Fix argument passing in cortex_a8_write_cp.
[fw/openocd] / src / target / cortex_a8.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   This program is free software; you can redistribute it and/or modify  *
15  *   it under the terms of the GNU General Public License as published by  *
16  *   the Free Software Foundation; either version 2 of the License, or     *
17  *   (at your option) any later version.                                   *
18  *                                                                         *
19  *   This program is distributed in the hope that it will be useful,       *
20  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
21  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
22  *   GNU General Public License for more details.                          *
23  *                                                                         *
24  *   You should have received a copy of the GNU General Public License     *
25  *   along with this program; if not, write to the                         *
26  *   Free Software Foundation, Inc.,                                       *
27  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
28  *                                                                         *
29  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
30  *                                                                         *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "cortex_a8.h"
37 #include "armv7a.h"
38 #include "armv4_5.h"
39
40 #include "target_request.h"
41 #include "target_type.h"
42
43 /* cli handling */
44 int cortex_a8_register_commands(struct command_context_s *cmd_ctx);
45
46 /* forward declarations */
47 int cortex_a8_target_create(struct target_s *target, Jim_Interp *interp);
48 int cortex_a8_init_target(struct command_context_s *cmd_ctx,
49                 struct target_s *target);
50 int cortex_a8_examine(struct target_s *target);
51 int cortex_a8_poll(target_t *target);
52 int cortex_a8_halt(target_t *target);
53 int cortex_a8_resume(struct target_s *target, int current, uint32_t address,
54                 int handle_breakpoints, int debug_execution);
55 int cortex_a8_step(struct target_s *target, int current, uint32_t address,
56                 int handle_breakpoints);
57 int cortex_a8_debug_entry(target_t *target);
58 int cortex_a8_restore_context(target_t *target);
59 int cortex_a8_bulk_write_memory(target_t *target, uint32_t address,
60                 uint32_t count, uint8_t *buffer);
61 int cortex_a8_set_breakpoint(struct target_s *target,
62                 breakpoint_t *breakpoint, uint8_t matchmode);
63 int cortex_a8_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint);
64 int cortex_a8_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint);
65 int cortex_a8_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoint);
66 int cortex_a8_dap_read_coreregister_u32(target_t *target,
67                 uint32_t *value, int regnum);
68 int cortex_a8_dap_write_coreregister_u32(target_t *target,
69                 uint32_t value, int regnum);
70
71 target_type_t cortexa8_target =
72 {
73         .name = "cortex_a8",
74
75         .poll = cortex_a8_poll,
76         .arch_state = armv7a_arch_state,
77
78         .target_request_data = NULL,
79
80         .halt = cortex_a8_halt,
81         .resume = cortex_a8_resume,
82         .step = cortex_a8_step,
83
84         .assert_reset = NULL,
85         .deassert_reset = NULL,
86         .soft_reset_halt = NULL,
87
88         .get_gdb_reg_list = armv4_5_get_gdb_reg_list,
89
90         .read_memory = cortex_a8_read_memory,
91         .write_memory = cortex_a8_write_memory,
92         .bulk_write_memory = cortex_a8_bulk_write_memory,
93         .checksum_memory = arm7_9_checksum_memory,
94         .blank_check_memory = arm7_9_blank_check_memory,
95
96         .run_algorithm = armv4_5_run_algorithm,
97
98         .add_breakpoint = cortex_a8_add_breakpoint,
99         .remove_breakpoint = cortex_a8_remove_breakpoint,
100         .add_watchpoint = NULL,
101         .remove_watchpoint = NULL,
102
103         .register_commands = cortex_a8_register_commands,
104         .target_create = cortex_a8_target_create,
105         .init_target = cortex_a8_init_target,
106         .examine = cortex_a8_examine,
107         .quit = NULL
108 };
109
110 /*
111  * FIXME do topology discovery using the ROM; don't
112  * assume this is an OMAP3.
113  */
114 #define swjdp_memoryap 0
115 #define swjdp_debugap 1
116 #define OMAP3530_DEBUG_BASE 0x54011000
117
118 /*
119  * Cortex-A8 Basic debug access, very low level assumes state is saved
120  */
121 int cortex_a8_init_debug_access(target_t *target)
122 {
123 #if 0
124 # Unlocking the debug registers for modification
125 mww 0x54011FB0 0xC5ACCE55 4
126
127 # Clear Sticky Power Down status Bit to enable access to
128 # the registers in the Core Power Domain
129 mdw 0x54011314
130 # Check that it is cleared
131 mdw 0x54011314
132 # Now we can read Core Debug Registers at offset 0x080
133 mdw 0x54011080 4
134 # We can also read RAM.
135 mdw 0x80000000 32
136
137 mdw 0x5401d030
138 mdw 0x54011FB8
139
140 # Set DBGEN line for hardware debug (OMAP35xx)
141 mww 0x5401d030 0x00002000
142
143 #Check AUTHSTATUS
144 mdw 0x54011FB8
145
146 # Instr enable
147 mww 0x54011088 0x2000
148 mdw 0x54011080 4
149 #endif
150         return ERROR_OK;
151 }
152
153 int cortex_a8_exec_opcode(target_t *target, uint32_t opcode)
154 {
155         uint32_t dscr;
156         int retvalue;
157         /* get pointers to arch-specific information */
158         armv4_5_common_t *armv4_5 = target->arch_info;
159         armv7a_common_t *armv7a = armv4_5->arch_info;
160         swjdp_common_t *swjdp = &armv7a->swjdp_info;
161
162         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
163         do
164         {
165                 retvalue = mem_ap_read_atomic_u32(swjdp,
166                                 OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
167         }
168         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
169
170         mem_ap_write_u32(swjdp, OMAP3530_DEBUG_BASE + CPUDBG_ITR, opcode);
171
172         do
173         {
174                 retvalue = mem_ap_read_atomic_u32(swjdp,
175                                 OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
176         }
177         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
178
179         return retvalue;
