0a7668ddfa2d4758040e89ca0a726c616d7c80a8
[fw/openocd] / src / target / cortex_m.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   This program is free software; you can redistribute it and/or modify  *
12  *   it under the terms of the GNU General Public License as published by  *
13  *   the Free Software Foundation; either version 2 of the License, or     *
14  *   (at your option) any later version.                                   *
15  *                                                                         *
16  *   This program is distributed in the hope that it will be useful,       *
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
19  *   GNU General Public License for more details.                          *
20  *                                                                         *
21  *   You should have received a copy of the GNU General Public License     *
22  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
23  *                                                                         *
24  *                                                                         *
25  *   Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0)              *
26  *                                                                         *
27  ***************************************************************************/
28 #ifdef HAVE_CONFIG_H
29 #include "config.h"
30 #endif
31
32 #include "jtag/interface.h"
33 #include "breakpoints.h"
34 #include "cortex_m.h"
35 #include "target_request.h"
36 #include "target_type.h"
37 #include "arm_adi_v5.h"
38 #include "arm_disassembler.h"
39 #include "register.h"
40 #include "arm_opcodes.h"
41 #include "arm_semihosting.h"
42 #include <helper/time_support.h>
43 #include <rtt/rtt.h>
44
45 /* NOTE:  most of this should work fine for the Cortex-M1 and
46  * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
47  * Some differences:  M0/M1 doesn't have FPB remapping or the
48  * DWT tracing/profiling support.  (So the cycle counter will
49  * not be usable; the other stuff isn't currently used here.)
50  *
51  * Although there are some workarounds for errata seen only in r0p0
52  * silicon, such old parts are hard to find and thus not much tested
53  * any longer.
54  */
55
56 /* Timeout for register r/w */
57 #define DHCSR_S_REGRDY_TIMEOUT (500)
58
59 /* Supported Cortex-M Cores */
60 static const struct cortex_m_part_info cortex_m_parts[] = {
61         {
62                 .partno = CORTEX_M0_PARTNO,
63                 .name = "Cortex-M0",
64                 .arch = ARM_ARCH_V6M,
65         },
66         {
67                 .partno = CORTEX_M0P_PARTNO,
68                 .name = "Cortex-M0+",
69                 .arch = ARM_ARCH_V6M,
70         },
71         {
72                 .partno = CORTEX_M1_PARTNO,
73                 .name = "Cortex-M1",
74                 .arch = ARM_ARCH_V6M,
75         },
76         {
77                 .partno = CORTEX_M3_PARTNO,
78                 .name = "Cortex-M3",
79                 .arch = ARM_ARCH_V7M,
80                 .flags = CORTEX_M_F_TAR_AUTOINCR_BLOCK_4K,
81         },
82         {
83                 .partno = CORTEX_M4_PARTNO,
84                 .name = "Cortex-M4",
85                 .arch = ARM_ARCH_V7M,
86                 .flags = CORTEX_M_F_HAS_FPV4 | CORTEX_M_F_TAR_AUTOINCR_BLOCK_4K,
87         },
88         {
89                 .partno = CORTEX_M7_PARTNO,
90                 .name = "Cortex-M7",
91                 .arch = ARM_ARCH_V7M,
92                 .flags = CORTEX_M_F_HAS_FPV5,
93         },
94         {
95                 .partno = CORTEX_M23_PARTNO,
96                 .name = "Cortex-M23",
97                 .arch = ARM_ARCH_V8M,
98         },
99         {
100                 .partno = CORTEX_M33_PARTNO,
101                 .name = "Cortex-M33",
102                 .arch = ARM_ARCH_V8M,
103                 .flags = CORTEX_M_F_HAS_FPV5,
104         },
105         {
106                 .partno = CORTEX_M35P_PARTNO,
107                 .name = "Cortex-M35P",
108                 .arch = ARM_ARCH_V8M,
109                 .flags = CORTEX_M_F_HAS_FPV5,
110         },
111         {
112                 .partno = CORTEX_M55_PARTNO,
113                 .name = "Cortex-M55",
114                 .arch = ARM_ARCH_V8M,
115                 .flags = CORTEX_M_F_HAS_FPV5,
116         },
117 };
118
119 /* forward declarations */
120 static int cortex_m_store_core_reg_u32(struct target *target,
121                 uint32_t num, uint32_t value);
122 static void cortex_m_dwt_free(struct target *target);
123
124 /** DCB DHCSR register contains S_RETIRE_ST and S_RESET_ST bits cleared
125  *  on a read. Call this helper function each time DHCSR is read
126  *  to preserve S_RESET_ST state in case of a reset event was detected.
127  */
128 static inline void cortex_m_cumulate_dhcsr_sticky(struct cortex_m_common *cortex_m,
129                 uint32_t dhcsr)
130 {
131         cortex_m->dcb_dhcsr_cumulated_sticky |= dhcsr;
132 }
133
134 /** Read DCB DHCSR register to cortex_m->dcb_dhcsr and cumulate
135  * sticky bits in cortex_m->dcb_dhcsr_cumulated_sticky
136  */
137 static int cortex_m_read_dhcsr_atomic_sticky(struct target *target)
138 {
139         struct cortex_m_common *cortex_m = target_to_cm(target);
140         struct armv7m_common *armv7m = target_to_armv7m(target);
141
142         int retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR,
143                                 &cortex_m->dcb_dhcsr);
144         if (retval != ERROR_OK)
145                 return retval;
146
147         cortex_m_cumulate_dhcsr_sticky(cortex_m, cortex_m->dcb_dhcsr);
148         return ERROR_OK;
149 }
150
151 static int cortex_m_load_core_reg_u32(struct target *target,
152                 uint32_t regsel, uint32_t *value)
153 {
154         struct cortex_m_common *cortex_m = target_to_cm(target);
155         struct armv7m_common *armv7m = target_to_armv7m(target);
156         int retval;
157         uint32_t dcrdr, tmp_value;
158         int64_t then;
159
160         /* because the DCB_DCRDR is used for the emulated dcc channel
161          * we have to save/restore the DCB_DCRDR when used */
162         if (target->dbg_msg_enabled) {
163                 retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DCRDR, &dcrdr);
164                 if (retval != ERROR_OK)
165                         return retval;
166         }
167
168         retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRSR, regsel);
169         if (retval != ERROR_OK)
170                 return retval;
171
172         /* check if value from register is ready and pre-read it */
173         then = timeval_ms();
174         while (1) {
175                 retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DHCSR,
176                                                                  &cortex_m->dcb_dhcsr);
177                 if (retval != ERROR_OK)
178                         return retval;
179                 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DCRDR,
180                                                                                 &tmp_value);
181                 if (retval != ERROR_OK)
182                         return retval;
183                 cortex_m_cumulate_dhcsr_sticky(cortex_m, cortex_m->dcb_dhcsr);
184                 if (cortex_m->dcb_dhcsr & S_REGRDY)
185                         break;
186                 cortex_m->slow_register_read = true; /* Polling (still) needed. */
187                 if (timeval_ms() > then + DHCSR_S_REGRDY_TIMEOUT) {
188                         LOG_TARGET_ERROR(target, "Timeout waiting for DCRDR transfer ready");
189                         return ERROR_TIMEOUT_REACHED;
190                 }
191                 keep_alive();
192         }
193
194         *value = tmp_value;
195
196         if (target->dbg_msg_enabled) {
197                 /* restore DCB_DCRDR - this needs to be in a separate
198                  * transaction otherwise the emulated DCC channel breaks */
199                 if (retval == ERROR_OK)
200                         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRDR, dcrdr);
201         }
202
203         return retval;
204 }
205
206 static int cortex_m_slow_read_all_regs(struct target *target)
207 {
208         struct cortex_m_common *cortex_m = target_to_cm(target);
209         struct armv7m_common *armv7m = target_to_armv7m(target);
210         const unsigned int num_regs = armv7m->arm.core_cache->num_regs;
211
212         /* Opportunistically restore fast read, it'll revert to slow
213          * if any register needed polling in cortex_m_load_core_reg_u32(). */
214         cortex_m->slow_register_read = false;
215
216         for (unsigned int reg_id = 0; reg_id < num_regs; reg_id++) {
217                 struct reg *r = &armv7m->arm.core_cache->reg_list[reg_id];
218                 if (r->exist) {
219                         int retval = armv7m->arm.read_core_reg(target, r, reg_id, ARM_MODE_ANY);
220                         if (retval != ERROR_OK)
221                                 return retval;
222                 }
223         }
224
225         if (!cortex_m->slow_register_read)
226                 LOG_TARGET_DEBUG(target, "Switching back to fast register reads");
227
228         return ERROR_OK;
229 }
230
231 static int cortex_m_queue_reg_read(struct target *target, uint32_t regsel,
232                 uint32_t *reg_value, uint32_t *dhcsr)
233 {
234         struct armv7m_common *armv7m = target_to_armv7m(target);
235         int retval;
236
237         retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRSR, regsel);
238         if (retval != ERROR_OK)
239                 return retval;
240
241         retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DHCSR, dhcsr);
242         if (retval != ERROR_OK)
243                 return retval;
244
245         return mem_ap_read_u32(armv7m->debug_ap, DCB_DCRDR, reg_value);
246 }
247
248 static int cortex_m_fast_read_all_regs(struct target *target)
249 {
250         struct cortex_m_common *cortex_m = target_to_cm(target);
251         struct armv7m_common *armv7m = target_to_armv7m(target);
252         int retval;
253         uint32_t dcrdr;
254
255         /* because the DCB_DCRDR is used for the emulated dcc channel
256          * we have to save/restore the DCB_DCRDR when used */
257         if (target->dbg_msg_enabled) {
258                 retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DCRDR, &dcrdr);
259                 if (retval != ERROR_OK)
260                         return retval;
261         }
262
263         const unsigned int num_regs = armv7m->arm.core_cache->num_regs;
264         const unsigned int n_r32 = ARMV7M_LAST_REG - ARMV7M_CORE_FIRST_REG + 1
265                                                            + ARMV7M_FPU_LAST_REG - ARMV7M_FPU_FIRST_REG + 1;
266         /* we need one 32-bit word for each register except FP D0..D15, which
267          * need two words */
268         uint32_t r_vals[n_r32];
269         uint32_t dhcsr[n_r32];
270
271         unsigned int wi = 0; /* write index to r_vals and dhcsr arrays */
272         unsigned int reg_id; /* register index in the reg_list, ARMV7M_R0... */
273         for (reg_id = 0; reg_id < num_regs; reg_id++) {
274                 struct reg *r = &armv7m->arm.core_cache->reg_list[reg_id];
275                 if (!r->exist)
276                         continue;       /* skip non existent registers */
277
278                 if (r->size <= 8) {
279                         /* Any 8-bit or shorter register is unpacked from a 32-bit
280                          * container register. Skip it now. */
281                         continue;
282                 }
283
284                 uint32_t regsel = armv7m_map_id_to_regsel(reg_id);
285                 retval = cortex_m_queue_reg_read(target, regsel, &r_vals[wi],
286                                                                                  &dhcsr[wi]);
287                 if (retval != ERROR_OK)
288                         return retval;
289                 wi++;
290
291                 assert(r->size == 32 || r->size == 64);
292                 if (r->size == 32)
293                         continue;       /* done with 32-bit register */
294
295                 assert(reg_id >= ARMV7M_FPU_FIRST_REG && reg_id <= ARMV7M_FPU_LAST_REG);
296                 /* the odd part of FP register (S1, S3...) */
297                 retval = cortex_m_queue_reg_read(target, regsel + 1, &r_vals[wi],
298                                                                                          &dhcsr[wi]);
299                 if (retval != ERROR_OK)
300                         return retval;
301                 wi++;
302         }
303
304         assert(wi <= n_r32);
305
306         retval = dap_run(armv7m->debug_ap->dap);
307         if (retval != ERROR_OK)
308                 return retval;
309
310         if (target->dbg_msg_enabled) {
311                 /* restore DCB_DCRDR - this needs to be in a separate
312                  * transaction otherwise the emulated DCC channel breaks */
313                 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRDR, dcrdr);
314                 if (retval != ERROR_OK)
315                         return retval;
316         }
317
318         bool not_ready = false;
319         for (unsigned int i = 0; i < wi; i++) {
320                 if ((dhcsr[i] & S_REGRDY) == 0) {
321                         not_ready = true;
322                         LOG_TARGET_DEBUG(target, "Register %u was not ready during fast read", i);
323                 }
324                 cortex_m_cumulate_dhcsr_sticky(cortex_m, dhcsr[i]);
325         }
326
327         if (not_ready) {
328                 /* Any register was not ready,
329                  * fall back to slow read with S_REGRDY polling */
330                 return ERROR_TIMEOUT_REACHED;
331         }
332
333         LOG_TARGET_DEBUG(target, "read %u 32-bit registers", wi);
334
335         unsigned int ri = 0; /* read index from r_vals array */
336         for (reg_id = 0; reg_id < num_regs; reg_id++) {
337                 struct reg *r = &armv7m->arm.core_cache->reg_list[reg_id];
338                 if (!r->exist)
339                         continue;       /* skip non existent registers */
340
341                 r->dirty = false;
342
343                 unsigned int reg32_id;
344                 uint32_t offset;
345                 if (armv7m_map_reg_packing(reg_id, &reg32_id, &offset)) {
346                         /* Unpack a partial register from 32-bit container register */
347                         struct reg *r32 = &armv7m->arm.core_cache->reg_list[reg32_id];
348
349                         /* The container register ought to precede all regs unpacked
350                          * from it in the reg_list. So the value should be ready
351                          * to unpack */
352                         assert(r32->valid);
353                         buf_cpy(r32->value + offset, r->value, r->size);
354
355                 } else {
356                         assert(r->size == 32 || r->size == 64);
357                         buf_set_u32(r->value, 0, 32, r_vals[ri++]);
358
359                         if (r->size == 64) {
360                                 assert(reg_id >= ARMV7M_FPU_FIRST_REG && reg_id <= ARMV7M_FPU_LAST_REG);
361                                 /* the odd part of FP register (S1, S3...) */
362                                 buf_set_u32(r->value + 4, 0, 32, r_vals[ri++]);
363                         }
364                 }
365                 r->valid = true;
366         }
367         assert(ri == wi);
368
369         return retval;
370 }
371
372 static int cortex_m_store_core_reg_u32(struct target *target,
373                 uint32_t regsel, uint32_t value)
374 {
375         struct cortex_m_common *cortex_m = target_to_cm(target);
376         struct armv7m_common *armv7m = target_to_armv7m(target);
377         int retval;
378         uint32_t dcrdr;
379         int64_t then;
380
381         /* because the DCB_DCRDR is used for the emulated dcc channel
382          * we have to save/restore the DCB_DCRDR when used */
383         if (target->dbg_msg_enabled) {
384                 retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DCRDR, &dcrdr);
385                 if (retval != ERROR_OK)
386                         return retval;
387         }
388
389         retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, value);
