7b3f3c70e31d6fc20e559db9de9c31fc47937be1
[fw/openocd] / src / target / cortex_m.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   This program is free software; you can redistribute it and/or modify  *
12  *   it under the terms of the GNU General Public License as published by  *
13  *   the Free Software Foundation; either version 2 of the License, or     *
14  *   (at your option) any later version.                                   *
15  *                                                                         *
16  *   This program is distributed in the hope that it will be useful,       *
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
19  *   GNU General Public License for more details.                          *
20  *                                                                         *
21  *   You should have received a copy of the GNU General Public License     *
22  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
23  *                                                                         *
24  *                                                                         *
25  *   Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0)              *
26  *                                                                         *
27  ***************************************************************************/
28 #ifdef HAVE_CONFIG_H
29 #include "config.h"
30 #endif
31
32 #include "jtag/interface.h"
33 #include "breakpoints.h"
34 #include "cortex_m.h"
35 #include "target_request.h"
36 #include "target_type.h"
37 #include "arm_disassembler.h"
38 #include "register.h"
39 #include "arm_opcodes.h"
40 #include "arm_semihosting.h"
41 #include <helper/time_support.h>
42
43 /* NOTE:  most of this should work fine for the Cortex-M1 and
44  * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
45  * Some differences:  M0/M1 doesn't have FPB remapping or the
46  * DWT tracing/profiling support.  (So the cycle counter will
47  * not be usable; the other stuff isn't currently used here.)
48  *
49  * Although there are some workarounds for errata seen only in r0p0
50  * silicon, such old parts are hard to find and thus not much tested
51  * any longer.
52  */
53
54 /* forward declarations */
55 static int cortex_m_store_core_reg_u32(struct target *target,
56                 uint32_t num, uint32_t value);
57 static void cortex_m_dwt_free(struct target *target);
58
59 static int cortex_m_load_core_reg_u32(struct target *target,
60                 uint32_t regsel, uint32_t *value)
61 {
62         struct armv7m_common *armv7m = target_to_armv7m(target);
63         int retval;
64         uint32_t dcrdr;
65
66         /* because the DCB_DCRDR is used for the emulated dcc channel
67          * we have to save/restore the DCB_DCRDR when used */
68         if (target->dbg_msg_enabled) {
69                 retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DCRDR, &dcrdr);
70                 if (retval != ERROR_OK)
71                         return retval;
72         }
73
74         retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRSR, regsel);
75         if (retval != ERROR_OK)
76                 return retval;
77
78         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DCRDR, value);
79         if (retval != ERROR_OK)
80                 return retval;
81
82         if (target->dbg_msg_enabled) {
83                 /* restore DCB_DCRDR - this needs to be in a separate
84                  * transaction otherwise the emulated DCC channel breaks */
85                 if (retval == ERROR_OK)
86                         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRDR, dcrdr);
87         }
88
89         return retval;
90 }
91
92 static int cortex_m_store_core_reg_u32(struct target *target,
93                 uint32_t regsel, uint32_t value)
94 {
95         struct armv7m_common *armv7m = target_to_armv7m(target);
96         int retval;
97         uint32_t dcrdr;
98
99         /* because the DCB_DCRDR is used for the emulated dcc channel
100          * we have to save/restore the DCB_DCRDR when used */
101         if (target->dbg_msg_enabled) {
102                 retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DCRDR, &dcrdr);
103                 if (retval != ERROR_OK)
104                         return retval;
105         }
106
107         retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, value);
108         if (retval != ERROR_OK)
109                 return retval;
110
111         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRSR, regsel | DCRSR_WnR);
112         if (retval != ERROR_OK)
113                 return retval;
114
115         if (target->dbg_msg_enabled) {
116                 /* restore DCB_DCRDR - this needs to be in a separate
117                  * transaction otherwise the emulated DCC channel breaks */
118                 if (retval == ERROR_OK)
119                         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRDR, dcrdr);
120         }
121
122         return retval;
123 }
124
125 static int cortex_m_write_debug_halt_mask(struct target *target,
126         uint32_t mask_on, uint32_t mask_off)
127 {
128         struct cortex_m_common *cortex_m = target_to_cm(target);
129         struct armv7m_common *armv7m = &cortex_m->armv7m;
130
131         /* mask off status bits */
132         cortex_m->dcb_dhcsr &= ~((0xFFFFul << 16) | mask_off);
133         /* create new register mask */
134         cortex_m->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
135
136         return mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR, cortex_m->dcb_dhcsr);
137 }
138
139 static int cortex_m_set_maskints(struct target *target, bool mask)
140 {
141         struct cortex_m_common *cortex_m = target_to_cm(target);
142         if (!!(cortex_m->dcb_dhcsr & C_MASKINTS) != mask)
143                 return cortex_m_write_debug_halt_mask(target, mask ? C_MASKINTS : 0, mask ? 0 : C_MASKINTS);
144         else
145                 return ERROR_OK;
146 }
147
148 static int cortex_m_set_maskints_for_halt(struct target *target)
149 {
150         struct cortex_m_common *cortex_m = target_to_cm(target);
151         switch (cortex_m->isrmasking_mode) {
152                 case CORTEX_M_ISRMASK_AUTO:
153                         /* interrupts taken at resume, whether for step or run -> no mask */
154                         return cortex_m_set_maskints(target, false);
155
156                 case CORTEX_M_ISRMASK_OFF:
157                         /* interrupts never masked */
158                         return cortex_m_set_maskints(target, false);
159
160                 case CORTEX_M_ISRMASK_ON:
161                         /* interrupts always masked */
162                         return cortex_m_set_maskints(target, true);
163
164                 case CORTEX_M_ISRMASK_STEPONLY:
165                         /* interrupts masked for single step only -> mask now if MASKINTS
166                          * erratum, otherwise only mask before stepping */
167                         return cortex_m_set_maskints(target, cortex_m->maskints_erratum);
168         }
169         return ERROR_OK;
170 }
171
172 static int cortex_m_set_maskints_for_run(struct target *target)
173 {
174         switch (target_to_cm(target)->isrmasking_mode) {
175                 case CORTEX_M_ISRMASK_AUTO:
176                         /* interrupts taken at resume, whether for step or run -> no mask */
177                         return cortex_m_set_maskints(target, false);
178
179                 case CORTEX_M_ISRMASK_OFF:
180                         /* interrupts never masked */
181                         return cortex_m_set_maskints(target, false);
182
183                 case CORTEX_M_ISRMASK_ON:
184                         /* interrupts always masked */
185                         return cortex_m_set_maskints(target, true);
186
187                 case CORTEX_M_ISRMASK_STEPONLY:
188                         /* interrupts masked for single step only -> no mask */
189                         return cortex_m_set_maskints(target, false);
190         }
191         return ERROR_OK;
192 }
193
194 static int cortex_m_set_maskints_for_step(struct target *target)
195 {
196         switch (target_to_cm(target)->isrmasking_mode) {
197                 case CORTEX_M_ISRMASK_AUTO:
198                         /* the auto-interrupt should already be done -> mask */
199                         return cortex_m_set_maskints(target, true);
200
201                 case CORTEX_M_ISRMASK_OFF:
202                         /* interrupts never masked */
203                         return cortex_m_set_maskints(target, false);
204
205                 case CORTEX_M_ISRMASK_ON:
206                         /* interrupts always masked */
207                         return cortex_m_set_maskints(target, true);
208
209                 case CORTEX_M_ISRMASK_STEPONLY:
210                         /* interrupts masked for single step only -> mask */
211                         return cortex_m_set_maskints(target, true);
212         }
213         return ERROR_OK;
214 }
215
216 static int cortex_m_clear_halt(struct target *target)
217 {
218         struct cortex_m_common *cortex_m = target_to_cm(target);
219         struct armv7m_common *armv7m = &cortex_m->armv7m;
220         int retval;
221
222         /* clear step if any */
223         cortex_m_write_debug_halt_mask(target, C_HALT, C_STEP);
224
225         /* Read Debug Fault Status Register */
226         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_DFSR, &cortex_m->nvic_dfsr);
227         if (retval != ERROR_OK)
228                 return retval;
229
230         /* Clear Debug Fault Status */
231         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_DFSR, cortex_m->nvic_dfsr);
232         if (retval != ERROR_OK)
233                 return retval;
234         LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m->nvic_dfsr);
235
236         return ERROR_OK;
237 }
238
239 static int cortex_m_single_step_core(struct target *target)
240 {
241         struct cortex_m_common *cortex_m = target_to_cm(target);
242         struct armv7m_common *armv7m = &cortex_m->armv7m;
243         int retval;
244
245         /* Mask interrupts before clearing halt, if not done already.  This avoids
246          * Erratum 377497 (fixed in r1p0) where setting MASKINTS while clearing
247          * HALT can put the core into an unknown state.
248          */
249         if (!(cortex_m->dcb_dhcsr & C_MASKINTS)) {
250                 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR,
251                                 DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN);
252                 if (retval != ERROR_OK)
253                         return retval;
254         }
255         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR,
256                         DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN);
257         if (retval != ERROR_OK)
258                 return retval;
259         LOG_DEBUG(" ");
260
261         /* restore dhcsr reg */
262         cortex_m_clear_halt(target);
263
264         return ERROR_OK;
265 }
266
267 static int cortex_m_enable_fpb(struct target *target)
268 {
269         int retval = target_write_u32(target, FP_CTRL, 3);
270         if (retval != ERROR_OK)
271                 return retval;
272
273         /* check the fpb is actually enabled */
274         uint32_t fpctrl;
275         retval = target_read_u32(target, FP_CTRL, &fpctrl);
276         if (retval != ERROR_OK)
277                 return retval;
278
279         if (fpctrl & 1)
280                 return ERROR_OK;
281
282         return ERROR_FAIL;
283 }
284
285 static int cortex_m_endreset_event(struct target *target)
286 {
287         int i;
288         int retval;
289         uint32_t dcb_demcr;
290         struct cortex_m_common *cortex_m = target_to_cm(target);
291         struct armv7m_common *armv7m = &cortex_m->armv7m;
292         struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
293         struct cortex_m_fp_comparator *fp_list = cortex_m->fp_comparator_list;
294         struct cortex_m_dwt_comparator *dwt_list = cortex_m->dwt_comparator_list;
295
296         /* REVISIT The four debug monitor bits are currently ignored... */
297         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &dcb_demcr);
298         if (retval != ERROR_OK)
299                 return retval;
300         LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "", dcb_demcr);
301
302         /* this register is used for emulated dcc channel */
303         retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, 0);
304         if (retval != ERROR_OK)
305                 return retval;
306
307         /* Enable debug requests */
308         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
309         if (retval != ERROR_OK)
310                 return retval;
311         if (!(cortex_m->dcb_dhcsr & C_DEBUGEN)) {
312                 retval = cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP | C_MASKINTS);
313                 if (retval != ERROR_OK)
314                         return retval;
315         }
316
317         /* Restore proper interrupt masking setting for running CPU. */
318         cortex_m_set_maskints_for_run(target);
319
320         /* Enable features controlled by ITM and DWT blocks, and catch only
321          * the vectors we were told to pay attention to.
322          *
323          * Target firmware is responsible for all fault handling policy
324          * choices *EXCEPT* explicitly scripted overrides like "vector_catch"
325          * or manual updates to the NVIC SHCSR and CCR registers.
326          */
327         retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR, TRCENA | armv7m->demcr);
328         if (retval != ERROR_OK)
329                 return retval;
330
331         /* Paranoia: evidently some (early?) chips don't preserve all the
332          * debug state (including FPB, DWT, etc) across reset...
