ARM: add a default full_context() method
[fw/openocd] / src / target / cortex_a8.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   This program is free software; you can redistribute it and/or modify  *
15  *   it under the terms of the GNU General Public License as published by  *
16  *   the Free Software Foundation; either version 2 of the License, or     *
17  *   (at your option) any later version.                                   *
18  *                                                                         *
19  *   This program is distributed in the hope that it will be useful,       *
20  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
21  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
22  *   GNU General Public License for more details.                          *
23  *                                                                         *
24  *   You should have received a copy of the GNU General Public License     *
25  *   along with this program; if not, write to the                         *
26  *   Free Software Foundation, Inc.,                                       *
27  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
28  *                                                                         *
29  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
30  *                                                                         *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "breakpoints.h"
37 #include "cortex_a8.h"
38 #include "register.h"
39 #include "target_request.h"
40 #include "target_type.h"
41
42 static int cortex_a8_poll(struct target *target);
43 static int cortex_a8_debug_entry(struct target *target);
44 static int cortex_a8_restore_context(struct target *target);
45 static int cortex_a8_set_breakpoint(struct target *target,
46                 struct breakpoint *breakpoint, uint8_t matchmode);
47 static int cortex_a8_unset_breakpoint(struct target *target,
48                 struct breakpoint *breakpoint);
49 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
50                 uint32_t *value, int regnum);
51 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
52                 uint32_t value, int regnum);
53 /*
54  * FIXME do topology discovery using the ROM; don't
55  * assume this is an OMAP3.
56  */
57 #define swjdp_memoryap 0
58 #define swjdp_debugap 1
59 #define OMAP3530_DEBUG_BASE 0x54011000
60
61 /*
62  * Cortex-A8 Basic debug access, very low level assumes state is saved
63  */
64 static int cortex_a8_init_debug_access(struct target *target)
65 {
66         struct armv7a_common *armv7a = target_to_armv7a(target);
67         struct swjdp_common *swjdp = &armv7a->swjdp_info;
68
69         int retval;
70         uint32_t dummy;
71
72         LOG_DEBUG(" ");
73
74         /* Unlocking the debug registers for modification */
75         /* The debugport might be uninitialised so try twice */
76         retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
77         if (retval != ERROR_OK)
78                 mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
79         /* Clear Sticky Power Down status Bit in PRSR to enable access to
80            the registers in the Core Power Domain */
81         retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_PRSR, &dummy);
82         /* Enabling of instruction execution in debug mode is done in debug_entry code */
83
84         /* Resync breakpoint registers */
85
86         /* Since this is likley called from init or reset, update targtet state information*/
87         cortex_a8_poll(target);
88
89         return retval;
90 }
91
92 int cortex_a8_exec_opcode(struct target *target, uint32_t opcode)
93 {
94         uint32_t dscr;
95         int retval;
96         struct armv7a_common *armv7a = target_to_armv7a(target);
97         struct swjdp_common *swjdp = &armv7a->swjdp_info;
98
99         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
100         do
101         {
102                 retval = mem_ap_read_atomic_u32(swjdp,
103                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
104                 if (retval != ERROR_OK)
105                 {
106                         LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
107                         return retval;
108                 }
109         }
110         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
111
112         mem_ap_write_u32(swjdp, armv7a->debug_base + CPUDBG_ITR, opcode);
113
114         do
115         {
116                 retval = mem_ap_read_atomic_u32(swjdp,
117                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
118                 if (retval != ERROR_OK)
119                 {
120                         LOG_ERROR("Could not read DSCR register");
121                         return retval;
122                 }
123         }
124         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
125
126         return retval;