390         if (retval != ERROR_OK)
391                 return retval;
392
393         retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRSR, regsel | DCRSR_WNR);
394         if (retval != ERROR_OK)
395                 return retval;
396
397         /* check if value is written into register */
398         then = timeval_ms();
399         while (1) {
400                 retval = cortex_m_read_dhcsr_atomic_sticky(target);
401                 if (retval != ERROR_OK)
402                         return retval;
403                 if (cortex_m->dcb_dhcsr & S_REGRDY)
404                         break;
405                 if (timeval_ms() > then + DHCSR_S_REGRDY_TIMEOUT) {
406                         LOG_TARGET_ERROR(target, "Timeout waiting for DCRDR transfer ready");
407                         return ERROR_TIMEOUT_REACHED;
408                 }
409                 keep_alive();
410         }
411
412         if (target->dbg_msg_enabled) {
413                 /* restore DCB_DCRDR - this needs to be in a separate
414                  * transaction otherwise the emulated DCC channel breaks */
415                 if (retval == ERROR_OK)
416                         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRDR, dcrdr);
417         }
418
419         return retval;
420 }
421
422 static int cortex_m_write_debug_halt_mask(struct target *target,
423         uint32_t mask_on, uint32_t mask_off)
424 {
425         struct cortex_m_common *cortex_m = target_to_cm(target);
426         struct armv7m_common *armv7m = &cortex_m->armv7m;
427
428         /* mask off status bits */
429         cortex_m->dcb_dhcsr &= ~((0xFFFFul << 16) | mask_off);
430         /* create new register mask */
431         cortex_m->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
432
433         return mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR, cortex_m->dcb_dhcsr);
434 }
435
436 static int cortex_m_set_maskints(struct target *target, bool mask)
437 {
438         struct cortex_m_common *cortex_m = target_to_cm(target);
439         if (!!(cortex_m->dcb_dhcsr & C_MASKINTS) != mask)
440                 return cortex_m_write_debug_halt_mask(target, mask ? C_MASKINTS : 0, mask ? 0 : C_MASKINTS);
441         else
442                 return ERROR_OK;
443 }
444
445 static int cortex_m_set_maskints_for_halt(struct target *target)
446 {
447         struct cortex_m_common *cortex_m = target_to_cm(target);
448         switch (cortex_m->isrmasking_mode) {
449                 case CORTEX_M_ISRMASK_AUTO:
450                         /* interrupts taken at resume, whether for step or run -> no mask */
451                         return cortex_m_set_maskints(target, false);
452
453                 case CORTEX_M_ISRMASK_OFF:
454                         /* interrupts never masked */
455                         return cortex_m_set_maskints(target, false);
456
457                 case CORTEX_M_ISRMASK_ON:
458                         /* interrupts always masked */
459                         return cortex_m_set_maskints(target, true);
460
461                 case CORTEX_M_ISRMASK_STEPONLY:
462                         /* interrupts masked for single step only -> mask now if MASKINTS
463                          * erratum, otherwise only mask before stepping */
464                         return cortex_m_set_maskints(target, cortex_m->maskints_erratum);
465         }
466         return ERROR_OK;
467 }
468
469 static int cortex_m_set_maskints_for_run(struct target *target)
470 {
471         switch (target_to_cm(target)->isrmasking_mode) {
472                 case CORTEX_M_ISRMASK_AUTO:
473                         /* interrupts taken at resume, whether for step or run -> no mask */
474                         return cortex_m_set_maskints(target, false);
475
476                 case CORTEX_M_ISRMASK_OFF:
477                         /* interrupts never masked */
478                         return cortex_m_set_maskints(target, false);
479
480                 case CORTEX_M_ISRMASK_ON:
481                         /* interrupts always masked */
482                         return cortex_m_set_maskints(target, true);
483
484                 case CORTEX_M_ISRMASK_STEPONLY:
485                         /* interrupts masked for single step only -> no mask */
486                         return cortex_m_set_maskints(target, false);
487         }
488         return ERROR_OK;
489 }
490
491 static int cortex_m_set_maskints_for_step(struct target *target)
492 {
493         switch (target_to_cm(target)->isrmasking_mode) {
494                 case CORTEX_M_ISRMASK_AUTO:
495                         /* the auto-interrupt should already be done -> mask */
496                         return cortex_m_set_maskints(target, true);
497
498                 case CORTEX_M_ISRMASK_OFF:
499                         /* interrupts never masked */
500                         return cortex_m_set_maskints(target, false);
501
502                 case CORTEX_M_ISRMASK_ON:
503                         /* interrupts always masked */
504                         return cortex_m_set_maskints(target, true);
505
506                 case CORTEX_M_ISRMASK_STEPONLY:
507                         /* interrupts masked for single step only -> mask */
508                         return cortex_m_set_maskints(target, true);
509         }
510         return ERROR_OK;
511 }
512
513 static int cortex_m_clear_halt(struct target *target)
514 {
515         struct cortex_m_common *cortex_m = target_to_cm(target);
516         struct armv7m_common *armv7m = &cortex_m->armv7m;
517         int retval;
518
519         /* clear step if any */
520         cortex_m_write_debug_halt_mask(target, C_HALT, C_STEP);
521
522         /* Read Debug Fault Status Register */
523         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_DFSR, &cortex_m->nvic_dfsr);
524         if (retval != ERROR_OK)
525                 return retval;
526
527         /* Clear Debug Fault Status */
528         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_DFSR, cortex_m->nvic_dfsr);
529         if (retval != ERROR_OK)
530                 return retval;
531         LOG_TARGET_DEBUG(target, "NVIC_DFSR 0x%" PRIx32 "", cortex_m->nvic_dfsr);
532
533         return ERROR_OK;
534 }
535
536 static int cortex_m_single_step_core(struct target *target)
537 {
538         struct cortex_m_common *cortex_m = target_to_cm(target);
539         int retval;
540
541         /* Mask interrupts before clearing halt, if not done already.  This avoids
542          * Erratum 377497 (fixed in r1p0) where setting MASKINTS while clearing
543          * HALT can put the core into an unknown state.
544          */
545         if (!(cortex_m->dcb_dhcsr & C_MASKINTS)) {
546                 retval = cortex_m_write_debug_halt_mask(target, C_MASKINTS, 0);
547                 if (retval != ERROR_OK)
548                         return retval;
549         }
550         retval = cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
551         if (retval != ERROR_OK)
552                 return retval;
553         LOG_TARGET_DEBUG(target, "single step");
554
555         /* restore dhcsr reg */
556         cortex_m_clear_halt(target);
557
558         return ERROR_OK;
559 }
560
561 static int cortex_m_enable_fpb(struct target *target)
562 {
563         int retval = target_write_u32(target, FP_CTRL, 3);
564         if (retval != ERROR_OK)
565                 return retval;
566
567         /* check the fpb is actually enabled */
568         uint32_t fpctrl;
569         retval = target_read_u32(target, FP_CTRL, &fpctrl);
570         if (retval != ERROR_OK)
571                 return retval;
572
573         if (fpctrl & 1)
574                 return ERROR_OK;
575
576         return ERROR_FAIL;
577 }
578
579 static int cortex_m_endreset_event(struct target *target)
580 {
581         int retval;
582         uint32_t dcb_demcr;
583         struct cortex_m_common *cortex_m = target_to_cm(target);
584         struct armv7m_common *armv7m = &cortex_m->armv7m;
585         struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
586         struct cortex_m_fp_comparator *fp_list = cortex_m->fp_comparator_list;
587         struct cortex_m_dwt_comparator *dwt_list = cortex_m->dwt_comparator_list;
588
589         /* REVISIT The four debug monitor bits are currently ignored... */
590         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &dcb_demcr);
591         if (retval != ERROR_OK)
592                 return retval;
593         LOG_TARGET_DEBUG(target, "DCB_DEMCR = 0x%8.8" PRIx32 "", dcb_demcr);
594
595         /* this register is used for emulated dcc channel */
596         retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, 0);
597         if (retval != ERROR_OK)
598                 return retval;
599
600         retval = cortex_m_read_dhcsr_atomic_sticky(target);
601         if (retval != ERROR_OK)
602                 return retval;
603
604         if (!(cortex_m->dcb_dhcsr & C_DEBUGEN)) {
605                 /* Enable debug requests */
606                 retval = cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP | C_MASKINTS);
607                 if (retval != ERROR_OK)
608                         return retval;
609         }
610
611         /* Restore proper interrupt masking setting for running CPU. */
612         cortex_m_set_maskints_for_run(target);
613
614         /* Enable features controlled by ITM and DWT blocks, and catch only
615          * the vectors we were told to pay attention to.
616          *
617          * Target firmware is responsible for all fault handling policy
618          * choices *EXCEPT* explicitly scripted overrides like "vector_catch"
619          * or manual updates to the NVIC SHCSR and CCR registers.
620          */
621         retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR, TRCENA | armv7m->demcr);
622         if (retval != ERROR_OK)
623                 return retval;
624
625         /* Paranoia: evidently some (early?) chips don't preserve all the
626          * debug state (including FPB, DWT, etc) across reset...
627          */
628
629         /* Enable FPB */
630         retval = cortex_m_enable_fpb(target);
631         if (retval != ERROR_OK) {
632                 LOG_TARGET_ERROR(target, "Failed to enable the FPB");
633                 return retval;
634         }
635
636         cortex_m->fpb_enabled = true;
637
638         /* Restore FPB registers */
639         for (unsigned int i = 0; i < cortex_m->fp_num_code + cortex_m->fp_num_lit; i++) {
640                 retval = target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
641                 if (retval != ERROR_OK)
642                         return retval;
643         }
644
645         /* Restore DWT registers */
646         for (unsigned int i = 0; i < cortex_m->dwt_num_comp; i++) {
647                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
648                                 dwt_list[i].comp);
649                 if (retval != ERROR_OK)
650                         return retval;
651                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
652                                 dwt_list[i].mask);
653                 if (retval != ERROR_OK)
654                         return retval;
655                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
656                                 dwt_list[i].function);
657                 if (retval != ERROR_OK)
658                         return retval;
659         }
660         retval = dap_run(swjdp);
661         if (retval != ERROR_OK)
662                 return retval;
663
664         register_cache_invalidate(armv7m->arm.core_cache);
665
666         /* make sure we have latest dhcsr flags */
667         retval = cortex_m_read_dhcsr_atomic_sticky(target);
668         if (retval != ERROR_OK)
669                 return retval;
670
671         return retval;
672 }
673
674 static int cortex_m_examine_debug_reason(struct target *target)
675 {
676         struct cortex_m_common *cortex_m = target_to_cm(target);
677
678         /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason
679          * only check the debug reason if we don't know it already */
680
681         if ((target->debug_reason != DBG_REASON_DBGRQ)
682                 && (target->debug_reason != DBG_REASON_SINGLESTEP)) {
683                 if (cortex_m->nvic_dfsr & DFSR_BKPT) {
684                         target->debug_reason = DBG_REASON_BREAKPOINT;
685                         if (cortex_m->nvic_dfsr & DFSR_DWTTRAP)
686                                 target->debug_reason = DBG_REASON_WPTANDBKPT;
687                 } else if (cortex_m->nvic_dfsr & DFSR_DWTTRAP)
688                         target->debug_reason = DBG_REASON_WATCHPOINT;
689                 else if (cortex_m->nvic_dfsr & DFSR_VCATCH)
690                         target->debug_reason = DBG_REASON_BREAKPOINT;
691                 else if (cortex_m->nvic_dfsr & DFSR_EXTERNAL)
692                         target->debug_reason = DBG_REASON_DBGRQ;
693                 else    /* HALTED */
694                         target->debug_reason = DBG_REASON_UNDEFINED;
695         }
696
697         return ERROR_OK;
698 }
699
700 static int cortex_m_examine_exception_reason(struct target *target)
701 {
702         uint32_t shcsr = 0, except_sr = 0, cfsr = -1, except_ar = -1;
703         struct armv7m_common *armv7m = target_to_armv7m(target);
704         struct adiv5_dap *swjdp = armv7m->arm.dap;
705         int retval;
706
707         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_SHCSR, &shcsr);
708         if (retval != ERROR_OK)
709                 return retval;
710         switch (armv7m->exception_number) {
711                 case 2: /* NMI */
712                         break;
713                 case 3: /* Hard Fault */
714                         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_HFSR, &except_sr);
715                         if (retval != ERROR_OK)
716                                 return retval;
717                         if (except_sr & 0x40000000) {
718                                 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &cfsr);
719                                 if (retval != ERROR_OK)
720                                         return retval;
721                         }
722                         break;
723                 case 4: /* Memory Management */
724                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
725                         if (retval != ERROR_OK)
726                                 return retval;
727                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_MMFAR, &except_ar);
728                         if (retval != ERROR_OK)
729                                 return retval;
730                         break;
731                 case 5: /* Bus Fault */
732                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
733                         if (retval != ERROR_OK)
734                                 return retval;
735                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_BFAR, &except_ar);
736                         if (retval != ERROR_OK)
737                                 return retval;
738                         break;
739                 case 6: /* Usage Fault */
740                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
741                         if (retval != ERROR_OK)
742                                 return retval;
743                         break;
744                 case 7: /* Secure Fault */
745                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_SFSR, &except_sr);
746                         if (retval != ERROR_OK)
747                                 return retval;
748                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_SFAR, &except_ar);
749                         if (retval != ERROR_OK)
750                                 return retval;
751                         break;
752                 case 11:        /* SVCall */
753                         break;
754                 case 12:        /* Debug Monitor */
755                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_DFSR, &except_sr);
756                         if (retval != ERROR_OK)
757                                 return retval;
758                         break;
759                 case 14:        /* PendSV */
760                         break;
761                 case 15:        /* SysTick */