180 }
181
182 /**************************************************************************
183 Read core register with very few exec_opcode, fast but needs work_area.
184 This can cause problems with MMU active.
185 **************************************************************************/
186 int cortex_a8_read_regs_through_mem(target_t *target, uint32_t address,
187                 uint32_t * regfile)
188 {
189         int retval = ERROR_OK;
190         /* get pointers to arch-specific information */
191         armv4_5_common_t *armv4_5 = target->arch_info;
192         armv7a_common_t *armv7a = armv4_5->arch_info;
193         swjdp_common_t *swjdp = &armv7a->swjdp_info;
194
195         cortex_a8_dap_read_coreregister_u32(target, regfile, 0);
196         cortex_a8_dap_write_coreregister_u32(target, address, 0);
197         cortex_a8_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0));
198         dap_ap_select(swjdp, swjdp_memoryap);
199         mem_ap_read_buf_u32(swjdp, (uint8_t *)(&regfile[1]), 4*15, address);
200         dap_ap_select(swjdp, swjdp_debugap);
201
202         return retval;
203 }
204
205 int cortex_a8_read_cp(target_t *target, uint32_t *value, uint8_t CP,
206                 uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
207 {
208         int retval;
209         /* get pointers to arch-specific information */
210         armv4_5_common_t *armv4_5 = target->arch_info;
211         armv7a_common_t *armv7a = armv4_5->arch_info;
212         swjdp_common_t *swjdp = &armv7a->swjdp_info;
213
214         cortex_a8_exec_opcode(target, ARMV4_5_MRC(CP, op1, 0, CRn, CRm, op2));
215         /* Move R0 to DTRTX */
216         cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
217
218         /* Read DCCTX */
219         retval = mem_ap_read_atomic_u32(swjdp,
220                         OMAP3530_DEBUG_BASE + CPUDBG_DTRTX, value);
221
222         return retval;
223 }
224
225 int cortex_a8_write_cp(target_t *target, uint32_t value,
226         uint8_t CP, uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
227 {
228         int retval;
229         /* get pointers to arch-specific information */
230         armv4_5_common_t *armv4_5 = target->arch_info;
231         armv7a_common_t *armv7a = armv4_5->arch_info;
232         swjdp_common_t *swjdp = &armv7a->swjdp_info;
233
234         retval = mem_ap_write_u32(swjdp,
235                         OMAP3530_DEBUG_BASE + CPUDBG_DTRRX, value);
236         /* Move DTRRX to r0 */
237         cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
238
239         cortex_a8_exec_opcode(target, ARMV4_5_MCR(CP, op1, 0, CRn, CRm, op2));
240         return retval;
241 }
242
243 int cortex_a8_read_cp15(target_t *target, uint32_t op1, uint32_t op2,
244                 uint32_t CRn, uint32_t CRm, uint32_t *value)
245 {
246         return cortex_a8_read_cp(target, value, 15, op1, CRn, CRm, op2);
247 }
248
249 int cortex_a8_write_cp15(target_t *target, uint32_t op1, uint32_t op2,
250                 uint32_t CRn, uint32_t CRm, uint32_t value)
251 {
252         return cortex_a8_write_cp(target, value, 15, op1, CRn, CRm, op2);
253 }
254
255 int cortex_a8_dap_read_coreregister_u32(target_t *target,
256                 uint32_t *value, int regnum)
257 {
258         int retval = ERROR_OK;
259         uint8_t reg = regnum&0xFF;
260         uint32_t dscr;
261
262         /* get pointers to arch-specific information */
263         armv4_5_common_t *armv4_5 = target->arch_info;
264         armv7a_common_t *armv7a = armv4_5->arch_info;
265         swjdp_common_t *swjdp = &armv7a->swjdp_info;
266
267         if (reg > 16)
268                 return retval;
269
270         if (reg < 15)
271         {
272                 /* Rn to DCCTX, MCR p14, 0, Rd, c0, c5, 0,  0xEE000E15 */
273                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, reg, 0, 5, 0));
274         }
275         else if (reg == 15)
276         {
277                 cortex_a8_exec_opcode(target, 0xE1A0000F);
278                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
279         }
280         else if (reg == 16)
281         {
282                 cortex_a8_exec_opcode(target, ARMV4_5_MRS(0, 0));
283                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
284         }
285
286         /* Read DTRRTX */
287         do
288         {
289                 retval = mem_ap_read_atomic_u32(swjdp,
290                                 OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
291         }
292         while ((dscr & (1 << DSCR_DTR_TX_FULL)) == 0); /* Wait for DTRRXfull */
293
294         retval = mem_ap_read_atomic_u32(swjdp,
295                         OMAP3530_DEBUG_BASE + CPUDBG_DTRTX, value);
296
297         return retval;
298 }
299
300 int cortex_a8_dap_write_coreregister_u32(target_t *target, uint32_t value, int regnum)
301 {
302         int retval = ERROR_OK;
303         uint8_t Rd = regnum&0xFF;
304
305         /* get pointers to arch-specific information */
306         armv4_5_common_t *armv4_5 = target->arch_info;
307         armv7a_common_t *armv7a = armv4_5->arch_info;
308         swjdp_common_t *swjdp = &armv7a->swjdp_info;
309
310         if (Rd > 16)
311                 return retval;
312
313         /* Write to DCCRX */
314         retval = mem_ap_write_u32(swjdp,
315                         OMAP3530_DEBUG_BASE + CPUDBG_DTRRX, value);
316
317         if (Rd < 15)
318         {
319                 /* DCCRX to Rd, MCR p14, 0, Rd, c0, c5, 0,  0xEE000E15 */
320                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0));
321         }
322         else if (Rd == 15)
323         {
324                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
325                 cortex_a8_exec_opcode(target, 0xE1A0F000);
326         }
327         else if (Rd == 16)
328         {
329                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
330                 cortex_a8_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, 0));
331                 /* Execute a PrefetchFlush instruction through the ITR. */
332                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(15, 0, 0, 7, 5, 4));
333         }
334
335         return retval;
336 }
337
338 /*
339  * Cortex-A8 Run control
340  */
341
342 int cortex_a8_poll(target_t *target)
343 {
344         int retval = ERROR_OK;
345         uint32_t dscr;
346         /* get pointers to arch-specific information */
347         armv4_5_common_t *armv4_5 = target->arch_info;
348         armv7a_common_t *armv7a = armv4_5->arch_info;
349         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
350         swjdp_common_t *swjdp = &armv7a->swjdp_info;
351
352
353         enum target_state prev_target_state = target->state;
354
355         uint8_t saved_apsel = dap_ap_get_select(swjdp);
356         dap_ap_select(swjdp, swjdp_debugap);
357         retval = mem_ap_read_atomic_u32(swjdp,
358                         OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
359         if (retval != ERROR_OK)
360         {
361                 dap_ap_select(swjdp, saved_apsel);
362                 return retval;
363         }
364         cortex_a8->cpudbg_dscr = dscr;
365
366         if ((dscr & 0x3) == 0x3)
367         {
368                 if (prev_target_state != TARGET_HALTED)
369                 {
370                         /* We have a halting debug event */
371                         LOG_DEBUG("Target halted");
372                         target->state = TARGET_HALTED;
373                         if ((prev_target_state == TARGET_RUNNING)
374                                         || (prev_target_state == TARGET_RESET))
375                         {
376                                 retval = cortex_a8_debug_entry(target);
377                                 if (retval != ERROR_OK)
378                                         return retval;
379
380                                 target_call_event_callbacks(target,
381                                                 TARGET_EVENT_HALTED);
382                         }
383                         if (prev_target_state == TARGET_DEBUG_RUNNING)
384                         {
385                                 LOG_DEBUG(" ");
386
387                                 retval = cortex_a8_debug_entry(target);
388                                 if (retval != ERROR_OK)
389                                         return retval;
390
391                                 target_call_event_callbacks(target,
392                                                 TARGET_EVENT_DEBUG_HALTED);
393                         }
394                 }
395         }
396         else if ((dscr & 0x3) == 0x2)
397         {
398                 target->state = TARGET_RUNNING;
399         }
400         else
401         {
402                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
403                 target->state = TARGET_UNKNOWN;
404         }
405
406         dap_ap_select(swjdp, saved_apsel);
407
408         return retval;
409 }
410
411 int cortex_a8_halt(target_t *target)
412 {
413         int retval = ERROR_OK;
414         uint32_t dscr;
415
416         /* get pointers to arch-specific information */
417         armv4_5_common_t *armv4_5 = target->arch_info;
418         armv7a_common_t *armv7a = armv4_5->arch_info;
419         swjdp_common_t *swjdp = &armv7a->swjdp_info;
420
421         uint8_t saved_apsel = dap_ap_get_select(swjdp);
422         dap_ap_select(swjdp, swjdp_debugap);
423
424         /*
425          * Tell the core to be halted by writing DRCR with 0x1
426          * and then wait for the core to be halted.