333          */
334
335         /* Enable FPB */
336         retval = cortex_m_enable_fpb(target);
337         if (retval != ERROR_OK) {
338                 LOG_ERROR("Failed to enable the FPB");
339                 return retval;
340         }
341
342         cortex_m->fpb_enabled = true;
343
344         /* Restore FPB registers */
345         for (i = 0; i < cortex_m->fp_num_code + cortex_m->fp_num_lit; i++) {
346                 retval = target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
347                 if (retval != ERROR_OK)
348                         return retval;
349         }
350
351         /* Restore DWT registers */
352         for (i = 0; i < cortex_m->dwt_num_comp; i++) {
353                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
354                                 dwt_list[i].comp);
355                 if (retval != ERROR_OK)
356                         return retval;
357                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
358                                 dwt_list[i].mask);
359                 if (retval != ERROR_OK)
360                         return retval;
361                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
362                                 dwt_list[i].function);
363                 if (retval != ERROR_OK)
364                         return retval;
365         }
366         retval = dap_run(swjdp);
367         if (retval != ERROR_OK)
368                 return retval;
369
370         register_cache_invalidate(armv7m->arm.core_cache);
371
372         /* make sure we have latest dhcsr flags */
373         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
374
375         return retval;
376 }
377
378 static int cortex_m_examine_debug_reason(struct target *target)
379 {
380         struct cortex_m_common *cortex_m = target_to_cm(target);
381
382         /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason
383          * only check the debug reason if we don't know it already */
384
385         if ((target->debug_reason != DBG_REASON_DBGRQ)
386                 && (target->debug_reason != DBG_REASON_SINGLESTEP)) {
387                 if (cortex_m->nvic_dfsr & DFSR_BKPT) {
388                         target->debug_reason = DBG_REASON_BREAKPOINT;
389                         if (cortex_m->nvic_dfsr & DFSR_DWTTRAP)
390                                 target->debug_reason = DBG_REASON_WPTANDBKPT;
391                 } else if (cortex_m->nvic_dfsr & DFSR_DWTTRAP)
392                         target->debug_reason = DBG_REASON_WATCHPOINT;
393                 else if (cortex_m->nvic_dfsr & DFSR_VCATCH)
394                         target->debug_reason = DBG_REASON_BREAKPOINT;
395                 else if (cortex_m->nvic_dfsr & DFSR_EXTERNAL)
396                         target->debug_reason = DBG_REASON_DBGRQ;
397                 else    /* HALTED */
398                         target->debug_reason = DBG_REASON_UNDEFINED;
399         }
400
401         return ERROR_OK;
402 }
403
404 static int cortex_m_examine_exception_reason(struct target *target)
405 {
406         uint32_t shcsr = 0, except_sr = 0, cfsr = -1, except_ar = -1;
407         struct armv7m_common *armv7m = target_to_armv7m(target);
408         struct adiv5_dap *swjdp = armv7m->arm.dap;
409         int retval;
410
411         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_SHCSR, &shcsr);
412         if (retval != ERROR_OK)
413                 return retval;
414         switch (armv7m->exception_number) {
415                 case 2: /* NMI */
416                         break;
417                 case 3: /* Hard Fault */
418                         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_HFSR, &except_sr);
419                         if (retval != ERROR_OK)
420                                 return retval;
421                         if (except_sr & 0x40000000) {
422                                 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &cfsr);
423                                 if (retval != ERROR_OK)
424                                         return retval;
425                         }
426                         break;
427                 case 4: /* Memory Management */
428                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
429                         if (retval != ERROR_OK)
430                                 return retval;
431                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_MMFAR, &except_ar);
432                         if (retval != ERROR_OK)
433                                 return retval;
434                         break;
435                 case 5: /* Bus Fault */
436                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
437                         if (retval != ERROR_OK)
438                                 return retval;
439                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_BFAR, &except_ar);
440                         if (retval != ERROR_OK)
441                                 return retval;
442                         break;
443                 case 6: /* Usage Fault */
444                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
445                         if (retval != ERROR_OK)
446                                 return retval;
447                         break;
448                 case 7: /* Secure Fault */
449                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_SFSR, &except_sr);
450                         if (retval != ERROR_OK)
451                                 return retval;
452                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_SFAR, &except_ar);
453                         if (retval != ERROR_OK)
454                                 return retval;
455                         break;
456                 case 11:        /* SVCall */
457                         break;
458                 case 12:        /* Debug Monitor */
459                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_DFSR, &except_sr);
460                         if (retval != ERROR_OK)
461                                 return retval;
462                         break;
463                 case 14:        /* PendSV */
464                         break;
465                 case 15:        /* SysTick */
466                         break;
467                 default:
468                         except_sr = 0;
469                         break;
470         }
471         retval = dap_run(swjdp);
472         if (retval == ERROR_OK)
473                 LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32
474                         ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32,
475                         armv7m_exception_string(armv7m->exception_number),
476                         shcsr, except_sr, cfsr, except_ar);
477         return retval;
478 }
479
480 static int cortex_m_debug_entry(struct target *target)
481 {
482         int i;
483         uint32_t xPSR;
484         int retval;
485         struct cortex_m_common *cortex_m = target_to_cm(target);
486         struct armv7m_common *armv7m = &cortex_m->armv7m;
487         struct arm *arm = &armv7m->arm;
488         struct reg *r;
489
490         LOG_DEBUG(" ");
491
492         /* Do this really early to minimize the window where the MASKINTS erratum
493          * can pile up pending interrupts. */
494         cortex_m_set_maskints_for_halt(target);
495
496         cortex_m_clear_halt(target);
497         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
498         if (retval != ERROR_OK)
499                 return retval;
500
501         retval = armv7m->examine_debug_reason(target);
502         if (retval != ERROR_OK)
503                 return retval;
504
505         /* examine PE security state */
506         bool secure_state = false;
507         if (armv7m->arm.is_armv8m) {
508                 uint32_t dscsr;
509
510                 retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DSCSR, &dscsr);
511                 if (retval != ERROR_OK)
512                         return retval;
513
514                 secure_state = (dscsr & DSCSR_CDS) == DSCSR_CDS;
515         }
516
517         /* Examine target state and mode
518          * First load register accessible through core debug port */
519         int num_regs = arm->core_cache->num_regs;
520
521         for (i = 0; i < num_regs; i++) {
522                 r = &armv7m->arm.core_cache->reg_list[i];
523                 if (!r->valid)
524                         arm->read_core_reg(target, r, i, ARM_MODE_ANY);
525         }
526
527         r = arm->cpsr;
528         xPSR = buf_get_u32(r->value, 0, 32);
529
530         /* For IT instructions xPSR must be reloaded on resume and clear on debug exec */
531         if (xPSR & 0xf00) {
532                 r->dirty = r->valid;
533                 cortex_m_store_core_reg_u32(target, ARMV7M_REGSEL_xPSR, xPSR & ~0xff);
534         }
535
536         /* Are we in an exception handler */
537         if (xPSR & 0x1FF) {
538                 armv7m->exception_number = (xPSR & 0x1FF);
539
540                 arm->core_mode = ARM_MODE_HANDLER;
541                 arm->map = armv7m_msp_reg_map;
542         } else {
543                 unsigned control = buf_get_u32(arm->core_cache
544                                 ->reg_list[ARMV7M_CONTROL].value, 0, 3);
545
546                 /* is this thread privileged? */
547                 arm->core_mode = control & 1
548                         ? ARM_MODE_USER_THREAD
549                         : ARM_MODE_THREAD;
550
551                 /* which stack is it using? */
552                 if (control & 2)
553                         arm->map = armv7m_psp_reg_map;
554                 else
555                         arm->map = armv7m_msp_reg_map;
556
557                 armv7m->exception_number = 0;
558         }
559
560         if (armv7m->exception_number)
561                 cortex_m_examine_exception_reason(target);
562
563         LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", cpu in %s state, target->state: %s",
564                 arm_mode_name(arm->core_mode),
565                 buf_get_u32(arm->pc->value, 0, 32),
566                 secure_state ? "Secure" : "Non-Secure",
567                 target_state_name(target));
568
569         if (armv7m->post_debug_entry) {
570                 retval = armv7m->post_debug_entry(target);
571                 if (retval != ERROR_OK)
572                         return retval;
573         }
574
575         return ERROR_OK;
576 }
577
578 static int cortex_m_poll(struct target *target)
579 {
580         int detected_failure = ERROR_OK;
581         int retval = ERROR_OK;
582         enum target_state prev_target_state = target->state;
583         struct cortex_m_common *cortex_m = target_to_cm(target);
584         struct armv7m_common *armv7m = &cortex_m->armv7m;
585
586         /* Read from Debug Halting Control and Status Register */
587         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
588         if (retval != ERROR_OK) {
589                 target->state = TARGET_UNKNOWN;
590                 return retval;
591         }
592
593         /* Recover from lockup.  See ARMv7-M architecture spec,
594          * section B1.5.15 "Unrecoverable exception cases".
595          */
596         if (cortex_m->dcb_dhcsr & S_LOCKUP) {
597                 LOG_ERROR("%s -- clearing lockup after double fault",
598                         target_name(target));
599                 cortex_m_write_debug_halt_mask(target, C_HALT, 0);
600                 target->debug_reason = DBG_REASON_DBGRQ;
601
602                 /* We have to execute the rest (the "finally" equivalent, but
603                  * still throw this exception again).
604                  */
605                 detected_failure = ERROR_FAIL;
606
607                 /* refresh status bits */
608                 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
609                 if (retval != ERROR_OK)
610                         return retval;
611         }
612
613         if (cortex_m->dcb_dhcsr & S_RESET_ST) {
614                 if (target->state != TARGET_RESET) {
615                         target->state = TARGET_RESET;
616                         LOG_INFO("%s: external reset detected", target_name(target));
617                 }
618                 return ERROR_OK;
619         }
620
621         if (target->state == TARGET_RESET) {
622                 /* Cannot switch context while running so endreset is
623                  * called with target->state == TARGET_RESET
624                  */
625                 LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32,
626                         cortex_m->dcb_dhcsr);
627                 retval = cortex_m_endreset_event(target);
628                 if (retval != ERROR_OK) {
629                         target->state = TARGET_UNKNOWN;
630                         return retval;
631                 }
632                 target->state = TARGET_RUNNING;
633                 prev_target_state = TARGET_RUNNING;
634         }
635
636         if (cortex_m->dcb_dhcsr & S_HALT) {
637                 target->state = TARGET_HALTED;
638
639                 if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET)) {
640                         retval = cortex_m_debug_entry(target);
641                         if (retval != ERROR_OK)
642                                 return retval;
643
644                         if (arm_semihosting(target, &retval) != 0)
645                                 return retval;
646
647                         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
648                 }
649                 if (prev_target_state == TARGET_DEBUG_RUNNING) {
650                         LOG_DEBUG(" ");
651                         retval = cortex_m_debug_entry(target);
652                         if (retval != ERROR_OK)
653                                 return retval;
654
655                         target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
656                 }
657         }
658
659         if (target->state == TARGET_UNKNOWN) {
660                 /* check if processor is retiring instructions or sleeping */
661                 if (cortex_m->dcb_dhcsr & S_RETIRE_ST || cortex_m->dcb_dhcsr & S_SLEEP) {
662                         target->state = TARGET_RUNNING;
663                         retval = ERROR_OK;
664                 }
665         }
666
667         /* Check that target is truly halted, since the target could be resumed externally */
668         if ((prev_target_state == TARGET_HALTED) && !(cortex_m->dcb_dhcsr & S_HALT)) {
669                 /* registers are now invalid */
670                 register_cache_invalidate(armv7m->arm.core_cache);
671
672                 target->state = TARGET_RUNNING;
673                 LOG_WARNING("%s: external resume detected", target_name(target));
674                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
675                 retval = ERROR_OK;
676         }
677
678         /* Did we detect a failure condition that we cleared? */
679         if (detected_failure != ERROR_OK)
680                 retval = detected_failure;
681         return retval;
682 }
683
684 static int cortex_m_halt(struct target *target)
685 {
686         LOG_DEBUG("target->state: %s",
687                 target_state_name(target));
688
689         if (target->state == TARGET_HALTED) {
690                 LOG_DEBUG("target was already halted");
691                 return ERROR_OK;
692         }
693
694         if (target->state == TARGET_UNKNOWN)
695                 LOG_WARNING("target was in unknown state when halt was requested");
696
697         if (target->state == TARGET_RESET) {
698                 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst()) {
699                         LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
700                         return ERROR_TARGET_FAILURE;
701                 } else {
702                         /* we came here in a reset_halt or reset_init sequence
703                          * debug entry was already prepared in cortex_m3_assert_reset()
704                          */
705                         target->debug_reason = DBG_REASON_DBGRQ;
706
707                         return ERROR_OK;
708                 }
709         }
710
711         /* Write to Debug Halting Control and Status Register */
712         cortex_m_write_debug_halt_mask(target, C_HALT, 0);
713
714         /* Do this really early to minimize the window where the MASKINTS erratum
715          * can pile up pending interrupts. */
716         cortex_m_set_maskints_for_halt(target);
717
718         target->debug_reason = DBG_REASON_DBGRQ;
719
720         return ERROR_OK;
721 }
722
723 static int cortex_m_soft_reset_halt(struct target *target)
724 {
725         struct cortex_m_common *cortex_m = target_to_cm(target);
726         struct armv7m_common *armv7m = &cortex_m->armv7m;
727         uint32_t dcb_dhcsr = 0;
728         int retval, timeout = 0;
729
730         /* on single cortex_m MCU soft_reset_halt should be avoided as same functionality
731          * can be obtained by using 'reset halt' and 'cortex_m reset_config vectreset'.
