CORTEX_M_ISRMASK_AUTO:
308                         /* interrupts taken at resume, whether for step or run -> no mask */
309                         return cortex_m_set_maskints(target, false);
310
311                 case CORTEX_M_ISRMASK_OFF:
312                         /* interrupts never masked */
313                         return cortex_m_set_maskints(target, false);
314
315                 case CORTEX_M_ISRMASK_ON:
316                         /* interrupts always masked */
317                         return cortex_m_set_maskints(target, true);
318
319                 case CORTEX_M_ISRMASK_STEPONLY:
320                         /* interrupts masked for single step only -> no mask */
321                         return cortex_m_set_maskints(target, false);
322         }
323         return ERROR_OK;
324 }
325
326 static int cortex_m_set_maskints_for_step(struct target *target)
327 {
328         switch (target_to_cm(target)->isrmasking_mode) {
329                 case CORTEX_M_ISRMASK_AUTO:
330                         /* the auto-interrupt should already be done -> mask */
331                         return cortex_m_set_maskints(target, true);
332
333                 case CORTEX_M_ISRMASK_OFF:
334                         /* interrupts never masked */
335                         return cortex_m_set_maskints(target, false);
336
337                 case CORTEX_M_ISRMASK_ON:
338                         /* interrupts always masked */
339                         return cortex_m_set_maskints(target, true);
340
341                 case CORTEX_M_ISRMASK_STEPONLY:
342                         /* interrupts masked for single step only -> mask */
343                         return cortex_m_set_maskints(target, true);
344         }
345         return ERROR_OK;
346 }
347
348 static int cortex_m_clear_halt(struct target *target)
349 {
350         struct cortex_m_common *cortex_m = target_to_cm(target);
351         struct armv7m_common *armv7m = &cortex_m->armv7m;
352         int retval;
353
354         /* clear step if any */
355         cortex_m_write_debug_halt_mask(target, C_HALT, C_STEP);
356
357         /* Read Debug Fault Status Register */
358         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_DFSR, &cortex_m->nvic_dfsr);
359         if (retval != ERROR_OK)
360                 return retval;
361
362         /* Clear Debug Fault Status */
363         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_DFSR, cortex_m->nvic_dfsr);
364         if (retval != ERROR_OK)
365                 return retval;
366         LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m->nvic_dfsr);
367
368         return ERROR_OK;
369 }
370
371 static int cortex_m_single_step_core(struct target *target)
372 {
373         struct cortex_m_common *cortex_m = target_to_cm(target);
374         int retval;
375
376         /* Mask interrupts before clearing halt, if not done already.  This avoids
377          * Erratum 377497 (fixed in r1p0) where setting MASKINTS while clearing
378          * HALT can put the core into an unknown state.
379          */
380         if (!(cortex_m->dcb_dhcsr & C_MASKINTS)) {
381                 retval = cortex_m_write_debug_halt_mask(target, C_MASKINTS, 0);
382                 if (retval != ERROR_OK)
383                         return retval;
384         }
385         retval = cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
386         if (retval != ERROR_OK)
387                 return retval;
388         LOG_DEBUG(" ");
389
390         /* restore dhcsr reg */
391         cortex_m_clear_halt(target);
392
393         return ERROR_OK;
394 }
395
396 static int cortex_m_enable_fpb(struct target *target)
397 {
398         int retval = target_write_u32(target, FP_CTRL, 3);
399         if (retval != ERROR_OK)
400                 return retval;
401
402         /* check the fpb is actually enabled */
403         uint32_t fpctrl;
404         retval = target_read_u32(target, FP_CTRL, &fpctrl);
405         if (retval != ERROR_OK)
406                 return retval;
407
408         if (fpctrl & 1)
409                 return ERROR_OK;
410
411         return ERROR_FAIL;
412 }
413
414 static int cortex_m_endreset_event(struct target *target)
415 {
416         int retval;
417         uint32_t dcb_demcr;
418         struct cortex_m_common *cortex_m = target_to_cm(target);
419         struct armv7m_common *armv7m = &cortex_m->armv7m;
420         struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
421         struct cortex_m_fp_comparator *fp_list = cortex_m->fp_comparator_list;
422         struct cortex_m_dwt_comparator *dwt_list = cortex_m->dwt_comparator_list;
423
424         /* REVISIT The four debug monitor bits are currently ignored... */
425         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &dcb_demcr);
426         if (retval != ERROR_OK)
427                 return retval;
428         LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "", dcb_demcr);
429
430         /* this register is used for emulated dcc channel */
431         retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, 0);
432         if (retval != ERROR_OK)
433                 return retval;
434
435         retval = cortex_m_read_dhcsr_atomic_sticky(target);
436         if (retval != ERROR_OK)
437                 return retval;
438
439         if (!(cortex_m->dcb_dhcsr & C_DEBUGEN)) {
440                 /* Enable debug requests */
441                 retval = cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP | C_MASKINTS);
442                 if (retval != ERROR_OK)
443                         return retval;
444         }
445
446         /* Restore proper interrupt masking setting for running CPU. */
447         cortex_m_set_maskints_for_run(target);
448
449         /* Enable features controlled by ITM and DWT blocks, and catch only
450          * the vectors we were told to pay attention to.
451          *
452          * Target firmware is responsible for all fault handling policy
453          * choices *EXCEPT* explicitly scripted overrides like "vector_catch"
454          * or manual updates to the NVIC SHCSR and CCR registers.
455          */
456         retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR, TRCENA | armv7m->demcr);
457         if (retval != ERROR_OK)
458                 return retval;
459
460         /* Paranoia: evidently some (early?) chips don't preserve all the
461          * debug state (including FPB, DWT, etc) across reset...
462          */
463
464         /* Enable FPB */
465         retval = cortex_m_enable_fpb(target);
466         if (retval != ERROR_OK) {
467                 LOG_ERROR("Failed to enable the FPB");
468                 return retval;
469         }
470
471         cortex_m->fpb_enabled = true;
472
473         /* Restore FPB registers */
474         for (unsigned int i = 0; i < cortex_m->fp_num_code + cortex_m->fp_num_lit; i++) {
475                 retval = target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
476                 if (retval != ERROR_OK)
477                         return retval;
478         }
479
480         /* Restore DWT registers */
481         for (unsigned int i = 0; i < cortex_m->dwt_num_comp; i++) {
482                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
483                                 dwt_list[i].comp);
484                 if (retval != ERROR_OK)
485                         return retval;
486                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
487                                 dwt_list[i].mask);
488                 if (retval != ERROR_OK)
489                         return retval;
490                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
491                                 dwt_list[i].function);
492                 if (retval != ERROR_OK)
493                         return retval;
494         }
495         retval = dap_run(swjdp);
496         if (retval != ERROR_OK)
497                 return retval;
498
499         register_cache_invalidate(armv7m->arm.core_cache);
500
501         /* make sure we have latest dhcsr flags */
502         retval = cortex_m_read_dhcsr_atomic_sticky(target);
503         if (retval != ERROR_OK)
504                 return retval;
505
506         return retval;
507 }
508
509 static int cortex_m_examine_debug_reason(struct target *target)
510 {
511         struct cortex_m_common *cortex_m = target_to_cm(target);
512
513         /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason
514          * only check the debug reason if we don't know it already */
515
516         if ((target->debug_reason != DBG_REASON_DBGRQ)
517                 && (target->debug_reason != DBG_REASON_SINGLESTEP)) {
518                 if (cortex_m->nvic_dfsr & DFSR_BKPT) {
519                         target->debug_reason = DBG_REASON_BREAKPOINT;
520                         if (cortex_m->nvic_dfsr & DFSR_DWTTRAP)
521                                 target->debug_reason = DBG_REASON_WPTANDBKPT;
522                 } else if (cortex_m->nvic_dfsr & DFSR_DWTTRAP)
523                         target->debug_reason = DBG_REASON_WATCHPOINT;
524                 else if (cortex_m->nvic_dfsr & DFSR_VCATCH)
525                         target->debug_reason = DBG_REASON_BREAKPOINT;
526                 else if (cortex_m->nvic_dfsr & DFSR_EXTERNAL)
527                         target->debug_reason = DBG_REASON_DBGRQ;
528                 else    /* HALTED */
529                         target->debug_reason = DBG_REASON_UNDEFINED;
530         }
531
532         return ERROR_OK;
533 }
534
535 static int cortex_m_examine_exception_reason(struct target *target)
536 {
537         uint32_t shcsr = 0, except_sr = 0, cfsr = -1, except_ar = -1;
538         struct armv7m_common *armv7m = target_to_armv7m(target);
539         struct adiv5_dap *swjdp = armv7m->arm.dap;
540         int retval;
541
542         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_SHCSR, &shcsr);
543         if (retval != ERROR_OK)
544                 return retval;
545         switch (armv7m->exception_number) {
546                 case 2: /* NMI */
547                         break;
548                 case 3: /* Hard Fault */
549                         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_HFSR, &except_sr);
550                         if (retval != ERROR_OK)
551                                 return retval;
552                         if (except_sr & 0x40000000) {
553                                 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &cfsr);
554                                 if (retval != ERROR_OK)
555                                         return retval;
556                         }
557                         break;
558                 case 4: /* Memory Management */
559                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
560                         if (retval != ERROR_OK)
561                                 return retval;
562                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_MMFAR, &except_ar);
563                         if (retval != ERROR_OK)
564                                 return retval;
565                         break;
566                 case 5: /* Bus Fault */
567                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
568                         if (retval != ERROR_OK)
569                                 return retval;
570                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_BFAR, &except_ar);
571                         if (retval != ERROR_OK)
572                                 return retval;
573                         break;
574                 case 6: /* Usage Fault */
575                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
576                         if (retval != ERROR_OK)
577                                 return retval;
578                         break;
579                 case 7: /* Secure Fault */
580                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_SFSR, &except_sr);
581                         if (retval != ERROR_OK)
582                                 return retval;
583                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_SFAR, &except_ar);
584                         if (retval != ERROR_OK)
585                                 return retval;
586                         break;
587                 case 11:        /* SVCall */
588                         break;
589                 case 12:        /* Debug Monitor */
590                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_DFSR, &except_sr);
591                         if (retval != ERROR_OK)
592                                 return retval;
593                         break;
594                 case 14:        /* PendSV */
595                         break;
596                 case 15:        /* SysTick */
597                         break;
598                 default:
599                         except_sr = 0;
600                         break;
601         }
602         retval = dap_run(swjdp);
603         if (retval == ERROR_OK)
604                 LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32
605                         ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32,
606                         armv7m_exception_string(armv7m->exception_number),
607                         shcsr, except_sr, cfsr, except_ar);
608         return retval;
609 }
610
611 static int cortex_m_debug_entry(struct target *target)
612 {
613         int i;
614         uint32_t xPSR;
615         int retval;
616         struct cortex_m_common *cortex_m = target_to_cm(target);
617         struct armv7m_common *armv7m = &cortex_m->armv7m;
618         struct arm *arm = &armv7m->arm;
619         struct reg *r;
620
621         LOG_DEBUG(" ");
622
623         /* Do this really early to minimize the window where the MASKINTS erratum
624          * can pile up pending interrupts. */
625         cortex_m_set_maskints_for_halt(target);
626
627         cortex_m_clear_halt(target);
628
629         retval = cortex_m_read_dhcsr_atomic_sticky(target);
630         if (retval != ERROR_OK)
631                 return retval;
632
633         retval = armv7m->examine_debug_reason(target);
634         if (retval != ERROR_OK)
635                 return retval;
636
637         /* examine PE security state */
638         bool secure_state = false;
639         if (armv7m->arm.arch == ARM_ARCH_V8M) {
640                 uint32_t dscsr;
641
642                 retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DSCSR, &dscsr);
643                 if (retval != ERROR_OK)
644                         return retval;
645
646                 secure_state = (dscsr & DSCSR_CDS) == DSCSR_CDS;
647         }
648
649         /* Examine target state and mode
650          * First load register accessible through core debug port */
651         int num_regs = arm->core_cache->num_regs;
652
653         for (i = 0; i < num_regs; i++) {
654                 r = &armv7m->arm.core_cache->reg_list[i];
655                 if (r->exist && !r->valid)
656                         arm->read_core_reg(target, r, i, ARM_MODE_ANY);
657         }
658
659         r = arm->cpsr;
660         xPSR = buf_get_u32(r->value, 0, 32);
661
662         /* Are we in an exception handler */
663         if (xPSR & 0x1FF) {
664                 armv7m->exception_number = (xPSR & 0x1FF);
665
666                 arm->core_mode = ARM_MODE_HANDLER;
667                 arm->map = armv7m_msp_reg_map;
668         } else {
669                 unsigned control = buf_get_u32(arm->core_cache
670                                 ->reg_list[ARMV7M_CONTROL].value, 0, 3);
671
672                 /* is this thread privileged? */
673                 arm->core_mode = control & 1
674                         ? ARM_MODE_USER_THREAD
675                         : ARM_MODE_THREAD;
676
677                 /* which stack is it using? */
678                 if (control & 2)
679                         arm->map = armv7m_psp_reg_map;
680                 else
681                         arm->map = armv7m_msp_reg_map;
682
683                 armv7m->exception_number = 0;
684         }
685
686         if (armv7m->exception_number)
687                 cortex_m_examine_exception_reason(target);
688
689         LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", cpu in %s state, target->state: %s",
690                 arm_mode_name(arm->core_mode),
691                 buf_get_u32(arm->pc->value, 0, 32),
692                 secure_state ? "Secure" : "Non-Secure",
693                 target_state_name(target));
694
695         if (armv7m->post_debug_entry) {
696                 retval = armv7m->post_debug_entry(target);
697                 if (retval != ERROR_OK)
698                         return retval;
699         }
700
701         return ERROR_OK;
702 }
703
704 static int cortex_m_poll(struct target *target)
705 {
706         int detected_failure = ERROR_OK;
707         int retval = ERROR_OK;
708         enum target_state prev_target_state = target->state;
709         struct cortex_m_common *cortex_m = target_to_cm(target);
710         struct armv7m_common *armv7m = &cortex_m->armv7m;
711
712         /* Read from Debug Halting Control and Status Register */
713         retval = cortex_m_read_dhcsr_atomic_sticky(target);
714         if (retval != ERROR_OK) {
715                 target->state = TARGET_UNKNOWN;
716                 return retval;
717         }
718
719         /* Recover from lockup.  See ARMv7-M architecture spec,
720          * section B1.5.15 "Unrecoverable exception cases".