762                         break;
763                 default:
764                         except_sr = 0;
765                         break;
766         }
767         retval = dap_run(swjdp);
768         if (retval == ERROR_OK)
769                 LOG_TARGET_DEBUG(target, "%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32
770                         ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32,
771                         armv7m_exception_string(armv7m->exception_number),
772                         shcsr, except_sr, cfsr, except_ar);
773         return retval;
774 }
775
776 static int cortex_m_debug_entry(struct target *target)
777 {
778         uint32_t xPSR;
779         int retval;
780         struct cortex_m_common *cortex_m = target_to_cm(target);
781         struct armv7m_common *armv7m = &cortex_m->armv7m;
782         struct arm *arm = &armv7m->arm;
783         struct reg *r;
784
785         LOG_TARGET_DEBUG(target, " ");
786
787         /* Do this really early to minimize the window where the MASKINTS erratum
788          * can pile up pending interrupts. */
789         cortex_m_set_maskints_for_halt(target);
790
791         cortex_m_clear_halt(target);
792
793         retval = cortex_m_read_dhcsr_atomic_sticky(target);
794         if (retval != ERROR_OK)
795                 return retval;
796
797         retval = armv7m->examine_debug_reason(target);
798         if (retval != ERROR_OK)
799                 return retval;
800
801         /* examine PE security state */
802         bool secure_state = false;
803         if (armv7m->arm.arch == ARM_ARCH_V8M) {
804                 uint32_t dscsr;
805
806                 retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DSCSR, &dscsr);
807                 if (retval != ERROR_OK)
808                         return retval;
809
810                 secure_state = (dscsr & DSCSR_CDS) == DSCSR_CDS;
811         }
812
813         /* Load all registers to arm.core_cache */
814         if (!cortex_m->slow_register_read) {
815                 retval = cortex_m_fast_read_all_regs(target);
816                 if (retval == ERROR_TIMEOUT_REACHED) {
817                         cortex_m->slow_register_read = true;
818                         LOG_TARGET_DEBUG(target, "Switched to slow register read");
819                 }
820         }
821
822         if (cortex_m->slow_register_read)
823                 retval = cortex_m_slow_read_all_regs(target);
824
825         if (retval != ERROR_OK)
826                 return retval;
827
828         r = arm->cpsr;
829         xPSR = buf_get_u32(r->value, 0, 32);
830
831         /* Are we in an exception handler */
832         if (xPSR & 0x1FF) {
833                 armv7m->exception_number = (xPSR & 0x1FF);
834
835                 arm->core_mode = ARM_MODE_HANDLER;
836                 arm->map = armv7m_msp_reg_map;
837         } else {
838                 unsigned control = buf_get_u32(arm->core_cache
839                                 ->reg_list[ARMV7M_CONTROL].value, 0, 3);
840
841                 /* is this thread privileged? */
842                 arm->core_mode = control & 1
843                         ? ARM_MODE_USER_THREAD
844                         : ARM_MODE_THREAD;
845
846                 /* which stack is it using? */
847                 if (control & 2)
848                         arm->map = armv7m_psp_reg_map;
849                 else
850                         arm->map = armv7m_msp_reg_map;
851
852                 armv7m->exception_number = 0;
853         }
854
855         if (armv7m->exception_number)
856                 cortex_m_examine_exception_reason(target);
857
858         LOG_TARGET_DEBUG(target, "entered debug state in core mode: %s at PC 0x%" PRIx32
859                         ", cpu in %s state, target->state: %s",
860                 arm_mode_name(arm->core_mode),
861                 buf_get_u32(arm->pc->value, 0, 32),
862                 secure_state ? "Secure" : "Non-Secure",
863                 target_state_name(target));
864
865         if (armv7m->post_debug_entry) {
866                 retval = armv7m->post_debug_entry(target);
867                 if (retval != ERROR_OK)
868                         return retval;
869         }
870
871         return ERROR_OK;
872 }
873
874 static int cortex_m_poll(struct target *target)
875 {
876         int detected_failure = ERROR_OK;
877         int retval = ERROR_OK;
878         enum target_state prev_target_state = target->state;
879         struct cortex_m_common *cortex_m = target_to_cm(target);
880         struct armv7m_common *armv7m = &cortex_m->armv7m;
881
882         /* Read from Debug Halting Control and Status Register */
883         retval = cortex_m_read_dhcsr_atomic_sticky(target);
884         if (retval != ERROR_OK) {
885                 target->state = TARGET_UNKNOWN;
886                 return retval;
887         }
888
889         /* Recover from lockup.  See ARMv7-M architecture spec,
890          * section B1.5.15 "Unrecoverable exception cases".
891          */
892         if (cortex_m->dcb_dhcsr & S_LOCKUP) {
893                 LOG_TARGET_ERROR(target, "clearing lockup after double fault");
894                 cortex_m_write_debug_halt_mask(target, C_HALT, 0);
895                 target->debug_reason = DBG_REASON_DBGRQ;
896
897                 /* We have to execute the rest (the "finally" equivalent, but
898                  * still throw this exception again).
899                  */
900                 detected_failure = ERROR_FAIL;
901
902                 /* refresh status bits */
903                 retval = cortex_m_read_dhcsr_atomic_sticky(target);
904                 if (retval != ERROR_OK)
905                         return retval;
906         }
907
908         if (cortex_m->dcb_dhcsr_cumulated_sticky & S_RESET_ST) {
909                 cortex_m->dcb_dhcsr_cumulated_sticky &= ~S_RESET_ST;
910                 if (target->state != TARGET_RESET) {
911                         target->state = TARGET_RESET;
912                         LOG_TARGET_INFO(target, "external reset detected");
913                 }
914                 return ERROR_OK;
915         }
916
917         if (target->state == TARGET_RESET) {
918                 /* Cannot switch context while running so endreset is
919                  * called with target->state == TARGET_RESET
920                  */
921                 LOG_TARGET_DEBUG(target, "Exit from reset with dcb_dhcsr 0x%" PRIx32,
922                         cortex_m->dcb_dhcsr);
923                 retval = cortex_m_endreset_event(target);
924                 if (retval != ERROR_OK) {
925                         target->state = TARGET_UNKNOWN;
926                         return retval;
927                 }
928                 target->state = TARGET_RUNNING;
929                 prev_target_state = TARGET_RUNNING;
930         }
931
932         if (cortex_m->dcb_dhcsr & S_HALT) {
933                 target->state = TARGET_HALTED;
934
935                 if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET)) {
936                         retval = cortex_m_debug_entry(target);
937                         if (retval != ERROR_OK)
938                                 return retval;
939
940                         if (arm_semihosting(target, &retval) != 0)
941                                 return retval;
942
943                         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
944                 }
945                 if (prev_target_state == TARGET_DEBUG_RUNNING) {
946                         retval = cortex_m_debug_entry(target);
947                         if (retval != ERROR_OK)
948                                 return retval;
949
950                         target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
951                 }
952         }
953
954         if (target->state == TARGET_UNKNOWN) {
955                 /* Check if processor is retiring instructions or sleeping.
956                  * Unlike S_RESET_ST here we test if the target *is* running now,
957                  * not if it has been running (possibly in the past). Instructions are
958                  * typically processed much faster than OpenOCD polls DHCSR so S_RETIRE_ST
959                  * is read always 1. That's the reason not to use dcb_dhcsr_cumulated_sticky.
960                  */
961                 if (cortex_m->dcb_dhcsr & S_RETIRE_ST || cortex_m->dcb_dhcsr & S_SLEEP) {
962                         target->state = TARGET_RUNNING;
963                         retval = ERROR_OK;
964                 }
965         }
966
967         /* Check that target is truly halted, since the target could be resumed externally */
968         if ((prev_target_state == TARGET_HALTED) && !(cortex_m->dcb_dhcsr & S_HALT)) {
969                 /* registers are now invalid */
970                 register_cache_invalidate(armv7m->arm.core_cache);
971
972                 target->state = TARGET_RUNNING;
973                 LOG_TARGET_WARNING(target, "external resume detected");
974                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
975                 retval = ERROR_OK;
976         }
977
978         /* Did we detect a failure condition that we cleared? */
979         if (detected_failure != ERROR_OK)
980                 retval = detected_failure;
981         return retval;
982 }
983
984 static int cortex_m_halt(struct target *target)
985 {
986         LOG_TARGET_DEBUG(target, "target->state: %s", target_state_name(target));
987
988         if (target->state == TARGET_HALTED) {
989                 LOG_TARGET_DEBUG(target, "target was already halted");
990                 return ERROR_OK;
991         }
992
993         if (target->state == TARGET_UNKNOWN)
994                 LOG_TARGET_WARNING(target, "target was in unknown state when halt was requested");
995
996         if (target->state == TARGET_RESET) {
997                 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst()) {
998                         LOG_TARGET_ERROR(target, "can't request a halt while in reset if nSRST pulls nTRST");
999                         return ERROR_TARGET_FAILURE;
1000                 } else {
1001                         /* we came here in a reset_halt or reset_init sequence
1002                          * debug entry was already prepared in cortex_m3_assert_reset()
1003                          */
1004                         target->debug_reason = DBG_REASON_DBGRQ;
1005
1006                         return ERROR_OK;
1007                 }
1008         }
1009
1010         /* Write to Debug Halting Control and Status Register */
1011         cortex_m_write_debug_halt_mask(target, C_HALT, 0);
1012
1013         /* Do this really early to minimize the window where the MASKINTS erratum
1014          * can pile up pending interrupts. */
1015         cortex_m_set_maskints_for_halt(target);
1016
1017         target->debug_reason = DBG_REASON_DBGRQ;
1018
1019         return ERROR_OK;
1020 }
1021
1022 static int cortex_m_soft_reset_halt(struct target *target)
1023 {
1024         struct cortex_m_common *cortex_m = target_to_cm(target);
1025         struct armv7m_common *armv7m = &cortex_m->armv7m;
1026         int retval, timeout = 0;
1027
1028         /* on single cortex_m MCU soft_reset_halt should be avoided as same functionality
1029          * can be obtained by using 'reset halt' and 'cortex_m reset_config vectreset'.
1030          * As this reset only uses VC_CORERESET it would only ever reset the cortex_m
1031          * core, not the peripherals */
1032         LOG_TARGET_DEBUG(target, "soft_reset_halt is discouraged, please use 'reset halt' instead.");
1033
1034         if (!cortex_m->vectreset_supported) {
1035                 LOG_TARGET_ERROR(target, "VECTRESET is not supported on this Cortex-M core");
1036                 return ERROR_FAIL;
1037         }
1038
1039         /* Set C_DEBUGEN */
1040         retval = cortex_m_write_debug_halt_mask(target, 0, C_STEP | C_MASKINTS);
1041         if (retval != ERROR_OK)
1042                 return retval;
1043
1044         /* Enter debug state on reset; restore DEMCR in endreset_event() */
1045         retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR,
1046                         TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
1047         if (retval != ERROR_OK)
1048                 return retval;
1049
1050         /* Request a core-only reset */
1051         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_AIRCR,
1052                         AIRCR_VECTKEY | AIRCR_VECTRESET);
1053         if (retval != ERROR_OK)
1054                 return retval;
1055         target->state = TARGET_RESET;
1056
1057         /* registers are now invalid */
1058         register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
1059
1060         while (timeout < 100) {
1061                 retval = cortex_m_read_dhcsr_atomic_sticky(target);
1062                 if (retval == ERROR_OK) {
1063                         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_DFSR,
1064                                         &cortex_m->nvic_dfsr);
1065                         if (retval != ERROR_OK)
1066                                 return retval;
1067                         if ((cortex_m->dcb_dhcsr & S_HALT)
1068                                 && (cortex_m->nvic_dfsr & DFSR_VCATCH)) {
1069                                 LOG_TARGET_DEBUG(target, "system reset-halted, DHCSR 0x%08" PRIx32 ", DFSR 0x%08" PRIx32,
1070                                                 cortex_m->dcb_dhcsr, cortex_m->nvic_dfsr);
1071                                 cortex_m_poll(target);
1072                                 /* FIXME restore user's vector catch config */
1073                                 return ERROR_OK;
1074                         } else {
1075                                 LOG_TARGET_DEBUG(target, "waiting for system reset-halt, "
1076                                         "DHCSR 0x%08" PRIx32 ", %d ms",
1077                                         cortex_m->dcb_dhcsr, timeout);
1078                         }
1079                 }
1080                 timeout++;
1081                 alive_sleep(1);
1082         }
1083
1084         return ERROR_OK;
1085 }
1086
1087 void cortex_m_enable_breakpoints(struct target *target)
1088 {
1089         struct breakpoint *breakpoint = target->breakpoints;
1090
1091         /* set any pending breakpoints */
1092         while (breakpoint) {
1093                 if (!breakpoint->is_set)
1094                         cortex_m_set_breakpoint(target, breakpoint);
1095                 breakpoint = breakpoint->next;
1096         }
1097 }
1098
1099 static int cortex_m_resume(struct target *target, int current,
1100         target_addr_t address, int handle_breakpoints, int debug_execution)
1101 {
1102         struct armv7m_common *armv7m = target_to_armv7m(target);
1103         struct breakpoint *breakpoint = NULL;
1104         uint32_t resume_pc;
1105         struct reg *r;
1106
1107         if (target->state != TARGET_HALTED) {
1108                 LOG_TARGET_WARNING(target, "target not halted");
1109                 return ERROR_TARGET_NOT_HALTED;
1110         }
1111
1112         if (!debug_execution) {
1113                 target_free_all_working_areas(target);
1114                 cortex_m_enable_breakpoints(target);
1115                 cortex_m_enable_watchpoints(target);
1116         }
1117
1118         if (debug_execution) {
1119                 r = armv7m->arm.core_cache->reg_list + ARMV7M_PRIMASK;
1120
1121                 /* Disable interrupts */
1122                 /* We disable interrupts in the PRIMASK register instead of
1123                  * masking with C_MASKINTS.  This is probably the same issue
1124                  * as Cortex-M3 Erratum 377493 (fixed in r1p0):  C_MASKINTS
1125                  * in parallel with disabled interrupts can cause local faults
1126                  * to not be taken.
1127                  *
1128                  * This breaks non-debug (application) execution if not
1129                  * called from armv7m_start_algorithm() which saves registers.
1130                  */
1131                 buf_set_u32(r->value, 0, 1, 1);
1132                 r->dirty = true;
1133                 r->valid = true;
1134
1135                 /* Make sure we are in Thumb mode, set xPSR.T bit */
1136                 /* armv7m_start_algorithm() initializes entire xPSR register.