732          * As this reset only uses VC_CORERESET it would only ever reset the cortex_m
733          * core, not the peripherals */
734         LOG_DEBUG("soft_reset_halt is discouraged, please use 'reset halt' instead.");
735
736         /* Set C_DEBUGEN */
737         retval = cortex_m_write_debug_halt_mask(target, 0, C_STEP | C_MASKINTS);
738         if (retval != ERROR_OK)
739                 return retval;
740
741         /* Enter debug state on reset; restore DEMCR in endreset_event() */
742         retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR,
743                         TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
744         if (retval != ERROR_OK)
745                 return retval;
746
747         /* Request a core-only reset */
748         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_AIRCR,
749                         AIRCR_VECTKEY | AIRCR_VECTRESET);
750         if (retval != ERROR_OK)
751                 return retval;
752         target->state = TARGET_RESET;
753
754         /* registers are now invalid */
755         register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
756
757         while (timeout < 100) {
758                 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &dcb_dhcsr);
759                 if (retval == ERROR_OK) {
760                         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_DFSR,
761                                         &cortex_m->nvic_dfsr);
762                         if (retval != ERROR_OK)
763                                 return retval;
764                         if ((dcb_dhcsr & S_HALT)
765                                 && (cortex_m->nvic_dfsr & DFSR_VCATCH)) {
766                                 LOG_DEBUG("system reset-halted, DHCSR 0x%08x, "
767                                         "DFSR 0x%08x",
768                                         (unsigned) dcb_dhcsr,
769                                         (unsigned) cortex_m->nvic_dfsr);
770                                 cortex_m_poll(target);
771                                 /* FIXME restore user's vector catch config */
772                                 return ERROR_OK;
773                         } else
774                                 LOG_DEBUG("waiting for system reset-halt, "
775                                         "DHCSR 0x%08x, %d ms",
776                                         (unsigned) dcb_dhcsr, timeout);
777                 }
778                 timeout++;
779                 alive_sleep(1);
780         }
781
782         return ERROR_OK;
783 }
784
785 void cortex_m_enable_breakpoints(struct target *target)
786 {
787         struct breakpoint *breakpoint = target->breakpoints;
788
789         /* set any pending breakpoints */
790         while (breakpoint) {
791                 if (!breakpoint->set)
792                         cortex_m_set_breakpoint(target, breakpoint);
793                 breakpoint = breakpoint->next;
794         }
795 }
796
797 static int cortex_m_resume(struct target *target, int current,
798         target_addr_t address, int handle_breakpoints, int debug_execution)
799 {
800         struct armv7m_common *armv7m = target_to_armv7m(target);
801         struct breakpoint *breakpoint = NULL;
802         uint32_t resume_pc;
803         struct reg *r;
804
805         if (target->state != TARGET_HALTED) {
806                 LOG_WARNING("target not halted");
807                 return ERROR_TARGET_NOT_HALTED;
808         }
809
810         if (!debug_execution) {
811                 target_free_all_working_areas(target);
812                 cortex_m_enable_breakpoints(target);
813                 cortex_m_enable_watchpoints(target);
814         }
815
816         if (debug_execution) {
817                 r = armv7m->arm.core_cache->reg_list + ARMV7M_PRIMASK;
818
819                 /* Disable interrupts */
820                 /* We disable interrupts in the PRIMASK register instead of
821                  * masking with C_MASKINTS.  This is probably the same issue
822                  * as Cortex-M3 Erratum 377493 (fixed in r1p0):  C_MASKINTS
823                  * in parallel with disabled interrupts can cause local faults
824                  * to not be taken.
825                  *
826                  * REVISIT this clearly breaks non-debug execution, since the
827                  * PRIMASK register state isn't saved/restored...  workaround
828                  * by never resuming app code after debug execution.
829                  */
830                 buf_set_u32(r->value, 0, 1, 1);
831                 r->dirty = true;
832                 r->valid = true;
833
834                 /* Make sure we are in Thumb mode */
835                 r = armv7m->arm.cpsr;
836                 buf_set_u32(r->value, 24, 1, 1);
837                 r->dirty = true;
838                 r->valid = true;
839         }
840
841         /* current = 1: continue on current pc, otherwise continue at <address> */
842         r = armv7m->arm.pc;
843         if (!current) {
844                 buf_set_u32(r->value, 0, 32, address);
845                 r->dirty = true;
846                 r->valid = true;
847         }
848
849         /* if we halted last time due to a bkpt instruction
850          * then we have to manually step over it, otherwise
851          * the core will break again */
852
853         if (!breakpoint_find(target, buf_get_u32(r->value, 0, 32))
854                 && !debug_execution)
855                 armv7m_maybe_skip_bkpt_inst(target, NULL);
856
857         resume_pc = buf_get_u32(r->value, 0, 32);
858
859         armv7m_restore_context(target);
860
861         /* the front-end may request us not to handle breakpoints */
862         if (handle_breakpoints) {
863                 /* Single step past breakpoint at current address */
864                 breakpoint = breakpoint_find(target, resume_pc);
865                 if (breakpoint) {
866                         LOG_DEBUG("unset breakpoint at " TARGET_ADDR_FMT " (ID: %" PRIu32 ")",
867                                 breakpoint->address,
868                                 breakpoint->unique_id);
869                         cortex_m_unset_breakpoint(target, breakpoint);
870                         cortex_m_single_step_core(target);
871                         cortex_m_set_breakpoint(target, breakpoint);
872                 }
873         }
874
875         /* Restart core */
876         cortex_m_set_maskints_for_run(target);
877         cortex_m_write_debug_halt_mask(target, 0, C_HALT);
878
879         target->debug_reason = DBG_REASON_NOTHALTED;
880
881         /* registers are now invalid */
882         register_cache_invalidate(armv7m->arm.core_cache);
883
884         if (!debug_execution) {
885                 target->state = TARGET_RUNNING;
886                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
887                 LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc);
888         } else {
889                 target->state = TARGET_DEBUG_RUNNING;
890                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
891                 LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc);
892         }
893
894         return ERROR_OK;
895 }
896
897 /* int irqstepcount = 0; */
898 static int cortex_m_step(struct target *target, int current,
899         target_addr_t address, int handle_breakpoints)
900 {
901         struct cortex_m_common *cortex_m = target_to_cm(target);
902         struct armv7m_common *armv7m = &cortex_m->armv7m;
903         struct breakpoint *breakpoint = NULL;
904         struct reg *pc = armv7m->arm.pc;
905         bool bkpt_inst_found = false;
906         int retval;
907         bool isr_timed_out = false;
908
909         if (target->state != TARGET_HALTED) {
910                 LOG_WARNING("target not halted");
911                 return ERROR_TARGET_NOT_HALTED;
912         }
913
914         /* current = 1: continue on current pc, otherwise continue at <address> */
915         if (!current)
916                 buf_set_u32(pc->value, 0, 32, address);
917
918         uint32_t pc_value = buf_get_u32(pc->value, 0, 32);
919
920         /* the front-end may request us not to handle breakpoints */
921         if (handle_breakpoints) {
922                 breakpoint = breakpoint_find(target, pc_value);
923                 if (breakpoint)
924                         cortex_m_unset_breakpoint(target, breakpoint);
925         }
926
927         armv7m_maybe_skip_bkpt_inst(target, &bkpt_inst_found);
928
929         target->debug_reason = DBG_REASON_SINGLESTEP;
930
931         armv7m_restore_context(target);
932
933         target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
934
935         /* if no bkpt instruction is found at pc then we can perform
936          * a normal step, otherwise we have to manually step over the bkpt
937          * instruction - as such simulate a step */
938         if (bkpt_inst_found == false) {
939                 if (cortex_m->isrmasking_mode != CORTEX_M_ISRMASK_AUTO) {
940                         /* Automatic ISR masking mode off: Just step over the next
941                          * instruction, with interrupts on or off as appropriate. */
942                         cortex_m_set_maskints_for_step(target);
943                         cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
944                 } else {
945                         /* Process interrupts during stepping in a way they don't interfere
946                          * debugging.
947                          *
948                          * Principle:
949                          *
950                          * Set a temporary break point at the current pc and let the core run
951                          * with interrupts enabled. Pending interrupts get served and we run
952                          * into the breakpoint again afterwards. Then we step over the next
953                          * instruction with interrupts disabled.
954                          *
955                          * If the pending interrupts don't complete within time, we leave the
956                          * core running. This may happen if the interrupts trigger faster
957                          * than the core can process them or the handler doesn't return.
958                          *
959                          * If no more breakpoints are available we simply do a step with
960                          * interrupts enabled.
961                          *
962                          */
963
964                         /* 2012-09-29 ph
965                          *
966                          * If a break point is already set on the lower half word then a break point on
967                          * the upper half word will not break again when the core is restarted. So we
968                          * just step over the instruction with interrupts disabled.
969                          *
970                          * The documentation has no information about this, it was found by observation
971                          * on STM32F1 and STM32F2. Proper explanation welcome. STM32F0 doesn't seem to
972                          * suffer from this problem.
973                          *
974                          * To add some confusion: pc_value has bit 0 always set, while the breakpoint
975                          * address has it always cleared. The former is done to indicate thumb mode
976                          * to gdb.