721          */
722         if (cortex_m->dcb_dhcsr & S_LOCKUP) {
723                 LOG_ERROR("%s -- clearing lockup after double fault",
724                         target_name(target));
725                 cortex_m_write_debug_halt_mask(target, C_HALT, 0);
726                 target->debug_reason = DBG_REASON_DBGRQ;
727
728                 /* We have to execute the rest (the "finally" equivalent, but
729                  * still throw this exception again).
730                  */
731                 detected_failure = ERROR_FAIL;
732
733                 /* refresh status bits */
734                 retval = cortex_m_read_dhcsr_atomic_sticky(target);
735                 if (retval != ERROR_OK)
736                         return retval;
737         }
738
739         if (cortex_m->dcb_dhcsr_cumulated_sticky & S_RESET_ST) {
740                 cortex_m->dcb_dhcsr_cumulated_sticky &= ~S_RESET_ST;
741                 if (target->state != TARGET_RESET) {
742                         target->state = TARGET_RESET;
743                         LOG_INFO("%s: external reset detected", target_name(target));
744                 }
745                 return ERROR_OK;
746         }
747
748         if (target->state == TARGET_RESET) {
749                 /* Cannot switch context while running so endreset is
750                  * called with target->state == TARGET_RESET
751                  */
752                 LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32,
753                         cortex_m->dcb_dhcsr);
754                 retval = cortex_m_endreset_event(target);
755                 if (retval != ERROR_OK) {
756                         target->state = TARGET_UNKNOWN;
757                         return retval;
758                 }
759                 target->state = TARGET_RUNNING;
760                 prev_target_state = TARGET_RUNNING;
761         }
762
763         if (cortex_m->dcb_dhcsr & S_HALT) {
764                 target->state = TARGET_HALTED;
765
766                 if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET)) {
767                         retval = cortex_m_debug_entry(target);
768                         if (retval != ERROR_OK)
769                                 return retval;
770
771                         if (arm_semihosting(target, &retval) != 0)
772                                 return retval;
773
774                         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
775                 }
776                 if (prev_target_state == TARGET_DEBUG_RUNNING) {
777                         LOG_DEBUG(" ");
778                         retval = cortex_m_debug_entry(target);
779                         if (retval != ERROR_OK)
780                                 return retval;
781
782                         target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
783                 }
784         }
785
786         if (target->state == TARGET_UNKNOWN) {
787                 /* Check if processor is retiring instructions or sleeping.
788                  * Unlike S_RESET_ST here we test if the target *is* running now,
789                  * not if it has been running (possibly in the past). Instructions are
790                  * typically processed much faster than OpenOCD polls DHCSR so S_RETIRE_ST
791                  * is read always 1. That's the reason not to use dcb_dhcsr_cumulated_sticky.
792                  */
793                 if (cortex_m->dcb_dhcsr & S_RETIRE_ST || cortex_m->dcb_dhcsr & S_SLEEP) {
794                         target->state = TARGET_RUNNING;
795                         retval = ERROR_OK;
796                 }
797         }
798
799         /* Check that target is truly halted, since the target could be resumed externally */
800         if ((prev_target_state == TARGET_HALTED) && !(cortex_m->dcb_dhcsr & S_HALT)) {
801                 /* registers are now invalid */
802                 register_cache_invalidate(armv7m->arm.core_cache);
803
804                 target->state = TARGET_RUNNING;
805                 LOG_WARNING("%s: external resume detected", target_name(target));
806                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
807                 retval = ERROR_OK;
808         }
809
810         /* Did we detect a failure condition that we cleared? */
811         if (detected_failure != ERROR_OK)
812                 retval = detected_failure;
813         return retval;
814 }
815
816 static int cortex_m_halt(struct target *target)
817 {
818         LOG_DEBUG("target->state: %s",
819                 target_state_name(target));
820
821         if (target->state == TARGET_HALTED) {
822                 LOG_DEBUG("target was already halted");
823                 return ERROR_OK;
824         }
825
826         if (target->state == TARGET_UNKNOWN)
827                 LOG_WARNING("target was in unknown state when halt was requested");
828
829         if (target->state == TARGET_RESET) {
830                 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst()) {
831                         LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
832                         return ERROR_TARGET_FAILURE;
833                 } else {
834                         /* we came here in a reset_halt or reset_init sequence
835                          * debug entry was already prepared in cortex_m3_assert_reset()
836                          */
837                         target->debug_reason = DBG_REASON_DBGRQ;
838
839                         return ERROR_OK;
840                 }
841         }
842
843         /* Write to Debug Halting Control and Status Register */
844         cortex_m_write_debug_halt_mask(target, C_HALT, 0);
845
846         /* Do this really early to minimize the window where the MASKINTS erratum
847          * can pile up pending interrupts. */
848         cortex_m_set_maskints_for_halt(target);
849
850         target->debug_reason = DBG_REASON_DBGRQ;
851
852         return ERROR_OK;
853 }
854
855 static int cortex_m_soft_reset_halt(struct target *target)
856 {
857         struct cortex_m_common *cortex_m = target_to_cm(target);
858         struct armv7m_common *armv7m = &cortex_m->armv7m;
859         int retval, timeout = 0;
860
861         /* on single cortex_m MCU soft_reset_halt should be avoided as same functionality
862          * can be obtained by using 'reset halt' and 'cortex_m reset_config vectreset'.
863          * As this reset only uses VC_CORERESET it would only ever reset the cortex_m
864          * core, not the peripherals */
865         LOG_DEBUG("soft_reset_halt is discouraged, please use 'reset halt' instead.");
866
867         if (!cortex_m->vectreset_supported) {
868                 LOG_ERROR("VECTRESET is not supported on this Cortex-M core");
869                 return ERROR_FAIL;
870         }
871
872         /* Set C_DEBUGEN */
873         retval = cortex_m_write_debug_halt_mask(target, 0, C_STEP | C_MASKINTS);
874         if (retval != ERROR_OK)
875                 return retval;
876
877         /* Enter debug state on reset; restore DEMCR in endreset_event() */
878         retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR,
879                         TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
880         if (retval != ERROR_OK)
881                 return retval;
882
883         /* Request a core-only reset */
884         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_AIRCR,
885                         AIRCR_VECTKEY | AIRCR_VECTRESET);
886         if (retval != ERROR_OK)
887                 return retval;
888         target->state = TARGET_RESET;
889
890         /* registers are now invalid */
891         register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
892
893         while (timeout < 100) {
894                 retval = cortex_m_read_dhcsr_atomic_sticky(target);
895                 if (retval == ERROR_OK) {
896                         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_DFSR,
897                                         &cortex_m->nvic_dfsr);
898                         if (retval != ERROR_OK)
899                                 return retval;
900                         if ((cortex_m->dcb_dhcsr & S_HALT)
901                                 && (cortex_m->nvic_dfsr & DFSR_VCATCH)) {
902                                 LOG_DEBUG("system reset-halted, DHCSR 0x%08" PRIx32 ", DFSR 0x%08" PRIx32,
903                                         cortex_m->dcb_dhcsr, cortex_m->nvic_dfsr);
904                                 cortex_m_poll(target);
905                                 /* FIXME restore user's vector catch config */
906                                 return ERROR_OK;
907                         } else
908                                 LOG_DEBUG("waiting for system reset-halt, "
909                                         "DHCSR 0x%08" PRIx32 ", %d ms",
910                                         cortex_m->dcb_dhcsr, timeout);
911                 }
912                 timeout++;
913                 alive_sleep(1);
914         }
915
916         return ERROR_OK;
917 }
918
919 void cortex_m_enable_breakpoints(struct target *target)
920 {
921         struct breakpoint *breakpoint = target->breakpoints;
922
923         /* set any pending breakpoints */
924         while (breakpoint) {
925                 if (!breakpoint->set)
926                         cortex_m_set_breakpoint(target, breakpoint);
927                 breakpoint = breakpoint->next;
928         }
929 }
930
931 static int cortex_m_resume(struct target *target, int current,
932         target_addr_t address, int handle_breakpoints, int debug_execution)
933 {
934         struct armv7m_common *armv7m = target_to_armv7m(target);
935         struct breakpoint *breakpoint = NULL;
936         uint32_t resume_pc;
937         struct reg *r;
938
939         if (target->state != TARGET_HALTED) {
940                 LOG_WARNING("target not halted");
941                 return ERROR_TARGET_NOT_HALTED;
942         }
943
944         if (!debug_execution) {
945                 target_free_all_working_areas(target);
946                 cortex_m_enable_breakpoints(target);
947                 cortex_m_enable_watchpoints(target);
948         }
949
950         if (debug_execution) {
951                 r = armv7m->arm.core_cache->reg_list + ARMV7M_PRIMASK;
952
953                 /* Disable interrupts */
954                 /* We disable interrupts in the PRIMASK register instead of
955                  * masking with C_MASKINTS.  This is probably the same issue
956                  * as Cortex-M3 Erratum 377493 (fixed in r1p0):  C_MASKINTS
957                  * in parallel with disabled interrupts can cause local faults
958                  * to not be taken.