127 }
128
129 /**************************************************************************
130 Read core register with very few exec_opcode, fast but needs work_area.
131 This can cause problems with MMU active.
132 **************************************************************************/
133 static int cortex_a8_read_regs_through_mem(struct target *target, uint32_t address,
134                 uint32_t * regfile)
135 {
136         int retval = ERROR_OK;
137         struct armv7a_common *armv7a = target_to_armv7a(target);
138         struct swjdp_common *swjdp = &armv7a->swjdp_info;
139
140         cortex_a8_dap_read_coreregister_u32(target, regfile, 0);
141         cortex_a8_dap_write_coreregister_u32(target, address, 0);
142         cortex_a8_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0));
143         dap_ap_select(swjdp, swjdp_memoryap);
144         mem_ap_read_buf_u32(swjdp, (uint8_t *)(&regfile[1]), 4*15, address);
145         dap_ap_select(swjdp, swjdp_debugap);
146
147         return retval;
148 }
149
150 static int cortex_a8_read_cp(struct target *target, uint32_t *value, uint8_t CP,
151                 uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
152 {
153         int retval;
154         struct armv7a_common *armv7a = target_to_armv7a(target);
155         struct swjdp_common *swjdp = &armv7a->swjdp_info;
156
157         cortex_a8_exec_opcode(target, ARMV4_5_MRC(CP, op1, 0, CRn, CRm, op2));
158         /* Move R0 to DTRTX */
159         cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
160
161         /* Read DCCTX */
162         retval = mem_ap_read_atomic_u32(swjdp,
163                         armv7a->debug_base + CPUDBG_DTRTX, value);
164
165         return retval;
166 }
167
168 static int cortex_a8_write_cp(struct target *target, uint32_t value,
169         uint8_t CP, uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
170 {
171         int retval;
172         uint32_t dscr;
173         struct armv7a_common *armv7a = target_to_armv7a(target);
174         struct swjdp_common *swjdp = &armv7a->swjdp_info;
175
176         LOG_DEBUG("CP%i, CRn %i, value 0x%08" PRIx32, CP, CRn, value);
177
178         /* Check that DCCRX is not full */
179         retval = mem_ap_read_atomic_u32(swjdp,
180                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
181         if (dscr & (1 << DSCR_DTR_RX_FULL))
182         {
183                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
184                 /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode  0xEE000E15 */
185                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
186         }
187
188         retval = mem_ap_write_u32(swjdp,
189                         armv7a->debug_base + CPUDBG_DTRRX, value);
190         /* Move DTRRX to r0 */
191         cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
192
193         cortex_a8_exec_opcode(target, ARMV4_5_MCR(CP, op1, 0, CRn, CRm, op2));
194         return retval;
195 }
196
197 static int cortex_a8_read_cp15(struct target *target, uint32_t op1, uint32_t op2,
198                 uint32_t CRn, uint32_t CRm, uint32_t *value)
199 {
200         return cortex_a8_read_cp(target, value, 15, op1, CRn, CRm, op2);
201 }
202
203 static int cortex_a8_write_cp15(struct target *target, uint32_t op1, uint32_t op2,
204                 uint32_t CRn, uint32_t CRm, uint32_t value)
205 {
206         return cortex_a8_write_cp(target, value, 15, op1, CRn, CRm, op2);
207 }
208
209 static int cortex_a8_mrc(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value)
210 {
211         if (cpnum!=15)
212         {
213                 LOG_ERROR("Only cp15 is supported");
214                 return ERROR_FAIL;
215         }
216         return cortex_a8_read_cp15(target, op1, op2, CRn, CRm, value);
217 }
218
219 static int cortex_a8_mcr(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value)
220 {
221         if (cpnum!=15)
222         {
223                 LOG_ERROR("Only cp15 is supported");
224                 return ERROR_FAIL;
225         }
226         return cortex_a8_write_cp15(target, op1, op2, CRn, CRm, value);
227 }
228
229
230
231 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
232                 uint32_t *value, int regnum)
233 {
234         int retval = ERROR_OK;
235         uint8_t reg = regnum&0xFF;
236         uint32_t dscr;
237         struct armv7a_common *armv7a = target_to_armv7a(target);
238         struct swjdp_common *swjdp = &armv7a->swjdp_info;
239
240         if (reg > 16)
241                 return retval;
242
243         if (reg < 15)
244         {
245                 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0"  0xEE00nE15 */
246                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, reg, 0, 5, 0));
247         }
248         else if (reg == 15)
249         {
250                 /* "MOV r0, r15"; then move r0 to DCCTX */
251                 cortex_a8_exec_opcode(target, 0xE1A0000F);
252                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
253         }
254         else if (reg == 16)
255         {
256                 /* "MRS r0, CPSR"; then move r0 to DCCTX */
257                 cortex_a8_exec_opcode(target, ARMV4_5_MRS(0, 0));
258                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
259         }
260
261         /* Read DTRRTX */
262         do
263         {
264                 retval = mem_ap_read_atomic_u32(swjdp,
265                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
266         }
267         while ((dscr & (1 << DSCR_DTR_TX_FULL)) == 0); /* Wait for DTRRXfull */
268
269         retval = mem_ap_read_atomic_u32(swjdp,