977                          *
978                          */
979                         if ((pc_value & 0x02) && breakpoint_find(target, pc_value & ~0x03)) {
980                                 LOG_DEBUG("Stepping over next instruction with interrupts disabled");
981                                 cortex_m_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
982                                 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
983                                 /* Re-enable interrupts if appropriate */
984                                 cortex_m_write_debug_halt_mask(target, C_HALT, 0);
985                                 cortex_m_set_maskints_for_halt(target);
986                         } else {
987
988                                 /* Set a temporary break point */
989                                 if (breakpoint) {
990                                         retval = cortex_m_set_breakpoint(target, breakpoint);
991                                 } else {
992                                         enum breakpoint_type type = BKPT_HARD;
993                                         if (cortex_m->fp_rev == 0 && pc_value > 0x1FFFFFFF) {
994                                                 /* FPB rev.1 cannot handle such addr, try BKPT instr */
995                                                 type = BKPT_SOFT;
996                                         }
997                                         retval = breakpoint_add(target, pc_value, 2, type);
998                                 }
999
1000                                 bool tmp_bp_set = (retval == ERROR_OK);
1001
1002                                 /* No more breakpoints left, just do a step */
1003                                 if (!tmp_bp_set) {
1004                                         cortex_m_set_maskints_for_step(target);
1005                                         cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
1006                                         /* Re-enable interrupts if appropriate */
1007                                         cortex_m_write_debug_halt_mask(target, C_HALT, 0);
1008                                         cortex_m_set_maskints_for_halt(target);
1009                                 } else {
1010                                         /* Start the core */
1011                                         LOG_DEBUG("Starting core to serve pending interrupts");
1012                                         int64_t t_start = timeval_ms();
1013                                         cortex_m_set_maskints_for_run(target);
1014                                         cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP);
1015
1016                                         /* Wait for pending handlers to complete or timeout */
1017                                         do {
1018                                                 retval = mem_ap_read_atomic_u32(armv7m->debug_ap,
1019                                                                 DCB_DHCSR,
1020                                                                 &cortex_m->dcb_dhcsr);
1021                                                 if (retval != ERROR_OK) {
1022                                                         target->state = TARGET_UNKNOWN;
1023                                                         return retval;
1024                                                 }
1025                                                 isr_timed_out = ((timeval_ms() - t_start) > 500);
1026                                         } while (!((cortex_m->dcb_dhcsr & S_HALT) || isr_timed_out));
1027
1028                                         /* only remove breakpoint if we created it */
1029                                         if (breakpoint)
1030                                                 cortex_m_unset_breakpoint(target, breakpoint);
1031                                         else {
1032                                                 /* Remove the temporary breakpoint */
1033                                                 breakpoint_remove(target, pc_value);
1034                                         }
1035
1036                                         if (isr_timed_out) {
1037                                                 LOG_DEBUG("Interrupt handlers didn't complete within time, "
1038                                                         "leaving target running");
1039                                         } else {
1040                                                 /* Step over next instruction with interrupts disabled */
1041                                                 cortex_m_set_maskints_for_step(target);
1042                                                 cortex_m_write_debug_halt_mask(target,
1043                                                         C_HALT | C_MASKINTS,
1044                                                         0);
1045                                                 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
1046                                                 /* Re-enable interrupts if appropriate */
1047                                                 cortex_m_write_debug_halt_mask(target, C_HALT, 0);
1048                                                 cortex_m_set_maskints_for_halt(target);
1049                                         }
1050                                 }
1051                         }
1052                 }
1053         }
1054
1055         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
1056         if (retval != ERROR_OK)
1057                 return retval;
1058
1059         /* registers are now invalid */
1060         register_cache_invalidate(armv7m->arm.core_cache);
1061
1062         if (breakpoint)
1063                 cortex_m_set_breakpoint(target, breakpoint);
1064
1065         if (isr_timed_out) {
1066                 /* Leave the core running. The user has to stop execution manually. */
1067                 target->debug_reason = DBG_REASON_NOTHALTED;
1068                 target->state = TARGET_RUNNING;
1069                 return ERROR_OK;
1070         }
1071
1072         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
1073                 " nvic_icsr = 0x%" PRIx32,
1074                 cortex_m->dcb_dhcsr, cortex_m->nvic_icsr);
1075
1076         retval = cortex_m_debug_entry(target);
1077         if (retval != ERROR_OK)
1078                 return retval;
1079         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
1080
1081         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
1082                 " nvic_icsr = 0x%" PRIx32,
1083                 cortex_m->dcb_dhcsr, cortex_m->nvic_icsr);
1084
1085         return ERROR_OK;
1086 }
1087
1088 static int cortex_m_assert_reset(struct target *target)
1089 {
1090         struct cortex_m_common *cortex_m = target_to_cm(target);
1091         struct armv7m_common *armv7m = &cortex_m->armv7m;
1092         enum cortex_m_soft_reset_config reset_config = cortex_m->soft_reset_config;
1093
1094         LOG_DEBUG("target->state: %s",
1095                 target_state_name(target));
1096
1097         enum reset_types jtag_reset_config = jtag_get_reset_config();
1098
1099         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
1100                 /* allow scripts to override the reset event */
1101
1102                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1103                 register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
1104                 target->state = TARGET_RESET;
1105
1106                 return ERROR_OK;
1107         }
1108
1109         /* some cores support connecting while srst is asserted
1110          * use that mode is it has been configured */
1111
1112         bool srst_asserted = false;
1113
1114         if (!target_was_examined(target)) {
1115                 if (jtag_reset_config & RESET_HAS_SRST) {
1116                         adapter_assert_reset();
1117                         if (target->reset_halt)
1118                                 LOG_ERROR("Target not examined, will not halt after reset!");
1119                         return ERROR_OK;
1120                 } else {
1121                         LOG_ERROR("Target not examined, reset NOT asserted!");
1122                         return ERROR_FAIL;
1123                 }
1124         }
1125
1126         if ((jtag_reset_config & RESET_HAS_SRST) &&
1127             (jtag_reset_config & RESET_SRST_NO_GATING)) {
1128                 adapter_assert_reset();
1129                 srst_asserted = true;
1130         }
1131
1132         /* Enable debug requests */
1133         int retval;
1134         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
1135         /* Store important errors instead of failing and proceed to reset assert */
1136
1137         if (retval != ERROR_OK || !(cortex_m->dcb_dhcsr & C_DEBUGEN))
1138                 retval = cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP | C_MASKINTS);
1139
1140         /* If the processor is sleeping in a WFI or WFE instruction, the
1141          * C_HALT bit must be asserted to regain control */
1142         if (retval == ERROR_OK && (cortex_m->dcb_dhcsr & S_SLEEP))
1143                 retval = cortex_m_write_debug_halt_mask(target, C_HALT, 0);
1144
1145         mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, 0);
1146         /* Ignore less important errors */
1147
1148         if (!target->reset_halt) {
1149                 /* Set/Clear C_MASKINTS in a separate operation */
1150                 cortex_m_set_maskints_for_run(target);
1151
1152                 /* clear any debug flags before resuming */
1153                 cortex_m_clear_halt(target);
1154
1155                 /* clear C_HALT in dhcsr reg */
1156                 cortex_m_write_debug_halt_mask(target, 0, C_HALT);
1157         } else {
1158                 /* Halt in debug on reset; endreset_event() restores DEMCR.
1159                  *
1160                  * REVISIT catching BUSERR presumably helps to defend against
1161                  * bad vector table entries.  Should this include MMERR or
1162                  * other flags too?
1163                  */
1164                 int retval2;
1165                 retval2 = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DEMCR,
1166                                 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
1167                 if (retval != ERROR_OK || retval2 != ERROR_OK)
1168                         LOG_INFO("AP write error, reset will not halt");
1169         }
1170
1171         if (jtag_reset_config & RESET_HAS_SRST) {
1172                 /* default to asserting srst */
1173                 if (!srst_asserted)
1174                         adapter_assert_reset();
1175
1176                 /* srst is asserted, ignore AP access errors */
1177                 retval = ERROR_OK;
1178         } else {
1179                 /* Use a standard Cortex-M3 software reset mechanism.
1180                  * We default to using VECRESET as it is supported on all current cores
1181                  * (except Cortex-M0, M0+ and M1 which support SYSRESETREQ only!)
1182                  * This has the disadvantage of not resetting the peripherals, so a
1183                  * reset-init event handler is needed to perform any peripheral resets.
1184                  */
1185                 if (!cortex_m->vectreset_supported
1186                                 && reset_config == CORTEX_M_RESET_VECTRESET) {
1187                         reset_config = CORTEX_M_RESET_SYSRESETREQ;
1188                         LOG_WARNING("VECTRESET is not supported on this Cortex-M core, using SYSRESETREQ instead.");
1189                         LOG_WARNING("Set 'cortex_m reset_config sysresetreq'.");
1190                 }
1191
1192                 LOG_DEBUG("Using Cortex-M %s", (reset_config == CORTEX_M_RESET_SYSRESETREQ)
1193                         ? "SYSRESETREQ" : "VECTRESET");
1194
1195                 if (reset_config == CORTEX_M_RESET_VECTRESET) {
1196                         LOG_WARNING("Only resetting the Cortex-M core, use a reset-init event "
1197                                 "handler to reset any peripherals or configure hardware srst support.");
1198                 }
1199
1200                 int retval3;
1201                 retval3 = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_AIRCR,
1202                                 AIRCR_VECTKEY | ((reset_config == CORTEX_M_RESET_SYSRESETREQ)
1203                                 ? AIRCR_SYSRESETREQ : AIRCR_VECTRESET));
1204                 if (retval3 != ERROR_OK)
1205                         LOG_DEBUG("Ignoring AP write error right after reset");
1206
1207                 retval3 = dap_dp_init(armv7m->debug_ap->dap);
1208                 if (retval3 != ERROR_OK)
1209                         LOG_ERROR("DP initialisation failed");
1210
1211                 else {
1212                         /* I do not know why this is necessary, but it
1213                          * fixes strange effects (step/resume cause NMI
1214                          * after reset) on LM3S6918 -- Michael Schwingen
1215                          */
1216                         uint32_t tmp;
1217                         mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_AIRCR, &tmp);
1218                 }
1219         }
1220
1221         target->state = TARGET_RESET;
1222         jtag_sleep(50000);
1223
1224         register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
1225
1226         /* now return stored error code if any */
1227         if (retval != ERROR_OK)
1228                 return retval;
1229
1230         if (target->reset_halt) {
1231                 retval = target_halt(target);
1232                 if (retval != ERROR_OK)
1233                         return retval;
1234         }
1235
1236         return ERROR_OK;
1237 }
1238
1239 static int cortex_m_deassert_reset(struct target *target)
1240 {
1241         struct armv7m_common *armv7m = &target_to_cm(target)->armv7m;
1242
1243         LOG_DEBUG("target->state: %s",
1244                 target_state_name(target));
1245
1246         /* deassert reset lines */
1247         adapter_deassert_reset();
1248
1249         enum reset_types jtag_reset_config = jtag_get_reset_config();
1250
1251         if ((jtag_reset_config & RESET_HAS_SRST) &&
1252             !(jtag_reset_config & RESET_SRST_NO_GATING) &&
1253                 target_was_examined(target)) {
1254                 int retval = dap_dp_init(armv7m->debug_ap->dap);
1255                 if (retval != ERROR_OK) {
1256                         LOG_ERROR("DP initialisation failed");
1257                         return retval;
1258                 }
1259         }
1260
1261         return ERROR_OK;
1262 }
1263
1264 int cortex_m_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
1265 {
1266         int retval;
1267         int fp_num = 0;
1268         struct cortex_m_common *cortex_m = target_to_cm(target);
1269         struct cortex_m_fp_comparator *comparator_list = cortex_m->fp_comparator_list;
1270
1271         if (breakpoint->set) {
1272                 LOG_WARNING("breakpoint (BPID: %" PRIu32 ") already set", breakpoint->unique_id);
1273                 return ERROR_OK;
1274         }
1275
1276         if (breakpoint->type == BKPT_HARD) {
1277                 uint32_t fpcr_value;
1278                 while (comparator_list[fp_num].used && (fp_num < cortex_m->fp_num_code))
1279                         fp_num++;
1280                 if (fp_num >= cortex_m->fp_num_code) {
1281                         LOG_ERROR("Can not find free FPB Comparator!");
1282                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1283                 }
1284                 breakpoint->set = fp_num + 1;
1285                 fpcr_value = breakpoint->address | 1;
1286                 if (cortex_m->fp_rev == 0) {
1287                         if (breakpoint->address > 0x1FFFFFFF) {
1288                                 LOG_ERROR("Cortex-M Flash Patch Breakpoint rev.1 cannot handle HW breakpoint above address 0x1FFFFFFE");
1289                                 return ERROR_FAIL;
1290                         }
1291                         uint32_t hilo;
1292                         hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
1293                         fpcr_value = (fpcr_value & 0x1FFFFFFC) | hilo | 1;
1294                 } else if (cortex_m->fp_rev > 1) {
1295                         LOG_ERROR("Unhandled Cortex-M Flash Patch Breakpoint architecture revision");
1296                         return ERROR_FAIL;
1297                 }
1298                 comparator_list[fp_num].used = true;
1299                 comparator_list[fp_num].fpcr_value = fpcr_value;
1300                 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1301                         comparator_list[fp_num].fpcr_value);
1302                 LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "",
1303                         fp_num,
1304                         comparator_list[fp_num].fpcr_value);
1305                 if (!cortex_m->fpb_enabled) {
1306                         LOG_DEBUG("FPB wasn't enabled, do it now");
1307                         retval = cortex_m_enable_fpb(target);
1308                         if (retval != ERROR_OK) {
1309                                 LOG_ERROR("Failed to enable the FPB");
1310                                 return retval;
1311                         }
1312
1313                         cortex_m->fpb_enabled = true;
1314                 }
1315         } else if (breakpoint->type == BKPT_SOFT) {
1316                 uint8_t code[4];
1317
1318                 /* NOTE: on ARMv6-M and ARMv7-M, BKPT(0xab) is used for
1319                  * semihosting; don't use that.  Otherwise the BKPT
1320                  * parameter is arbitrary.