959                  *
960                  * This breaks non-debug (application) execution if not
961                  * called from armv7m_start_algorithm() which saves registers.
962                  */
963                 buf_set_u32(r->value, 0, 1, 1);
964                 r->dirty = true;
965                 r->valid = true;
966
967                 /* Make sure we are in Thumb mode, set xPSR.T bit */
968                 /* armv7m_start_algorithm() initializes entire xPSR register.
969                  * This duplicity handles the case when cortex_m_resume()
970                  * is used with the debug_execution flag directly,
971                  * not called through armv7m_start_algorithm().
972                  */
973                 r = armv7m->arm.cpsr;
974                 buf_set_u32(r->value, 24, 1, 1);
975                 r->dirty = true;
976                 r->valid = true;
977         }
978
979         /* current = 1: continue on current pc, otherwise continue at <address> */
980         r = armv7m->arm.pc;
981         if (!current) {
982                 buf_set_u32(r->value, 0, 32, address);
983                 r->dirty = true;
984                 r->valid = true;
985         }
986
987         /* if we halted last time due to a bkpt instruction
988          * then we have to manually step over it, otherwise
989          * the core will break again */
990
991         if (!breakpoint_find(target, buf_get_u32(r->value, 0, 32))
992                 && !debug_execution)
993                 armv7m_maybe_skip_bkpt_inst(target, NULL);
994
995         resume_pc = buf_get_u32(r->value, 0, 32);
996
997         armv7m_restore_context(target);
998
999         /* the front-end may request us not to handle breakpoints */
1000         if (handle_breakpoints) {
1001                 /* Single step past breakpoint at current address */
1002                 breakpoint = breakpoint_find(target, resume_pc);
1003                 if (breakpoint) {
1004                         LOG_DEBUG("unset breakpoint at " TARGET_ADDR_FMT " (ID: %" PRIu32 ")",
1005                                 breakpoint->address,
1006                                 breakpoint->unique_id);
1007                         cortex_m_unset_breakpoint(target, breakpoint);
1008                         cortex_m_single_step_core(target);
1009                         cortex_m_set_breakpoint(target, breakpoint);
1010                 }
1011         }
1012
1013         /* Restart core */
1014         cortex_m_set_maskints_for_run(target);
1015         cortex_m_write_debug_halt_mask(target, 0, C_HALT);
1016
1017         target->debug_reason = DBG_REASON_NOTHALTED;
1018
1019         /* registers are now invalid */
1020         register_cache_invalidate(armv7m->arm.core_cache);
1021
1022         if (!debug_execution) {
1023                 target->state = TARGET_RUNNING;
1024                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1025                 LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc);
1026         } else {
1027                 target->state = TARGET_DEBUG_RUNNING;
1028                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
1029                 LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc);
1030         }
1031
1032         return ERROR_OK;
1033 }
1034
1035 /* int irqstepcount = 0; */
1036 static int cortex_m_step(struct target *target, int current,
1037         target_addr_t address, int handle_breakpoints)
1038 {
1039         struct cortex_m_common *cortex_m = target_to_cm(target);
1040         struct armv7m_common *armv7m = &cortex_m->armv7m;
1041         struct breakpoint *breakpoint = NULL;
1042         struct reg *pc = armv7m->arm.pc;
1043         bool bkpt_inst_found = false;
1044         int retval;
1045         bool isr_timed_out = false;
1046
1047         if (target->state != TARGET_HALTED) {
1048                 LOG_WARNING("target not halted");
1049                 return ERROR_TARGET_NOT_HALTED;
1050         }
1051
1052         /* current = 1: continue on current pc, otherwise continue at <address> */
1053         if (!current) {
1054                 buf_set_u32(pc->value, 0, 32, address);
1055                 pc->dirty = true;
1056                 pc->valid = true;
1057         }
1058
1059         uint32_t pc_value = buf_get_u32(pc->value, 0, 32);
1060
1061         /* the front-end may request us not to handle breakpoints */
1062         if (handle_breakpoints) {
1063                 breakpoint = breakpoint_find(target, pc_value);
1064                 if (breakpoint)
1065                         cortex_m_unset_breakpoint(target, breakpoint);
1066         }
1067
1068         armv7m_maybe_skip_bkpt_inst(target, &bkpt_inst_found);
1069
1070         target->debug_reason = DBG_REASON_SINGLESTEP;
1071
1072         armv7m_restore_context(target);
1073
1074         target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1075
1076         /* if no bkpt instruction is found at pc then we can perform
1077          * a normal step, otherwise we have to manually step over the bkpt
1078          * instruction - as such simulate a step */
1079         if (bkpt_inst_found == false) {
1080                 if (cortex_m->isrmasking_mode != CORTEX_M_ISRMASK_AUTO) {
1081                         /* Automatic ISR masking mode off: Just step over the next
1082                          * instruction, with interrupts on or off as appropriate. */
1083                         cortex_m_set_maskints_for_step(target);
1084                         cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
1085                 } else {
1086                         /* Process interrupts during stepping in a way they don't interfere
1087                          * debugging.
1088                          *
1089                          * Principle:
1090                          *
1091                          * Set a temporary break point at the current pc and let the core run
1092                          * with interrupts enabled. Pending interrupts get served and we run
1093                          * into the breakpoint again afterwards. Then we step over the next
1094                          * instruction with interrupts disabled.
1095                          *
1096                          * If the pending interrupts don't complete within time, we leave the
1097                          * core running. This may happen if the interrupts trigger faster
1098                          * than the core can process them or the handler doesn't return.
1099                          *
1100                          * If no more breakpoints are available we simply do a step with
1101                          * interrupts enabled.
1102                          *
1103                          */
1104
1105                         /* 2012-09-29 ph
1106                          *
1107                          * If a break point is already set on the lower half word then a break point on
1108                          * the upper half word will not break again when the core is restarted. So we
1109                          * just step over the instruction with interrupts disabled.
1110                          *
1111                          * The documentation has no information about this, it was found by observation
1112                          * on STM32F1 and STM32F2. Proper explanation welcome. STM32F0 doesn't seem to
1113                          * suffer from this problem.
1114                          *
1115                          * To add some confusion: pc_value has bit 0 always set, while the breakpoint
1116                          * address has it always cleared. The former is done to indicate thumb mode
1117                          * to gdb.
1118                          *
1119                          */
1120                         if ((pc_value & 0x02) && breakpoint_find(target, pc_value & ~0x03)) {
1121                                 LOG_DEBUG("Stepping over next instruction with interrupts disabled");
1122                                 cortex_m_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
1123                                 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
1124                                 /* Re-enable interrupts if appropriate */
1125                                 cortex_m_write_debug_halt_mask(target, C_HALT, 0);
1126                                 cortex_m_set_maskints_for_halt(target);
1127                         } else {
1128
1129                                 /* Set a temporary break point */
1130                                 if (breakpoint) {
1131                                         retval = cortex_m_set_breakpoint(target, breakpoint);
1132                                 } else {
1133                                         enum breakpoint_type type = BKPT_HARD;
1134                                         if (cortex_m->fp_rev == 0 && pc_value > 0x1FFFFFFF) {
1135                                                 /* FPB rev.1 cannot handle such addr, try BKPT instr */
1136                                                 type = BKPT_SOFT;
1137                                         }
1138                                         retval = breakpoint_add(target, pc_value, 2, type);
1139                                 }
1140
1141                                 bool tmp_bp_set = (retval == ERROR_OK);
1142
1143                                 /* No more breakpoints left, just do a step */
1144                                 if (!tmp_bp_set) {
1145                                         cortex_m_set_maskints_for_step(target);
1146                                         cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
1147                                         /* Re-enable interrupts if appropriate */
1148                                         cortex_m_write_debug_halt_mask(target, C_HALT, 0);
1149                                         cortex_m_set_maskints_for_halt(target);
1150                                 } else {
1151                                         /* Start the core */
1152                                         LOG_DEBUG("Starting core to serve pending interrupts");
1153                                         int64_t t_start = timeval_ms();
1154                                         cortex_m_set_maskints_for_run(target);
1155                                         cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP);
1156
1157                                         /* Wait for pending handlers to complete or timeout */
1158                                         do {
1159                                                 retval = cortex_m_read_dhcsr_atomic_sticky(target);
1160                                                 if (retval != ERROR_OK) {
1161                                                         target->state = TARGET_UNKNOWN;
1162                                                         return retval;
1163                                                 }
1164                                                 isr_timed_out = ((timeval_ms() - t_start) > 500);
1165                                         } while (!((cortex_m->dcb_dhcsr & S_HALT) || isr_timed_out));
1166
1167                                         /* only remove breakpoint if we created it */
1168                                         if (breakpoint)
1169                                                 cortex_m_unset_breakpoint(target, breakpoint);
1170                                         else {
1171                                                 /* Remove the temporary breakpoint */
1172                                                 breakpoint_remove(target, pc_value);
1173                                         }
1174
1175                                         if (isr_timed_out) {
1176                                                 LOG_DEBUG("Interrupt handlers didn't complete within time, "
1177                                                         "leaving target running");
1178                                         } else {
1179                                                 /* Step over next instruction with interrupts disabled */
1180                                                 cortex_m_set_maskints_for_step(target);
1181                                                 cortex_m_write_debug_halt_mask(target,
1182                                                         C_HALT | C_MASKINTS,
1183                                                         0);
1184                                                 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
1185                                                 /* Re-enable interrupts if appropriate */
1186                                                 cortex_m_write_debug_halt_mask(target, C_HALT, 0);
1187                                                 cortex_m_set_maskints_for_halt(target);
1188                                         }
1189                                 }
1190                         }
1191                 }
1192         }
1193
1194         retval = cortex_m_read_dhcsr_atomic_sticky(target);
1195         if (retval != ERROR_OK)
1196                 return retval;
1197
1198         /* registers are now invalid */
1199         register_cache_invalidate(armv7m->arm.core_cache);
1200
1201         if (breakpoint)
1202                 cortex_m_set_breakpoint(target, breakpoint);
1203
1204         if (isr_timed_out) {
1205                 /* Leave the core running. The user has to stop execution manually. */
1206                 target->debug_reason = DBG_REASON_NOTHALTED;
1207                 target->state = TARGET_RUNNING;
1208                 return ERROR_OK;
1209         }
1210
1211         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
1212                 " nvic_icsr = 0x%" PRIx32,
1213                 cortex_m->dcb_dhcsr, cortex_m->nvic_icsr);
1214
1215         retval = cortex_m_debug_entry(target);
1216         if (retval != ERROR_OK)
1217                 return retval;
1218         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
1219
1220         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
1221                 " nvic_icsr = 0x%" PRIx32,
1222                 cortex_m->dcb_dhcsr, cortex_m->nvic_icsr);
1223
1224         return ERROR_OK;
1225 }
1226
1227 static int cortex_m_assert_reset(struct target *target)
1228 {
1229         struct cortex_m_common *cortex_m = target_to_cm(target);
1230         struct armv7m_common *armv7m = &cortex_m->armv7m;
1231         enum cortex_m_soft_reset_config reset_config = cortex_m->soft_reset_config;
1232
1233         LOG_DEBUG("target->state: %s",
1234                 target_state_name(target));
1235
1236         enum reset_types jtag_reset_config = jtag_get_reset_config();
1237
1238         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
1239                 /* allow scripts to override the reset event */
1240
1241                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1242                 register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
1243                 target->state = TARGET_RESET;
1244
1245                 return ERROR_OK;
1246         }
1247
1248         /* some cores support connecting while srst is asserted
1249          * use that mode is it has been configured */
1250
1251         bool srst_asserted = false;
1252
1253         if (!target_was_examined(target)) {
1254                 if (jtag_reset_config & RESET_HAS_SRST) {
1255                         adapter_assert_reset();
1256                         if (target->reset_halt)
1257                                 LOG_ERROR("Target not examined, will not halt after reset!");
1258                         return ERROR_OK;
1259                 } else {
1260                         LOG_ERROR("Target not examined, reset NOT asserted!");
1261                         return ERROR_FAIL;
1262                 }
1263         }
1264
1265         if ((jtag_reset_config & RESET_HAS_SRST) &&
1266             (jtag_reset_config & RESET_SRST_NO_GATING)) {
1267                 adapter_assert_reset();
1268                 srst_asserted = true;
1269         }
1270
1271         /* Enable debug requests */
1272         int retval = cortex_m_read_dhcsr_atomic_sticky(target);
1273
1274         /* Store important errors instead of failing and proceed to reset assert */
1275
1276         if (retval != ERROR_OK || !(cortex_m->dcb_dhcsr & C_DEBUGEN))
1277                 retval = cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP | C_MASKINTS);
1278
1279         /* If the processor is sleeping in a WFI or WFE instruction, the
1280          * C_HALT bit must be asserted to regain control */
1281         if (retval == ERROR_OK && (cortex_m->dcb_dhcsr & S_SLEEP))
1282                 retval = cortex_m_write_debug_halt_mask(target, C_HALT, 0);
1283
1284         mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, 0);
1285         /* Ignore less important errors */
1286
1287         if (!target->reset_halt) {
1288                 /* Set/Clear C_MASKINTS in a separate operation */
1289                 cortex_m_set_maskints_for_run(target);
1290
1291                 /* clear any debug flags before resuming */
1292                 cortex_m_clear_halt(target);
1293
1294                 /* clear C_HALT in dhcsr reg */
1295                 cortex_m_write_debug_halt_mask(target, 0, C_HALT);
1296         } else {
1297                 /* Halt in debug on reset; endreset_event() restores DEMCR.