427          */
428         retval = mem_ap_write_atomic_u32(swjdp,
429                         OMAP3530_DEBUG_BASE + CPUDBG_DRCR, 0x1);
430
431         /*
432          * enter halting debug mode
433          */
434         mem_ap_read_atomic_u32(swjdp, OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
435         retval = mem_ap_write_atomic_u32(swjdp,
436                 OMAP3530_DEBUG_BASE + CPUDBG_DSCR, dscr | (1 << DSCR_HALT_DBG_MODE));
437
438         if (retval != ERROR_OK)
439                 goto out;
440
441         do {
442                 mem_ap_read_atomic_u32(swjdp,
443                         OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
444         } while ((dscr & (1 << DSCR_CORE_HALTED)) == 0);
445
446         target->debug_reason = DBG_REASON_DBGRQ;
447
448 out:
449         dap_ap_select(swjdp, saved_apsel);
450         return retval;
451 }
452
453 int cortex_a8_resume(struct target_s *target, int current,
454                 uint32_t address, int handle_breakpoints, int debug_execution)
455 {
456         /* get pointers to arch-specific information */
457         armv4_5_common_t *armv4_5 = target->arch_info;
458         armv7a_common_t *armv7a = armv4_5->arch_info;
459         swjdp_common_t *swjdp = &armv7a->swjdp_info;
460
461 //      breakpoint_t *breakpoint = NULL;
462         uint32_t resume_pc, dscr;
463
464         uint8_t saved_apsel = dap_ap_get_select(swjdp);
465         dap_ap_select(swjdp, swjdp_debugap);
466
467         if (!debug_execution)
468         {
469                 target_free_all_working_areas(target);
470 //              cortex_m3_enable_breakpoints(target);
471 //              cortex_m3_enable_watchpoints(target);
472         }
473
474 #if 0
475         if (debug_execution)
476         {
477                 /* Disable interrupts */
478                 /* We disable interrupts in the PRIMASK register instead of
479                  * masking with C_MASKINTS,
480                  * This is probably the same issue as Cortex-M3 Errata 377493:
481                  * C_MASKINTS in parallel with disabled interrupts can cause
482                  * local faults to not be taken. */
483                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
484                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
485                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
486
487                 /* Make sure we are in Thumb mode */
488                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
489                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
490                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
491                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
492         }
493 #endif
494
495         /* current = 1: continue on current pc, otherwise continue at <address> */
496         resume_pc = buf_get_u32(
497                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
498                                 armv4_5->core_mode, 15).value,
499                         0, 32);
500         if (!current)
501                 resume_pc = address;
502
503         /* Make sure that the Armv7 gdb thumb fixups does not
504          * kill the return address
505          */
506         if (armv7a->core_state == ARMV7A_STATE_ARM)
507         {
508                 resume_pc &= 0xFFFFFFFC;
509         }
510         /* When the return address is loaded into PC
511          * bit 0 must be 1 to stay in Thumb state
512          */
513         if (armv7a->core_state == ARMV7A_STATE_THUMB)
514         {
515                 resume_pc |= 0x1;
516         }
517         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
518         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
519                                 armv4_5->core_mode, 15).value,
520                         0, 32, resume_pc);
521         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
522                         armv4_5->core_mode, 15).dirty = 1;
523         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
524                         armv4_5->core_mode, 15).valid = 1;
525
526         cortex_a8_restore_context(target);
527 //      arm7_9_restore_context(target); TODO Context is currently NOT Properly restored
528 #if 0
529         /* the front-end may request us not to handle breakpoints */
530         if (handle_breakpoints)
531         {
532                 /* Single step past breakpoint at current address */
533                 if ((breakpoint = breakpoint_find(target, resume_pc)))
534                 {
535                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
536                         cortex_m3_unset_breakpoint(target, breakpoint);
537                         cortex_m3_single_step_core(target);
538                         cortex_m3_set_breakpoint(target, breakpoint);
539                 }
540         }
541
542 #endif
543         /* Restart core and wait for it to be started */
544         mem_ap_write_atomic_u32(swjdp, OMAP3530_DEBUG_BASE + CPUDBG_DRCR, 0x2);
545
546         do {
547                 mem_ap_read_atomic_u32(swjdp,
548                         OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
549         } while ((dscr & (1 << DSCR_CORE_RESTARTED)) == 0);
550
551         target->debug_reason = DBG_REASON_NOTHALTED;
552         target->state = TARGET_RUNNING;
553
554         /* registers are now invalid */
555         armv4_5_invalidate_core_regs(target);
556
557         if (!debug_execution)
558         {
559                 target->state = TARGET_RUNNING;
560                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
561                 LOG_DEBUG("target resumed at 0x%" PRIx32, resume_pc);
562         }
563         else
564         {
565                 target->state = TARGET_DEBUG_RUNNING;
566                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
567                 LOG_DEBUG("target debug resumed at 0x%" PRIx32, resume_pc);
568         }
569
570         dap_ap_select(swjdp, saved_apsel);
571
572         return ERROR_OK;
573 }
574
575 int cortex_a8_debug_entry(target_t *target)
576 {
577         int i;
578         uint32_t regfile[16], pc, cpsr, dscr;
579         int retval = ERROR_OK;
580         working_area_t *regfile_working_area = NULL;
581
582         /* get pointers to arch-specific information */
583         armv4_5_common_t *armv4_5 = target->arch_info;
584         armv7a_common_t *armv7a = armv4_5->arch_info;
585         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
586         swjdp_common_t *swjdp = &armv7a->swjdp_info;
587
588         if (armv7a->pre_debug_entry)
589                 armv7a->pre_debug_entry(target);
590
591         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a8->cpudbg_dscr);
592
593         /* Enable the ITR execution once we are in debug mode */
594         mem_ap_read_atomic_u32(swjdp,
595                                 OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
596         dscr |= (1 << DSCR_EXT_INT_EN);
597         retval = mem_ap_write_atomic_u32(swjdp,
598                         OMAP3530_DEBUG_BASE + CPUDBG_DSCR, dscr);
599
600         /* Examine debug reason */
601         switch ((cortex_a8->cpudbg_dscr >> 2)&0xF)
602         {
603                 case 0:
604                 case 4:
605                         target->debug_reason = DBG_REASON_DBGRQ;