270                         armv7a->debug_base + CPUDBG_DTRTX, value);
271
272         return retval;
273 }
274
275 static int cortex_a8_dap_write_coreregister_u32(struct target *target, uint32_t value, int regnum)
276 {
277         int retval = ERROR_OK;
278         uint8_t Rd = regnum&0xFF;
279         uint32_t dscr;
280         struct armv7a_common *armv7a = target_to_armv7a(target);
281         struct swjdp_common *swjdp = &armv7a->swjdp_info;
282
283         LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
284
285         /* Check that DCCRX is not full */
286         retval = mem_ap_read_atomic_u32(swjdp,
287                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
288         if (dscr & (1 << DSCR_DTR_RX_FULL))
289         {
290                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
291                 /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode  0xEE000E15 */
292                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
293         }
294
295         if (Rd > 16)
296                 return retval;
297
298         /* Write to DCCRX */
299         retval = mem_ap_write_u32(swjdp,
300                         armv7a->debug_base + CPUDBG_DTRRX, value);
301
302         if (Rd < 15)
303         {
304                 /* DCCRX to Rd, MCR p14, 0, Rd, c0, c5, 0,  0xEE000E15 */
305                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0));
306         }
307         else if (Rd == 15)
308         {
309                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
310                 cortex_a8_exec_opcode(target, 0xE1A0F000);
311         }
312         else if (Rd == 16)
313         {
314                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
315                 cortex_a8_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, 0));
316                 /* Execute a PrefetchFlush instruction through the ITR. */
317                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(15, 0, 0, 7, 5, 4));
318         }
319
320         return retval;
321 }
322
323 /* Write to memory mapped registers directly with no cache or mmu handling */
324 static int cortex_a8_dap_write_memap_register_u32(struct target *target, uint32_t address, uint32_t value)
325 {
326         int retval;
327         struct armv7a_common *armv7a = target_to_armv7a(target);
328         struct swjdp_common *swjdp = &armv7a->swjdp_info;
329
330         retval = mem_ap_write_atomic_u32(swjdp, address, value);
331
332         return retval;
333 }
334
335 /*
336  * Cortex-A8 Run control
337  */
338
339 static int cortex_a8_poll(struct target *target)
340 {
341         int retval = ERROR_OK;
342         uint32_t dscr;
343         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
344         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
345         struct swjdp_common *swjdp = &armv7a->swjdp_info;
346         enum target_state prev_target_state = target->state;
347         uint8_t saved_apsel = dap_ap_get_select(swjdp);
348
349         dap_ap_select(swjdp, swjdp_debugap);
350         retval = mem_ap_read_atomic_u32(swjdp,
351                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
352         if (retval != ERROR_OK)
353         {
354                 dap_ap_select(swjdp, saved_apsel);
355                 return retval;
356         }
357         cortex_a8->cpudbg_dscr = dscr;
358
359         if ((dscr & 0x3) == 0x3)
360         {
361                 if (prev_target_state != TARGET_HALTED)
362                 {
363                         /* We have a halting debug event */
364                         LOG_DEBUG("Target halted");
365                         target->state = TARGET_HALTED;
366                         if ((prev_target_state == TARGET_RUNNING)
367                                         || (prev_target_state == TARGET_RESET))
368                         {
369                                 retval = cortex_a8_debug_entry(target);
370                                 if (retval != ERROR_OK)
371                                         return retval;
372
373                                 target_call_event_callbacks(target,
374                                                 TARGET_EVENT_HALTED);
375                         }
376                         if (prev_target_state == TARGET_DEBUG_RUNNING)
377                         {
378                                 LOG_DEBUG(" ");
379
380                                 retval = cortex_a8_debug_entry(target);
381                                 if (retval != ERROR_OK)
382                                         return retval;
383
384                                 target_call_event_callbacks(target,
385                                                 TARGET_EVENT_DEBUG_HALTED);
386                         }
387                 }
388         }
389         else if ((dscr & 0x3) == 0x2)
390         {
391                 target->state = TARGET_RUNNING;
392         }
393         else
394         {
395                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
396                 target->state = TARGET_UNKNOWN;
397         }
398
399         dap_ap_select(swjdp, saved_apsel);
400
401         return retval;
402 }
403
404 static int cortex_a8_halt(struct target *target)
405 {
406         int retval = ERROR_OK;
407         uint32_t dscr;
408         struct armv7a_common *armv7a = target_to_armv7a(target);
409         struct swjdp_common *swjdp = &armv7a->swjdp_info;
410         uint8_t saved_apsel = dap_ap_get_select(swjdp);
411         dap_ap_select(swjdp, swjdp_debugap);
412
413         /*
414          * Tell the core to be halted by writing DRCR with 0x1
415          * and then wait for the core to be halted.