1298                  *
1299                  * REVISIT catching BUSERR presumably helps to defend against
1300                  * bad vector table entries.  Should this include MMERR or
1301                  * other flags too?
1302                  */
1303                 int retval2;
1304                 retval2 = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DEMCR,
1305                                 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
1306                 if (retval != ERROR_OK || retval2 != ERROR_OK)
1307                         LOG_INFO("AP write error, reset will not halt");
1308         }
1309
1310         if (jtag_reset_config & RESET_HAS_SRST) {
1311                 /* default to asserting srst */
1312                 if (!srst_asserted)
1313                         adapter_assert_reset();
1314
1315                 /* srst is asserted, ignore AP access errors */
1316                 retval = ERROR_OK;
1317         } else {
1318                 /* Use a standard Cortex-M3 software reset mechanism.
1319                  * We default to using VECTRESET as it is supported on all current cores
1320                  * (except Cortex-M0, M0+ and M1 which support SYSRESETREQ only!)
1321                  * This has the disadvantage of not resetting the peripherals, so a
1322                  * reset-init event handler is needed to perform any peripheral resets.
1323                  */
1324                 if (!cortex_m->vectreset_supported
1325                                 && reset_config == CORTEX_M_RESET_VECTRESET) {
1326                         reset_config = CORTEX_M_RESET_SYSRESETREQ;
1327                         LOG_WARNING("VECTRESET is not supported on this Cortex-M core, using SYSRESETREQ instead.");
1328                         LOG_WARNING("Set 'cortex_m reset_config sysresetreq'.");
1329                 }
1330
1331                 LOG_DEBUG("Using Cortex-M %s", (reset_config == CORTEX_M_RESET_SYSRESETREQ)
1332                         ? "SYSRESETREQ" : "VECTRESET");
1333
1334                 if (reset_config == CORTEX_M_RESET_VECTRESET) {
1335                         LOG_WARNING("Only resetting the Cortex-M core, use a reset-init event "
1336                                 "handler to reset any peripherals or configure hardware srst support.");
1337                 }
1338
1339                 int retval3;
1340                 retval3 = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_AIRCR,
1341                                 AIRCR_VECTKEY | ((reset_config == CORTEX_M_RESET_SYSRESETREQ)
1342                                 ? AIRCR_SYSRESETREQ : AIRCR_VECTRESET));
1343                 if (retval3 != ERROR_OK)
1344                         LOG_DEBUG("Ignoring AP write error right after reset");
1345
1346                 retval3 = dap_dp_init_or_reconnect(armv7m->debug_ap->dap);
1347                 if (retval3 != ERROR_OK) {
1348                         LOG_ERROR("DP initialisation failed");
1349                         /* The error return value must not be propagated in this case.
1350                          * SYSRESETREQ or VECTRESET have been possibly triggered
1351                          * so reset processing should continue */
1352                 } else {
1353                         /* I do not know why this is necessary, but it
1354                          * fixes strange effects (step/resume cause NMI
1355                          * after reset) on LM3S6918 -- Michael Schwingen
1356                          */
1357                         uint32_t tmp;
1358                         mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_AIRCR, &tmp);
1359                 }
1360         }
1361
1362         target->state = TARGET_RESET;
1363         jtag_sleep(50000);
1364
1365         register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
1366
1367         /* now return stored error code if any */
1368         if (retval != ERROR_OK)
1369                 return retval;
1370
1371         if (target->reset_halt) {
1372                 retval = target_halt(target);
1373                 if (retval != ERROR_OK)
1374                         return retval;
1375         }
1376
1377         return ERROR_OK;
1378 }
1379
1380 static int cortex_m_deassert_reset(struct target *target)
1381 {
1382         struct armv7m_common *armv7m = &target_to_cm(target)->armv7m;
1383
1384         LOG_DEBUG("target->state: %s",
1385                 target_state_name(target));
1386
1387         /* deassert reset lines */
1388         adapter_deassert_reset();
1389
1390         enum reset_types jtag_reset_config = jtag_get_reset_config();
1391
1392         if ((jtag_reset_config & RESET_HAS_SRST) &&
1393             !(jtag_reset_config & RESET_SRST_NO_GATING) &&
1394                 target_was_examined(target)) {
1395
1396                 int retval = dap_dp_init_or_reconnect(armv7m->debug_ap->dap);
1397                 if (retval != ERROR_OK) {
1398                         LOG_ERROR("DP initialisation failed");
1399                         return retval;
1400                 }
1401         }
1402
1403         return ERROR_OK;
1404 }
1405
1406 int cortex_m_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
1407 {
1408         int retval;
1409         unsigned int fp_num = 0;
1410         struct cortex_m_common *cortex_m = target_to_cm(target);
1411         struct cortex_m_fp_comparator *comparator_list = cortex_m->fp_comparator_list;
1412
1413         if (breakpoint->set) {
1414                 LOG_WARNING("breakpoint (BPID: %" PRIu32 ") already set", breakpoint->unique_id);
1415                 return ERROR_OK;
1416         }
1417
1418         if (breakpoint->type == BKPT_HARD) {
1419                 uint32_t fpcr_value;
1420                 while (comparator_list[fp_num].used && (fp_num < cortex_m->fp_num_code))
1421                         fp_num++;
1422                 if (fp_num >= cortex_m->fp_num_code) {
1423                         LOG_ERROR("Can not find free FPB Comparator!");
1424                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1425                 }
1426                 breakpoint->set = fp_num + 1;
1427                 fpcr_value = breakpoint->address | 1;
1428                 if (cortex_m->fp_rev == 0) {
1429                         if (breakpoint->address > 0x1FFFFFFF) {
1430                                 LOG_ERROR("Cortex-M Flash Patch Breakpoint rev.1 cannot handle HW breakpoint above address 0x1FFFFFFE");
1431                                 return ERROR_FAIL;
1432                         }
1433                         uint32_t hilo;
1434                         hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
1435                         fpcr_value = (fpcr_value & 0x1FFFFFFC) | hilo | 1;
1436                 } else if (cortex_m->fp_rev > 1) {
1437                         LOG_ERROR("Unhandled Cortex-M Flash Patch Breakpoint architecture revision");
1438                         return ERROR_FAIL;
1439                 }
1440                 comparator_list[fp_num].used = true;
1441                 comparator_list[fp_num].fpcr_value = fpcr_value;
1442                 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1443                         comparator_list[fp_num].fpcr_value);
1444                 LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "",
1445                         fp_num,
1446                         comparator_list[fp_num].fpcr_value);
1447                 if (!cortex_m->fpb_enabled) {
1448                         LOG_DEBUG("FPB wasn't enabled, do it now");
1449                         retval = cortex_m_enable_fpb(target);
1450                         if (retval != ERROR_OK) {
1451                                 LOG_ERROR("Failed to enable the FPB");
1452                                 return retval;
1453                         }
1454
1455                         cortex_m->fpb_enabled = true;
1456                 }
1457         } else if (breakpoint->type == BKPT_SOFT) {
1458                 uint8_t code[4];
1459
1460                 /* NOTE: on ARMv6-M and ARMv7-M, BKPT(0xab) is used for
1461                  * semihosting; don't use that.  Otherwise the BKPT
1462                  * parameter is arbitrary.