1137                  * This duplicity handles the case when cortex_m_resume()
1138                  * is used with the debug_execution flag directly,
1139                  * not called through armv7m_start_algorithm().
1140                  */
1141                 r = armv7m->arm.cpsr;
1142                 buf_set_u32(r->value, 24, 1, 1);
1143                 r->dirty = true;
1144                 r->valid = true;
1145         }
1146
1147         /* current = 1: continue on current pc, otherwise continue at <address> */
1148         r = armv7m->arm.pc;
1149         if (!current) {
1150                 buf_set_u32(r->value, 0, 32, address);
1151                 r->dirty = true;
1152                 r->valid = true;
1153         }
1154
1155         /* if we halted last time due to a bkpt instruction
1156          * then we have to manually step over it, otherwise
1157          * the core will break again */
1158
1159         if (!breakpoint_find(target, buf_get_u32(r->value, 0, 32))
1160                 && !debug_execution)
1161                 armv7m_maybe_skip_bkpt_inst(target, NULL);
1162
1163         resume_pc = buf_get_u32(r->value, 0, 32);
1164
1165         armv7m_restore_context(target);
1166
1167         /* the front-end may request us not to handle breakpoints */
1168         if (handle_breakpoints) {
1169                 /* Single step past breakpoint at current address */
1170                 breakpoint = breakpoint_find(target, resume_pc);
1171                 if (breakpoint) {
1172                         LOG_TARGET_DEBUG(target, "unset breakpoint at " TARGET_ADDR_FMT " (ID: %" PRIu32 ")",
1173                                 breakpoint->address,
1174                                 breakpoint->unique_id);
1175                         cortex_m_unset_breakpoint(target, breakpoint);
1176                         cortex_m_single_step_core(target);
1177                         cortex_m_set_breakpoint(target, breakpoint);
1178                 }
1179         }
1180
1181         /* Restart core */
1182         cortex_m_set_maskints_for_run(target);
1183         cortex_m_write_debug_halt_mask(target, 0, C_HALT);
1184
1185         target->debug_reason = DBG_REASON_NOTHALTED;
1186
1187         /* registers are now invalid */
1188         register_cache_invalidate(armv7m->arm.core_cache);
1189
1190         if (!debug_execution) {
1191                 target->state = TARGET_RUNNING;
1192                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1193                 LOG_TARGET_DEBUG(target, "target resumed at 0x%" PRIx32 "", resume_pc);
1194         } else {
1195                 target->state = TARGET_DEBUG_RUNNING;
1196                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
1197                 LOG_TARGET_DEBUG(target, "target debug resumed at 0x%" PRIx32 "", resume_pc);
1198         }
1199
1200         return ERROR_OK;
1201 }
1202
1203 /* int irqstepcount = 0; */
1204 static int cortex_m_step(struct target *target, int current,
1205         target_addr_t address, int handle_breakpoints)
1206 {
1207         struct cortex_m_common *cortex_m = target_to_cm(target);
1208         struct armv7m_common *armv7m = &cortex_m->armv7m;
1209         struct breakpoint *breakpoint = NULL;
1210         struct reg *pc = armv7m->arm.pc;
1211         bool bkpt_inst_found = false;
1212         int retval;
1213         bool isr_timed_out = false;
1214
1215         if (target->state != TARGET_HALTED) {
1216                 LOG_TARGET_WARNING(target, "target not halted");
1217                 return ERROR_TARGET_NOT_HALTED;
1218         }
1219
1220         /* current = 1: continue on current pc, otherwise continue at <address> */
1221         if (!current) {
1222                 buf_set_u32(pc->value, 0, 32, address);
1223                 pc->dirty = true;
1224                 pc->valid = true;
1225         }
1226
1227         uint32_t pc_value = buf_get_u32(pc->value, 0, 32);
1228
1229         /* the front-end may request us not to handle breakpoints */
1230         if (handle_breakpoints) {
1231                 breakpoint = breakpoint_find(target, pc_value);
1232                 if (breakpoint)
1233                         cortex_m_unset_breakpoint(target, breakpoint);
1234         }
1235
1236         armv7m_maybe_skip_bkpt_inst(target, &bkpt_inst_found);
1237
1238         target->debug_reason = DBG_REASON_SINGLESTEP;
1239
1240         armv7m_restore_context(target);
1241
1242         target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1243
1244         /* if no bkpt instruction is found at pc then we can perform
1245          * a normal step, otherwise we have to manually step over the bkpt
1246          * instruction - as such simulate a step */
1247         if (bkpt_inst_found == false) {
1248                 if (cortex_m->isrmasking_mode != CORTEX_M_ISRMASK_AUTO) {
1249                         /* Automatic ISR masking mode off: Just step over the next
1250                          * instruction, with interrupts on or off as appropriate. */
1251                         cortex_m_set_maskints_for_step(target);
1252                         cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
1253                 } else {
1254                         /* Process interrupts during stepping in a way they don't interfere
1255                          * debugging.
1256                          *
1257                          * Principle:
1258                          *
1259                          * Set a temporary break point at the current pc and let the core run
1260                          * with interrupts enabled. Pending interrupts get served and we run
1261                          * into the breakpoint again afterwards. Then we step over the next
1262                          * instruction with interrupts disabled.
1263                          *
1264                          * If the pending interrupts don't complete within time, we leave the
1265                          * core running. This may happen if the interrupts trigger faster
1266                          * than the core can process them or the handler doesn't return.
1267                          *
1268                          * If no more breakpoints are available we simply do a step with
1269                          * interrupts enabled.
1270                          *
1271                          */
1272
1273                         /* 2012-09-29 ph
1274                          *
1275                          * If a break point is already set on the lower half word then a break point on
1276                          * the upper half word will not break again when the core is restarted. So we
1277                          * just step over the instruction with interrupts disabled.
1278                          *
1279                          * The documentation has no information about this, it was found by observation
1280                          * on STM32F1 and STM32F2. Proper explanation welcome. STM32F0 doesn't seem to
1281                          * suffer from this problem.
1282                          *
1283                          * To add some confusion: pc_value has bit 0 always set, while the breakpoint
1284                          * address has it always cleared. The former is done to indicate thumb mode
1285                          * to gdb.
1286                          *
1287                          */
1288                         if ((pc_value & 0x02) && breakpoint_find(target, pc_value & ~0x03)) {
1289                                 LOG_TARGET_DEBUG(target, "Stepping over next instruction with interrupts disabled");
1290                                 cortex_m_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
1291                                 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
1292                                 /* Re-enable interrupts if appropriate */
1293                                 cortex_m_write_debug_halt_mask(target, C_HALT, 0);
1294                                 cortex_m_set_maskints_for_halt(target);
1295                         } else {
1296
1297                                 /* Set a temporary break point */
1298                                 if (breakpoint) {
1299                                         retval = cortex_m_set_breakpoint(target, breakpoint);
1300                                 } else {
1301                                         enum breakpoint_type type = BKPT_HARD;
1302                                         if (cortex_m->fp_rev == 0 && pc_value > 0x1FFFFFFF) {
1303                                                 /* FPB rev.1 cannot handle such addr, try BKPT instr */
1304                                                 type = BKPT_SOFT;
1305                                         }
1306                                         retval = breakpoint_add(target, pc_value, 2, type);
1307                                 }
1308
1309                                 bool tmp_bp_set = (retval == ERROR_OK);
1310
1311                                 /* No more breakpoints left, just do a step */
1312                                 if (!tmp_bp_set) {
1313                                         cortex_m_set_maskints_for_step(target);
1314                                         cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
1315                                         /* Re-enable interrupts if appropriate */
1316                                         cortex_m_write_debug_halt_mask(target, C_HALT, 0);
1317                                         cortex_m_set_maskints_for_halt(target);
1318                                 } else {
1319                                         /* Start the core */
1320                                         LOG_TARGET_DEBUG(target, "Starting core to serve pending interrupts");
1321                                         int64_t t_start = timeval_ms();
1322                                         cortex_m_set_maskints_for_run(target);
1323                                         cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP);
1324
1325                                         /* Wait for pending handlers to complete or timeout */
1326                                         do {
1327                                                 retval = cortex_m_read_dhcsr_atomic_sticky(target);
1328                                                 if (retval != ERROR_OK) {
1329                                                         target->state = TARGET_UNKNOWN;
1330                                                         return retval;
1331                                                 }
1332                                                 isr_timed_out = ((timeval_ms() - t_start) > 500);
1333                                         } while (!((cortex_m->dcb_dhcsr & S_HALT) || isr_timed_out));
1334
1335                                         /* only remove breakpoint if we created it */
1336                                         if (breakpoint)
1337                                                 cortex_m_unset_breakpoint(target, breakpoint);
1338                                         else {
1339                                                 /* Remove the temporary breakpoint */
1340                                                 breakpoint_remove(target, pc_value);
1341                                         }
1342
1343                                         if (isr_timed_out) {
1344                                                 LOG_TARGET_DEBUG(target, "Interrupt handlers didn't complete within time, "
1345                                                         "leaving target running");
1346                                         } else {
1347                                                 /* Step over next instruction with interrupts disabled */
1348                                                 cortex_m_set_maskints_for_step(target);
1349                                                 cortex_m_write_debug_halt_mask(target,
1350                                                         C_HALT | C_MASKINTS,
1351                                                         0);
1352                                                 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
1353                                                 /* Re-enable interrupts if appropriate */
1354                                                 cortex_m_write_debug_halt_mask(target, C_HALT, 0);
1355                                                 cortex_m_set_maskints_for_halt(target);
1356                                         }
1357                                 }
1358                         }
1359                 }
1360         }
1361
1362         retval = cortex_m_read_dhcsr_atomic_sticky(target);
1363         if (retval != ERROR_OK)
1364                 return retval;
1365
1366         /* registers are now invalid */
1367         register_cache_invalidate(armv7m->arm.core_cache);
1368
1369         if (breakpoint)
1370                 cortex_m_set_breakpoint(target, breakpoint);
1371
1372         if (isr_timed_out) {
1373                 /* Leave the core running. The user has to stop execution manually. */
1374                 target->debug_reason = DBG_REASON_NOTHALTED;
1375                 target->state = TARGET_RUNNING;
1376                 return ERROR_OK;
1377         }
1378
1379         LOG_TARGET_DEBUG(target, "target stepped dcb_dhcsr = 0x%" PRIx32
1380                 " nvic_icsr = 0x%" PRIx32,
1381                 cortex_m->dcb_dhcsr, cortex_m->nvic_icsr);
1382
1383         retval = cortex_m_debug_entry(target);
1384         if (retval != ERROR_OK)
1385                 return retval;
1386         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
1387
1388         LOG_TARGET_DEBUG(target, "target stepped dcb_dhcsr = 0x%" PRIx32
1389                 " nvic_icsr = 0x%" PRIx32,
1390                 cortex_m->dcb_dhcsr, cortex_m->nvic_icsr);
1391
1392         return ERROR_OK;
1393 }
1394
1395 static int cortex_m_assert_reset(struct target *target)
1396 {
1397         struct cortex_m_common *cortex_m = target_to_cm(target);
1398         struct armv7m_common *armv7m = &cortex_m->armv7m;
1399         enum cortex_m_soft_reset_config reset_config = cortex_m->soft_reset_config;
1400
1401         LOG_TARGET_DEBUG(target, "target->state: %s",
1402                 target_state_name(target));
1403
1404         enum reset_types jtag_reset_config = jtag_get_reset_config();
1405
1406         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
1407                 /* allow scripts to override the reset event */
1408
1409                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1410                 register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
1411                 target->state = TARGET_RESET;
1412
1413                 return ERROR_OK;
1414         }
1415
1416         /* some cores support connecting while srst is asserted
1417          * use that mode is it has been configured */
1418
1419         bool srst_asserted = false;
1420
1421         if (!target_was_examined(target)) {
1422                 if (jtag_reset_config & RESET_HAS_SRST) {
1423                         adapter_assert_reset();
1424                         if (target->reset_halt)
1425                                 LOG_TARGET_ERROR(target, "Target not examined, will not halt after reset!");
1426                         return ERROR_OK;
1427                 } else {
1428                         LOG_TARGET_ERROR(target, "Target not examined, reset NOT asserted!");
1429                         return ERROR_FAIL;
1430                 }
1431         }
1432
1433         if ((jtag_reset_config & RESET_HAS_SRST) &&
1434             (jtag_reset_config & RESET_SRST_NO_GATING)) {
1435                 adapter_assert_reset();
1436                 srst_asserted = true;
1437         }
1438
1439         /* Enable debug requests */
1440         int retval = cortex_m_read_dhcsr_atomic_sticky(target);
1441
1442         /* Store important errors instead of failing and proceed to reset assert */
1443
1444         if (retval != ERROR_OK || !(cortex_m->dcb_dhcsr & C_DEBUGEN))
1445                 retval = cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP | C_MASKINTS);
1446
1447         /* If the processor is sleeping in a WFI or WFE instruction, the
1448          * C_HALT bit must be asserted to regain control */
1449         if (retval == ERROR_OK && (cortex_m->dcb_dhcsr & S_SLEEP))
1450                 retval = cortex_m_write_debug_halt_mask(target, C_HALT, 0);
1451
1452         mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, 0);
1453         /* Ignore less important errors */
1454
1455         if (!target->reset_halt) {
1456                 /* Set/Clear C_MASKINTS in a separate operation */
1457                 cortex_m_set_maskints_for_run(target);
1458
1459                 /* clear any debug flags before resuming */
1460                 cortex_m_clear_halt(target);
1461
1462                 /* clear C_HALT in dhcsr reg */
1463                 cortex_m_write_debug_halt_mask(target, 0, C_HALT);
1464         } else {
1465                 /* Halt in debug on reset; endreset_event() restores DEMCR.
1466                  *
1467                  * REVISIT catching BUSERR presumably helps to defend against
1468                  * bad vector table entries.  Should this include MMERR or
1469                  * other flags too?
1470                  */
1471                 int retval2;
1472                 retval2 = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DEMCR,
1473                                 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
1474                 if (retval != ERROR_OK || retval2 != ERROR_OK)
1475                         LOG_TARGET_INFO(target, "AP write error, reset will not halt");
1476         }
1477
1478         if (jtag_reset_config & RESET_HAS_SRST) {
1479                 /* default to asserting srst */
1480                 if (!srst_asserted)
1481                         adapter_assert_reset();
1482
1483                 /* srst is asserted, ignore AP access errors */
1484                 retval = ERROR_OK;
1485         } else {
1486                 /* Use a standard Cortex-M3 software reset mechanism.