606                         break;
607                 case 1:
608                 case 3:
609                         target->debug_reason = DBG_REASON_BREAKPOINT;
610                         break;
611                 case 10:
612                         target->debug_reason = DBG_REASON_WATCHPOINT;
613                         break;
614                 default:
615                         target->debug_reason = DBG_REASON_UNDEFINED;
616                         break;
617         }
618
619         /* Examine target state and mode */
620         if (cortex_a8->fast_reg_read)
621                 target_alloc_working_area(target, 64, &regfile_working_area);
622
623         /* First load register acessible through core debug port*/
624         if (!regfile_working_area)
625         {
626                 for (i = 0; i <= 15; i++)
627                         cortex_a8_dap_read_coreregister_u32(target,
628                                         &regfile[i], i);
629         }
630         else
631         {
632                 dap_ap_select(swjdp, swjdp_memoryap);
633                 cortex_a8_read_regs_through_mem(target,
634                                 regfile_working_area->address, regfile);
635                 dap_ap_select(swjdp, swjdp_memoryap);
636                 target_free_working_area(target, regfile_working_area);
637         }
638
639         cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16);
640         pc = regfile[15];
641         dap_ap_select(swjdp, swjdp_debugap);
642         LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
643
644         armv4_5->core_mode = cpsr & 0x1F;
645         armv7a->core_state = (cpsr & 0x20)?ARMV7A_STATE_THUMB:ARMV7A_STATE_ARM;
646
647         for (i = 0; i <= ARM_PC; i++)
648         {
649                 buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
650                                         armv4_5->core_mode, i).value,
651                                 0, 32, regfile[i]);
652                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
653                                 armv4_5->core_mode, i).valid = 1;
654                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
655                                 armv4_5->core_mode, i).dirty = 0;
656         }
657         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
658                                 armv4_5->core_mode, 16).value,
659                         0, 32, cpsr);
660         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).valid = 1;
661         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).dirty = 0;
662
663         /* Fixup PC Resume Address */
664         if (armv7a->core_state == ARMV7A_STATE_THUMB)
665         {
666                 // T bit set for Thumb or ThumbEE state
667                 regfile[ARM_PC] -= 4;
668         }
669         else
670         {
671                 // ARM state
672                 regfile[ARM_PC] -= 8;
673         }
674         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
675                                 armv4_5->core_mode, ARM_PC).value,
676                         0, 32, regfile[ARM_PC]);
677
678         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0)
679                 .dirty = ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
680                                 armv4_5->core_mode, 0).valid;
681         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15)
682                 .dirty = ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
683                                 armv4_5->core_mode, 15).valid;
684
685 #if 0
686 /* TODO, Move this */
687         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
688         cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
689         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
690
691         cortex_a8_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
692         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
693
694         cortex_a8_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
695         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
696 #endif
697
698         /* Are we in an exception handler */
699 //      armv4_5->exception_number = 0;
700         if (armv7a->post_debug_entry)
701                 armv7a->post_debug_entry(target);
702
703
704
705         return retval;
706
707 }
708
709 void cortex_a8_post_debug_entry(target_t *target)
710 {
711         /* get pointers to arch-specific information */
712         armv4_5_common_t *armv4_5 = target->arch_info;
713         armv7a_common_t *armv7a = armv4_5->arch_info;
714         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
715
716 //      cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
717         /* examine cp15 control reg */
718         armv7a->read_cp15(target, 0, 0, 1, 0, &cortex_a8->cp15_control_reg);
719         jtag_execute_queue();
720         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
721
722         if (armv7a->armv4_5_mmu.armv4_5_cache.ctype == -1)
723         {
724                 uint32_t cache_type_reg;
725                 /* identify caches */
726                 armv7a->read_cp15(target, 0, 1, 0, 0, &cache_type_reg);
727                 jtag_execute_queue();
728                 /* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A8 */
729                 armv4_5_identify_cache(cache_type_reg,
730                                 &armv7a->armv4_5_mmu.armv4_5_cache);
731         }
732
733         armv7a->armv4_5_mmu.mmu_enabled =
734                         (cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0;
735         armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
736                         (cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0;
737         armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
738                         (cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0;
739
740
741 }
742
743 int cortex_a8_step(struct target_s *target, int current, uint32_t address,
744                 int handle_breakpoints)
745 {
746         /* get pointers to arch-specific information */
747         armv4_5_common_t *armv4_5 = target->arch_info;
748         armv7a_common_t *armv7a = armv4_5->arch_info;
749         breakpoint_t *breakpoint = NULL;
750         breakpoint_t stepbreakpoint;
751
752         int timeout = 100;
753
754         if (target->state != TARGET_HALTED)
755         {
756                 LOG_WARNING("target not halted");
757                 return ERROR_TARGET_NOT_HALTED;
758         }
759
760         /* current = 1: continue on current pc, otherwise continue at <address> */
761         if (!current)
762         {
763                 buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
764                                         armv4_5->core_mode, ARM_PC).value,
765                                 0, 32, address);
766         }
767         else
768         {
769                 address = buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
770                                         armv4_5->core_mode, ARM_PC).value,
771                                 0, 32);
772         }
773
774         /* The front-end may request us not to handle breakpoints.
775          * But since Cortex-A8 uses breakpoint for single step,
776          * we MUST handle breakpoints.