1463                  */
1464                 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1465                 retval = target_read_memory(target,
1466                                 breakpoint->address & 0xFFFFFFFE,
1467                                 breakpoint->length, 1,
1468                                 breakpoint->orig_instr);
1469                 if (retval != ERROR_OK)
1470                         return retval;
1471                 retval = target_write_memory(target,
1472                                 breakpoint->address & 0xFFFFFFFE,
1473                                 breakpoint->length, 1,
1474                                 code);
1475                 if (retval != ERROR_OK)
1476                         return retval;
1477                 breakpoint->set = true;
1478         }
1479
1480         LOG_DEBUG("BPID: %" PRIu32 ", Type: %d, Address: " TARGET_ADDR_FMT " Length: %d (set=%d)",
1481                 breakpoint->unique_id,
1482                 (int)(breakpoint->type),
1483                 breakpoint->address,
1484                 breakpoint->length,
1485                 breakpoint->set);
1486
1487         return ERROR_OK;
1488 }
1489
1490 int cortex_m_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1491 {
1492         int retval;
1493         struct cortex_m_common *cortex_m = target_to_cm(target);
1494         struct cortex_m_fp_comparator *comparator_list = cortex_m->fp_comparator_list;
1495
1496         if (breakpoint->set <= 0) {
1497                 LOG_WARNING("breakpoint not set");
1498                 return ERROR_OK;
1499         }
1500
1501         LOG_DEBUG("BPID: %" PRIu32 ", Type: %d, Address: " TARGET_ADDR_FMT " Length: %d (set=%d)",
1502                 breakpoint->unique_id,
1503                 (int)(breakpoint->type),
1504                 breakpoint->address,
1505                 breakpoint->length,
1506                 breakpoint->set);
1507
1508         if (breakpoint->type == BKPT_HARD) {
1509                 unsigned int fp_num = breakpoint->set - 1;
1510                 if (fp_num >= cortex_m->fp_num_code) {
1511                         LOG_DEBUG("Invalid FP Comparator number in breakpoint");
1512                         return ERROR_OK;
1513                 }
1514                 comparator_list[fp_num].used = false;
1515                 comparator_list[fp_num].fpcr_value = 0;
1516                 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1517                         comparator_list[fp_num].fpcr_value);
1518         } else {
1519                 /* restore original instruction (kept in target endianness) */
1520                 retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE,
1521                                         breakpoint->length, 1,
1522                                         breakpoint->orig_instr);
1523                 if (retval != ERROR_OK)
1524                         return retval;
1525         }
1526         breakpoint->set = false;
1527
1528         return ERROR_OK;
1529 }
1530
1531 int cortex_m_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1532 {
1533         if (breakpoint->length == 3) {
1534                 LOG_DEBUG("Using a two byte breakpoint for 32bit Thumb-2 request");
1535                 breakpoint->length = 2;
1536         }
1537
1538         if ((breakpoint->length != 2)) {
1539                 LOG_INFO("only breakpoints of two bytes length supported");
1540                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1541         }
1542
1543         return cortex_m_set_breakpoint(target, breakpoint);
1544 }
1545
1546 int cortex_m_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1547 {
1548         if (!breakpoint->set)
1549                 return ERROR_OK;
1550
1551         return cortex_m_unset_breakpoint(target, breakpoint);
1552 }
1553
1554 static int cortex_m_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1555 {
1556         unsigned int dwt_num = 0;
1557         struct cortex_m_common *cortex_m = target_to_cm(target);
1558
1559         /* REVISIT Don't fully trust these "not used" records ... users
1560          * may set up breakpoints by hand, e.g. dual-address data value
1561          * watchpoint using comparator #1; comparator #0 matching cycle
1562          * count; send data trace info through ITM and TPIU; etc
1563          */
1564         struct cortex_m_dwt_comparator *comparator;
1565
1566         for (comparator = cortex_m->dwt_comparator_list;
1567                 comparator->used && dwt_num < cortex_m->dwt_num_comp;
1568                 comparator++, dwt_num++)
1569                 continue;
1570         if (dwt_num >= cortex_m->dwt_num_comp) {
1571                 LOG_ERROR("Can not find free DWT Comparator");
1572                 return ERROR_FAIL;
1573         }
1574         comparator->used = true;
1575         watchpoint->set = dwt_num + 1;
1576
1577         comparator->comp = watchpoint->address;
1578         target_write_u32(target, comparator->dwt_comparator_address + 0,
1579                 comparator->comp);
1580
1581         if ((cortex_m->dwt_devarch & 0x1FFFFF) != DWT_DEVARCH_ARMV8M) {
1582                 uint32_t mask = 0, temp;
1583
1584                 /* watchpoint params were validated earlier */
1585                 temp = watchpoint->length;
1586                 while (temp) {
1587                         temp >>= 1;
1588                         mask++;
1589                 }
1590                 mask--;
1591
1592                 comparator->mask = mask;
1593                 target_write_u32(target, comparator->dwt_comparator_address + 4,
1594                         comparator->mask);
1595
1596                 switch (watchpoint->rw) {
1597                 case WPT_READ:
1598                         comparator->function = 5;
1599                         break;
1600                 case WPT_WRITE:
1601                         comparator->function = 6;
1602                         break;
1603                 case WPT_ACCESS:
1604                         comparator->function = 7;
1605                         break;
1606                 }
1607         } else {
1608                 uint32_t data_size = watchpoint->length >> 1;
1609                 comparator->mask = (watchpoint->length >> 1) | 1;
1610
1611                 switch (watchpoint->rw) {
1612                 case WPT_ACCESS:
1613                         comparator->function = 4;
1614                         break;
1615                 case WPT_WRITE:
1616                         comparator->function = 5;
1617                         break;
1618                 case WPT_READ:
1619                         comparator->function = 6;
1620                         break;
1621                 }
1622                 comparator->function = comparator->function | (1 << 4) |
1623                                 (data_size << 10);
1624         }
1625
1626         target_write_u32(target, comparator->dwt_comparator_address + 8,
1627                 comparator->function);
1628
1629         LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
1630                 watchpoint->unique_id, dwt_num,
1631                 (unsigned) comparator->comp,
1632                 (unsigned) comparator->mask,
1633                 (unsigned) comparator->function);
1634         return ERROR_OK;
1635 }
1636
1637 static int cortex_m_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1638 {
1639         struct cortex_m_common *cortex_m = target_to_cm(target);
1640         struct cortex_m_dwt_comparator *comparator;
1641
1642         if (watchpoint->set <= 0) {
1643                 LOG_WARNING("watchpoint (wpid: %d) not set",
1644                         watchpoint->unique_id);
1645                 return ERROR_OK;
1646         }
1647
1648         unsigned int dwt_num = watchpoint->set - 1;
1649
1650         LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear",
1651                 watchpoint->unique_id, dwt_num,
1652                 (unsigned) watchpoint->address);
1653
1654         if (dwt_num >= cortex_m->dwt_num_comp) {
1655                 LOG_DEBUG("Invalid DWT Comparator number in watchpoint");
1656                 return ERROR_OK;
1657         }
1658
1659         comparator = cortex_m->dwt_comparator_list + dwt_num;
1660         comparator->used = false;
1661         comparator->function = 0;
1662         target_write_u32(target, comparator->dwt_comparator_address + 8,
1663                 comparator->function);
1664
1665         watchpoint->set = false;
1666
1667         return ERROR_OK;
1668 }
1669
1670 int cortex_m_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1671 {
1672         struct cortex_m_common *cortex_m = target_to_cm(target);
1673
1674         if (cortex_m->dwt_comp_available < 1) {
1675                 LOG_DEBUG("no comparators?");
1676                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1677         }
1678
1679         /* hardware doesn't support data value masking */
1680         if (watchpoint->mask != ~(uint32_t)0) {
1681                 LOG_DEBUG("watchpoint value masks not supported");
1682                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1683         }
1684
1685         /* hardware allows address masks of up to 32K */
1686         unsigned mask;
1687
1688         for (mask = 0; mask < 16; mask++) {
1689                 if ((1u << mask) == watchpoint->length)
1690                         break;
1691         }
1692         if (mask == 16) {
1693                 LOG_DEBUG("unsupported watchpoint length");
1694                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1695         }
1696         if (watchpoint->address & ((1 << mask) - 1)) {
1697                 LOG_DEBUG("watchpoint address is unaligned");
1698                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1699         }
1700
1701         /* Caller doesn't seem to be able to describe watching for data
1702          * values of zero; that flags "no value".
1703          *
1704          * REVISIT This DWT may well be able to watch for specific data
1705          * values.  Requires comparator #1 to set DATAVMATCH and match
1706          * the data, and another comparator (DATAVADDR0) matching addr.
1707          */
1708         if (watchpoint->value) {
1709                 LOG_DEBUG("data value watchpoint not YET supported");
1710                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1711         }
1712
1713         cortex_m->dwt_comp_available--;
1714         LOG_DEBUG("dwt_comp_available: %d", cortex_m->dwt_comp_available);
1715
1716         return ERROR_OK;
1717 }
1718
1719 int cortex_m_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1720 {
1721         struct cortex_m_common *cortex_m = target_to_cm(target);
1722
1723         /* REVISIT why check? DWT can be updated with core running ... */
1724         if (target->state != TARGET_HALTED) {
1725                 LOG_WARNING("target not halted");
1726                 return ERROR_TARGET_NOT_HALTED;
1727         }
1728
1729         if (watchpoint->set)
1730                 cortex_m_unset_watchpoint(target, watchpoint);
1731
1732         cortex_m->dwt_comp_available++;
1733         LOG_DEBUG("dwt_comp_available: %d", cortex_m->dwt_comp_available);
1734
1735         return ERROR_OK;
1736 }
1737
1738 int cortex_m_hit_watchpoint(struct target *target, struct watchpoint **hit_watchpoint)
1739 {
1740         if (target->debug_reason != DBG_REASON_WATCHPOINT)
1741                 return ERROR_FAIL;
1742
1743         struct cortex_m_common *cortex_m = target_to_cm(target);
1744
1745         for (struct watchpoint *wp = target->watchpoints; wp; wp = wp->next) {
1746                 if (!wp->set)
1747                         continue;
1748
1749                 unsigned int dwt_num = wp->set - 1;
1750                 struct cortex_m_dwt_comparator *comparator = cortex_m->dwt_comparator_list + dwt_num;
1751
1752                 uint32_t dwt_function;
1753                 int retval = target_read_u32(target, comparator->dwt_comparator_address + 8, &dwt_function);
1754                 if (retval != ERROR_OK)
1755                         return ERROR_FAIL;
1756
1757                 /* check the MATCHED bit */
1758                 if (dwt_function & BIT(24)) {
1759                         *hit_watchpoint = wp;
1760                         return ERROR_OK;
1761                 }
1762         }
1763
1764         return ERROR_FAIL;
1765 }
1766
1767 void cortex_m_enable_watchpoints(struct target *target)
1768 {
1769         struct watchpoint *watchpoint = target->watchpoints;
1770
1771         /* set any pending watchpoints */
1772         while (watchpoint) {
1773                 if (!watchpoint->set)
1774                         cortex_m_set_watchpoint(target, watchpoint);
1775                 watchpoint = watchpoint->next;
1776         }
1777 }
1778
1779 static int cortex_m_read_memory(struct target *target, target_addr_t address,
1780         uint32_t size, uint32_t count, uint8_t *buffer)
1781 {
1782         struct armv7m_common *armv7m = target_to_armv7m(target);
1783
1784         if (armv7m->arm.arch == ARM_ARCH_V6M) {
1785                 /* armv6m does not handle unaligned memory access */
1786                 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1787                         return ERROR_TARGET_UNALIGNED_ACCESS;
1788         }
1789
1790         return mem_ap_read_buf(armv7m->debug_ap, buffer, size, count, address);
1791 }
1792
1793 static int cortex_m_write_memory(struct target *target, target_addr_t address,
1794         uint32_t size, uint32_t count, const uint8_t *buffer)
1795 {
1796         struct armv7m_common *armv7m = target_to_armv7m(target);
1797
1798         if (armv7m->arm.arch == ARM_ARCH_V6M) {
1799                 /* armv6m does not handle unaligned memory access */
1800                 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1801                         return ERROR_TARGET_UNALIGNED_ACCESS;
1802         }
1803
1804         return mem_ap_write_buf(armv7m->debug_ap, buffer, size, count, address);
1805 }
1806
1807 static int cortex_m_init_target(struct command_context *cmd_ctx,
1808         struct target *target)
1809 {
1810         armv7m_build_reg_cache(target);
1811         arm_semihosting_init(target);
1812         return ERROR_OK;
1813 }
1814
1815 void cortex_m_deinit_target(struct target *target)
1816 {
1817         struct cortex_m_common *cortex_m = target_to_cm(target);
1818
1819         free(cortex_m->fp_comparator_list);
1820
1821         cortex_m_dwt_free(target);
1822         armv7m_free_reg_cache(target);
1823
1824         free(target->private_config);
1825         free(cortex_m);
1826 }
1827
1828 int cortex_m_profiling(struct target *target, uint32_t *samples,
1829                               uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1830 {
1831         struct timeval timeout, now;
1832         struct armv7m_common *armv7m = target_to_armv7m(target);
1833         uint32_t reg_value;
1834         int retval;
1835
1836         retval = target_read_u32(target, DWT_PCSR, &reg_value);
1837         if (retval != ERROR_OK) {
1838                 LOG_ERROR("Error while reading PCSR");
1839                 return retval;
1840         }
1841         if (reg_value == 0) {
1842                 LOG_INFO("PCSR sampling not supported on this processor.");
1843                 return target_profiling_default(target, samples, max_num_samples, num_samples, seconds);
1844         }
1845
1846         gettimeofday(&timeout, NULL);
1847         timeval_add_time(&timeout, seconds, 0);
1848
1849         LOG_INFO("Starting Cortex-M profiling. Sampling DWT_PCSR as fast as we can...");
1850
1851         /* Make sure the target is running */
1852         target_poll(target);
1853         if (target->state == TARGET_HALTED)
1854                 retval = target_resume(target, 1, 0, 0, 0);
1855
1856         if (retval != ERROR_OK) {
1857                 LOG_ERROR("Error while resuming target");
1858                 return retval;
1859         }
1860
1861         uint32_t sample_count = 0;
1862
1863         for (;;) {
1864                 if (armv7m && armv7m->debug_ap) {
1865                         uint32_t read_count = max_num_samples - sample_count;
1866                         if (read_count > 1024)
1867                                 read_count = 1024;
1868
1869                         retval = mem_ap_read_buf_noincr(armv7m->debug_ap,
1870                                                 (void *)&samples[sample_count],
1871                                                 4, read_count, DWT_PCSR);
1872                         sample_count += read_count;
1873                 } else {
1874                         target_read_u32(target, DWT_PCSR, &samples[sample_count++]);
1875                 }
1876
1877                 if (retval != ERROR_OK) {
1878                         LOG_ERROR("Error while reading PCSR");
1879                         return retval;
1880                 }
1881
1882
1883                 gettimeofday(&now, NULL);
1884                 if (sample_count >= max_num_samples || timeval_compare(&now, &timeout) > 0) {
1885                         LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
1886                         break;
1887                 }
1888         }
1889
1890         *num_samples = sample_count;
1891         return retval;
1892 }
1893
1894
1895 /* REVISIT cache valid/dirty bits are unmaintained.  We could set "valid"
1896  * on r/w if the core is not running, and clear on resume or reset ... or
1897  * at least, in a post_restore_context() method.