1487                  * We default to using VECTRESET as it is supported on all current cores
1488                  * (except Cortex-M0, M0+ and M1 which support SYSRESETREQ only!)
1489                  * This has the disadvantage of not resetting the peripherals, so a
1490                  * reset-init event handler is needed to perform any peripheral resets.
1491                  */
1492                 if (!cortex_m->vectreset_supported
1493                                 && reset_config == CORTEX_M_RESET_VECTRESET) {
1494                         reset_config = CORTEX_M_RESET_SYSRESETREQ;
1495                         LOG_TARGET_WARNING(target, "VECTRESET is not supported on this Cortex-M core, using SYSRESETREQ instead.");
1496                         LOG_TARGET_WARNING(target, "Set 'cortex_m reset_config sysresetreq'.");
1497                 }
1498
1499                 LOG_TARGET_DEBUG(target, "Using Cortex-M %s", (reset_config == CORTEX_M_RESET_SYSRESETREQ)
1500                         ? "SYSRESETREQ" : "VECTRESET");
1501
1502                 if (reset_config == CORTEX_M_RESET_VECTRESET) {
1503                         LOG_TARGET_WARNING(target, "Only resetting the Cortex-M core, use a reset-init event "
1504                                 "handler to reset any peripherals or configure hardware srst support.");
1505                 }
1506
1507                 int retval3;
1508                 retval3 = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_AIRCR,
1509                                 AIRCR_VECTKEY | ((reset_config == CORTEX_M_RESET_SYSRESETREQ)
1510                                 ? AIRCR_SYSRESETREQ : AIRCR_VECTRESET));
1511                 if (retval3 != ERROR_OK)
1512                         LOG_TARGET_DEBUG(target, "Ignoring AP write error right after reset");
1513
1514                 retval3 = dap_dp_init_or_reconnect(armv7m->debug_ap->dap);
1515                 if (retval3 != ERROR_OK) {
1516                         LOG_TARGET_ERROR(target, "DP initialisation failed");
1517                         /* The error return value must not be propagated in this case.
1518                          * SYSRESETREQ or VECTRESET have been possibly triggered
1519                          * so reset processing should continue */
1520                 } else {
1521                         /* I do not know why this is necessary, but it
1522                          * fixes strange effects (step/resume cause NMI
1523                          * after reset) on LM3S6918 -- Michael Schwingen
1524                          */
1525                         uint32_t tmp;
1526                         mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_AIRCR, &tmp);
1527                 }
1528         }
1529
1530         target->state = TARGET_RESET;
1531         jtag_sleep(50000);
1532
1533         register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
1534
1535         /* now return stored error code if any */
1536         if (retval != ERROR_OK)
1537                 return retval;
1538
1539         if (target->reset_halt) {
1540                 retval = target_halt(target);
1541                 if (retval != ERROR_OK)
1542                         return retval;
1543         }
1544
1545         return ERROR_OK;
1546 }
1547
1548 static int cortex_m_deassert_reset(struct target *target)
1549 {
1550         struct armv7m_common *armv7m = &target_to_cm(target)->armv7m;
1551
1552         LOG_TARGET_DEBUG(target, "target->state: %s",
1553                 target_state_name(target));
1554
1555         /* deassert reset lines */
1556         adapter_deassert_reset();
1557
1558         enum reset_types jtag_reset_config = jtag_get_reset_config();
1559
1560         if ((jtag_reset_config & RESET_HAS_SRST) &&
1561             !(jtag_reset_config & RESET_SRST_NO_GATING) &&
1562                 target_was_examined(target)) {
1563
1564                 int retval = dap_dp_init_or_reconnect(armv7m->debug_ap->dap);
1565                 if (retval != ERROR_OK) {
1566                         LOG_TARGET_ERROR(target, "DP initialisation failed");
1567                         return retval;
1568                 }
1569         }
1570
1571         return ERROR_OK;
1572 }
1573
1574 int cortex_m_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
1575 {
1576         int retval;
1577         unsigned int fp_num = 0;
1578         struct cortex_m_common *cortex_m = target_to_cm(target);
1579         struct cortex_m_fp_comparator *comparator_list = cortex_m->fp_comparator_list;
1580
1581         if (breakpoint->is_set) {
1582                 LOG_TARGET_WARNING(target, "breakpoint (BPID: %" PRIu32 ") already set", breakpoint->unique_id);
1583                 return ERROR_OK;
1584         }
1585
1586         if (breakpoint->type == BKPT_HARD) {
1587                 uint32_t fpcr_value;
1588                 while (comparator_list[fp_num].used && (fp_num < cortex_m->fp_num_code))
1589                         fp_num++;
1590                 if (fp_num >= cortex_m->fp_num_code) {
1591                         LOG_TARGET_ERROR(target, "Can not find free FPB Comparator!");
1592                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1593                 }
1594                 breakpoint_hw_set(breakpoint, fp_num);
1595                 fpcr_value = breakpoint->address | 1;
1596                 if (cortex_m->fp_rev == 0) {
1597                         if (breakpoint->address > 0x1FFFFFFF) {
1598                                 LOG_TARGET_ERROR(target, "Cortex-M Flash Patch Breakpoint rev.1 "
1599                                                 "cannot handle HW breakpoint above address 0x1FFFFFFE");
1600                                 return ERROR_FAIL;
1601                         }
1602                         uint32_t hilo;
1603                         hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
1604                         fpcr_value = (fpcr_value & 0x1FFFFFFC) | hilo | 1;
1605                 } else if (cortex_m->fp_rev > 1) {
1606                         LOG_TARGET_ERROR(target, "Unhandled Cortex-M Flash Patch Breakpoint architecture revision");
1607                         return ERROR_FAIL;
1608                 }
1609                 comparator_list[fp_num].used = true;
1610                 comparator_list[fp_num].fpcr_value = fpcr_value;
1611                 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1612                         comparator_list[fp_num].fpcr_value);
1613                 LOG_TARGET_DEBUG(target, "fpc_num %i fpcr_value 0x%" PRIx32 "",
1614                         fp_num,
1615                         comparator_list[fp_num].fpcr_value);
1616                 if (!cortex_m->fpb_enabled) {
1617                         LOG_TARGET_DEBUG(target, "FPB wasn't enabled, do it now");
1618                         retval = cortex_m_enable_fpb(target);
1619                         if (retval != ERROR_OK) {
1620                                 LOG_TARGET_ERROR(target, "Failed to enable the FPB");
1621                                 return retval;
1622                         }
1623
1624                         cortex_m->fpb_enabled = true;
1625                 }
1626         } else if (breakpoint->type == BKPT_SOFT) {
1627                 uint8_t code[4];
1628
1629                 /* NOTE: on ARMv6-M and ARMv7-M, BKPT(0xab) is used for
1630                  * semihosting; don't use that.  Otherwise the BKPT
1631                  * parameter is arbitrary.
1632                  */
1633                 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1634                 retval = target_read_memory(target,
1635                                 breakpoint->address & 0xFFFFFFFE,
1636                                 breakpoint->length, 1,
1637                                 breakpoint->orig_instr);
1638                 if (retval != ERROR_OK)
1639                         return retval;
1640                 retval = target_write_memory(target,
1641                                 breakpoint->address & 0xFFFFFFFE,
1642                                 breakpoint->length, 1,
1643                                 code);
1644                 if (retval != ERROR_OK)
1645                         return retval;
1646                 breakpoint->is_set = true;
1647         }
1648
1649         LOG_TARGET_DEBUG(target, "BPID: %" PRIu32 ", Type: %d, Address: " TARGET_ADDR_FMT " Length: %d (n=%u)",
1650                 breakpoint->unique_id,
1651                 (int)(breakpoint->type),
1652                 breakpoint->address,
1653                 breakpoint->length,
1654                 (breakpoint->type == BKPT_SOFT) ? 0 : breakpoint->number);
1655
1656         return ERROR_OK;
1657 }
1658
1659 int cortex_m_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1660 {
1661         int retval;
1662         struct cortex_m_common *cortex_m = target_to_cm(target);
1663         struct cortex_m_fp_comparator *comparator_list = cortex_m->fp_comparator_list;
1664
1665         if (!breakpoint->is_set) {
1666                 LOG_TARGET_WARNING(target, "breakpoint not set");
1667                 return ERROR_OK;
1668         }
1669
1670         LOG_TARGET_DEBUG(target, "BPID: %" PRIu32 ", Type: %d, Address: " TARGET_ADDR_FMT " Length: %d (n=%u)",
1671                 breakpoint->unique_id,
1672                 (int)(breakpoint->type),
1673                 breakpoint->address,
1674                 breakpoint->length,
1675                 (breakpoint->type == BKPT_SOFT) ? 0 : breakpoint->number);
1676
1677         if (breakpoint->type == BKPT_HARD) {
1678                 unsigned int fp_num = breakpoint->number;
1679                 if (fp_num >= cortex_m->fp_num_code) {
1680                         LOG_TARGET_DEBUG(target, "Invalid FP Comparator number in breakpoint");
1681                         return ERROR_OK;
1682                 }
1683                 comparator_list[fp_num].used = false;
1684                 comparator_list[fp_num].fpcr_value = 0;
1685                 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1686                         comparator_list[fp_num].fpcr_value);
1687         } else {
1688                 /* restore original instruction (kept in target endianness) */
1689                 retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE,
1690                                         breakpoint->length, 1,
1691                                         breakpoint->orig_instr);
1692                 if (retval != ERROR_OK)
1693                         return retval;
1694         }
1695         breakpoint->is_set = false;
1696
1697         return ERROR_OK;
1698 }
1699
1700 int cortex_m_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1701 {
1702         if (breakpoint->length == 3) {
1703                 LOG_TARGET_DEBUG(target, "Using a two byte breakpoint for 32bit Thumb-2 request");
1704                 breakpoint->length = 2;
1705         }
1706
1707         if ((breakpoint->length != 2)) {
1708                 LOG_TARGET_INFO(target, "only breakpoints of two bytes length supported");
1709                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1710         }
1711
1712         return cortex_m_set_breakpoint(target, breakpoint);
1713 }
1714
1715 int cortex_m_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1716 {
1717         if (!breakpoint->is_set)
1718                 return ERROR_OK;
1719
1720         return cortex_m_unset_breakpoint(target, breakpoint);
1721 }
1722
1723 static int cortex_m_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1724 {
1725         unsigned int dwt_num = 0;
1726         struct cortex_m_common *cortex_m = target_to_cm(target);
1727
1728         /* REVISIT Don't fully trust these "not used" records ... users
1729          * may set up breakpoints by hand, e.g. dual-address data value
1730          * watchpoint using comparator #1; comparator #0 matching cycle
1731          * count; send data trace info through ITM and TPIU; etc
1732          */
1733         struct cortex_m_dwt_comparator *comparator;
1734
1735         for (comparator = cortex_m->dwt_comparator_list;
1736                 comparator->used && dwt_num < cortex_m->dwt_num_comp;
1737                 comparator++, dwt_num++)
1738                 continue;
1739         if (dwt_num >= cortex_m->dwt_num_comp) {
1740                 LOG_TARGET_ERROR(target, "Can not find free DWT Comparator");
1741                 return ERROR_FAIL;
1742         }
1743         comparator->used = true;
1744         watchpoint_set(watchpoint, dwt_num);
1745
1746         comparator->comp = watchpoint->address;
1747         target_write_u32(target, comparator->dwt_comparator_address + 0,
1748                 comparator->comp);
1749
1750         if ((cortex_m->dwt_devarch & 0x1FFFFF) != DWT_DEVARCH_ARMV8M) {
1751                 uint32_t mask = 0, temp;
1752
1753                 /* watchpoint params were validated earlier */
1754                 temp = watchpoint->length;
1755                 while (temp) {
1756                         temp >>= 1;
1757                         mask++;
1758                 }
1759                 mask--;
1760
1761                 comparator->mask = mask;
1762                 target_write_u32(target, comparator->dwt_comparator_address + 4,
1763                         comparator->mask);
1764
1765                 switch (watchpoint->rw) {
1766                 case WPT_READ:
1767                         comparator->function = 5;
1768                         break;
1769                 case WPT_WRITE:
1770                         comparator->function = 6;
1771                         break;
1772                 case WPT_ACCESS:
1773                         comparator->function = 7;
1774                         break;
1775                 }
1776         } else {
1777                 uint32_t data_size = watchpoint->length >> 1;
1778                 comparator->mask = (watchpoint->length >> 1) | 1;
1779
1780                 switch (watchpoint->rw) {
1781                 case WPT_ACCESS:
1782                         comparator->function = 4;
1783                         break;
1784                 case WPT_WRITE:
1785                         comparator->function = 5;
1786                         break;
1787                 case WPT_READ:
1788                         comparator->function = 6;
1789                         break;
1790                 }
1791                 comparator->function = comparator->function | (1 << 4) |
1792                                 (data_size << 10);
1793         }
1794
1795         target_write_u32(target, comparator->dwt_comparator_address + 8,
1796                 comparator->function);
1797
1798         LOG_TARGET_DEBUG(target, "Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
1799                 watchpoint->unique_id, dwt_num,
1800                 (unsigned) comparator->comp,
1801                 (unsigned) comparator->mask,
1802                 (unsigned) comparator->function);
1803         return ERROR_OK;
1804 }
1805
1806 static int cortex_m_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1807 {
1808         struct cortex_m_common *cortex_m = target_to_cm(target);
1809         struct cortex_m_dwt_comparator *comparator;
1810
1811         if (!watchpoint->is_set) {
1812                 LOG_TARGET_WARNING(target, "watchpoint (wpid: %d) not set",
1813                         watchpoint->unique_id);
1814                 return ERROR_OK;
1815         }
1816
1817         unsigned int dwt_num = watchpoint->number;
1818
1819         LOG_TARGET_DEBUG(target, "Watchpoint (ID %d) DWT%u address: 0x%08x clear",
1820                 watchpoint->unique_id, dwt_num,
1821                 (unsigned) watchpoint->address);
1822
1823         if (dwt_num >= cortex_m->dwt_num_comp) {
1824                 LOG_TARGET_DEBUG(target, "Invalid DWT Comparator number in watchpoint");
1825                 return ERROR_OK;
1826         }
1827
1828         comparator = cortex_m->dwt_comparator_list + dwt_num;
1829         comparator->used = false;
1830         comparator->function = 0;
1831         target_write_u32(target, comparator->dwt_comparator_address + 8,
1832                 comparator->function);
1833
1834         watchpoint->is_set = false;
1835
1836         return ERROR_OK;
1837 }
1838
1839 int cortex_m_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1840 {
1841         struct cortex_m_common *cortex_m = target_to_cm(target);
1842
1843         if (cortex_m->dwt_comp_available < 1) {
1844                 LOG_TARGET_DEBUG(target, "no comparators?");
1845                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1846         }
1847
1848         /* hardware doesn't support data value masking */
1849         if (watchpoint->mask != ~(uint32_t)0) {
1850                 LOG_TARGET_DEBUG(target, "watchpoint value masks not supported");
1851                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1852         }
1853
1854         /* hardware allows address masks of up to 32K */
1855         unsigned mask;
1856
1857         for (mask = 0; mask < 16; mask++) {
1858                 if ((1u << mask) == watchpoint->length)
1859                         break;
1860         }
1861         if (mask == 16) {
1862                 LOG_TARGET_DEBUG(target, "unsupported watchpoint length");
1863                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1864         }
1865         if (watchpoint->address & ((1 << mask) - 1)) {
1866                 LOG_TARGET_DEBUG(target, "watchpoint address is unaligned");
1867                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1868         }
1869
1870         /* Caller doesn't seem to be able to describe watching for data
1871          * values of zero; that flags "no value".