777          */
778         handle_breakpoints = 1;
779         if (handle_breakpoints) {
780                 breakpoint = breakpoint_find(target,
781                                 buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
782                                         armv4_5->core_mode, 15).value,
783                         0, 32));
784                 if (breakpoint)
785                         cortex_a8_unset_breakpoint(target, breakpoint);
786         }
787
788         /* Setup single step breakpoint */
789         stepbreakpoint.address = address;
790         stepbreakpoint.length = (armv7a->core_state == ARMV7A_STATE_THUMB) ? 2 : 4;
791         stepbreakpoint.type = BKPT_HARD;
792         stepbreakpoint.set = 0;
793
794         /* Break on IVA mismatch */
795         cortex_a8_set_breakpoint(target, &stepbreakpoint, 0x04);
796
797         target->debug_reason = DBG_REASON_SINGLESTEP;
798
799         cortex_a8_resume(target, 1, address, 0, 0);
800
801         while (target->state != TARGET_HALTED)
802         {
803                 cortex_a8_poll(target);
804                 if (--timeout == 0)
805                 {
806                         LOG_WARNING("timeout waiting for target halt");
807                         break;
808                 }
809         }
810
811         cortex_a8_unset_breakpoint(target, &stepbreakpoint);
812         if (timeout > 0) target->debug_reason = DBG_REASON_BREAKPOINT;
813
814         if (breakpoint)
815                 cortex_a8_set_breakpoint(target, breakpoint, 0);
816
817         if (target->state != TARGET_HALTED)
818                 LOG_DEBUG("target stepped");
819
820         return ERROR_OK;
821 }
822
823 int cortex_a8_restore_context(target_t *target)
824 {
825         int i;
826         uint32_t value;
827
828         /* get pointers to arch-specific information */
829         armv4_5_common_t *armv4_5 = target->arch_info;
830         armv7a_common_t *armv7a = armv4_5->arch_info;
831
832         LOG_DEBUG(" ");
833
834         if (armv7a->pre_restore_context)
835                 armv7a->pre_restore_context(target);
836
837         for (i = 15; i >= 0; i--)
838         {
839                 if (ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
840                                         armv4_5->core_mode, i).dirty)
841                 {
842                         value = buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
843                                                 armv4_5->core_mode, i).value,
844                                         0, 32);
845                         /* TODO Check return values */
846                         cortex_a8_dap_write_coreregister_u32(target, value, i);
847                 }
848         }
849
850         if (armv7a->post_restore_context)
851                 armv7a->post_restore_context(target);
852
853         return ERROR_OK;
854 }
855
856
857 /*
858  * Cortex-A8 Core register functions
859  */
860
861 int cortex_a8_load_core_reg_u32(struct target_s *target, int num,
862                 armv4_5_mode_t mode, uint32_t * value)
863 {
864         int retval;
865         /* get pointers to arch-specific information */
866         armv4_5_common_t *armv4_5 = target->arch_info;
867
868         if ((num <= ARM_CPSR))
869         {
870                 /* read a normal core register */
871                 retval = cortex_a8_dap_read_coreregister_u32(target, value, num);
872
873                 if (retval != ERROR_OK)
874                 {
875                         LOG_ERROR("JTAG failure %i", retval);
876                         return ERROR_JTAG_DEVICE_ERROR;
877                 }
878                 LOG_DEBUG("load from core reg %i value 0x%" PRIx32, num, *value);
879         }
880         else
881         {
882                 return ERROR_INVALID_ARGUMENTS;
883         }
884
885         /* Register other than r0 - r14 uses r0 for access */
886         if (num > 14)
887                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
888                                 armv4_5->core_mode, 0).dirty =
889                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
890                                 armv4_5->core_mode, 0).valid;
891         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
892                                 armv4_5->core_mode, 15).dirty =
893                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
894                                 armv4_5->core_mode, 15).valid;
895
896         return ERROR_OK;
897 }
898
899 int cortex_a8_store_core_reg_u32(struct target_s *target, int num,
900                 armv4_5_mode_t mode, uint32_t value)
901 {
902         int retval;
903 //      uint32_t reg;
904
905         /* get pointers to arch-specific information */
906         armv4_5_common_t *armv4_5 = target->arch_info;
907
908 #ifdef ARMV7_GDB_HACKS
909         /* If the LR register is being modified, make sure it will put us
910          * in "thumb" mode, or an INVSTATE exception will occur. This is a
911          * hack to deal with the fact that gdb will sometimes "forge"
912          * return addresses, and doesn't set the LSB correctly (i.e., when
913          * printing expressions containing function calls, it sets LR=0.) */
914
915         if (num == 14)
916                 value |= 0x01;
917 #endif
918
919         if ((num <= ARM_CPSR))
920         {
921                 retval = cortex_a8_dap_write_coreregister_u32(target, value, num);
922                 if (retval != ERROR_OK)
923                 {
924                         LOG_ERROR("JTAG failure %i", retval);
925                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
926                                         armv4_5->core_mode, num).dirty =
927                                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
928                                         armv4_5->core_mode, num).valid;
929                         return ERROR_JTAG_DEVICE_ERROR;
930                 }
931                 LOG_DEBUG("write core reg %i value 0x%" PRIx32, num, value);
932         }
933         else
934         {
935                 return ERROR_INVALID_ARGUMENTS;
936         }
937
938         return ERROR_OK;
939 }
940
941
942 int cortex_a8_read_core_reg(struct target_s *target, int num,
943                 enum armv4_5_mode mode)
944 {
945         uint32_t value;
946         int retval;
947         armv4_5_common_t *armv4_5 = target->arch_info;
948         cortex_a8_dap_read_coreregister_u32(target, &value, num);
949
950         if ((retval = jtag_execute_queue()) != ERROR_OK)
951         {
952                 return retval;
953         }
954
955         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
956         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
957         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
958                         mode, num).value, 0, 32, value);
959
960         return ERROR_OK;
961 }
962
963 int cortex_a8_write_core_reg(struct target_s *target, int num,
964                 enum armv4_5_mode mode, uint32_t value)
965 {
966         int retval;
967         armv4_5_common_t *armv4_5 = target->arch_info;
968
969         cortex_a8_dap_write_coreregister_u32(target, value, num);
970         if ((retval = jtag_execute_queue()) != ERROR_OK)
971         {
972                 return retval;
973         }
974
975         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
976         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
977
978         return ERROR_OK;
979 }
980
981
982 /*
983  * Cortex-A8 Breakpoint and watchpoint fuctions
984  */
985
986 /* Setup hardware Breakpoint Register Pair */
987 int cortex_a8_set_breakpoint(struct target_s *target,
988                 breakpoint_t *breakpoint, uint8_t matchmode)
989 {
990         int retval;
991         int brp_i=0;
992         uint32_t control;
993         uint8_t byte_addr_select = 0x0F;