1898  */
1899
1900 struct dwt_reg_state {
1901         struct target *target;
1902         uint32_t addr;
1903         uint8_t value[4];               /* scratch/cache */
1904 };
1905
1906 static int cortex_m_dwt_get_reg(struct reg *reg)
1907 {
1908         struct dwt_reg_state *state = reg->arch_info;
1909
1910         uint32_t tmp;
1911         int retval = target_read_u32(state->target, state->addr, &tmp);
1912         if (retval != ERROR_OK)
1913                 return retval;
1914
1915         buf_set_u32(state->value, 0, 32, tmp);
1916         return ERROR_OK;
1917 }
1918
1919 static int cortex_m_dwt_set_reg(struct reg *reg, uint8_t *buf)
1920 {
1921         struct dwt_reg_state *state = reg->arch_info;
1922
1923         return target_write_u32(state->target, state->addr,
1924                         buf_get_u32(buf, 0, reg->size));
1925 }
1926
1927 struct dwt_reg {
1928         uint32_t addr;
1929         const char *name;
1930         unsigned size;
1931 };
1932
1933 static const struct dwt_reg dwt_base_regs[] = {
1934         { DWT_CTRL, "dwt_ctrl", 32, },
1935         /* NOTE that Erratum 532314 (fixed r2p0) affects CYCCNT:  it wrongly
1936          * increments while the core is asleep.
1937          */
1938         { DWT_CYCCNT, "dwt_cyccnt", 32, },
1939         /* plus some 8 bit counters, useful for profiling with TPIU */
1940 };
1941
1942 static const struct dwt_reg dwt_comp[] = {
1943 #define DWT_COMPARATOR(i) \
1944                 { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
1945                 { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
1946                 { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
1947         DWT_COMPARATOR(0),
1948         DWT_COMPARATOR(1),
1949         DWT_COMPARATOR(2),
1950         DWT_COMPARATOR(3),
1951         DWT_COMPARATOR(4),
1952         DWT_COMPARATOR(5),
1953         DWT_COMPARATOR(6),
1954         DWT_COMPARATOR(7),
1955         DWT_COMPARATOR(8),
1956         DWT_COMPARATOR(9),
1957         DWT_COMPARATOR(10),
1958         DWT_COMPARATOR(11),
1959         DWT_COMPARATOR(12),
1960         DWT_COMPARATOR(13),
1961         DWT_COMPARATOR(14),
1962         DWT_COMPARATOR(15),
1963 #undef DWT_COMPARATOR
1964 };
1965
1966 static const struct reg_arch_type dwt_reg_type = {
1967         .get = cortex_m_dwt_get_reg,
1968         .set = cortex_m_dwt_set_reg,
1969 };
1970
1971 static void cortex_m_dwt_addreg(struct target *t, struct reg *r, const struct dwt_reg *d)
1972 {
1973         struct dwt_reg_state *state;
1974
1975         state = calloc(1, sizeof(*state));
1976         if (!state)
1977                 return;
1978         state->addr = d->addr;
1979         state->target = t;
1980
1981         r->name = d->name;
1982         r->size = d->size;
1983         r->value = state->value;
1984         r->arch_info = state;
1985         r->type = &dwt_reg_type;
1986 }
1987
1988 static void cortex_m_dwt_setup(struct cortex_m_common *cm, struct target *target)
1989 {
1990         uint32_t dwtcr;
1991         struct reg_cache *cache;
1992         struct cortex_m_dwt_comparator *comparator;
1993         int reg;
1994
1995         target_read_u32(target, DWT_CTRL, &dwtcr);
1996         LOG_DEBUG("DWT_CTRL: 0x%" PRIx32, dwtcr);
1997         if (!dwtcr) {
1998                 LOG_DEBUG("no DWT");
1999                 return;
2000         }
2001
2002         target_read_u32(target, DWT_DEVARCH, &cm->dwt_devarch);
2003         LOG_DEBUG("DWT_DEVARCH: 0x%" PRIx32, cm->dwt_devarch);
2004
2005         cm->dwt_num_comp = (dwtcr >> 28) & 0xF;
2006         cm->dwt_comp_available = cm->dwt_num_comp;
2007         cm->dwt_comparator_list = calloc(cm->dwt_num_comp,
2008                         sizeof(struct cortex_m_dwt_comparator));
2009         if (!cm->dwt_comparator_list) {
2010 fail0:
2011                 cm->dwt_num_comp = 0;
2012                 LOG_ERROR("out of mem");
2013                 return;
2014         }
2015
2016         cache = calloc(1, sizeof(*cache));
2017         if (!cache) {
2018 fail1:
2019                 free(cm->dwt_comparator_list);
2020                 goto fail0;
2021         }
2022         cache->name = "Cortex-M DWT registers";
2023         cache->num_regs = 2 + cm->dwt_num_comp * 3;
2024         cache->reg_list = calloc(cache->num_regs, sizeof(*cache->reg_list));
2025         if (!cache->reg_list) {
2026                 free(cache);
2027                 goto fail1;
2028         }
2029
2030         for (reg = 0; reg < 2; reg++)
2031                 cortex_m_dwt_addreg(target, cache->reg_list + reg,
2032                         dwt_base_regs + reg);
2033
2034         comparator = cm->dwt_comparator_list;
2035         for (unsigned int i = 0; i < cm->dwt_num_comp; i++, comparator++) {
2036                 int j;
2037
2038                 comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
2039                 for (j = 0; j < 3; j++, reg++)
2040                         cortex_m_dwt_addreg(target, cache->reg_list + reg,
2041                                 dwt_comp + 3 * i + j);
2042
2043                 /* make sure we clear any watchpoints enabled on the target */
2044                 target_write_u32(target, comparator->dwt_comparator_address + 8, 0);
2045         }
2046
2047         *register_get_last_cache_p(&target->reg_cache) = cache;
2048         cm->dwt_cache = cache;
2049
2050         LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
2051                 dwtcr, cm->dwt_num_comp,
2052                 (dwtcr & (0xf << 24)) ? " only" : "/trigger");
2053
2054         /* REVISIT:  if num_comp > 1, check whether comparator #1 can
2055          * implement single-address data value watchpoints ... so we
2056          * won't need to check it later, when asked to set one up.
2057          */
2058 }
2059
2060 static void cortex_m_dwt_free(struct target *target)
2061 {
2062         struct cortex_m_common *cm = target_to_cm(target);
2063         struct reg_cache *cache = cm->dwt_cache;
2064
2065         free(cm->dwt_comparator_list);
2066         cm->dwt_comparator_list = NULL;
2067         cm->dwt_num_comp = 0;
2068
2069         if (cache) {
2070                 register_unlink_cache(&target->reg_cache, cache);
2071
2072                 if (cache->reg_list) {
2073                         for (size_t i = 0; i < cache->num_regs; i++)
2074                                 free(cache->reg_list[i].arch_info);
2075                         free(cache->reg_list);
2076                 }
2077                 free(cache);
2078         }
2079         cm->dwt_cache = NULL;
2080 }
2081
2082 #define MVFR0 0xe000ef40
2083 #define MVFR1 0xe000ef44
2084
2085 #define MVFR0_DEFAULT_M4 0x10110021
2086 #define MVFR1_DEFAULT_M4 0x11000011
2087
2088 #define MVFR0_DEFAULT_M7_SP 0x10110021
2089 #define MVFR0_DEFAULT_M7_DP 0x10110221
2090 #define MVFR1_DEFAULT_M7_SP 0x11000011
2091 #define MVFR1_DEFAULT_M7_DP 0x12000011
2092
2093 static int cortex_m_find_mem_ap(struct adiv5_dap *swjdp,
2094                 struct adiv5_ap **debug_ap)
2095 {
2096         if (dap_find_ap(swjdp, AP_TYPE_AHB3_AP, debug_ap) == ERROR_OK)
2097                 return ERROR_OK;
2098
2099         return dap_find_ap(swjdp, AP_TYPE_AHB5_AP, debug_ap);
2100 }
2101
2102 int cortex_m_examine(struct target *target)
2103 {
2104         int retval;
2105         uint32_t cpuid, fpcr, mvfr0, mvfr1;
2106         struct cortex_m_common *cortex_m = target_to_cm(target);
2107         struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
2108         struct armv7m_common *armv7m = target_to_armv7m(target);
2109
2110         /* hla_target shares the examine handler but does not support
2111          * all its calls */
2112         if (!armv7m->is_hla_target) {
2113                 if (cortex_m->apsel == DP_APSEL_INVALID) {
2114                         /* Search for the MEM-AP */
2115                         retval = cortex_m_find_mem_ap(swjdp, &armv7m->debug_ap);
2116                         if (retval != ERROR_OK) {
2117                                 LOG_ERROR("Could not find MEM-AP to control the core");
2118                                 return retval;
2119                         }
2120                 } else {
2121                         armv7m->debug_ap = dap_ap(swjdp, cortex_m->apsel);
2122                 }
2123
2124                 /* Leave (only) generic DAP stuff for debugport_init(); */
2125                 armv7m->debug_ap->memaccess_tck = 8;
2126
2127                 retval = mem_ap_init(armv7m->debug_ap);
2128                 if (retval != ERROR_OK)
2129                         return retval;
2130         }
2131
2132         if (!target_was_examined(target)) {
2133                 target_set_examined(target);
2134
2135                 /* Read from Device Identification Registers */
2136                 retval = target_read_u32(target, CPUID, &cpuid);
2137                 if (retval != ERROR_OK)
2138                         return retval;
2139
2140                 /* Get ARCH and CPU types */
2141                 const enum cortex_m_partno core_partno = (cpuid & ARM_CPUID_PARTNO_MASK) >> ARM_CPUID_PARTNO_POS;
2142
2143                 for (unsigned int n = 0; n < ARRAY_SIZE(cortex_m_parts); n++) {
2144                         if (core_partno == cortex_m_parts[n].partno) {
2145                                 cortex_m->core_info = &cortex_m_parts[n];
2146                                 break;
2147                         }
2148                 }
2149
2150                 if (!cortex_m->core_info) {
2151                         LOG_ERROR("Cortex-M PARTNO 0x%x is unrecognized", core_partno);
2152                         return ERROR_FAIL;
2153                 }
2154
2155                 armv7m->arm.arch = cortex_m->core_info->arch;
2156
2157                 LOG_INFO("%s: %s r%" PRId8 "p%" PRId8 " processor detected",
2158                                 target_name(target),
2159                                 cortex_m->core_info->name,
2160                                 (uint8_t)((cpuid >> 20) & 0xf),
2161                                 (uint8_t)((cpuid >> 0) & 0xf));
2162
2163                 cortex_m->maskints_erratum = false;
2164                 if (core_partno == CORTEX_M7_PARTNO) {
2165                         uint8_t rev, patch;
2166                         rev = (cpuid >> 20) & 0xf;
2167                         patch = (cpuid >> 0) & 0xf;
2168                         if ((rev == 0) && (patch < 2)) {
2169                                 LOG_WARNING("Silicon bug: single stepping may enter pending exception handler!");
2170                                 cortex_m->maskints_erratum = true;
2171                         }
2172                 }
2173                 LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid);
2174
2175                 if (cortex_m->core_info->flags & CORTEX_M_F_HAS_FPV4) {
2176                         target_read_u32(target, MVFR0, &mvfr0);
2177                         target_read_u32(target, MVFR1, &mvfr1);
2178
2179                         /* test for floating point feature on Cortex-M4 */
2180                         if ((mvfr0 == MVFR0_DEFAULT_M4) && (mvfr1 == MVFR1_DEFAULT_M4)) {