1872          *
1873          * REVISIT This DWT may well be able to watch for specific data
1874          * values.  Requires comparator #1 to set DATAVMATCH and match
1875          * the data, and another comparator (DATAVADDR0) matching addr.
1876          */
1877         if (watchpoint->value) {
1878                 LOG_TARGET_DEBUG(target, "data value watchpoint not YET supported");
1879                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1880         }
1881
1882         cortex_m->dwt_comp_available--;
1883         LOG_TARGET_DEBUG(target, "dwt_comp_available: %d", cortex_m->dwt_comp_available);
1884
1885         return ERROR_OK;
1886 }
1887
1888 int cortex_m_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1889 {
1890         struct cortex_m_common *cortex_m = target_to_cm(target);
1891
1892         /* REVISIT why check? DWT can be updated with core running ... */
1893         if (target->state != TARGET_HALTED) {
1894                 LOG_TARGET_WARNING(target, "target not halted");
1895                 return ERROR_TARGET_NOT_HALTED;
1896         }
1897
1898         if (watchpoint->is_set)
1899                 cortex_m_unset_watchpoint(target, watchpoint);
1900
1901         cortex_m->dwt_comp_available++;
1902         LOG_TARGET_DEBUG(target, "dwt_comp_available: %d", cortex_m->dwt_comp_available);
1903
1904         return ERROR_OK;
1905 }
1906
1907 int cortex_m_hit_watchpoint(struct target *target, struct watchpoint **hit_watchpoint)
1908 {
1909         if (target->debug_reason != DBG_REASON_WATCHPOINT)
1910                 return ERROR_FAIL;
1911
1912         struct cortex_m_common *cortex_m = target_to_cm(target);
1913
1914         for (struct watchpoint *wp = target->watchpoints; wp; wp = wp->next) {
1915                 if (!wp->is_set)
1916                         continue;
1917
1918                 unsigned int dwt_num = wp->number;
1919                 struct cortex_m_dwt_comparator *comparator = cortex_m->dwt_comparator_list + dwt_num;
1920
1921                 uint32_t dwt_function;
1922                 int retval = target_read_u32(target, comparator->dwt_comparator_address + 8, &dwt_function);
1923                 if (retval != ERROR_OK)
1924                         return ERROR_FAIL;
1925
1926                 /* check the MATCHED bit */
1927                 if (dwt_function & BIT(24)) {
1928                         *hit_watchpoint = wp;
1929                         return ERROR_OK;
1930                 }
1931         }
1932
1933         return ERROR_FAIL;
1934 }
1935
1936 void cortex_m_enable_watchpoints(struct target *target)
1937 {
1938         struct watchpoint *watchpoint = target->watchpoints;
1939
1940         /* set any pending watchpoints */
1941         while (watchpoint) {
1942                 if (!watchpoint->is_set)
1943                         cortex_m_set_watchpoint(target, watchpoint);
1944                 watchpoint = watchpoint->next;
1945         }
1946 }
1947
1948 static int cortex_m_read_memory(struct target *target, target_addr_t address,
1949         uint32_t size, uint32_t count, uint8_t *buffer)
1950 {
1951         struct armv7m_common *armv7m = target_to_armv7m(target);
1952
1953         if (armv7m->arm.arch == ARM_ARCH_V6M) {
1954                 /* armv6m does not handle unaligned memory access */
1955                 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1956                         return ERROR_TARGET_UNALIGNED_ACCESS;
1957         }
1958
1959         return mem_ap_read_buf(armv7m->debug_ap, buffer, size, count, address);
1960 }
1961
1962 static int cortex_m_write_memory(struct target *target, target_addr_t address,
1963         uint32_t size, uint32_t count, const uint8_t *buffer)
1964 {
1965         struct armv7m_common *armv7m = target_to_armv7m(target);
1966
1967         if (armv7m->arm.arch == ARM_ARCH_V6M) {
1968                 /* armv6m does not handle unaligned memory access */
1969                 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1970                         return ERROR_TARGET_UNALIGNED_ACCESS;
1971         }
1972
1973         return mem_ap_write_buf(armv7m->debug_ap, buffer, size, count, address);
1974 }
1975
1976 static int cortex_m_init_target(struct command_context *cmd_ctx,
1977         struct target *target)
1978 {
1979         armv7m_build_reg_cache(target);
1980         arm_semihosting_init(target);
1981         return ERROR_OK;
1982 }
1983
1984 void cortex_m_deinit_target(struct target *target)
1985 {
1986         struct cortex_m_common *cortex_m = target_to_cm(target);
1987         struct armv7m_common *armv7m = target_to_armv7m(target);
1988
1989         if (!armv7m->is_hla_target && armv7m->debug_ap)
1990                 dap_put_ap(armv7m->debug_ap);
1991
1992         free(cortex_m->fp_comparator_list);
1993
1994         cortex_m_dwt_free(target);
1995         armv7m_free_reg_cache(target);
1996
1997         free(target->private_config);
1998         free(cortex_m);
1999 }
2000
2001 int cortex_m_profiling(struct target *target, uint32_t *samples,
2002                               uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
2003 {
2004         struct timeval timeout, now;
2005         struct armv7m_common *armv7m = target_to_armv7m(target);
2006         uint32_t reg_value;
2007         int retval;
2008
2009         retval = target_read_u32(target, DWT_PCSR, &reg_value);
2010         if (retval != ERROR_OK) {
2011                 LOG_TARGET_ERROR(target, "Error while reading PCSR");
2012                 return retval;
2013         }
2014         if (reg_value == 0) {
2015                 LOG_TARGET_INFO(target, "PCSR sampling not supported on this processor.");
2016                 return target_profiling_default(target, samples, max_num_samples, num_samples, seconds);
2017         }
2018
2019         gettimeofday(&timeout, NULL);
2020         timeval_add_time(&timeout, seconds, 0);
2021
2022         LOG_TARGET_INFO(target, "Starting Cortex-M profiling. Sampling DWT_PCSR as fast as we can...");
2023
2024         /* Make sure the target is running */
2025         target_poll(target);
2026         if (target->state == TARGET_HALTED)
2027                 retval = target_resume(target, 1, 0, 0, 0);
2028
2029         if (retval != ERROR_OK) {
2030                 LOG_TARGET_ERROR(target, "Error while resuming target");
2031                 return retval;
2032         }
2033
2034         uint32_t sample_count = 0;
2035
2036         for (;;) {
2037                 if (armv7m && armv7m->debug_ap) {
2038                         uint32_t read_count = max_num_samples - sample_count;
2039                         if (read_count > 1024)
2040                                 read_count = 1024;
2041
2042                         retval = mem_ap_read_buf_noincr(armv7m->debug_ap,
2043                                                 (void *)&samples[sample_count],
2044                                                 4, read_count, DWT_PCSR);
2045                         sample_count += read_count;
2046                 } else {
2047                         target_read_u32(target, DWT_PCSR, &samples[sample_count++]);
2048                 }
2049
2050                 if (retval != ERROR_OK) {
2051                         LOG_TARGET_ERROR(target, "Error while reading PCSR");
2052                         return retval;
2053                 }
2054
2055
2056                 gettimeofday(&now, NULL);
2057                 if (sample_count >= max_num_samples || timeval_compare(&now, &timeout) > 0) {
2058                         LOG_TARGET_INFO(target, "Profiling completed. %" PRIu32 " samples.", sample_count);
2059                         break;
2060                 }
2061         }
2062
2063         *num_samples = sample_count;
2064         return retval;
2065 }
2066
2067
2068 /* REVISIT cache valid/dirty bits are unmaintained.  We could set "valid"
2069  * on r/w if the core is not running, and clear on resume or reset ... or
2070  * at least, in a post_restore_context() method.
2071  */
2072
2073 struct dwt_reg_state {
2074         struct target *target;
2075         uint32_t addr;
2076         uint8_t value[4];               /* scratch/cache */
2077 };
2078
2079 static int cortex_m_dwt_get_reg(struct reg *reg)
2080 {
2081         struct dwt_reg_state *state = reg->arch_info;
2082
2083         uint32_t tmp;
2084         int retval = target_read_u32(state->target, state->addr, &tmp);
2085         if (retval != ERROR_OK)
2086                 return retval;
2087
2088         buf_set_u32(state->value, 0, 32, tmp);
2089         return ERROR_OK;
2090 }
2091
2092 static int cortex_m_dwt_set_reg(struct reg *reg, uint8_t *buf)
2093 {
2094         struct dwt_reg_state *state = reg->arch_info;
2095
2096         return target_write_u32(state->target, state->addr,
2097                         buf_get_u32(buf, 0, reg->size));
2098 }
2099
2100 struct dwt_reg {
2101         uint32_t addr;
2102         const char *name;
2103         unsigned size;
2104 };
2105
2106 static const struct dwt_reg dwt_base_regs[] = {
2107         { DWT_CTRL, "dwt_ctrl", 32, },
2108         /* NOTE that Erratum 532314 (fixed r2p0) affects CYCCNT:  it wrongly
2109          * increments while the core is asleep.
2110          */
2111         { DWT_CYCCNT, "dwt_cyccnt", 32, },
2112         /* plus some 8 bit counters, useful for profiling with TPIU */
2113 };
2114
2115 static const struct dwt_reg dwt_comp[] = {
2116 #define DWT_COMPARATOR(i) \
2117                 { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
2118                 { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
2119                 { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
2120         DWT_COMPARATOR(0),
2121         DWT_COMPARATOR(1),
2122         DWT_COMPARATOR(2),
2123         DWT_COMPARATOR(3),
2124         DWT_COMPARATOR(4),
2125         DWT_COMPARATOR(5),
2126         DWT_COMPARATOR(6),
2127         DWT_COMPARATOR(7),
2128         DWT_COMPARATOR(8),
2129         DWT_COMPARATOR(9),
2130         DWT_COMPARATOR(10),
2131         DWT_COMPARATOR(11),
2132         DWT_COMPARATOR(12),
2133         DWT_COMPARATOR(13),
2134         DWT_COMPARATOR(14),
2135         DWT_COMPARATOR(15),
2136 #undef DWT_COMPARATOR
2137 };
2138
2139 static const struct reg_arch_type dwt_reg_type = {
2140         .get = cortex_m_dwt_get_reg,
2141         .set = cortex_m_dwt_set_reg,
2142 };
2143
2144 static void cortex_m_dwt_addreg(struct target *t, struct reg *r, const struct dwt_reg *d)
2145 {
2146         struct dwt_reg_state *state;
2147
2148         state = calloc(1, sizeof(*state));
2149         if (!state)
2150                 return;
2151         state->addr = d->addr;
2152         state->target = t;
2153
2154         r->name = d->name;
2155         r->size = d->size;
2156         r->value = state->value;
2157         r->arch_info = state;
2158         r->type = &dwt_reg_type;
2159 }
2160
2161 static void cortex_m_dwt_setup(struct cortex_m_common *cm, struct target *target)
2162 {
2163         uint32_t dwtcr;
2164         struct reg_cache *cache;
2165         struct cortex_m_dwt_comparator *comparator;
2166         int reg;
2167
2168         target_read_u32(target, DWT_CTRL, &dwtcr);
2169         LOG_TARGET_DEBUG(target, "DWT_CTRL: 0x%" PRIx32, dwtcr);
2170         if (!dwtcr) {
2171                 LOG_TARGET_DEBUG(target, "no DWT");
2172                 return;
2173         }
2174
2175         target_read_u32(target, DWT_DEVARCH, &cm->dwt_devarch);
2176         LOG_TARGET_DEBUG(target, "DWT_DEVARCH: 0x%" PRIx32, cm->dwt_devarch);
2177
2178         cm->dwt_num_comp = (dwtcr >> 28) & 0xF;
2179         cm->dwt_comp_available = cm->dwt_num_comp;
2180         cm->dwt_comparator_list = calloc(cm->dwt_num_comp,
2181                         sizeof(struct cortex_m_dwt_comparator));
2182         if (!cm->dwt_comparator_list) {
2183 fail0:
2184                 cm->dwt_num_comp = 0;
2185                 LOG_TARGET_ERROR(target, "out of mem");
2186                 return;
2187         }
2188
2189         cache = calloc(1, sizeof(*cache));
2190         if (!cache) {
2191 fail1:
2192                 free(cm->dwt_comparator_list);
2193                 goto fail0;
2194         }
2195         cache->name = "Cortex-M DWT registers";
2196         cache->num_regs = 2 + cm->dwt_num_comp * 3;
2197         cache->reg_list = calloc(cache->num_regs, sizeof(*cache->reg_list));
2198         if (!cache->reg_list) {
2199                 free(cache);
2200                 goto fail1;
2201         }
2202
2203         for (reg = 0; reg < 2; reg++)
2204                 cortex_m_dwt_addreg(target, cache->reg_list + reg,
2205                         dwt_base_regs + reg);
2206
2207         comparator = cm->dwt_comparator_list;
2208         for (unsigned int i = 0; i < cm->dwt_num_comp; i++, comparator++) {
2209                 int j;
2210
2211                 comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
2212                 for (j = 0; j < 3; j++, reg++)
2213                         cortex_m_dwt_addreg(target, cache->reg_list + reg,
2214                                 dwt_comp + 3 * i + j);
2215
2216                 /* make sure we clear any watchpoints enabled on the target */
2217                 target_write_u32(target, comparator->dwt_comparator_address + 8, 0);
2218         }
2219
2220         *register_get_last_cache_p(&target->reg_cache) = cache;
2221         cm->dwt_cache = cache;
2222
2223         LOG_TARGET_DEBUG(target, "DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
2224                 dwtcr, cm->dwt_num_comp,
2225                 (dwtcr & (0xf << 24)) ? " only" : "/trigger");
2226
2227         /* REVISIT:  if num_comp > 1, check whether comparator #1 can
2228          * implement single-address data value watchpoints ... so we
2229          * won't need to check it later, when asked to set one up.