994
995
996         /* get pointers to arch-specific information */
997         armv4_5_common_t *armv4_5 = target->arch_info;
998         armv7a_common_t *armv7a = armv4_5->arch_info;
999         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1000         cortex_a8_brp_t * brp_list = cortex_a8->brp_list;
1001
1002         if (breakpoint->set)
1003         {
1004                 LOG_WARNING("breakpoint already set");
1005                 return ERROR_OK;
1006         }
1007
1008         if (breakpoint->type == BKPT_HARD)
1009         {
1010                 while (brp_list[brp_i].used && (brp_i < cortex_a8->brp_num))
1011                         brp_i++ ;
1012                 if (brp_i >= cortex_a8->brp_num)
1013                 {
1014                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1015                         exit(-1);
1016                 }
1017                 breakpoint->set = brp_i + 1;
1018                 if (breakpoint->length == 2)
1019                 {
1020                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1021                 }
1022                 control = ((matchmode & 0x7) << 20)
1023                                 | (byte_addr_select << 5)
1024                                 | (3 << 1) | 1;
1025                 brp_list[brp_i].used = 1;
1026                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1027                 brp_list[brp_i].control = control;
1028                 target_write_u32(target, OMAP3530_DEBUG_BASE
1029                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1030                                 brp_list[brp_i].value);
1031                 target_write_u32(target, OMAP3530_DEBUG_BASE
1032                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1033                                 brp_list[brp_i].control);
1034                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1035                                 brp_list[brp_i].control,
1036                                 brp_list[brp_i].value);
1037         }
1038         else if (breakpoint->type == BKPT_SOFT)
1039         {
1040                 uint8_t code[4];
1041                 if (breakpoint->length == 2)
1042                 {
1043                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1044                 }
1045                 else
1046                 {
1047                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1048                 }
1049                 retval = target->type->read_memory(target,
1050                                 breakpoint->address & 0xFFFFFFFE,
1051                                 breakpoint->length, 1,
1052                                 breakpoint->orig_instr);
1053                 if (retval != ERROR_OK)
1054                         return retval;
1055                 retval = target->type->write_memory(target,
1056                                 breakpoint->address & 0xFFFFFFFE,
1057                                 breakpoint->length, 1, code);
1058                 if (retval != ERROR_OK)
1059                         return retval;
1060                 breakpoint->set = 0x11; /* Any nice value but 0 */
1061         }
1062
1063         return ERROR_OK;
1064 }
1065
1066 int cortex_a8_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
1067 {
1068         int retval;
1069         /* get pointers to arch-specific information */
1070         armv4_5_common_t *armv4_5 = target->arch_info;
1071         armv7a_common_t *armv7a = armv4_5->arch_info;
1072         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1073         cortex_a8_brp_t * brp_list = cortex_a8->brp_list;
1074
1075         if (!breakpoint->set)
1076         {
1077                 LOG_WARNING("breakpoint not set");
1078                 return ERROR_OK;
1079         }
1080
1081         if (breakpoint->type == BKPT_HARD)
1082         {
1083                 int brp_i = breakpoint->set - 1;
1084                 if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num))
1085                 {
1086                         LOG_DEBUG("Invalid BRP number in breakpoint");
1087                         return ERROR_OK;
1088                 }
1089                 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1090                                 brp_list[brp_i].control, brp_list[brp_i].value);
1091                 brp_list[brp_i].used = 0;
1092                 brp_list[brp_i].value = 0;
1093                 brp_list[brp_i].control = 0;
1094                 target_write_u32(target, OMAP3530_DEBUG_BASE
1095                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1096                                 brp_list[brp_i].control);
1097                 target_write_u32(target, OMAP3530_DEBUG_BASE
1098                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1099                                 brp_list[brp_i].value);
1100         }
1101         else
1102         {
1103                 /* restore original instruction (kept in target endianness) */
1104                 if (breakpoint->length == 4)
1105                 {
1106                         retval = target->type->write_memory(target,
1107                                         breakpoint->address & 0xFFFFFFFE,
1108                                         4, 1, breakpoint->orig_instr);
1109                         if (retval != ERROR_OK)
1110                                 return retval;
1111                 }
1112                 else
1113                 {
1114                         retval = target->type->write_memory(target,
1115                                         breakpoint->address & 0xFFFFFFFE,
1116                                         2, 1, breakpoint->orig_instr);
1117                         if (retval != ERROR_OK)
1118                                 return retval;
1119                 }
1120         }
1121         breakpoint->set = 0;
1122
1123         return ERROR_OK;
1124 }
1125
1126 int cortex_a8_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
1127 {
1128         /* get pointers to arch-specific information */
1129         armv4_5_common_t *armv4_5 = target->arch_info;
1130         armv7a_common_t *armv7a = armv4_5->arch_info;
1131         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1132
1133         if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1))
1134         {
1135                 LOG_INFO("no hardware breakpoint available");
1136                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1137         }
1138
1139         if (breakpoint->type == BKPT_HARD)
1140                 cortex_a8->brp_num_available--;
1141         cortex_a8_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1142
1143         return ERROR_OK;
1144 }
1145
1146 int cortex_a8_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
1147 {
1148         /* get pointers to arch-specific information */
1149         armv4_5_common_t *armv4_5 = target->arch_info;
1150         armv7a_common_t *armv7a = armv4_5->arch_info;
1151         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1152
1153 #if 0
1154 /* It is perfectly possible to remove brakpoints while the taget is running */
1155         if (target->state != TARGET_HALTED)
1156         {
1157                 LOG_WARNING("target not halted");
1158                 return ERROR_TARGET_NOT_HALTED;
1159         }
1160 #endif
1161
1162         if (breakpoint->set)
1163         {
1164                 cortex_a8_unset_breakpoint(target, breakpoint);
1165                 if (breakpoint->type == BKPT_HARD)
1166                         cortex_a8->brp_num_available++ ;
1167         }
1168
1169
1170         return ERROR_OK;
1171 }
1172
1173
1174
1175 /*
1176  * Cortex-A8 Reset fuctions
1177  */
1178
1179
1180 /*
1181  * Cortex-A8 Memory access
1182  *
1183  * This is same Cortex M3 but we must also use the correct
1184  * ap number for every access.