2181                                 LOG_DEBUG("%s floating point feature FPv4_SP found", cortex_m->core_info->name);
2182                                 armv7m->fp_feature = FPV4_SP;
2183                         }
2184                 } else if (cortex_m->core_info->flags & CORTEX_M_F_HAS_FPV5) {
2185                         target_read_u32(target, MVFR0, &mvfr0);
2186                         target_read_u32(target, MVFR1, &mvfr1);
2187
2188                         /* test for floating point features on Cortex-M7 */
2189                         if ((mvfr0 == MVFR0_DEFAULT_M7_SP) && (mvfr1 == MVFR1_DEFAULT_M7_SP)) {
2190                                 LOG_DEBUG("%s floating point feature FPv5_SP found", cortex_m->core_info->name);
2191                                 armv7m->fp_feature = FPV5_SP;
2192                         } else if ((mvfr0 == MVFR0_DEFAULT_M7_DP) && (mvfr1 == MVFR1_DEFAULT_M7_DP)) {
2193                                 LOG_DEBUG("%s floating point feature FPv5_DP found", cortex_m->core_info->name);
2194                                 armv7m->fp_feature = FPV5_DP;
2195                         }
2196                 }
2197
2198                 /* VECTRESET is supported only on ARMv7-M cores */
2199                 cortex_m->vectreset_supported = armv7m->arm.arch == ARM_ARCH_V7M;
2200
2201                 /* Check for FPU, otherwise mark FPU register as non-existent */
2202                 if (armv7m->fp_feature == FP_NONE)
2203                         for (size_t idx = ARMV7M_FPU_FIRST_REG; idx <= ARMV7M_FPU_LAST_REG; idx++)
2204                                 armv7m->arm.core_cache->reg_list[idx].exist = false;
2205
2206                 if (armv7m->arm.arch != ARM_ARCH_V8M)
2207                         for (size_t idx = ARMV8M_FIRST_REG; idx <= ARMV8M_LAST_REG; idx++)
2208                                 armv7m->arm.core_cache->reg_list[idx].exist = false;
2209
2210                 if (!armv7m->is_hla_target) {
2211                         if (cortex_m->core_info->flags & CORTEX_M_F_TAR_AUTOINCR_BLOCK_4K)
2212                                 /* Cortex-M3/M4 have 4096 bytes autoincrement range,
2213                                  * s. ARM IHI 0031C: MEM-AP 7.2.2 */
2214                                 armv7m->debug_ap->tar_autoincr_block = (1 << 12);
2215                 }
2216
2217                 retval = target_read_u32(target, DCB_DHCSR, &cortex_m->dcb_dhcsr);
2218                 if (retval != ERROR_OK)
2219                         return retval;
2220                 cortex_m_cumulate_dhcsr_sticky(cortex_m, cortex_m->dcb_dhcsr);
2221
2222                 if (!(cortex_m->dcb_dhcsr & C_DEBUGEN)) {
2223                         /* Enable debug requests */
2224                         uint32_t dhcsr = (cortex_m->dcb_dhcsr | C_DEBUGEN) & ~(C_HALT | C_STEP | C_MASKINTS);
2225
2226                         retval = target_write_u32(target, DCB_DHCSR, DBGKEY | (dhcsr & 0x0000FFFFUL));
2227                         if (retval != ERROR_OK)
2228                                 return retval;
2229                         cortex_m->dcb_dhcsr = dhcsr;
2230                 }
2231
2232                 /* Configure trace modules */
2233                 retval = target_write_u32(target, DCB_DEMCR, TRCENA | armv7m->demcr);
2234                 if (retval != ERROR_OK)
2235                         return retval;
2236
2237                 if (armv7m->trace_config.itm_deferred_config)
2238                         armv7m_trace_itm_config(target);
2239
2240                 /* NOTE: FPB and DWT are both optional. */
2241
2242                 /* Setup FPB */
2243                 target_read_u32(target, FP_CTRL, &fpcr);
2244                 /* bits [14:12] and [7:4] */
2245                 cortex_m->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF);
2246                 cortex_m->fp_num_lit = (fpcr >> 8) & 0xF;
2247                 /* Detect flash patch revision, see RM DDI 0403E.b page C1-817.
2248                    Revision is zero base, fp_rev == 1 means Rev.2 ! */
2249                 cortex_m->fp_rev = (fpcr >> 28) & 0xf;
2250                 free(cortex_m->fp_comparator_list);
2251                 cortex_m->fp_comparator_list = calloc(
2252                                 cortex_m->fp_num_code + cortex_m->fp_num_lit,
2253                                 sizeof(struct cortex_m_fp_comparator));
2254                 cortex_m->fpb_enabled = fpcr & 1;
2255                 for (unsigned int i = 0; i < cortex_m->fp_num_code + cortex_m->fp_num_lit; i++) {
2256                         cortex_m->fp_comparator_list[i].type =
2257                                 (i < cortex_m->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
2258                         cortex_m->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
2259
2260                         /* make sure we clear any breakpoints enabled on the target */
2261                         target_write_u32(target, cortex_m->fp_comparator_list[i].fpcr_address, 0);
2262                 }
2263                 LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i",
2264                         fpcr,
2265                         cortex_m->fp_num_code,
2266                         cortex_m->fp_num_lit);
2267
2268                 /* Setup DWT */
2269                 cortex_m_dwt_free(target);
2270                 cortex_m_dwt_setup(cortex_m, target);
2271
2272                 /* These hardware breakpoints only work for code in flash! */
2273                 LOG_INFO("%s: target has %d breakpoints, %d watchpoints",
2274                         target_name(target),
2275                         cortex_m->fp_num_code,
2276                         cortex_m->dwt_num_comp);
2277         }
2278
2279         return ERROR_OK;
2280 }
2281
2282 static int cortex_m_dcc_read(struct target *target, uint8_t *value, uint8_t *ctrl)
2283 {
2284         struct armv7m_common *armv7m = target_to_armv7m(target);
2285         uint16_t dcrdr;
2286         uint8_t buf[2];
2287         int retval;
2288
2289         retval = mem_ap_read_buf_noincr(armv7m->debug_ap, buf, 2, 1, DCB_DCRDR);
2290         if (retval != ERROR_OK)
2291                 return retval;
2292
2293         dcrdr = target_buffer_get_u16(target, buf);
2294         *ctrl = (uint8_t)dcrdr;
2295         *value = (uint8_t)(dcrdr >> 8);
2296
2297         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
2298
2299         /* write ack back to software dcc register
2300          * signify we have read data */
2301         if (dcrdr & (1 << 0)) {
2302                 target_buffer_set_u16(target, buf, 0);
2303                 retval = mem_ap_write_buf_noincr(armv7m->debug_ap, buf, 2, 1, DCB_DCRDR);
2304                 if (retval != ERROR_OK)
2305                         return retval;
2306         }
2307
2308         return ERROR_OK;
2309 }
2310
2311 static int cortex_m_target_request_data(struct target *target,
2312         uint32_t size, uint8_t *buffer)
2313 {
2314         uint8_t data;
2315         uint8_t ctrl;
2316         uint32_t i;
2317
2318         for (i = 0; i < (size * 4); i++) {
2319                 int retval = cortex_m_dcc_read(target, &data, &ctrl);
2320                 if (retval != ERROR_OK)
2321                         return retval;
2322                 buffer[i] = data;
2323         }
2324
2325         return ERROR_OK;
2326 }
2327
2328 static int cortex_m_handle_target_request(void *priv)
2329 {
2330         struct target *target = priv;
2331         if (!target_was_examined(target))
2332                 return ERROR_OK;
2333
2334         if (!target->dbg_msg_enabled)
2335                 return ERROR_OK;
2336
2337         if (target->state == TARGET_RUNNING) {
2338                 uint8_t data;
2339                 uint8_t ctrl;
2340                 int retval;
2341
2342                 retval = cortex_m_dcc_read(target, &data, &ctrl);
2343                 if (retval != ERROR_OK)
2344                         return retval;
2345
2346                 /* check if we have data */
2347                 if (ctrl & (1 << 0)) {
2348                         uint32_t request;
2349
2350                         /* we assume target is quick enough */
2351                         request = data;
2352                         for (int i = 1; i <= 3; i++) {
2353                                 retval = cortex_m_dcc_read(target, &data, &ctrl);
2354                                 if (retval != ERROR_OK)
2355                                         return retval;
2356                                 request |= ((uint32_t)data << (i * 8));
2357                         }
2358                         target_request(target, request);
2359                 }
2360         }
2361
2362         return ERROR_OK;
2363 }
2364
2365 static int cortex_m_init_arch_info(struct target *target,
2366         struct cortex_m_common *cortex_m, struct adiv5_dap *dap)
2367 {
2368         struct armv7m_common *armv7m = &cortex_m->armv7m;
2369
2370         armv7m_init_arch_info(target, armv7m);
2371
2372         /* default reset mode is to use srst if fitted
2373          * if not it will use CORTEX_M3_RESET_VECTRESET */
2374         cortex_m->soft_reset_config = CORTEX_M_RESET_VECTRESET;
2375
2376         armv7m->arm.dap = dap;
2377
2378         /* register arch-specific functions */
2379         armv7m->examine_debug_reason = cortex_m_examine_debug_reason;
2380
2381         armv7m->post_debug_entry = NULL;
2382
2383         armv7m->pre_restore_context = NULL;
2384
2385         armv7m->load_core_reg_u32 = cortex_m_load_core_reg_u32;
2386         armv7m->store_core_reg_u32 = cortex_m_store_core_reg_u32;
2387
2388         target_register_timer_callback(cortex_m_handle_target_request, 1,
2389                 TARGET_TIMER_TYPE_PERIODIC, target);
2390
2391         return ERROR_OK;
2392 }
2393
2394 static int cortex_m_target_create(struct target *target, Jim_Interp *interp)
2395 {
2396         struct adiv5_private_config *pc;
2397
2398         pc = (struct adiv5_private_config *)target->private_config;
2399         if (adiv5_verify_config(pc) != ERROR_OK)
2400                 return ERROR_FAIL;
2401
2402         struct cortex_m_common *cortex_m = calloc(1, sizeof(struct cortex_m_common));
2403         if (!cortex_m) {
2404                 LOG_ERROR("No memory creating target");
2405                 return ERROR_FAIL;
2406         }
2407
2408         cortex_m->common_magic = CORTEX_M_COMMON_MAGIC;
2409         cortex_m->apsel = pc->ap_num;
2410
2411         cortex_m_init_arch_info(target, cortex_m, pc->dap);
2412
2413         return ERROR_OK;
2414 }
2415
2416 /*--------------------------------------------------------------------------*/
2417
2418 static int cortex_m_verify_pointer(struct command_invocation *cmd,
2419         struct cortex_m_common *cm)
2420 {
2421         if (cm->common_magic != CORTEX_M_COMMON_MAGIC) {
2422                 command_print(cmd, "target is not a Cortex-M");
2423                 return ERROR_TARGET_INVALID;
2424         }
2425         return ERROR_OK;
2426 }
2427
2428 /*
2429  * Only stuff below this line should need to verify that its target
2430  * is a Cortex-M3.  Everything else should have indirected through the
2431  * cortexm3_target structure, which is only used with CM3 targets.