2230          */
2231 }
2232
2233 static void cortex_m_dwt_free(struct target *target)
2234 {
2235         struct cortex_m_common *cm = target_to_cm(target);
2236         struct reg_cache *cache = cm->dwt_cache;
2237
2238         free(cm->dwt_comparator_list);
2239         cm->dwt_comparator_list = NULL;
2240         cm->dwt_num_comp = 0;
2241
2242         if (cache) {
2243                 register_unlink_cache(&target->reg_cache, cache);
2244
2245                 if (cache->reg_list) {
2246                         for (size_t i = 0; i < cache->num_regs; i++)
2247                                 free(cache->reg_list[i].arch_info);
2248                         free(cache->reg_list);
2249                 }
2250                 free(cache);
2251         }
2252         cm->dwt_cache = NULL;
2253 }
2254
2255 #define MVFR0 0xe000ef40
2256 #define MVFR1 0xe000ef44
2257
2258 #define MVFR0_DEFAULT_M4 0x10110021
2259 #define MVFR1_DEFAULT_M4 0x11000011
2260
2261 #define MVFR0_DEFAULT_M7_SP 0x10110021
2262 #define MVFR0_DEFAULT_M7_DP 0x10110221
2263 #define MVFR1_DEFAULT_M7_SP 0x11000011
2264 #define MVFR1_DEFAULT_M7_DP 0x12000011
2265
2266 static int cortex_m_find_mem_ap(struct adiv5_dap *swjdp,
2267                 struct adiv5_ap **debug_ap)
2268 {
2269         if (dap_find_get_ap(swjdp, AP_TYPE_AHB3_AP, debug_ap) == ERROR_OK)
2270                 return ERROR_OK;
2271
2272         return dap_find_get_ap(swjdp, AP_TYPE_AHB5_AP, debug_ap);
2273 }
2274
2275 int cortex_m_examine(struct target *target)
2276 {
2277         int retval;
2278         uint32_t cpuid, fpcr, mvfr0, mvfr1;
2279         struct cortex_m_common *cortex_m = target_to_cm(target);
2280         struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
2281         struct armv7m_common *armv7m = target_to_armv7m(target);
2282
2283         /* hla_target shares the examine handler but does not support
2284          * all its calls */
2285         if (!armv7m->is_hla_target) {
2286                 if (armv7m->debug_ap) {
2287                         dap_put_ap(armv7m->debug_ap);
2288                         armv7m->debug_ap = NULL;
2289                 }
2290
2291                 if (cortex_m->apsel == DP_APSEL_INVALID) {
2292                         /* Search for the MEM-AP */
2293                         retval = cortex_m_find_mem_ap(swjdp, &armv7m->debug_ap);
2294                         if (retval != ERROR_OK) {
2295                                 LOG_TARGET_ERROR(target, "Could not find MEM-AP to control the core");
2296                                 return retval;
2297                         }
2298                 } else {
2299                         armv7m->debug_ap = dap_get_ap(swjdp, cortex_m->apsel);
2300                         if (!armv7m->debug_ap) {
2301                                 LOG_ERROR("Cannot get AP");
2302                                 return ERROR_FAIL;
2303                         }
2304                 }
2305
2306                 armv7m->debug_ap->memaccess_tck = 8;
2307
2308                 retval = mem_ap_init(armv7m->debug_ap);
2309                 if (retval != ERROR_OK)
2310                         return retval;
2311         }
2312
2313         if (!target_was_examined(target)) {
2314                 target_set_examined(target);
2315
2316                 /* Read from Device Identification Registers */
2317                 retval = target_read_u32(target, CPUID, &cpuid);
2318                 if (retval != ERROR_OK)
2319                         return retval;
2320
2321                 /* Get ARCH and CPU types */
2322                 const enum cortex_m_partno core_partno = (cpuid & ARM_CPUID_PARTNO_MASK) >> ARM_CPUID_PARTNO_POS;
2323
2324                 for (unsigned int n = 0; n < ARRAY_SIZE(cortex_m_parts); n++) {
2325                         if (core_partno == cortex_m_parts[n].partno) {
2326                                 cortex_m->core_info = &cortex_m_parts[n];
2327                                 break;
2328                         }
2329                 }
2330
2331                 if (!cortex_m->core_info) {
2332                         LOG_TARGET_ERROR(target, "Cortex-M PARTNO 0x%x is unrecognized", core_partno);
2333                         return ERROR_FAIL;
2334                 }
2335
2336                 armv7m->arm.arch = cortex_m->core_info->arch;
2337
2338                 LOG_TARGET_INFO(target, "%s r%" PRId8 "p%" PRId8 " processor detected",
2339                                 cortex_m->core_info->name,
2340                                 (uint8_t)((cpuid >> 20) & 0xf),
2341                                 (uint8_t)((cpuid >> 0) & 0xf));
2342
2343                 cortex_m->maskints_erratum = false;
2344                 if (core_partno == CORTEX_M7_PARTNO) {
2345                         uint8_t rev, patch;
2346                         rev = (cpuid >> 20) & 0xf;
2347                         patch = (cpuid >> 0) & 0xf;
2348                         if ((rev == 0) && (patch < 2)) {
2349                                 LOG_TARGET_WARNING(target, "Silicon bug: single stepping may enter pending exception handler!");
2350                                 cortex_m->maskints_erratum = true;
2351                         }
2352                 }
2353                 LOG_TARGET_DEBUG(target, "cpuid: 0x%8.8" PRIx32 "", cpuid);
2354
2355                 if (cortex_m->core_info->flags & CORTEX_M_F_HAS_FPV4) {
2356                         target_read_u32(target, MVFR0, &mvfr0);
2357                         target_read_u32(target, MVFR1, &mvfr1);
2358
2359                         /* test for floating point feature on Cortex-M4 */
2360                         if ((mvfr0 == MVFR0_DEFAULT_M4) && (mvfr1 == MVFR1_DEFAULT_M4)) {
2361                                 LOG_TARGET_DEBUG(target, "%s floating point feature FPv4_SP found", cortex_m->core_info->name);
2362                                 armv7m->fp_feature = FPV4_SP;
2363                         }
2364                 } else if (cortex_m->core_info->flags & CORTEX_M_F_HAS_FPV5) {
2365                         target_read_u32(target, MVFR0, &mvfr0);
2366                         target_read_u32(target, MVFR1, &mvfr1);
2367
2368                         /* test for floating point features on Cortex-M7 */
2369                         if ((mvfr0 == MVFR0_DEFAULT_M7_SP) && (mvfr1 == MVFR1_DEFAULT_M7_SP)) {
2370                                 LOG_TARGET_DEBUG(target, "%s floating point feature FPv5_SP found", cortex_m->core_info->name);
2371                                 armv7m->fp_feature = FPV5_SP;
2372                         } else if ((mvfr0 == MVFR0_DEFAULT_M7_DP) && (mvfr1 == MVFR1_DEFAULT_M7_DP)) {
2373                                 LOG_TARGET_DEBUG(target, "%s floating point feature FPv5_DP found", cortex_m->core_info->name);
2374                                 armv7m->fp_feature = FPV5_DP;
2375                         }
2376                 }
2377
2378                 /* VECTRESET is supported only on ARMv7-M cores */
2379                 cortex_m->vectreset_supported = armv7m->arm.arch == ARM_ARCH_V7M;
2380
2381                 /* Check for FPU, otherwise mark FPU register as non-existent */
2382                 if (armv7m->fp_feature == FP_NONE)
2383                         for (size_t idx = ARMV7M_FPU_FIRST_REG; idx <= ARMV7M_FPU_LAST_REG; idx++)
2384                                 armv7m->arm.core_cache->reg_list[idx].exist = false;
2385
2386                 if (armv7m->arm.arch != ARM_ARCH_V8M)
2387                         for (size_t idx = ARMV8M_FIRST_REG; idx <= ARMV8M_LAST_REG; idx++)
2388                                 armv7m->arm.core_cache->reg_list[idx].exist = false;
2389
2390                 if (!armv7m->is_hla_target) {
2391                         if (cortex_m->core_info->flags & CORTEX_M_F_TAR_AUTOINCR_BLOCK_4K)
2392                                 /* Cortex-M3/M4 have 4096 bytes autoincrement range,
2393                                  * s. ARM IHI 0031C: MEM-AP 7.2.2 */
2394                                 armv7m->debug_ap->tar_autoincr_block = (1 << 12);
2395                 }
2396
2397                 retval = target_read_u32(target, DCB_DHCSR, &cortex_m->dcb_dhcsr);
2398                 if (retval != ERROR_OK)
2399                         return retval;
2400                 cortex_m_cumulate_dhcsr_sticky(cortex_m, cortex_m->dcb_dhcsr);
2401
2402                 if (!(cortex_m->dcb_dhcsr & C_DEBUGEN)) {
2403                         /* Enable debug requests */
2404                         uint32_t dhcsr = (cortex_m->dcb_dhcsr | C_DEBUGEN) & ~(C_HALT | C_STEP | C_MASKINTS);
2405
2406                         retval = target_write_u32(target, DCB_DHCSR, DBGKEY | (dhcsr & 0x0000FFFFUL));
2407                         if (retval != ERROR_OK)
2408                                 return retval;
2409                         cortex_m->dcb_dhcsr = dhcsr;
2410                 }
2411
2412                 /* Configure trace modules */
2413                 retval = target_write_u32(target, DCB_DEMCR, TRCENA | armv7m->demcr);
2414                 if (retval != ERROR_OK)
2415                         return retval;
2416
2417                 if (armv7m->trace_config.itm_deferred_config)
2418                         armv7m_trace_itm_config(target);
2419
2420                 /* NOTE: FPB and DWT are both optional. */
2421
2422                 /* Setup FPB */
2423                 target_read_u32(target, FP_CTRL, &fpcr);
2424                 /* bits [14:12] and [7:4] */
2425                 cortex_m->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF);
2426                 cortex_m->fp_num_lit = (fpcr >> 8) & 0xF;
2427                 /* Detect flash patch revision, see RM DDI 0403E.b page C1-817.