1321                  */
1322                 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1323                 retval = target_read_memory(target,
1324                                 breakpoint->address & 0xFFFFFFFE,
1325                                 breakpoint->length, 1,
1326                                 breakpoint->orig_instr);
1327                 if (retval != ERROR_OK)
1328                         return retval;
1329                 retval = target_write_memory(target,
1330                                 breakpoint->address & 0xFFFFFFFE,
1331                                 breakpoint->length, 1,
1332                                 code);
1333                 if (retval != ERROR_OK)
1334                         return retval;
1335                 breakpoint->set = true;
1336         }
1337
1338         LOG_DEBUG("BPID: %" PRIu32 ", Type: %d, Address: " TARGET_ADDR_FMT " Length: %d (set=%d)",
1339                 breakpoint->unique_id,
1340                 (int)(breakpoint->type),
1341                 breakpoint->address,
1342                 breakpoint->length,
1343                 breakpoint->set);
1344
1345         return ERROR_OK;
1346 }
1347
1348 int cortex_m_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1349 {
1350         int retval;
1351         struct cortex_m_common *cortex_m = target_to_cm(target);
1352         struct cortex_m_fp_comparator *comparator_list = cortex_m->fp_comparator_list;
1353
1354         if (!breakpoint->set) {
1355                 LOG_WARNING("breakpoint not set");
1356                 return ERROR_OK;
1357         }
1358
1359         LOG_DEBUG("BPID: %" PRIu32 ", Type: %d, Address: " TARGET_ADDR_FMT " Length: %d (set=%d)",
1360                 breakpoint->unique_id,
1361                 (int)(breakpoint->type),
1362                 breakpoint->address,
1363                 breakpoint->length,
1364                 breakpoint->set);
1365
1366         if (breakpoint->type == BKPT_HARD) {
1367                 int fp_num = breakpoint->set - 1;
1368                 if ((fp_num < 0) || (fp_num >= cortex_m->fp_num_code)) {
1369                         LOG_DEBUG("Invalid FP Comparator number in breakpoint");
1370                         return ERROR_OK;
1371                 }
1372                 comparator_list[fp_num].used = false;
1373                 comparator_list[fp_num].fpcr_value = 0;
1374                 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1375                         comparator_list[fp_num].fpcr_value);
1376         } else {
1377                 /* restore original instruction (kept in target endianness) */
1378                 retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE,
1379                                         breakpoint->length, 1,
1380                                         breakpoint->orig_instr);
1381                 if (retval != ERROR_OK)
1382                         return retval;
1383         }
1384         breakpoint->set = false;
1385
1386         return ERROR_OK;
1387 }
1388
1389 int cortex_m_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1390 {
1391         if (breakpoint->length == 3) {
1392                 LOG_DEBUG("Using a two byte breakpoint for 32bit Thumb-2 request");
1393                 breakpoint->length = 2;
1394         }
1395
1396         if ((breakpoint->length != 2)) {
1397                 LOG_INFO("only breakpoints of two bytes length supported");
1398                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1399         }
1400
1401         return cortex_m_set_breakpoint(target, breakpoint);
1402 }
1403
1404 int cortex_m_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1405 {
1406         if (!breakpoint->set)
1407                 return ERROR_OK;
1408
1409         return cortex_m_unset_breakpoint(target, breakpoint);
1410 }
1411
1412 static int cortex_m_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1413 {
1414         int dwt_num = 0;
1415         struct cortex_m_common *cortex_m = target_to_cm(target);
1416
1417         /* REVISIT Don't fully trust these "not used" records ... users
1418          * may set up breakpoints by hand, e.g. dual-address data value
1419          * watchpoint using comparator #1; comparator #0 matching cycle
1420          * count; send data trace info through ITM and TPIU; etc
1421          */
1422         struct cortex_m_dwt_comparator *comparator;
1423
1424         for (comparator = cortex_m->dwt_comparator_list;
1425                 comparator->used && dwt_num < cortex_m->dwt_num_comp;
1426                 comparator++, dwt_num++)
1427                 continue;
1428         if (dwt_num >= cortex_m->dwt_num_comp) {
1429                 LOG_ERROR("Can not find free DWT Comparator");
1430                 return ERROR_FAIL;
1431         }
1432         comparator->used = true;
1433         watchpoint->set = dwt_num + 1;
1434
1435         comparator->comp = watchpoint->address;
1436         target_write_u32(target, comparator->dwt_comparator_address + 0,
1437                 comparator->comp);
1438
1439         if ((cortex_m->dwt_devarch & 0x1FFFFF) != DWT_DEVARCH_ARMV8M) {
1440                 uint32_t mask = 0, temp;
1441
1442                 /* watchpoint params were validated earlier */
1443                 temp = watchpoint->length;
1444                 while (temp) {
1445                         temp >>= 1;
1446                         mask++;
1447                 }
1448                 mask--;
1449
1450                 comparator->mask = mask;
1451                 target_write_u32(target, comparator->dwt_comparator_address + 4,
1452                         comparator->mask);
1453
1454                 switch (watchpoint->rw) {
1455                 case WPT_READ:
1456                         comparator->function = 5;
1457                         break;
1458                 case WPT_WRITE:
1459                         comparator->function = 6;
1460                         break;
1461                 case WPT_ACCESS:
1462                         comparator->function = 7;
1463                         break;
1464                 }
1465         } else {
1466                 uint32_t data_size = watchpoint->length >> 1;
1467                 comparator->mask = (watchpoint->length >> 1) | 1;
1468
1469                 switch (watchpoint->rw) {
1470                 case WPT_ACCESS:
1471                         comparator->function = 4;
1472                         break;
1473                 case WPT_WRITE:
1474                         comparator->function = 5;
1475                         break;
1476                 case WPT_READ:
1477                         comparator->function = 6;
1478                         break;
1479                 }
1480                 comparator->function = comparator->function | (1 << 4) |
1481                                 (data_size << 10);
1482         }
1483
1484         target_write_u32(target, comparator->dwt_comparator_address + 8,
1485                 comparator->function);
1486
1487         LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
1488                 watchpoint->unique_id, dwt_num,
1489                 (unsigned) comparator->comp,
1490                 (unsigned) comparator->mask,
1491                 (unsigned) comparator->function);
1492         return ERROR_OK;
1493 }
1494
1495 static int cortex_m_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1496 {
1497         struct cortex_m_common *cortex_m = target_to_cm(target);
1498         struct cortex_m_dwt_comparator *comparator;
1499         int dwt_num;
1500
1501         if (!watchpoint->set) {
1502                 LOG_WARNING("watchpoint (wpid: %d) not set",
1503                         watchpoint->unique_id);
1504                 return ERROR_OK;
1505         }
1506
1507         dwt_num = watchpoint->set - 1;
1508
1509         LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear",
1510                 watchpoint->unique_id, dwt_num,
1511                 (unsigned) watchpoint->address);
1512
1513         if ((dwt_num < 0) || (dwt_num >= cortex_m->dwt_num_comp)) {
1514                 LOG_DEBUG("Invalid DWT Comparator number in watchpoint");
1515                 return ERROR_OK;
1516         }
1517
1518         comparator = cortex_m->dwt_comparator_list + dwt_num;
1519         comparator->used = false;
1520         comparator->function = 0;
1521         target_write_u32(target, comparator->dwt_comparator_address + 8,
1522                 comparator->function);
1523
1524         watchpoint->set = false;
1525
1526         return ERROR_OK;
1527 }
1528
1529 int cortex_m_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1530 {
1531         struct cortex_m_common *cortex_m = target_to_cm(target);
1532
1533         if (cortex_m->dwt_comp_available < 1) {
1534                 LOG_DEBUG("no comparators?");
1535                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1536         }
1537
1538         /* hardware doesn't support data value masking */
1539         if (watchpoint->mask != ~(uint32_t)0) {
1540                 LOG_DEBUG("watchpoint value masks not supported");
1541                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1542         }
1543
1544         /* hardware allows address masks of up to 32K */
1545         unsigned mask;
1546
1547         for (mask = 0; mask < 16; mask++) {
1548                 if ((1u << mask) == watchpoint->length)
1549                         break;
1550         }
1551         if (mask == 16) {
1552                 LOG_DEBUG("unsupported watchpoint length");
1553                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1554         }
1555         if (watchpoint->address & ((1 << mask) - 1)) {
1556                 LOG_DEBUG("watchpoint address is unaligned");
1557                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1558         }
1559
1560         /* Caller doesn't seem to be able to describe watching for data
1561          * values of zero; that flags "no value".
1562          *
1563          * REVISIT This DWT may well be able to watch for specific data
1564          * values.  Requires comparator #1 to set DATAVMATCH and match
1565          * the data, and another comparator (DATAVADDR0) matching addr.