2432  */
2433
2434 COMMAND_HANDLER(handle_cortex_m_vector_catch_command)
2435 {
2436         struct target *target = get_current_target(CMD_CTX);
2437         struct cortex_m_common *cortex_m = target_to_cm(target);
2438         struct armv7m_common *armv7m = &cortex_m->armv7m;
2439         uint32_t demcr = 0;
2440         int retval;
2441
2442         static const struct {
2443                 char name[10];
2444                 unsigned mask;
2445         } vec_ids[] = {
2446                 { "hard_err",   VC_HARDERR, },
2447                 { "int_err",    VC_INTERR, },
2448                 { "bus_err",    VC_BUSERR, },
2449                 { "state_err",  VC_STATERR, },
2450                 { "chk_err",    VC_CHKERR, },
2451                 { "nocp_err",   VC_NOCPERR, },
2452                 { "mm_err",     VC_MMERR, },
2453                 { "reset",      VC_CORERESET, },
2454         };
2455
2456         retval = cortex_m_verify_pointer(CMD, cortex_m);
2457         if (retval != ERROR_OK)
2458                 return retval;
2459
2460         if (!target_was_examined(target)) {
2461                 LOG_ERROR("Target not examined yet");
2462                 return ERROR_FAIL;
2463         }
2464
2465         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &demcr);
2466         if (retval != ERROR_OK)
2467                 return retval;
2468
2469         if (CMD_ARGC > 0) {
2470                 unsigned catch = 0;
2471
2472                 if (CMD_ARGC == 1) {
2473                         if (strcmp(CMD_ARGV[0], "all") == 0) {
2474                                 catch = VC_HARDERR | VC_INTERR | VC_BUSERR
2475                                         | VC_STATERR | VC_CHKERR | VC_NOCPERR
2476                                         | VC_MMERR | VC_CORERESET;
2477                                 goto write;
2478                         } else if (strcmp(CMD_ARGV[0], "none") == 0)
2479                                 goto write;
2480                 }
2481                 while (CMD_ARGC-- > 0) {
2482                         unsigned i;
2483                         for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2484                                 if (strcmp(CMD_ARGV[CMD_ARGC], vec_ids[i].name) != 0)
2485                                         continue;
2486                                 catch |= vec_ids[i].mask;
2487                                 break;
2488                         }
2489                         if (i == ARRAY_SIZE(vec_ids)) {
2490                                 LOG_ERROR("No CM3 vector '%s'", CMD_ARGV[CMD_ARGC]);
2491                                 return ERROR_COMMAND_SYNTAX_ERROR;
2492                         }
2493                 }
2494 write:
2495                 /* For now, armv7m->demcr only stores vector catch flags. */
2496                 armv7m->demcr = catch;
2497
2498                 demcr &= ~0xffff;
2499                 demcr |= catch;
2500
2501                 /* write, but don't assume it stuck (why not??) */
2502                 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR, demcr);
2503                 if (retval != ERROR_OK)
2504                         return retval;
2505                 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &demcr);
2506                 if (retval != ERROR_OK)
2507                         return retval;
2508
2509                 /* FIXME be sure to clear DEMCR on clean server shutdown.
2510                  * Otherwise the vector catch hardware could fire when there's
2511                  * no debugger hooked up, causing much confusion...
2512                  */
2513         }
2514
2515         for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2516                 command_print(CMD, "%9s: %s", vec_ids[i].name,
2517                         (demcr & vec_ids[i].mask) ? "catch" : "ignore");
2518         }
2519
2520         return ERROR_OK;
2521 }
2522
2523 COMMAND_HANDLER(handle_cortex_m_mask_interrupts_command)
2524 {
2525         struct target *target = get_current_target(CMD_CTX);
2526         struct cortex_m_common *cortex_m = target_to_cm(target);
2527         int retval;
2528
2529         static const struct jim_nvp nvp_maskisr_modes[] = {
2530                 { .name = "auto", .value = CORTEX_M_ISRMASK_AUTO },
2531                 { .name = "off", .value = CORTEX_M_ISRMASK_OFF },
2532                 { .name = "on", .value = CORTEX_M_ISRMASK_ON },
2533                 { .name = "steponly", .value = CORTEX_M_ISRMASK_STEPONLY },
2534                 { .name = NULL, .value = -1 },
2535         };
2536         const struct jim_nvp *n;
2537
2538
2539         retval = cortex_m_verify_pointer(CMD, cortex_m);
2540         if (retval != ERROR_OK)
2541                 return retval;
2542
2543         if (target->state != TARGET_HALTED) {
2544                 command_print(CMD, "target must be stopped for \"%s\" command", CMD_NAME);
2545                 return ERROR_OK;
2546         }
2547
2548         if (CMD_ARGC > 0) {
2549                 n = jim_nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
2550                 if (!n->name)
2551                         return ERROR_COMMAND_SYNTAX_ERROR;
2552                 cortex_m->isrmasking_mode = n->value;
2553                 cortex_m_set_maskints_for_halt(target);
2554         }
2555
2556         n = jim_nvp_value2name_simple(nvp_maskisr_modes, cortex_m->isrmasking_mode);
2557         command_print(CMD, "cortex_m interrupt mask %s", n->name);
2558
2559         return ERROR_OK;
2560 }
2561
2562 COMMAND_HANDLER(handle_cortex_m_reset_config_command)
2563 {
2564         struct target *target = get_current_target(CMD_CTX);
2565         struct cortex_m_common *cortex_m = target_to_cm(target);
2566         int retval;
2567         char *reset_config;
2568
2569         retval = cortex_m_verify_pointer(CMD, cortex_m);
2570         if (retval != ERROR_OK)
2571                 return retval;
2572
2573         if (CMD_ARGC > 0) {
2574                 if (strcmp(*CMD_ARGV, "sysresetreq") == 0)
2575                         cortex_m->soft_reset_config = CORTEX_M_RESET_SYSRESETREQ;
2576
2577                 else if (strcmp(*CMD_ARGV, "vectreset") == 0) {
2578                         if (target_was_examined(target)
2579                                         && !cortex_m->vectreset_supported)
2580                                 LOG_WARNING("VECTRESET is not supported on your Cortex-M core!");
2581                         else
2582                                 cortex_m->soft_reset_config = CORTEX_M_RESET_VECTRESET;
2583
2584                 } else
2585                         return ERROR_COMMAND_SYNTAX_ERROR;
2586         }
2587
2588         switch (cortex_m->soft_reset_config) {
2589                 case CORTEX_M_RESET_SYSRESETREQ:
2590                         reset_config = "sysresetreq";
2591                         break;
2592
2593                 case CORTEX_M_RESET_VECTRESET:
2594                         reset_config = "vectreset";
2595                         break;
2596
2597                 default:
2598                         reset_config = "unknown";
2599                         break;
2600         }
2601
2602         command_print(CMD, "cortex_m reset_config %s", reset_config);
2603
2604         return ERROR_OK;
2605 }
2606
2607 static const struct command_registration cortex_m_exec_command_handlers[] = {
2608         {
2609                 .name = "maskisr",
2610                 .handler = handle_cortex_m_mask_interrupts_command,
2611                 .mode = COMMAND_EXEC,
2612                 .help = "mask cortex_m interrupts",
2613                 .usage = "['auto'|'on'|'off'|'steponly']",
2614         },
2615         {
2616                 .name = "vector_catch",
2617                 .handler = handle_cortex_m_vector_catch_command,
2618                 .mode = COMMAND_EXEC,
2619                 .help = "configure hardware vectors to trigger debug entry",
2620                 .usage = "['all'|'none'|('bus_err'|'chk_err'|...)*]",
2621         },
2622         {
2623                 .name = "reset_config",
2624                 .handler = handle_cortex_m_reset_config_command,
2625                 .mode = COMMAND_ANY,
2626                 .help = "configure software reset handling",
2627                 .usage = "['sysresetreq'|'vectreset']",
2628         },
2629         COMMAND_REGISTRATION_DONE
2630 };
2631 static const struct command_registration cortex_m_command_handlers[] = {
2632         {
2633                 .chain = armv7m_command_handlers,
2634         },
2635         {
2636                 .chain = armv7m_trace_command_handlers,
2637         },
2638         /* START_DEPRECATED_TPIU */
2639         {
2640                 .chain = arm_tpiu_deprecated_command_handlers,
2641         },
2642         /* END_DEPRECATED_TPIU */
2643         {
2644                 .name = "cortex_m",
2645                 .mode = COMMAND_EXEC,
2646                 .help = "Cortex-M command group",
2647                 .usage = "",
2648                 .chain = cortex_m_exec_command_handlers,
2649         },
2650         {
2651                 .chain = rtt_target_command_handlers,
2652         },
2653         COMMAND_REGISTRATION_DONE
2654 };
2655
2656 struct target_type cortexm_target = {
2657         .name = "cortex_m",
2658
2659         .poll = cortex_m_poll,
2660         .arch_state = armv7m_arch_state,
2661
2662         .target_request_data = cortex_m_target_request_data,
2663
2664         .halt = cortex_m_halt,
2665         .resume = cortex_m_resume,
2666         .step = cortex_m_step,
2667
2668         .assert_reset = cortex_m_assert_reset,
2669         .deassert_reset = cortex_m_deassert_reset,
2670         .soft_reset_halt = cortex_m_soft_reset_halt,
2671
2672         .get_gdb_arch = arm_get_gdb_arch,
2673         .get_gdb_reg_list = armv7m_get_gdb_reg_list,
2674
2675         .read_memory = cortex_m_read_memory,
2676         .write_memory = cortex_m_write_memory,
2677         .checksum_memory = armv7m_checksum_memory,
2678         .blank_check_memory = armv7m_blank_check_memory,
2679
2680         .run_algorithm = armv7m_run_algorithm,
2681         .start_algorithm = armv7m_start_algorithm,
2682         .wait_algorithm = armv7m_wait_algorithm,
2683
2684         .add_breakpoint = cortex_m_add_breakpoint,
2685         .remove_breakpoint = cortex_m_remove_breakpoint,
2686         .add_watchpoint = cortex_m_add_watchpoint,
2687         .remove_watchpoint = cortex_m_remove_watchpoint,
2688         .hit_watchpoint = cortex_m_hit_watchpoint,
2689
2690         .commands = cortex_m_command_handlers,
2691         .target_create = cortex_m_target_create,
2692         .target_jim_configure = adiv5_jim_configure,
2693         .init_target = cortex_m_init_target,
2694         .examine = cortex_m_examine,
2695         .deinit_target = cortex_m_deinit_target,
2696
2697         .profiling = cortex_m_profiling,
2698 };