2428                    Revision is zero base, fp_rev == 1 means Rev.2 ! */
2429                 cortex_m->fp_rev = (fpcr >> 28) & 0xf;
2430                 free(cortex_m->fp_comparator_list);
2431                 cortex_m->fp_comparator_list = calloc(
2432                                 cortex_m->fp_num_code + cortex_m->fp_num_lit,
2433                                 sizeof(struct cortex_m_fp_comparator));
2434                 cortex_m->fpb_enabled = fpcr & 1;
2435                 for (unsigned int i = 0; i < cortex_m->fp_num_code + cortex_m->fp_num_lit; i++) {
2436                         cortex_m->fp_comparator_list[i].type =
2437                                 (i < cortex_m->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
2438                         cortex_m->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
2439
2440                         /* make sure we clear any breakpoints enabled on the target */
2441                         target_write_u32(target, cortex_m->fp_comparator_list[i].fpcr_address, 0);
2442                 }
2443                 LOG_TARGET_DEBUG(target, "FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i",
2444                         fpcr,
2445                         cortex_m->fp_num_code,
2446                         cortex_m->fp_num_lit);
2447
2448                 /* Setup DWT */
2449                 cortex_m_dwt_free(target);
2450                 cortex_m_dwt_setup(cortex_m, target);
2451
2452                 /* These hardware breakpoints only work for code in flash! */
2453                 LOG_TARGET_INFO(target, "target has %d breakpoints, %d watchpoints",
2454                         cortex_m->fp_num_code,
2455                         cortex_m->dwt_num_comp);
2456         }
2457
2458         return ERROR_OK;
2459 }
2460
2461 static int cortex_m_dcc_read(struct target *target, uint8_t *value, uint8_t *ctrl)
2462 {
2463         struct armv7m_common *armv7m = target_to_armv7m(target);
2464         uint16_t dcrdr;
2465         uint8_t buf[2];
2466         int retval;
2467
2468         retval = mem_ap_read_buf_noincr(armv7m->debug_ap, buf, 2, 1, DCB_DCRDR);
2469         if (retval != ERROR_OK)
2470                 return retval;
2471
2472         dcrdr = target_buffer_get_u16(target, buf);
2473         *ctrl = (uint8_t)dcrdr;
2474         *value = (uint8_t)(dcrdr >> 8);
2475
2476         LOG_TARGET_DEBUG(target, "data 0x%x ctrl 0x%x", *value, *ctrl);
2477
2478         /* write ack back to software dcc register
2479          * signify we have read data */
2480         if (dcrdr & (1 << 0)) {
2481                 target_buffer_set_u16(target, buf, 0);
2482                 retval = mem_ap_write_buf_noincr(armv7m->debug_ap, buf, 2, 1, DCB_DCRDR);
2483                 if (retval != ERROR_OK)
2484                         return retval;
2485         }
2486
2487         return ERROR_OK;
2488 }
2489
2490 static int cortex_m_target_request_data(struct target *target,
2491         uint32_t size, uint8_t *buffer)
2492 {
2493         uint8_t data;
2494         uint8_t ctrl;
2495         uint32_t i;
2496
2497         for (i = 0; i < (size * 4); i++) {
2498                 int retval = cortex_m_dcc_read(target, &data, &ctrl);
2499                 if (retval != ERROR_OK)
2500                         return retval;
2501                 buffer[i] = data;
2502         }
2503
2504         return ERROR_OK;
2505 }
2506
2507 static int cortex_m_handle_target_request(void *priv)
2508 {
2509         struct target *target = priv;
2510         if (!target_was_examined(target))
2511                 return ERROR_OK;
2512
2513         if (!target->dbg_msg_enabled)
2514                 return ERROR_OK;
2515
2516         if (target->state == TARGET_RUNNING) {
2517                 uint8_t data;
2518                 uint8_t ctrl;
2519                 int retval;
2520
2521                 retval = cortex_m_dcc_read(target, &data, &ctrl);
2522                 if (retval != ERROR_OK)
2523                         return retval;
2524
2525                 /* check if we have data */
2526                 if (ctrl & (1 << 0)) {
2527                         uint32_t request;
2528
2529                         /* we assume target is quick enough */
2530                         request = data;
2531                         for (int i = 1; i <= 3; i++) {
2532                                 retval = cortex_m_dcc_read(target, &data, &ctrl);
2533                                 if (retval != ERROR_OK)
2534                                         return retval;
2535                                 request |= ((uint32_t)data << (i * 8));
2536                         }
2537                         target_request(target, request);
2538                 }
2539         }
2540
2541         return ERROR_OK;
2542 }
2543
2544 static int cortex_m_init_arch_info(struct target *target,
2545         struct cortex_m_common *cortex_m, struct adiv5_dap *dap)
2546 {
2547         struct armv7m_common *armv7m = &cortex_m->armv7m;
2548
2549         armv7m_init_arch_info(target, armv7m);
2550
2551         /* default reset mode is to use srst if fitted
2552          * if not it will use CORTEX_M3_RESET_VECTRESET */
2553         cortex_m->soft_reset_config = CORTEX_M_RESET_VECTRESET;
2554
2555         armv7m->arm.dap = dap;
2556
2557         /* register arch-specific functions */
2558         armv7m->examine_debug_reason = cortex_m_examine_debug_reason;
2559
2560         armv7m->post_debug_entry = NULL;
2561
2562         armv7m->pre_restore_context = NULL;
2563
2564         armv7m->load_core_reg_u32 = cortex_m_load_core_reg_u32;
2565         armv7m->store_core_reg_u32 = cortex_m_store_core_reg_u32;
2566
2567         target_register_timer_callback(cortex_m_handle_target_request, 1,
2568                 TARGET_TIMER_TYPE_PERIODIC, target);
2569
2570         return ERROR_OK;
2571 }
2572
2573 static int cortex_m_target_create(struct target *target, Jim_Interp *interp)
2574 {
2575         struct adiv5_private_config *pc;
2576
2577         pc = (struct adiv5_private_config *)target->private_config;
2578         if (adiv5_verify_config(pc) != ERROR_OK)
2579                 return ERROR_FAIL;
2580
2581         struct cortex_m_common *cortex_m = calloc(1, sizeof(struct cortex_m_common));
2582         if (!cortex_m) {
2583                 LOG_TARGET_ERROR(target, "No memory creating target");
2584                 return ERROR_FAIL;
2585         }
2586
2587         cortex_m->common_magic = CORTEX_M_COMMON_MAGIC;
2588         cortex_m->apsel = pc->ap_num;
2589
2590         cortex_m_init_arch_info(target, cortex_m, pc->dap);
2591
2592         return ERROR_OK;
2593 }
2594
2595 /*--------------------------------------------------------------------------*/
2596
2597 static int cortex_m_verify_pointer(struct command_invocation *cmd,
2598         struct cortex_m_common *cm)
2599 {
2600         if (!is_cortex_m_with_dap_access(cm)) {
2601                 command_print(cmd, "target is not a Cortex-M");
2602                 return ERROR_TARGET_INVALID;
2603         }
2604         return ERROR_OK;
2605 }
2606
2607 /*
2608  * Only stuff below this line should need to verify that its target
2609  * is a Cortex-M3.  Everything else should have indirected through the
2610  * cortexm3_target structure, which is only used with CM3 targets.
2611  */
2612
2613 COMMAND_HANDLER(handle_cortex_m_vector_catch_command)
2614 {
2615         struct target *target = get_current_target(CMD_CTX);
2616         struct cortex_m_common *cortex_m = target_to_cm(target);
2617         struct armv7m_common *armv7m = &cortex_m->armv7m;
2618         uint32_t demcr = 0;
2619         int retval;
2620
2621         static const struct {
2622                 char name[10];
2623                 unsigned mask;
2624         } vec_ids[] = {
2625                 { "hard_err",   VC_HARDERR, },
2626                 { "int_err",    VC_INTERR, },
2627                 { "bus_err",    VC_BUSERR, },
2628                 { "state_err",  VC_STATERR, },
2629                 { "chk_err",    VC_CHKERR, },
2630                 { "nocp_err",   VC_NOCPERR, },
2631                 { "mm_err",     VC_MMERR, },
2632                 { "reset",      VC_CORERESET, },
2633         };
2634
2635         retval = cortex_m_verify_pointer(CMD, cortex_m);
2636         if (retval != ERROR_OK)
2637                 return retval;
2638
2639         if (!target_was_examined(target)) {
2640                 LOG_TARGET_ERROR(target, "Target not examined yet");
2641                 return ERROR_FAIL;
2642         }
2643
2644         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &demcr);
2645         if (retval != ERROR_OK)
2646                 return retval;
2647
2648         if (CMD_ARGC > 0) {
2649                 unsigned catch = 0;
2650
2651                 if (CMD_ARGC == 1) {
2652                         if (strcmp(CMD_ARGV[0], "all") == 0) {
2653                                 catch = VC_HARDERR | VC_INTERR | VC_BUSERR
2654                                         | VC_STATERR | VC_CHKERR | VC_NOCPERR
2655                                         | VC_MMERR | VC_CORERESET;
2656                                 goto write;
2657                         } else if (strcmp(CMD_ARGV[0], "none") == 0)
2658                                 goto write;
2659                 }
2660                 while (CMD_ARGC-- > 0) {
2661                         unsigned i;
2662                         for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2663                                 if (strcmp(CMD_ARGV[CMD_ARGC], vec_ids[i].name) != 0)
2664                                         continue;
2665                                 catch |= vec_ids[i].mask;
2666                                 break;
2667                         }
2668                         if (i == ARRAY_SIZE(vec_ids)) {
2669                                 LOG_TARGET_ERROR(target, "No CM3 vector '%s'", CMD_ARGV[CMD_ARGC]);
2670                                 return ERROR_COMMAND_SYNTAX_ERROR;
2671                         }
2672                 }
2673 write:
2674                 /* For now, armv7m->demcr only stores vector catch flags. */
2675                 armv7m->demcr = catch;
2676
2677                 demcr &= ~0xffff;
2678                 demcr |= catch;
2679
2680                 /* write, but don't assume it stuck (why not??) */
2681                 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR, demcr);
2682                 if (retval != ERROR_OK)
2683                         return retval;
2684                 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &demcr);
2685                 if (retval != ERROR_OK)
2686                         return retval;
2687
2688                 /* FIXME be sure to clear DEMCR on clean server shutdown.
2689                  * Otherwise the vector catch hardware could fire when there's
2690                  * no debugger hooked up, causing much confusion...
2691                  */
2692         }
2693
2694         for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2695                 command_print(CMD, "%9s: %s", vec_ids[i].name,
2696                         (demcr & vec_ids[i].mask) ? "catch" : "ignore");
2697         }
2698
2699         return ERROR_OK;
2700 }
2701
2702 COMMAND_HANDLER(handle_cortex_m_mask_interrupts_command)
2703 {
2704         struct target *target = get_current_target(CMD_CTX);
2705         struct cortex_m_common *cortex_m = target_to_cm(target);
2706         int retval;
2707
2708         static const struct jim_nvp nvp_maskisr_modes[] = {
2709                 { .name = "auto", .value = CORTEX_M_ISRMASK_AUTO },
2710                 { .name = "off", .value = CORTEX_M_ISRMASK_OFF },
2711                 { .name = "on", .value = CORTEX_M_ISRMASK_ON },
2712                 { .name = "steponly", .value = CORTEX_M_ISRMASK_STEPONLY },
2713                 { .name = NULL, .value = -1 },
2714         };
2715         const struct jim_nvp *n;
2716
2717
2718         retval = cortex_m_verify_pointer(CMD, cortex_m);
2719         if (retval != ERROR_OK)
2720                 return retval;
2721
2722         if (target->state != TARGET_HALTED) {
2723                 command_print(CMD, "target must be stopped for \"%s\" command", CMD_NAME);
2724                 return ERROR_OK;
2725         }
2726
2727         if (CMD_ARGC > 0) {
2728                 n = jim_nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
2729                 if (!n->name)
2730                         return ERROR_COMMAND_SYNTAX_ERROR;
2731                 cortex_m->isrmasking_mode = n->value;
2732                 cortex_m_set_maskints_for_halt(target);
2733         }
2734
2735         n = jim_nvp_value2name_simple(nvp_maskisr_modes, cortex_m->isrmasking_mode);
2736         command_print(CMD, "cortex_m interrupt mask %s", n->name);
2737
2738         return ERROR_OK;
2739 }
2740
2741 COMMAND_HANDLER(handle_cortex_m_reset_config_command)
2742 {
2743         struct target *target = get_current_target(CMD_CTX);
2744         struct cortex_m_common *cortex_m = target_to_cm(target);
2745         int retval;
2746         char *reset_config;
2747
2748         retval = cortex_m_verify_pointer(CMD, cortex_m);
2749         if (retval != ERROR_OK)
2750                 return retval;
2751
2752         if (CMD_ARGC > 0) {
2753                 if (strcmp(*CMD_ARGV, "sysresetreq") == 0)
2754                         cortex_m->soft_reset_config = CORTEX_M_RESET_SYSRESETREQ;
2755
2756                 else if (strcmp(*CMD_ARGV, "vectreset") == 0) {
2757                         if (target_was_examined(target)
2758                                         && !cortex_m->vectreset_supported)
2759                                 LOG_TARGET_WARNING(target, "VECTRESET is not supported on your Cortex-M core!");
2760                         else
2761                                 cortex_m->soft_reset_config = CORTEX_M_RESET_VECTRESET;
2762
2763                 } else
2764                         return ERROR_COMMAND_SYNTAX_ERROR;
2765         }
2766
2767         switch (cortex_m->soft_reset_config) {
2768                 case CORTEX_M_RESET_SYSRESETREQ:
2769                         reset_config = "sysresetreq";
2770                         break;
2771
2772                 case CORTEX_M_RESET_VECTRESET:
2773                         reset_config = "vectreset";
2774                         break;
2775
2776                 default:
2777                         reset_config = "unknown";
2778                         break;
2779         }
2780
2781         command_print(CMD, "cortex_m reset_config %s", reset_config);
2782
2783         return ERROR_OK;
2784 }
2785
2786 static const struct command_registration cortex_m_exec_command_handlers[] = {
2787         {
2788                 .name = "maskisr",
2789                 .handler = handle_cortex_m_mask_interrupts_command,
2790                 .mode = COMMAND_EXEC,
2791                 .help = "mask cortex_m interrupts",
2792                 .usage = "['auto'|'on'|'off'|'steponly']",
2793         },
2794         {
2795                 .name = "vector_catch",
2796                 .handler = handle_cortex_m_vector_catch_command,
2797                 .mode = COMMAND_EXEC,
2798                 .help = "configure hardware vectors to trigger debug entry",
2799                 .usage = "['all'|'none'|('bus_err'|'chk_err'|...)*]",
2800         },
2801         {
2802                 .name = "reset_config",
2803                 .handler = handle_cortex_m_reset_config_command,
2804                 .mode = COMMAND_ANY,
2805                 .help = "configure software reset handling",
2806                 .usage = "['sysresetreq'|'vectreset']",
2807         },
2808         COMMAND_REGISTRATION_DONE
2809 };
2810 static const struct command_registration cortex_m_command_handlers[] = {
2811         {
2812                 .chain = armv7m_command_handlers,
2813         },
2814         {
2815                 .chain = armv7m_trace_command_handlers,
2816         },
2817         /* START_DEPRECATED_TPIU */
2818         {
2819                 .chain = arm_tpiu_deprecated_command_handlers,
2820         },
2821         /* END_DEPRECATED_TPIU */
2822         {
2823                 .name = "cortex_m",
2824                 .mode = COMMAND_EXEC,
2825                 .help = "Cortex-M command group",
2826                 .usage = "",
2827                 .chain = cortex_m_exec_command_handlers,
2828         },
2829         {
2830                 .chain = rtt_target_command_handlers,
2831         },
2832         COMMAND_REGISTRATION_DONE
2833 };
2834
2835 struct target_type cortexm_target = {
2836         .name = "cortex_m",
2837
2838         .poll = cortex_m_poll,
2839         .arch_state = armv7m_arch_state,
2840
2841         .target_request_data = cortex_m_target_request_data,
2842
2843         .halt = cortex_m_halt,
2844         .resume = cortex_m_resume,
2845         .step = cortex_m_step,
2846
2847         .assert_reset = cortex_m_assert_reset,
2848         .deassert_reset = cortex_m_deassert_reset,
2849         .soft_reset_halt = cortex_m_soft_reset_halt,
2850
2851         .get_gdb_arch = arm_get_gdb_arch,
2852         .get_gdb_reg_list = armv7m_get_gdb_reg_list,
2853
2854         .read_memory = cortex_m_read_memory,
2855         .write_memory = cortex_m_write_memory,
2856         .checksum_memory = armv7m_checksum_memory,
2857         .blank_check_memory = armv7m_blank_check_memory,
2858
2859         .run_algorithm = armv7m_run_algorithm,
2860         .start_algorithm = armv7m_start_algorithm,
2861         .wait_algorithm = armv7m_wait_algorithm,
2862
2863         .add_breakpoint = cortex_m_add_breakpoint,
2864         .remove_breakpoint = cortex_m_remove_breakpoint,
2865         .add_watchpoint = cortex_m_add_watchpoint,
2866         .remove_watchpoint = cortex_m_remove_watchpoint,
2867         .hit_watchpoint = cortex_m_hit_watchpoint,
2868
2869         .commands = cortex_m_command_handlers,
2870         .target_create = cortex_m_target_create,
2871         .target_jim_configure = adiv5_jim_configure,
2872         .init_target = cortex_m_init_target,
2873         .examine = cortex_m_examine,
2874         .deinit_target = cortex_m_deinit_target,
2875
2876         .profiling = cortex_m_profiling,
2877 };