1566          */
1567         if (watchpoint->value) {
1568                 LOG_DEBUG("data value watchpoint not YET supported");
1569                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1570         }
1571
1572         cortex_m->dwt_comp_available--;
1573         LOG_DEBUG("dwt_comp_available: %d", cortex_m->dwt_comp_available);
1574
1575         return ERROR_OK;
1576 }
1577
1578 int cortex_m_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1579 {
1580         struct cortex_m_common *cortex_m = target_to_cm(target);
1581
1582         /* REVISIT why check? DWT can be updated with core running ... */
1583         if (target->state != TARGET_HALTED) {
1584                 LOG_WARNING("target not halted");
1585                 return ERROR_TARGET_NOT_HALTED;
1586         }
1587
1588         if (watchpoint->set)
1589                 cortex_m_unset_watchpoint(target, watchpoint);
1590
1591         cortex_m->dwt_comp_available++;
1592         LOG_DEBUG("dwt_comp_available: %d", cortex_m->dwt_comp_available);
1593
1594         return ERROR_OK;
1595 }
1596
1597 void cortex_m_enable_watchpoints(struct target *target)
1598 {
1599         struct watchpoint *watchpoint = target->watchpoints;
1600
1601         /* set any pending watchpoints */
1602         while (watchpoint) {
1603                 if (!watchpoint->set)
1604                         cortex_m_set_watchpoint(target, watchpoint);
1605                 watchpoint = watchpoint->next;
1606         }
1607 }
1608
1609 static int cortex_m_read_memory(struct target *target, target_addr_t address,
1610         uint32_t size, uint32_t count, uint8_t *buffer)
1611 {
1612         struct armv7m_common *armv7m = target_to_armv7m(target);
1613
1614         if (armv7m->arm.is_armv6m) {
1615                 /* armv6m does not handle unaligned memory access */
1616                 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1617                         return ERROR_TARGET_UNALIGNED_ACCESS;
1618         }
1619
1620         return mem_ap_read_buf(armv7m->debug_ap, buffer, size, count, address);
1621 }
1622
1623 static int cortex_m_write_memory(struct target *target, target_addr_t address,
1624         uint32_t size, uint32_t count, const uint8_t *buffer)
1625 {
1626         struct armv7m_common *armv7m = target_to_armv7m(target);
1627
1628         if (armv7m->arm.is_armv6m) {
1629                 /* armv6m does not handle unaligned memory access */
1630                 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1631                         return ERROR_TARGET_UNALIGNED_ACCESS;
1632         }
1633
1634         return mem_ap_write_buf(armv7m->debug_ap, buffer, size, count, address);
1635 }
1636
1637 static int cortex_m_init_target(struct command_context *cmd_ctx,
1638         struct target *target)
1639 {
1640         armv7m_build_reg_cache(target);
1641         arm_semihosting_init(target);
1642         return ERROR_OK;
1643 }
1644
1645 void cortex_m_deinit_target(struct target *target)
1646 {
1647         struct cortex_m_common *cortex_m = target_to_cm(target);
1648
1649         free(cortex_m->fp_comparator_list);
1650
1651         cortex_m_dwt_free(target);
1652         armv7m_free_reg_cache(target);
1653
1654         free(target->private_config);
1655         free(cortex_m);
1656 }
1657
1658 int cortex_m_profiling(struct target *target, uint32_t *samples,
1659                               uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1660 {
1661         struct timeval timeout, now;
1662         struct armv7m_common *armv7m = target_to_armv7m(target);
1663         uint32_t reg_value;
1664         int retval;
1665
1666         retval = target_read_u32(target, DWT_PCSR, &reg_value);
1667         if (retval != ERROR_OK) {
1668                 LOG_ERROR("Error while reading PCSR");
1669                 return retval;
1670         }
1671         if (reg_value == 0) {
1672                 LOG_INFO("PCSR sampling not supported on this processor.");
1673                 return target_profiling_default(target, samples, max_num_samples, num_samples, seconds);
1674         }
1675
1676         gettimeofday(&timeout, NULL);
1677         timeval_add_time(&timeout, seconds, 0);
1678
1679         LOG_INFO("Starting Cortex-M profiling. Sampling DWT_PCSR as fast as we can...");
1680
1681         /* Make sure the target is running */
1682         target_poll(target);
1683         if (target->state == TARGET_HALTED)
1684                 retval = target_resume(target, 1, 0, 0, 0);
1685
1686         if (retval != ERROR_OK) {
1687                 LOG_ERROR("Error while resuming target");
1688                 return retval;
1689         }
1690
1691         uint32_t sample_count = 0;
1692
1693         for (;;) {
1694                 if (armv7m && armv7m->debug_ap) {
1695                         uint32_t read_count = max_num_samples - sample_count;
1696                         if (read_count > 1024)
1697                                 read_count = 1024;
1698
1699                         retval = mem_ap_read_buf_noincr(armv7m->debug_ap,
1700                                                 (void *)&samples[sample_count],
1701                                                 4, read_count, DWT_PCSR);
1702                         sample_count += read_count;
1703                 } else {
1704                         target_read_u32(target, DWT_PCSR, &samples[sample_count++]);
1705                 }
1706
1707                 if (retval != ERROR_OK) {
1708                         LOG_ERROR("Error while reading PCSR");
1709                         return retval;
1710                 }
1711
1712
1713                 gettimeofday(&now, NULL);
1714                 if (sample_count >= max_num_samples || timeval_compare(&now, &timeout) > 0) {
1715                         LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
1716                         break;
1717                 }
1718         }
1719
1720         *num_samples = sample_count;
1721         return retval;
1722 }
1723
1724
1725 /* REVISIT cache valid/dirty bits are unmaintained.  We could set "valid"
1726  * on r/w if the core is not running, and clear on resume or reset ... or
1727  * at least, in a post_restore_context() method.
1728  */
1729
1730 struct dwt_reg_state {
1731         struct target *target;
1732         uint32_t addr;
1733         uint8_t value[4];               /* scratch/cache */
1734 };
1735
1736 static int cortex_m_dwt_get_reg(struct reg *reg)
1737 {
1738         struct dwt_reg_state *state = reg->arch_info;
1739
1740         uint32_t tmp;
1741         int retval = target_read_u32(state->target, state->addr, &tmp);
1742         if (retval != ERROR_OK)
1743                 return retval;
1744
1745         buf_set_u32(state->value, 0, 32, tmp);
1746         return ERROR_OK;
1747 }
1748
1749 static int cortex_m_dwt_set_reg(struct reg *reg, uint8_t *buf)
1750 {
1751         struct dwt_reg_state *state = reg->arch_info;
1752
1753         return target_write_u32(state->target, state->addr,
1754                         buf_get_u32(buf, 0, reg->size));
1755 }
1756
1757 struct dwt_reg {
1758         uint32_t addr;
1759         const char *name;
1760         unsigned size;
1761 };
1762
1763 static const struct dwt_reg dwt_base_regs[] = {
1764         { DWT_CTRL, "dwt_ctrl", 32, },
1765         /* NOTE that Erratum 532314 (fixed r2p0) affects CYCCNT:  it wrongly
1766          * increments while the core is asleep.
1767          */
1768         { DWT_CYCCNT, "dwt_cyccnt", 32, },
1769         /* plus some 8 bit counters, useful for profiling with TPIU */
1770 };
1771
1772 static const struct dwt_reg dwt_comp[] = {
1773 #define DWT_COMPARATOR(i) \
1774                 { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
1775                 { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
1776                 { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
1777         DWT_COMPARATOR(0),
1778         DWT_COMPARATOR(1),
1779         DWT_COMPARATOR(2),
1780         DWT_COMPARATOR(3),
1781         DWT_COMPARATOR(4),
1782         DWT_COMPARATOR(5),
1783         DWT_COMPARATOR(6),
1784         DWT_COMPARATOR(7),
1785         DWT_COMPARATOR(8),
1786         DWT_COMPARATOR(9),
1787         DWT_COMPARATOR(10),
1788         DWT_COMPARATOR(11),
1789         DWT_COMPARATOR(12),
1790         DWT_COMPARATOR(13),
1791         DWT_COMPARATOR(14),
1792         DWT_COMPARATOR(15),
1793 #undef DWT_COMPARATOR
1794 };
1795
1796 static const struct reg_arch_type dwt_reg_type = {
1797         .get = cortex_m_dwt_get_reg,
1798         .set = cortex_m_dwt_set_reg,
1799 };
1800
1801 static void cortex_m_dwt_addreg(struct target *t, struct reg *r, const struct dwt_reg *d)
1802 {
1803         struct dwt_reg_state *state;
1804
1805         state = calloc(1, sizeof(*state));
1806         if (!state)
1807                 return;
1808         state->addr = d->addr;
1809         state->target = t;
1810
1811         r->name = d->name;
1812         r->size = d->size;
1813         r->value = state->value;
1814         r->arch_info = state;
1815         r->type = &dwt_reg_type;
1816 }
1817
1818 static void cortex_m_dwt_setup(struct cortex_m_common *cm, struct target *target)
1819 {
1820         uint32_t dwtcr;
1821         struct reg_cache *cache;
1822         struct cortex_m_dwt_comparator *comparator;
1823         int reg, i;
1824
1825         target_read_u32(target, DWT_CTRL, &dwtcr);
1826         LOG_DEBUG("DWT_CTRL: 0x%" PRIx32, dwtcr);
1827         if (!dwtcr) {
1828                 LOG_DEBUG("no DWT");
1829                 return;
1830         }
1831
1832         target_read_u32(target, DWT_DEVARCH, &cm->dwt_devarch);
1833         LOG_DEBUG("DWT_DEVARCH: 0x%" PRIx32, cm->dwt_devarch);
1834
1835         cm->dwt_num_comp = (dwtcr >> 28) & 0xF;
1836         cm->dwt_comp_available = cm->dwt_num_comp;
1837         cm->dwt_comparator_list = calloc(cm->dwt_num_comp,
1838                         sizeof(struct cortex_m_dwt_comparator));
1839         if (!cm->dwt_comparator_list) {
1840 fail0:
1841                 cm->dwt_num_comp = 0;
1842                 LOG_ERROR("out of mem");
1843                 return;
1844         }
1845
1846         cache = calloc(1, sizeof(*cache));
1847         if (!cache) {
1848 fail1:
1849                 free(cm->dwt_comparator_list);
1850                 goto fail0;
1851         }
1852         cache->name = "Cortex-M DWT registers";
1853         cache->num_regs = 2 + cm->dwt_num_comp * 3;
1854         cache->reg_list = calloc(cache->num_regs, sizeof(*cache->reg_list));
1855         if (!cache->reg_list) {
1856                 free(cache);
1857                 goto fail1;
1858         }
1859
1860         for (reg = 0; reg < 2; reg++)
1861                 cortex_m_dwt_addreg(target, cache->reg_list + reg,
1862                         dwt_base_regs + reg);
1863
1864         comparator = cm->dwt_comparator_list;
1865         for (i = 0; i < cm->dwt_num_comp; i++, comparator++) {
1866                 int j;
1867
1868                 comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
1869                 for (j = 0; j < 3; j++, reg++)
1870                         cortex_m_dwt_addreg(target, cache->reg_list + reg,
1871                                 dwt_comp + 3 * i + j);
1872
1873                 /* make sure we clear any watchpoints enabled on the target */
1874                 target_write_u32(target, comparator->dwt_comparator_address + 8, 0);
1875         }
1876
1877         *register_get_last_cache_p(&target->reg_cache) = cache;
1878         cm->dwt_cache = cache;
1879
1880         LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
1881                 dwtcr, cm->dwt_num_comp,
1882                 (dwtcr & (0xf << 24)) ? " only" : "/trigger");
1883
1884         /* REVISIT:  if num_comp > 1, check whether comparator #1 can
1885          * implement single-address data value watchpoints ... so we
1886          * won't need to check it later, when asked to set one up.