416          */
417         retval = mem_ap_write_atomic_u32(swjdp,
418                         armv7a->debug_base + CPUDBG_DRCR, 0x1);
419
420         /*
421          * enter halting debug mode
422          */
423         mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DSCR, &dscr);
424         retval = mem_ap_write_atomic_u32(swjdp,
425                 armv7a->debug_base + CPUDBG_DSCR, dscr | (1 << DSCR_HALT_DBG_MODE));
426
427         if (retval != ERROR_OK)
428                 goto out;
429
430         do {
431                 mem_ap_read_atomic_u32(swjdp,
432                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
433         } while ((dscr & (1 << DSCR_CORE_HALTED)) == 0);
434
435         target->debug_reason = DBG_REASON_DBGRQ;
436
437 out:
438         dap_ap_select(swjdp, saved_apsel);
439         return retval;
440 }
441
442 static int cortex_a8_resume(struct target *target, int current,
443                 uint32_t address, int handle_breakpoints, int debug_execution)
444 {
445         struct armv7a_common *armv7a = target_to_armv7a(target);
446         struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common;
447         struct swjdp_common *swjdp = &armv7a->swjdp_info;
448
449 //      struct breakpoint *breakpoint = NULL;
450         uint32_t resume_pc, dscr;
451
452         uint8_t saved_apsel = dap_ap_get_select(swjdp);
453         dap_ap_select(swjdp, swjdp_debugap);
454
455         if (!debug_execution)
456         {
457                 target_free_all_working_areas(target);
458 //              cortex_m3_enable_breakpoints(target);
459 //              cortex_m3_enable_watchpoints(target);
460         }
461
462 #if 0
463         if (debug_execution)
464         {
465                 /* Disable interrupts */
466                 /* We disable interrupts in the PRIMASK register instead of
467                  * masking with C_MASKINTS,
468                  * This is probably the same issue as Cortex-M3 Errata 377493:
469                  * C_MASKINTS in parallel with disabled interrupts can cause
470                  * local faults to not be taken. */
471                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
472                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
473                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
474
475                 /* Make sure we are in Thumb mode */
476                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
477                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
478                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
479                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
480         }
481 #endif
482
483         /* current = 1: continue on current pc, otherwise continue at <address> */
484         resume_pc = buf_get_u32(
485                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
486                                 armv4_5->core_mode, 15).value,
487                         0, 32);
488         if (!current)
489                 resume_pc = address;
490
491         /* Make sure that the Armv7 gdb thumb fixups does not
492          * kill the return address
493          */
494         if (armv7a->core_state == ARMV7A_STATE_ARM)
495         {
496                 resume_pc &= 0xFFFFFFFC;
497         }
498         /* When the return address is loaded into PC
499          * bit 0 must be 1 to stay in Thumb state
500          */
501         if (armv7a->core_state == ARMV7A_STATE_THUMB)
502         {
503                 resume_pc |= 0x1;
504         }
505         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
506         buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
507                                 armv4_5->core_mode, 15).value,
508                         0, 32, resume_pc);
509         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
510                         armv4_5->core_mode, 15).dirty = 1;
511         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
512                         armv4_5->core_mode, 15).valid = 1;
513
514         cortex_a8_restore_context(target);
515 //      arm7_9_restore_context(target); TODO Context is currently NOT Properly restored
516 #if 0
517         /* the front-end may request us not to handle breakpoints */
518         if (handle_breakpoints)
519         {
520                 /* Single step past breakpoint at current address */
521                 if ((breakpoint = breakpoint_find(target, resume_pc)))
522                 {
523                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
524                         cortex_m3_unset_breakpoint(target, breakpoint);
525                         cortex_m3_single_step_core(target);
526                         cortex_m3_set_breakpoint(target, breakpoint);
527                 }
528         }
529
530 #endif
531         /* Restart core and wait for it to be started */
532         mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DRCR, 0x2);
533
534         do {
535                 mem_ap_read_atomic_u32(swjdp,
536                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
537         } while ((dscr & (1 << DSCR_CORE_RESTARTED)) == 0);
538
539         target->debug_reason = DBG_REASON_NOTHALTED;
540         target->state = TARGET_RUNNING;
541
542         /* registers are now invalid */
543         armv4_5_invalidate_core_regs(target);
544
545         if (!debug_execution)
546         {
547                 target->state = TARGET_RUNNING;
548                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