1185  */
1186
1187 int cortex_a8_read_memory(struct target_s *target, uint32_t address,
1188                 uint32_t size, uint32_t count, uint8_t *buffer)
1189 {
1190         /* get pointers to arch-specific information */
1191         armv4_5_common_t *armv4_5 = target->arch_info;
1192         armv7a_common_t *armv7a = armv4_5->arch_info;
1193         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1194
1195         int retval = ERROR_OK;
1196
1197         /* sanitize arguments */
1198         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
1199                 return ERROR_INVALID_ARGUMENTS;
1200
1201         /* cortex_a8 handles unaligned memory access */
1202
1203 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1204
1205         switch (size)
1206         {
1207                 case 4:
1208                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1209                         break;
1210                 case 2:
1211                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1212                         break;
1213                 case 1:
1214                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1215                         break;
1216                 default:
1217                         LOG_ERROR("BUG: we shouldn't get here");
1218                         exit(-1);
1219         }
1220
1221         return retval;
1222 }
1223
1224 int cortex_a8_write_memory(struct target_s *target, uint32_t address,
1225                 uint32_t size, uint32_t count, uint8_t *buffer)
1226 {
1227         /* get pointers to arch-specific information */
1228         armv4_5_common_t *armv4_5 = target->arch_info;
1229         armv7a_common_t *armv7a = armv4_5->arch_info;
1230         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1231
1232         int retval;
1233
1234         /* sanitize arguments */
1235         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
1236                 return ERROR_INVALID_ARGUMENTS;
1237
1238 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1239
1240         switch (size)
1241         {
1242                 case 4:
1243                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1244                         break;
1245                 case 2:
1246                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1247                         break;
1248                 case 1:
1249                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1250                         break;
1251                 default:
1252                         LOG_ERROR("BUG: we shouldn't get here");
1253                         exit(-1);
1254         }
1255
1256         return retval;
1257 }
1258
1259 int cortex_a8_bulk_write_memory(target_t *target, uint32_t address,
1260                 uint32_t count, uint8_t *buffer)
1261 {
1262         return cortex_a8_write_memory(target, address, 4, count, buffer);
1263 }
1264
1265
1266 int cortex_a8_dcc_read(swjdp_common_t *swjdp, uint8_t *value, uint8_t *ctrl)
1267 {
1268 #if 0
1269         u16 dcrdr;
1270
1271         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1272         *ctrl = (uint8_t)dcrdr;
1273         *value = (uint8_t)(dcrdr >> 8);
1274
1275         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1276
1277         /* write ack back to software dcc register
1278          * signify we have read data */
1279         if (dcrdr & (1 << 0))
1280         {
1281                 dcrdr = 0;
1282                 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1283         }
1284 #endif
1285         return ERROR_OK;
1286 }
1287
1288
1289 int cortex_a8_handle_target_request(void *priv)
1290 {
1291         target_t *target = priv;
1292         if (!target->type->examined)
1293                 return ERROR_OK;
1294         armv4_5_common_t *armv4_5 = target->arch_info;
1295         armv7a_common_t *armv7a = armv4_5->arch_info;
1296         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1297
1298
1299         if (!target->dbg_msg_enabled)
1300                 return ERROR_OK;
1301
1302         if (target->state == TARGET_RUNNING)
1303         {
1304                 uint8_t data = 0;
1305                 uint8_t ctrl = 0;
1306
1307                 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1308
1309                 /* check if we have data */
1310                 if (ctrl & (1 << 0))
1311                 {
1312                         uint32_t request;
1313
1314                         /* we assume target is quick enough */
1315                         request = data;
1316                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1317                         request |= (data << 8);
1318                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1319                         request |= (data << 16);
1320                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1321                         request |= (data << 24);
1322                         target_request(target, request);
1323                 }
1324         }
1325
1326         return ERROR_OK;
1327 }
1328
1329 /*
1330  * Cortex-A8 target information and configuration
1331  */
1332
1333 int cortex_a8_examine(struct target_s *target)
1334 {
1335         /* get pointers to arch-specific information */
1336         armv4_5_common_t *armv4_5 = target->arch_info;
1337         armv7a_common_t *armv7a = armv4_5->arch_info;
1338         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1339         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1340
1341
1342         int i;
1343         int retval = ERROR_OK;
1344         uint32_t didr, ctypr, ttypr, cpuid;
1345
1346         LOG_DEBUG("TODO");
1347
1348         /* We do one extra read to ensure DAP is configured,
1349          * we call ahbap_debugport_init(swjdp) instead
1350          */
1351         ahbap_debugport_init(swjdp);
1352         mem_ap_read_atomic_u32(swjdp, OMAP3530_DEBUG_BASE + CPUDBG_CPUID, &cpuid);
1353         if ((retval = mem_ap_read_atomic_u32(swjdp,
1354                         OMAP3530_DEBUG_BASE + CPUDBG_CPUID, &cpuid)) != ERROR_OK)
1355         {
1356                 LOG_DEBUG("Examine failed");
1357                 return retval;
1358         }
1359
1360         if ((retval = mem_ap_read_atomic_u32(swjdp,
1361                         OMAP3530_DEBUG_BASE + CPUDBG_CTYPR, &ctypr)) != ERROR_OK)
1362         {
1363                 LOG_DEBUG("Examine failed");
1364                 return retval;
1365         }
1366
1367         if ((retval = mem_ap_read_atomic_u32(swjdp,
1368                         OMAP3530_DEBUG_BASE + CPUDBG_TTYPR, &ttypr)) != ERROR_OK)
1369         {
1370                 LOG_DEBUG("Examine failed");
1371                 return retval;
1372         }
1373
1374         if ((retval = mem_ap_read_atomic_u32(swjdp,
1375                         OMAP3530_DEBUG_BASE + CPUDBG_DIDR, &didr)) != ERROR_OK)
1376         {
1377                 LOG_DEBUG("Examine failed");
1378                 return retval;
1379         }
1380
1381         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1382         LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