1887          */
1888 }
1889
1890 static void cortex_m_dwt_free(struct target *target)
1891 {
1892         struct cortex_m_common *cm = target_to_cm(target);
1893         struct reg_cache *cache = cm->dwt_cache;
1894
1895         free(cm->dwt_comparator_list);
1896         cm->dwt_comparator_list = NULL;
1897         cm->dwt_num_comp = 0;
1898
1899         if (cache) {
1900                 register_unlink_cache(&target->reg_cache, cache);
1901
1902                 if (cache->reg_list) {
1903                         for (size_t i = 0; i < cache->num_regs; i++)
1904                                 free(cache->reg_list[i].arch_info);
1905                         free(cache->reg_list);
1906                 }
1907                 free(cache);
1908         }
1909         cm->dwt_cache = NULL;
1910 }
1911
1912 #define MVFR0 0xe000ef40
1913 #define MVFR1 0xe000ef44
1914
1915 #define MVFR0_DEFAULT_M4 0x10110021
1916 #define MVFR1_DEFAULT_M4 0x11000011
1917
1918 #define MVFR0_DEFAULT_M7_SP 0x10110021
1919 #define MVFR0_DEFAULT_M7_DP 0x10110221
1920 #define MVFR1_DEFAULT_M7_SP 0x11000011
1921 #define MVFR1_DEFAULT_M7_DP 0x12000011
1922
1923 static int cortex_m_find_mem_ap(struct adiv5_dap *swjdp,
1924                 struct adiv5_ap **debug_ap)
1925 {
1926         if (dap_find_ap(swjdp, AP_TYPE_AHB3_AP, debug_ap) == ERROR_OK)
1927                 return ERROR_OK;
1928
1929         return dap_find_ap(swjdp, AP_TYPE_AHB5_AP, debug_ap);
1930 }
1931
1932 int cortex_m_examine(struct target *target)
1933 {
1934         int retval;
1935         uint32_t cpuid, fpcr, mvfr0, mvfr1;
1936         int i;
1937         struct cortex_m_common *cortex_m = target_to_cm(target);
1938         struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
1939         struct armv7m_common *armv7m = target_to_armv7m(target);
1940
1941         /* stlink shares the examine handler but does not support
1942          * all its calls */
1943         if (!armv7m->stlink) {
1944                 if (cortex_m->apsel == DP_APSEL_INVALID) {
1945                         /* Search for the MEM-AP */
1946                         retval = cortex_m_find_mem_ap(swjdp, &armv7m->debug_ap);
1947                         if (retval != ERROR_OK) {
1948                                 LOG_ERROR("Could not find MEM-AP to control the core");
1949                                 return retval;
1950                         }
1951                 } else {
1952                         armv7m->debug_ap = dap_ap(swjdp, cortex_m->apsel);
1953                 }
1954
1955                 /* Leave (only) generic DAP stuff for debugport_init(); */
1956                 armv7m->debug_ap->memaccess_tck = 8;
1957
1958                 retval = mem_ap_init(armv7m->debug_ap);
1959                 if (retval != ERROR_OK)
1960                         return retval;
1961         }
1962
1963         if (!target_was_examined(target)) {
1964                 target_set_examined(target);
1965
1966                 /* Read from Device Identification Registers */
1967                 retval = target_read_u32(target, CPUID, &cpuid);
1968                 if (retval != ERROR_OK)
1969                         return retval;
1970
1971                 /* Get CPU Type */
1972                 i = (cpuid >> 4) & 0xf;
1973
1974                 /* Check if it is an ARMv8-M core */
1975                 armv7m->arm.is_armv8m = true;
1976
1977                 switch (cpuid & ARM_CPUID_PARTNO_MASK) {
1978                         case CORTEX_M23_PARTNO:
1979                                 i = 23;
1980                                 break;
1981                         case CORTEX_M33_PARTNO:
1982                                 i = 33;
1983                                 break;
1984                         case CORTEX_M35P_PARTNO:
1985                                 i = 35;
1986                                 break;
1987                         case CORTEX_M55_PARTNO:
1988                                 i = 55;
1989                                 break;
1990                         default:
1991                                 armv7m->arm.is_armv8m = false;
1992                                 break;
1993                 }
1994
1995
1996                 LOG_DEBUG("Cortex-M%d r%" PRId8 "p%" PRId8 " processor detected",
1997                                 i, (uint8_t)((cpuid >> 20) & 0xf), (uint8_t)((cpuid >> 0) & 0xf));
1998                 cortex_m->maskints_erratum = false;
1999                 if (i == 7) {
2000                         uint8_t rev, patch;
2001                         rev = (cpuid >> 20) & 0xf;
2002                         patch = (cpuid >> 0) & 0xf;
2003                         if ((rev == 0) && (patch < 2)) {
2004                                 LOG_WARNING("Silicon bug: single stepping may enter pending exception handler!");
2005                                 cortex_m->maskints_erratum = true;
2006                         }
2007                 }
2008                 LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid);
2009
2010                 /* VECTRESET is not supported on Cortex-M0, M0+ and M1 */
2011                 cortex_m->vectreset_supported = i > 1;
2012
2013                 if (i == 4) {
2014                         target_read_u32(target, MVFR0, &mvfr0);
2015                         target_read_u32(target, MVFR1, &mvfr1);
2016
2017                         /* test for floating point feature on Cortex-M4 */
2018                         if ((mvfr0 == MVFR0_DEFAULT_M4) && (mvfr1 == MVFR1_DEFAULT_M4)) {
2019                                 LOG_DEBUG("Cortex-M%d floating point feature FPv4_SP found", i);
2020                                 armv7m->fp_feature = FPv4_SP;
2021                         }
2022                 } else if (i == 7 || i == 33 || i == 35 || i == 55) {
2023                         target_read_u32(target, MVFR0, &mvfr0);
2024                         target_read_u32(target, MVFR1, &mvfr1);
2025
2026                         /* test for floating point features on Cortex-M7 */
2027                         if ((mvfr0 == MVFR0_DEFAULT_M7_SP) && (mvfr1 == MVFR1_DEFAULT_M7_SP)) {
2028                                 LOG_DEBUG("Cortex-M%d floating point feature FPv5_SP found", i);
2029                                 armv7m->fp_feature = FPv5_SP;
2030                         } else if ((mvfr0 == MVFR0_DEFAULT_M7_DP) && (mvfr1 == MVFR1_DEFAULT_M7_DP)) {
2031                                 LOG_DEBUG("Cortex-M%d floating point feature FPv5_DP found", i);
2032                                 armv7m->fp_feature = FPv5_DP;
2033                         }
2034                 } else if (i == 0) {
2035                         /* Cortex-M0 does not support unaligned memory access */
2036                         armv7m->arm.is_armv6m = true;
2037                 }
2038
2039                 if (armv7m->fp_feature == FP_NONE &&
2040                     armv7m->arm.core_cache->num_regs > ARMV7M_NUM_CORE_REGS_NOFP) {
2041                         /* free unavailable FPU registers */
2042                         size_t idx;
2043
2044                         for (idx = ARMV7M_NUM_CORE_REGS_NOFP;
2045                              idx < armv7m->arm.core_cache->num_regs;
2046                              idx++) {
2047                                 free(armv7m->arm.core_cache->reg_list[idx].feature);
2048                                 free(armv7m->arm.core_cache->reg_list[idx].reg_data_type);
2049                         }
2050                         armv7m->arm.core_cache->num_regs = ARMV7M_NUM_CORE_REGS_NOFP;
2051                 }
2052
2053                 if (!armv7m->stlink) {
2054                         if (i == 3 || i == 4)
2055                                 /* Cortex-M3/M4 have 4096 bytes autoincrement range,
2056                                  * s. ARM IHI 0031C: MEM-AP 7.2.2 */
2057                                 armv7m->debug_ap->tar_autoincr_block = (1 << 12);
2058                         else if (i == 7)
2059                                 /* Cortex-M7 has only 1024 bytes autoincrement range */
2060                                 armv7m->debug_ap->tar_autoincr_block = (1 << 10);
2061                 }
2062
2063                 /* Enable debug requests */
2064                 retval = target_read_u32(target, DCB_DHCSR, &cortex_m->dcb_dhcsr);
2065                 if (retval != ERROR_OK)
2066                         return retval;
2067                 if (!(cortex_m->dcb_dhcsr & C_DEBUGEN)) {
2068                         uint32_t dhcsr = (cortex_m->dcb_dhcsr | C_DEBUGEN) & ~(C_HALT | C_STEP | C_MASKINTS);
2069
2070                         retval = target_write_u32(target, DCB_DHCSR, DBGKEY | (dhcsr & 0x0000FFFFUL));
2071                         if (retval != ERROR_OK)
2072                                 return retval;
2073                         cortex_m->dcb_dhcsr = dhcsr;
2074                 }
2075
2076                 /* Configure trace modules */
2077                 retval = target_write_u32(target, DCB_DEMCR, TRCENA | armv7m->demcr);
2078                 if (retval != ERROR_OK)
2079                         return retval;
2080
2081                 if (armv7m->trace_config.config_type != TRACE_CONFIG_TYPE_DISABLED) {
2082                         armv7m_trace_tpiu_config(target);
2083                         armv7m_trace_itm_config(target);
2084                 }
2085
2086                 /* NOTE: FPB and DWT are both optional. */
2087
2088                 /* Setup FPB */
2089                 target_read_u32(target, FP_CTRL, &fpcr);
2090                 /* bits [14:12] and [7:4] */
2091                 cortex_m->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF);
2092                 cortex_m->fp_num_lit = (fpcr >> 8) & 0xF;
2093                 /* Detect flash patch revision, see RM DDI 0403E.b page C1-817.
2094                    Revision is zero base, fp_rev == 1 means Rev.2 ! */
2095                 cortex_m->fp_rev = (fpcr >> 28) & 0xf;
2096                 free(cortex_m->fp_comparator_list);
2097                 cortex_m->fp_comparator_list = calloc(
2098                                 cortex_m->fp_num_code + cortex_m->fp_num_lit,
2099                                 sizeof(struct cortex_m_fp_comparator));
2100                 cortex_m->fpb_enabled = fpcr & 1;
2101                 for (i = 0; i < cortex_m->fp_num_code + cortex_m->fp_num_lit; i++) {
2102                         cortex_m->fp_comparator_list[i].type =
2103                                 (i < cortex_m->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
2104                         cortex_m->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
2105
2106                         /* make sure we clear any breakpoints enabled on the target */
2107                         target_write_u32(target, cortex_m->fp_comparator_list[i].fpcr_address, 0);
2108                 }
2109                 LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i",
2110                         fpcr,
2111                         cortex_m->fp_num_code,
2112                         cortex_m->fp_num_lit);
2113
2114                 /* Setup DWT */
2115                 cortex_m_dwt_free(target);
2116                 cortex_m_dwt_setup(cortex_m, target);
2117
2118                 /* These hardware breakpoints only work for code in flash! */
2119                 LOG_INFO("%s: hardware has %d breakpoints, %d watchpoints",
2120                         target_name(target),
2121                         cortex_m->fp_num_code,
2122                         cortex_m->dwt_num_comp);
2123         }
2124
2125         return ERROR_OK;
2126 }
2127
2128 static int cortex_m_dcc_read(struct target *target, uint8_t *value, uint8_t *ctrl)
2129 {
2130         struct armv7m_common *armv7m = target_to_armv7m(target);
2131         uint16_t dcrdr;
2132         uint8_t buf[2];
2133         int retval;
2134
2135         retval = mem_ap_read_buf_noincr(armv7m->debug_ap, buf, 2, 1, DCB_DCRDR);
2136         if (retval != ERROR_OK)
2137                 return retval;
2138
2139         dcrdr = target_buffer_get_u16(target, buf);
2140         *ctrl = (uint8_t)dcrdr;
2141         *value = (uint8_t)(dcrdr >> 8);
2142
2143         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
2144
2145         /* write ack back to software dcc register
2146          * signify we have read data */
2147         if (dcrdr & (1 << 0)) {
2148                 target_buffer_set_u16(target, buf, 0);
2149                 retval = mem_ap_write_buf_noincr(armv7m->debug_ap, buf, 2, 1, DCB_DCRDR);
2150                 if (retval != ERROR_OK)
2151                         return retval;
2152         }
2153
2154         return ERROR_OK;
2155 }
2156
2157 static int cortex_m_target_request_data(struct target *target,
2158         uint32_t size, uint8_t *buffer)
2159 {
2160         uint8_t data;
2161         uint8_t ctrl;
2162         uint32_t i;
2163
2164         for (i = 0; i < (size * 4); i++) {
2165                 int retval = cortex_m_dcc_read(target, &data, &ctrl);
2166                 if (retval != ERROR_OK)
2167                         return retval;
2168                 buffer[i] = data;
2169         }
2170
2171         return ERROR_OK;
2172 }
2173
2174 static int cortex_m_handle_target_request(void *priv)
2175 {
2176         struct target *target = priv;
2177         if (!target_was_examined(target))
2178                 return ERROR_OK;
2179
2180         if (!target->dbg_msg_enabled)
2181                 return ERROR_OK;
2182
2183         if (target->state == TARGET_RUNNING) {
2184                 uint8_t data;
2185                 uint8_t ctrl;
2186                 int retval;
2187
2188                 retval = cortex_m_dcc_read(target, &data, &ctrl);
2189                 if (retval != ERROR_OK)
2190                         return retval;
2191
2192                 /* check if we have data */
2193                 if (ctrl & (1 << 0)) {
2194                         uint32_t request;
2195
2196                         /* we assume target is quick enough */
2197                         request = data;
2198                         for (int i = 1; i <= 3; i++) {
2199                                 retval = cortex_m_dcc_read(target, &data, &ctrl);
2200                                 if (retval != ERROR_OK)
2201                                         return retval;
2202                                 request |= ((uint32_t)data << (i * 8));
2203                         }
2204                         target_request(target, request);
2205                 }
2206         }
2207
2208         return ERROR_OK;
2209 }
2210
2211 static int cortex_m_init_arch_info(struct target *target,
2212         struct cortex_m_common *cortex_m, struct adiv5_dap *dap)
2213 {
2214         struct armv7m_common *armv7m = &cortex_m->armv7m;
2215
2216         armv7m_init_arch_info(target, armv7m);
2217
2218         /* default reset mode is to use srst if fitted
2219          * if not it will use CORTEX_M3_RESET_VECTRESET */
2220         cortex_m->soft_reset_config = CORTEX_M_RESET_VECTRESET;
2221
2222         armv7m->arm.dap = dap;
2223
2224         /* register arch-specific functions */
2225         armv7m->examine_debug_reason = cortex_m_examine_debug_reason;
2226
2227         armv7m->post_debug_entry = NULL;
2228
2229         armv7m->pre_restore_context = NULL;
2230
2231         armv7m->load_core_reg_u32 = cortex_m_load_core_reg_u32;
2232         armv7m->store_core_reg_u32 = cortex_m_store_core_reg_u32;
2233
2234         target_register_timer_callback(cortex_m_handle_target_request, 1,
2235                 TARGET_TIMER_TYPE_PERIODIC, target);
2236
2237         return ERROR_OK;
2238 }
2239
2240 static int cortex_m_target_create(struct target *target, Jim_Interp *interp)
2241 {
2242         struct adiv5_private_config *pc;
2243
2244         pc = (struct adiv5_private_config *)target->private_config;
2245         if (adiv5_verify_config(pc) != ERROR_OK)
2246                 return ERROR_FAIL;
2247
2248         struct cortex_m_common *cortex_m = calloc(1, sizeof(struct cortex_m_common));
2249         if (cortex_m == NULL) {
2250                 LOG_ERROR("No memory creating target");
2251                 return ERROR_FAIL;
2252         }
2253
2254         cortex_m->common_magic = CORTEX_M_COMMON_MAGIC;
2255         cortex_m->apsel = pc->ap_num;
2256
2257         cortex_m_init_arch_info(target, cortex_m, pc->dap);
2258
2259         return ERROR_OK;
2260 }
2261
2262 /*--------------------------------------------------------------------------*/
2263
2264 static int cortex_m_verify_pointer(struct command_invocation *cmd,
2265         struct cortex_m_common *cm)
2266 {
2267         if (cm->common_magic != CORTEX_M_COMMON_MAGIC) {
2268                 command_print(cmd, "target is not a Cortex-M");
2269                 return ERROR_TARGET_INVALID;
2270         }
2271         return ERROR_OK;
2272 }
2273
2274 /*
2275  * Only stuff below this line should need to verify that its target
2276  * is a Cortex-M3.  Everything else should have indirected through the
2277  * cortexm3_target structure, which is only used with CM3 targets.