549                 LOG_DEBUG("target resumed at 0x%" PRIx32, resume_pc);
550         }
551         else
552         {
553                 target->state = TARGET_DEBUG_RUNNING;
554                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
555                 LOG_DEBUG("target debug resumed at 0x%" PRIx32, resume_pc);
556         }
557
558         dap_ap_select(swjdp, saved_apsel);
559
560         return ERROR_OK;
561 }
562
563 static int cortex_a8_debug_entry(struct target *target)
564 {
565         int i;
566         uint32_t regfile[16], pc, cpsr, dscr;
567         int retval = ERROR_OK;
568         struct working_area *regfile_working_area = NULL;
569         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
570         struct armv7a_common *armv7a = target_to_armv7a(target);
571         struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common;
572         struct swjdp_common *swjdp = &armv7a->swjdp_info;
573
574         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a8->cpudbg_dscr);
575
576         /* Enable the ITR execution once we are in debug mode */
577         mem_ap_read_atomic_u32(swjdp,
578                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
579         dscr |= (1 << DSCR_EXT_INT_EN);
580         retval = mem_ap_write_atomic_u32(swjdp,
581                         armv7a->debug_base + CPUDBG_DSCR, dscr);
582
583         /* Examine debug reason */
584         switch ((cortex_a8->cpudbg_dscr >> 2)&0xF)
585         {
586                 case 0:
587                 case 4:
588                         target->debug_reason = DBG_REASON_DBGRQ;
589                         break;
590                 case 1:
591                 case 3:
592                         target->debug_reason = DBG_REASON_BREAKPOINT;
593                         break;
594                 case 10:
595                         target->debug_reason = DBG_REASON_WATCHPOINT;
596                         break;
597                 default:
598                         target->debug_reason = DBG_REASON_UNDEFINED;
599                         break;
600         }
601
602         /* Examine target state and mode */
603         if (cortex_a8->fast_reg_read)
604                 target_alloc_working_area(target, 64, &regfile_working_area);
605
606         /* First load register acessible through core debug port*/
607         if (!regfile_working_area)
608         {
609                 for (i = 0; i <= 15; i++)
610                         cortex_a8_dap_read_coreregister_u32(target,
611                                         &regfile[i], i);
612         }
613         else
614         {
615                 dap_ap_select(swjdp, swjdp_memoryap);
616                 cortex_a8_read_regs_through_mem(target,
617                                 regfile_working_area->address, regfile);
618                 dap_ap_select(swjdp, swjdp_memoryap);
619                 target_free_working_area(target, regfile_working_area);
620         }
621
622         cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16);
623         pc = regfile[15];
624         dap_ap_select(swjdp, swjdp_debugap);
625         LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
626
627         armv4_5->core_mode = cpsr & 0x1F;
628         armv7a->core_state = (cpsr & 0x20)?ARMV7A_STATE_THUMB:ARMV7A_STATE_ARM;
629
630         for (i = 0; i <= ARM_PC; i++)
631         {
632                 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
633                                         armv4_5->core_mode, i).value,
634                                 0, 32, regfile[i]);
635                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
636                                 armv4_5->core_mode, i).valid = 1;
637                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
638                                 armv4_5->core_mode, i).dirty = 0;
639         }
640
641         /* FIXME for exception states, this caches CPSR as SPSR!! */
642         buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
643                                 armv4_5->core_mode, 16).value,
644                         0, 32, cpsr);
645         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
646                         armv4_5->core_mode, 16).valid = 1;
647         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
648                         armv4_5->core_mode, 16).dirty = 0;
649
650         /* Fixup PC Resume Address */
651         if (armv7a->core_state == ARMV7A_STATE_THUMB)
652         {
653                 // T bit set for Thumb or ThumbEE state
654                 regfile[ARM_PC] -= 4;
655         }
656         else
657         {
658                 // ARM state
659                 regfile[ARM_PC] -= 8;
660         }
661         buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
662                                 armv4_5->core_mode, ARM_PC).value,
663                         0, 32, regfile[ARM_PC]);
664
665         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0)
666                 .dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
667                                 armv4_5->core_mode, 0).valid;
668         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15)
669                 .dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
670                                 armv4_5->core_mode, 15).valid;
671
672 #if 0
673 /* TODO, Move this */
674         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
675         cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
676         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
677
678         cortex_a8_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