1383         LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
1384         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
1385
1386         /* Setup Breakpoint Register Pairs */
1387         cortex_a8->brp_num = ((didr >> 24) & 0x0F) + 1;
1388         cortex_a8->brp_num_context = ((didr >> 20) & 0x0F) + 1;
1389         cortex_a8->brp_num_available = cortex_a8->brp_num;
1390         cortex_a8->brp_list = calloc(cortex_a8->brp_num, sizeof(cortex_a8_brp_t));
1391 //      cortex_a8->brb_enabled = ????;
1392         for (i = 0; i < cortex_a8->brp_num; i++)
1393         {
1394                 cortex_a8->brp_list[i].used = 0;
1395                 if (i < (cortex_a8->brp_num-cortex_a8->brp_num_context))
1396                         cortex_a8->brp_list[i].type = BRP_NORMAL;
1397                 else
1398                         cortex_a8->brp_list[i].type = BRP_CONTEXT;
1399                 cortex_a8->brp_list[i].value = 0;
1400                 cortex_a8->brp_list[i].control = 0;
1401                 cortex_a8->brp_list[i].BRPn = i;
1402         }
1403
1404         /* Setup Watchpoint Register Pairs */
1405         cortex_a8->wrp_num = ((didr >> 28) & 0x0F) + 1;
1406         cortex_a8->wrp_num_available = cortex_a8->wrp_num;
1407         cortex_a8->wrp_list = calloc(cortex_a8->wrp_num, sizeof(cortex_a8_wrp_t));
1408         for (i = 0; i < cortex_a8->wrp_num; i++)
1409         {
1410                 cortex_a8->wrp_list[i].used = 0;
1411                 cortex_a8->wrp_list[i].type = 0;
1412                 cortex_a8->wrp_list[i].value = 0;
1413                 cortex_a8->wrp_list[i].control = 0;
1414                 cortex_a8->wrp_list[i].WRPn = i;
1415         }
1416         LOG_DEBUG("Configured %i hw breakpoint pairs and %i hw watchpoint pairs",
1417                         cortex_a8->brp_num , cortex_a8->wrp_num);
1418
1419         target->type->examined = 1;
1420
1421         return retval;
1422 }
1423
1424 /*
1425  *      Cortex-A8 target creation and initialization
1426  */
1427
1428 void cortex_a8_build_reg_cache(target_t *target)
1429 {
1430         reg_cache_t **cache_p = register_get_last_cache_p(&target->reg_cache);
1431         /* get pointers to arch-specific information */
1432         armv4_5_common_t *armv4_5 = target->arch_info;
1433
1434         (*cache_p) = armv4_5_build_reg_cache(target, armv4_5);
1435         armv4_5->core_cache = (*cache_p);
1436 }
1437
1438
1439 int cortex_a8_init_target(struct command_context_s *cmd_ctx,
1440                 struct target_s *target)
1441 {
1442         cortex_a8_build_reg_cache(target);
1443         return ERROR_OK;
1444 }
1445
1446 int cortex_a8_init_arch_info(target_t *target,
1447                 cortex_a8_common_t *cortex_a8, jtag_tap_t *tap)
1448 {
1449         armv4_5_common_t *armv4_5;
1450         armv7a_common_t *armv7a;
1451
1452         armv7a = &cortex_a8->armv7a_common;
1453         armv4_5 = &armv7a->armv4_5_common;
1454         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1455
1456         /* Setup cortex_a8_common_t */
1457         cortex_a8->common_magic = CORTEX_A8_COMMON_MAGIC;
1458         cortex_a8->arch_info = NULL;
1459         armv7a->arch_info = cortex_a8;
1460         armv4_5->arch_info = armv7a;
1461
1462         armv4_5_init_arch_info(target, armv4_5);
1463
1464         /* prepare JTAG information for the new target */
1465         cortex_a8->jtag_info.tap = tap;
1466         cortex_a8->jtag_info.scann_size = 4;
1467 LOG_DEBUG(" ");
1468         swjdp->dp_select_value = -1;
1469         swjdp->ap_csw_value = -1;
1470         swjdp->ap_tar_value = -1;
1471         swjdp->jtag_info = &cortex_a8->jtag_info;
1472         swjdp->memaccess_tck = 80;
1473
1474         /* Number of bits for tar autoincrement, impl. dep. at least 10 */
1475         swjdp->tar_autoincr_block = (1 << 10);
1476
1477         cortex_a8->fast_reg_read = 0;
1478
1479
1480         /* register arch-specific functions */
1481         armv7a->examine_debug_reason = NULL;
1482
1483         armv7a->pre_debug_entry = NULL;
1484         armv7a->post_debug_entry = cortex_a8_post_debug_entry;
1485
1486         armv7a->pre_restore_context = NULL;
1487         armv7a->post_restore_context = NULL;
1488         armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1;
1489 //      armv7a->armv4_5_mmu.get_ttb = armv7a_get_ttb;
1490         armv7a->armv4_5_mmu.read_memory = cortex_a8_read_memory;
1491         armv7a->armv4_5_mmu.write_memory = cortex_a8_write_memory;
1492 //      armv7a->armv4_5_mmu.disable_mmu_caches = armv7a_disable_mmu_caches;
1493 //      armv7a->armv4_5_mmu.enable_mmu_caches = armv7a_enable_mmu_caches;
1494         armv7a->armv4_5_mmu.has_tiny_pages = 1;
1495         armv7a->armv4_5_mmu.mmu_enabled = 0;
1496         armv7a->read_cp15 = cortex_a8_read_cp15;
1497         armv7a->write_cp15 = cortex_a8_write_cp15;
1498
1499
1500 //      arm7_9->handle_target_request = cortex_a8_handle_target_request;
1501
1502         armv4_5->read_core_reg = cortex_a8_read_core_reg;
1503         armv4_5->write_core_reg = cortex_a8_write_core_reg;
1504 //      armv4_5->full_context = arm7_9_full_context;
1505
1506 //      armv4_5->load_core_reg_u32 = cortex_a8_load_core_reg_u32;
1507 //      armv4_5->store_core_reg_u32 = cortex_a8_store_core_reg_u32;
1508 //      armv4_5->read_core_reg = armv4_5_read_core_reg; /* this is default */
1509 //      armv4_5->write_core_reg = armv4_5_write_core_reg;
1510
1511         target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target);
1512
1513         return ERROR_OK;
1514 }
1515
1516 int cortex_a8_target_create(struct target_s *target, Jim_Interp *interp)
1517 {
1518         cortex_a8_common_t *cortex_a8 = calloc(1, sizeof(cortex_a8_common_t));
1519
1520         cortex_a8_init_arch_info(target, cortex_a8, target->tap);
1521
1522         return ERROR_OK;
1523 }
1524
1525 static int cortex_a8_handle_cache_info_command(struct command_context_s *cmd_ctx,
1526                 char *cmd, char **args, int argc)
1527 {
1528         target_t *target = get_current_target(cmd_ctx);
1529         armv4_5_common_t *armv4_5 = target->arch_info;
1530         armv7a_common_t *armv7a = armv4_5->arch_info;
1531
1532         return armv4_5_handle_cache_info_command(cmd_ctx,
1533                         &armv7a->armv4_5_mmu.armv4_5_cache);
1534 }
1535
1536
1537 int cortex_a8_register_commands(struct command_context_s *cmd_ctx)
1538 {
1539         command_t *cortex_a8_cmd;
1540         int retval = ERROR_OK;
1541
1542         armv4_5_register_commands(cmd_ctx);
1543         armv7a_register_commands(cmd_ctx);
1544
1545         cortex_a8_cmd = register_command(cmd_ctx, NULL, "cortex_a8",
1546                         NULL, COMMAND_ANY,
1547                         "cortex_a8 specific commands");
1548
1549         register_command(cmd_ctx, cortex_a8_cmd, "cache_info",
1550                         cortex_a8_handle_cache_info_command, COMMAND_EXEC,
1551                         "display information about target caches");
1552
1553         return retval;
1554 }