2278  */
2279
2280 COMMAND_HANDLER(handle_cortex_m_vector_catch_command)
2281 {
2282         struct target *target = get_current_target(CMD_CTX);
2283         struct cortex_m_common *cortex_m = target_to_cm(target);
2284         struct armv7m_common *armv7m = &cortex_m->armv7m;
2285         uint32_t demcr = 0;
2286         int retval;
2287
2288         static const struct {
2289                 char name[10];
2290                 unsigned mask;
2291         } vec_ids[] = {
2292                 { "hard_err",   VC_HARDERR, },
2293                 { "int_err",    VC_INTERR, },
2294                 { "bus_err",    VC_BUSERR, },
2295                 { "state_err",  VC_STATERR, },
2296                 { "chk_err",    VC_CHKERR, },
2297                 { "nocp_err",   VC_NOCPERR, },
2298                 { "mm_err",     VC_MMERR, },
2299                 { "reset",      VC_CORERESET, },
2300         };
2301
2302         retval = cortex_m_verify_pointer(CMD, cortex_m);
2303         if (retval != ERROR_OK)
2304                 return retval;
2305
2306         if (!target_was_examined(target)) {
2307                 LOG_ERROR("Target not examined yet");
2308                 return ERROR_FAIL;
2309         }
2310
2311         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &demcr);
2312         if (retval != ERROR_OK)
2313                 return retval;
2314
2315         if (CMD_ARGC > 0) {
2316                 unsigned catch = 0;
2317
2318                 if (CMD_ARGC == 1) {
2319                         if (strcmp(CMD_ARGV[0], "all") == 0) {
2320                                 catch = VC_HARDERR | VC_INTERR | VC_BUSERR
2321                                         | VC_STATERR | VC_CHKERR | VC_NOCPERR
2322                                         | VC_MMERR | VC_CORERESET;
2323                                 goto write;
2324                         } else if (strcmp(CMD_ARGV[0], "none") == 0)
2325                                 goto write;
2326                 }
2327                 while (CMD_ARGC-- > 0) {
2328                         unsigned i;
2329                         for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2330                                 if (strcmp(CMD_ARGV[CMD_ARGC], vec_ids[i].name) != 0)
2331                                         continue;
2332                                 catch |= vec_ids[i].mask;
2333                                 break;
2334                         }
2335                         if (i == ARRAY_SIZE(vec_ids)) {
2336                                 LOG_ERROR("No CM3 vector '%s'", CMD_ARGV[CMD_ARGC]);
2337                                 return ERROR_COMMAND_SYNTAX_ERROR;
2338                         }
2339                 }
2340 write:
2341                 /* For now, armv7m->demcr only stores vector catch flags. */
2342                 armv7m->demcr = catch;
2343
2344                 demcr &= ~0xffff;
2345                 demcr |= catch;
2346
2347                 /* write, but don't assume it stuck (why not??) */
2348                 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR, demcr);
2349                 if (retval != ERROR_OK)
2350                         return retval;
2351                 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &demcr);
2352                 if (retval != ERROR_OK)
2353                         return retval;
2354
2355                 /* FIXME be sure to clear DEMCR on clean server shutdown.
2356                  * Otherwise the vector catch hardware could fire when there's
2357                  * no debugger hooked up, causing much confusion...
2358                  */
2359         }
2360
2361         for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2362                 command_print(CMD, "%9s: %s", vec_ids[i].name,
2363                         (demcr & vec_ids[i].mask) ? "catch" : "ignore");
2364         }
2365
2366         return ERROR_OK;
2367 }
2368
2369 COMMAND_HANDLER(handle_cortex_m_mask_interrupts_command)
2370 {
2371         struct target *target = get_current_target(CMD_CTX);
2372         struct cortex_m_common *cortex_m = target_to_cm(target);
2373         int retval;
2374
2375         static const Jim_Nvp nvp_maskisr_modes[] = {
2376                 { .name = "auto", .value = CORTEX_M_ISRMASK_AUTO },
2377                 { .name = "off", .value = CORTEX_M_ISRMASK_OFF },
2378                 { .name = "on", .value = CORTEX_M_ISRMASK_ON },
2379                 { .name = "steponly", .value = CORTEX_M_ISRMASK_STEPONLY },
2380                 { .name = NULL, .value = -1 },
2381         };
2382         const Jim_Nvp *n;
2383
2384
2385         retval = cortex_m_verify_pointer(CMD, cortex_m);
2386         if (retval != ERROR_OK)
2387                 return retval;
2388
2389         if (target->state != TARGET_HALTED) {
2390                 command_print(CMD, "target must be stopped for \"%s\" command", CMD_NAME);
2391                 return ERROR_OK;
2392         }
2393
2394         if (CMD_ARGC > 0) {
2395                 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
2396                 if (n->name == NULL)
2397                         return ERROR_COMMAND_SYNTAX_ERROR;
2398                 cortex_m->isrmasking_mode = n->value;
2399                 cortex_m_set_maskints_for_halt(target);
2400         }
2401
2402         n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_m->isrmasking_mode);
2403         command_print(CMD, "cortex_m interrupt mask %s", n->name);
2404
2405         return ERROR_OK;
2406 }
2407
2408 COMMAND_HANDLER(handle_cortex_m_reset_config_command)
2409 {
2410         struct target *target = get_current_target(CMD_CTX);
2411         struct cortex_m_common *cortex_m = target_to_cm(target);
2412         int retval;
2413         char *reset_config;
2414
2415         retval = cortex_m_verify_pointer(CMD, cortex_m);
2416         if (retval != ERROR_OK)
2417                 return retval;
2418
2419         if (CMD_ARGC > 0) {
2420                 if (strcmp(*CMD_ARGV, "sysresetreq") == 0)
2421                         cortex_m->soft_reset_config = CORTEX_M_RESET_SYSRESETREQ;
2422
2423                 else if (strcmp(*CMD_ARGV, "vectreset") == 0) {
2424                         if (target_was_examined(target)
2425                                         && !cortex_m->vectreset_supported)
2426                                 LOG_WARNING("VECTRESET is not supported on your Cortex-M core!");
2427                         else
2428                                 cortex_m->soft_reset_config = CORTEX_M_RESET_VECTRESET;
2429
2430                 } else
2431                         return ERROR_COMMAND_SYNTAX_ERROR;
2432         }
2433
2434         switch (cortex_m->soft_reset_config) {
2435                 case CORTEX_M_RESET_SYSRESETREQ:
2436                         reset_config = "sysresetreq";
2437                         break;
2438
2439                 case CORTEX_M_RESET_VECTRESET:
2440                         reset_config = "vectreset";
2441                         break;
2442
2443                 default:
2444                         reset_config = "unknown";
2445                         break;
2446         }
2447
2448         command_print(CMD, "cortex_m reset_config %s", reset_config);
2449
2450         return ERROR_OK;
2451 }
2452
2453 static const struct command_registration cortex_m_exec_command_handlers[] = {
2454         {
2455                 .name = "maskisr",
2456                 .handler = handle_cortex_m_mask_interrupts_command,
2457                 .mode = COMMAND_EXEC,
2458                 .help = "mask cortex_m interrupts",
2459                 .usage = "['auto'|'on'|'off'|'steponly']",
2460         },
2461         {
2462                 .name = "vector_catch",
2463                 .handler = handle_cortex_m_vector_catch_command,
2464                 .mode = COMMAND_EXEC,
2465                 .help = "configure hardware vectors to trigger debug entry",
2466                 .usage = "['all'|'none'|('bus_err'|'chk_err'|...)*]",
2467         },
2468         {
2469                 .name = "reset_config",
2470                 .handler = handle_cortex_m_reset_config_command,
2471                 .mode = COMMAND_ANY,
2472                 .help = "configure software reset handling",
2473                 .usage = "['sysresetreq'|'vectreset']",
2474         },
2475         COMMAND_REGISTRATION_DONE
2476 };
2477 static const struct command_registration cortex_m_command_handlers[] = {
2478         {
2479                 .chain = armv7m_command_handlers,
2480         },
2481         {
2482                 .chain = armv7m_trace_command_handlers,
2483         },
2484         {
2485                 .name = "cortex_m",
2486                 .mode = COMMAND_EXEC,
2487                 .help = "Cortex-M command group",
2488                 .usage = "",
2489                 .chain = cortex_m_exec_command_handlers,
2490         },
2491         COMMAND_REGISTRATION_DONE
2492 };
2493
2494 struct target_type cortexm_target = {
2495         .name = "cortex_m",
2496         .deprecated_name = "cortex_m3",
2497
2498         .poll = cortex_m_poll,
2499         .arch_state = armv7m_arch_state,
2500
2501         .target_request_data = cortex_m_target_request_data,
2502
2503         .halt = cortex_m_halt,
2504         .resume = cortex_m_resume,
2505         .step = cortex_m_step,
2506
2507         .assert_reset = cortex_m_assert_reset,
2508         .deassert_reset = cortex_m_deassert_reset,
2509         .soft_reset_halt = cortex_m_soft_reset_halt,
2510
2511         .get_gdb_arch = arm_get_gdb_arch,
2512         .get_gdb_reg_list = armv7m_get_gdb_reg_list,
2513
2514         .read_memory = cortex_m_read_memory,
2515         .write_memory = cortex_m_write_memory,
2516         .checksum_memory = armv7m_checksum_memory,
2517         .blank_check_memory = armv7m_blank_check_memory,
2518
2519         .run_algorithm = armv7m_run_algorithm,
2520         .start_algorithm = armv7m_start_algorithm,
2521         .wait_algorithm = armv7m_wait_algorithm,
2522
2523         .add_breakpoint = cortex_m_add_breakpoint,
2524         .remove_breakpoint = cortex_m_remove_breakpoint,
2525         .add_watchpoint = cortex_m_add_watchpoint,
2526         .remove_watchpoint = cortex_m_remove_watchpoint,
2527
2528         .commands = cortex_m_command_handlers,
2529         .target_create = cortex_m_target_create,
2530         .target_jim_configure = adiv5_jim_configure,
2531         .init_target = cortex_m_init_target,
2532         .examine = cortex_m_examine,
2533         .deinit_target = cortex_m_deinit_target,
2534
2535         .profiling = cortex_m_profiling,
2536 };