679         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
680
681         cortex_a8_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
682         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
683 #endif
684
685         /* Are we in an exception handler */
686 //      armv4_5->exception_number = 0;
687         if (armv7a->post_debug_entry)
688                 armv7a->post_debug_entry(target);
689
690
691
692         return retval;
693
694 }
695
696 static void cortex_a8_post_debug_entry(struct target *target)
697 {
698         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
699         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
700
701 //      cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
702         /* examine cp15 control reg */
703         armv7a->read_cp15(target, 0, 0, 1, 0, &cortex_a8->cp15_control_reg);
704         jtag_execute_queue();
705         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
706
707         if (armv7a->armv4_5_mmu.armv4_5_cache.ctype == -1)
708         {
709                 uint32_t cache_type_reg;
710                 /* identify caches */
711                 armv7a->read_cp15(target, 0, 1, 0, 0, &cache_type_reg);
712                 jtag_execute_queue();
713                 /* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A8 */
714                 armv4_5_identify_cache(cache_type_reg,
715                                 &armv7a->armv4_5_mmu.armv4_5_cache);
716         }
717
718         armv7a->armv4_5_mmu.mmu_enabled =
719                         (cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0;
720         armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
721                         (cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0;
722         armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
723                         (cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0;
724
725
726 }
727
728 static int cortex_a8_step(struct target *target, int current, uint32_t address,
729                 int handle_breakpoints)
730 {
731         struct armv7a_common *armv7a = target_to_armv7a(target);
732         struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common;
733         struct breakpoint *breakpoint = NULL;
734         struct breakpoint stepbreakpoint;
735
736         int timeout = 100;
737
738         if (target->state != TARGET_HALTED)
739         {
740                 LOG_WARNING("target not halted");
741                 return ERROR_TARGET_NOT_HALTED;
742         }
743
744         /* current = 1: continue on current pc, otherwise continue at <address> */
745         if (!current)
746         {
747                 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
748                                         armv4_5->core_mode, ARM_PC).value,
749                                 0, 32, address);
750         }
751         else
752         {
753                 address = buf_get_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
754                                         armv4_5->core_mode, ARM_PC).value,
755                                 0, 32);
756         }
757
758         /* The front-end may request us not to handle breakpoints.
759          * But since Cortex-A8 uses breakpoint for single step,
760          * we MUST handle breakpoints.
761          */
762         handle_breakpoints = 1;
763         if (handle_breakpoints) {
764                 breakpoint = breakpoint_find(target,
765                                 buf_get_u32(ARMV4_5_CORE_REG_MODE(
766                                         armv4_5->core_cache,
767                                         armv4_5->core_mode, 15).value,
768                         0, 32));
769                 if (breakpoint)
770                         cortex_a8_unset_breakpoint(target, breakpoint);
771         }
772
773         /* Setup single step breakpoint */
774         stepbreakpoint.address = address;
775         stepbreakpoint.length = (armv7a->core_state == ARMV7A_STATE_THUMB) ? 2 : 4;
776         stepbreakpoint.type = BKPT_HARD;
777         stepbreakpoint.set = 0;
778
779         /* Break on IVA mismatch */
780         cortex_a8_set_breakpoint(target, &stepbreakpoint, 0x04);
781
782         target->debug_reason = DBG_REASON_SINGLESTEP;
783
784         cortex_a8_resume(target, 1, address, 0, 0);
785
786         while (target->state != TARGET_HALTED)
787         {
788                 cortex_a8_poll(target);
789                 if (--timeout == 0)
790                 {
791                         LOG_WARNING("timeout waiting for target halt");
792                         break;
793                 }
794         }
795
796         cortex_a8_unset_breakpoint(target, &stepbreakpoint);
797         if (timeout > 0) target->debug_reason = DBG_REASON_BREAKPOINT;
798
799         if (breakpoint)
800                 cortex_a8_set_breakpoint(target, breakpoint, 0);
801
802         if (target->state != TARGET_HALTED)
803                 LOG_DEBUG("target stepped");
804
805         return ERROR_OK;
806 }
807
808 static int cortex_a8_restore_context(struct target *target)
809 {
810         int i;
811         uint32_t value;
812         struct armv7a_common *armv7a = target_to_armv7a(target);
813         struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common;
814
815         LOG_DEBUG(" ");
816
817         if (armv7a->pre_restore_context)
818                 armv7a->pre_restore_context(target);
819
820         for (i = 15; i >= 0; i--)
821         {
822                 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
823                                         armv4_5->core_mode, i).dirty)
824                 {
825                         value = buf_get_u32(ARMV4_5_CORE_REG_MODE(
826                                                 armv4_5->core_cache,
827                                                 armv4_5->core_mode, i).value,
828                                         0, 32);
829                         /* TODO Check return values */
830                         cortex_a8_dap_write_coreregister_u32(target, value, i);
831                 }
832         }
833
834         if (armv7a->post_restore_context)
835                 armv7a->post_restore_context(target);
836
837         return ERROR_OK;
838 }
839
840
841 #if 0
842 /*
843  * Cortex-A8 Core register functions
844  */
845 static int cortex_a8_load_core_reg_u32(struct target *target, int num,
846                 armv4_5_mode_t mode, uint32_t * value)
847 {
848         int retval;
849         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
850
851         if ((num <= ARM_CPSR))
852         {
853                 /* read a normal core register */
854                 retval = cortex_a8_dap_read_coreregister_u32(target, value, num);
855
856                 if (retval != ERROR_OK)
857                 {
858                         LOG_ERROR("JTAG failure %i", retval);
859                         return ERROR_JTAG_DEVICE_ERROR;
860                 }
861                 LOG_DEBUG("load from core reg %i value 0x%" PRIx32, num, *value);
862         }
863         else
864         {
865                 return ERROR_INVALID_ARGUMENTS;
866         }
867
868         /* Register other than r0 - r14 uses r0 for access */
869         if (num > 14)
870                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
871                                 armv4_5->core_mode, 0).dirty =
872                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
873                                 armv4_5->core_mode, 0).valid;
874         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
875                                 armv4_5->core_mode, 15).dirty =
876                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
877                                 armv4_5->core_mode, 15).valid;
878
879         return ERROR_OK;
880 }
881
882 static int cortex_a8_store_core_reg_u32(struct target *target, int num,
883                 armv4_5_mode_t mode, uint32_t value)
884 {
885         int retval;
886 //      uint32_t reg;
887         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
888
889 #ifdef ARMV7_GDB_HACKS
890         /* If the LR register is being modified, make sure it will put us
891          * in "thumb" mode, or an INVSTATE exception will occur. This is a
892          * hack to deal with the fact that gdb will sometimes "forge"
893          * return addresses, and doesn't set the LSB correctly (i.e., when
894          * printing expressions containing function calls, it sets LR=0.) */
895
896         if (num == 14)
897                 value |= 0x01;
898 #endif
899
900         if ((num <= ARM_CPSR))
901         {
902                 retval = cortex_a8_dap_write_coreregister_u32(target, value, num);
903                 if (retval != ERROR_OK)
904                 {
905                         LOG_ERROR("JTAG failure %i", retval);
906                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
907                                         armv4_5->core_mode, num).dirty =
908                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
909                                         armv4_5->core_mode, num).valid;
910                         return ERROR_JTAG_DEVICE_ERROR;
911                 }
912                 LOG_DEBUG("write core reg %i value 0x%" PRIx32, num, value);
913         }
914         else
915         {
916                 return ERROR_INVALID_ARGUMENTS;
917         }
918
919         return ERROR_OK;
920 }
921 #endif
922
923
924 static int cortex_a8_read_core_reg(struct target *target, int num,
925                 enum armv4_5_mode mode)
926 {
927         uint32_t value;
928         int retval;
929         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
930
931         /* FIXME cortex may not be in "mode" ... */
932
933         cortex_a8_dap_read_coreregister_u32(target, &value, num);
934
935         if ((retval = jtag_execute_queue()) != ERROR_OK)
936         {
937                 return retval;
938         }
939
940         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
941         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
942         buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
943                         mode, num).value, 0, 32, value);
944
945         return ERROR_OK;
946 }
947
948 static int cortex_a8_write_core_reg(struct target *target, int num,
949                 enum armv4_5_mode mode, uint32_t value)
950 {
951         int retval;
952         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
953
954         /* FIXME cortex may not be in "mode" ... */
955
956         cortex_a8_dap_write_coreregister_u32(target, value, num);
957         if ((retval = jtag_execute_queue()) != ERROR_OK)
958         {
959                 return retval;
960         }
961
962         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
963         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
964
965         return ERROR_OK;
966 }
967
968
969 /*
970  * Cortex-A8 Breakpoint and watchpoint fuctions
971  */
972
973 /* Setup hardware Breakpoint Register Pair */
974 static int cortex_a8_set_breakpoint(struct target *target,
975                 struct breakpoint *breakpoint, uint8_t matchmode)
976 {
977         int retval;
978         int brp_i=0;
979         uint32_t control;
980         uint8_t byte_addr_select = 0x0F;
981         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
982         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
983         struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
984
985         if (breakpoint->set)
986         {
987                 LOG_WARNING("breakpoint already set");
988                 return ERROR_OK;
989         }
990
991         if (breakpoint->type == BKPT_HARD)
992         {
993                 while (brp_list[brp_i].used && (brp_i < cortex_a8->brp_num))
994                         brp_i++ ;
995                 if (brp_i >= cortex_a8->brp_num)
996                 {
997                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
998                         return ERROR_FAIL;
999                 }
1000                 breakpoint->set = brp_i + 1;
1001                 if (breakpoint->length == 2)
1002                 {
1003                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1004                 }
1005                 control = ((matchmode & 0x7) << 20)
1006                                 | (byte_addr_select << 5)
1007                                 | (3 << 1) | 1;
1008                 brp_list[brp_i].used = 1;
1009                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1010                 brp_list[brp_i].control = control;
1011                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1012                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1013                                 brp_list[brp_i].value);
1014                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1015                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1016                                 brp_list[brp_i].control);
1017                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1018                                 brp_list[brp_i].control,
1019                                 brp_list[brp_i].value);
1020         }
1021         else if (breakpoint->type == BKPT_SOFT)
1022         {
1023                 uint8_t code[4];
1024                 if (breakpoint->length == 2)
1025                 {
1026                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1027                 }
1028                 else
1029                 {
1030                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1031                 }
1032                 retval = target->type->read_memory(target,
1033                                 breakpoint->address & 0xFFFFFFFE,
1034                                 breakpoint->length, 1,
1035                                 breakpoint->orig_instr);
1036                 if (retval != ERROR_OK)
1037                         return retval;
1038                 retval = target->type->write_memory(target,
1039                                 breakpoint->address & 0xFFFFFFFE,
1040                                 breakpoint->length, 1, code);
1041                 if (retval != ERROR_OK)
1042                         return retval;
1043                 breakpoint->set = 0x11; /* Any nice value but 0 */
1044         }
1045
1046         return ERROR_OK;
1047 }
1048
1049 static int cortex_a8_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1050 {
1051         int retval;
1052         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1053         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1054         struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1055
1056         if (!breakpoint->set)
1057         {
1058                 LOG_WARNING("breakpoint not set");
1059                 return ERROR_OK;
1060         }
1061
1062         if (breakpoint->type == BKPT_HARD)
1063         {
1064                 int brp_i = breakpoint->set - 1;
1065                 if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num))
1066                 {
1067                         LOG_DEBUG("Invalid BRP number in breakpoint");
1068                         return ERROR_OK;
1069                 }
1070                 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1071                                 brp_list[brp_i].control, brp_list[brp_i].value);
1072                 brp_list[brp_i].used = 0;
1073                 brp_list[brp_i].value = 0;
1074                 brp_list[brp_i].control = 0;
1075                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1076                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1077                                 brp_list[brp_i].control);
1078                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1079                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1080                                 brp_list[brp_i].value);
1081         }
1082         else
1083         {
1084                 /* restore original instruction (kept in target endianness) */
1085                 if (breakpoint->length == 4)
1086                 {
1087                         retval = target->type->write_memory(target,
1088                                         breakpoint->address & 0xFFFFFFFE,
1089                                         4, 1, breakpoint->orig_instr);
1090                         if (retval != ERROR_OK)
1091                                 return retval;
1092                 }
1093                 else
1094                 {
1095                         retval = target->type->write_memory(target,
1096                                         breakpoint->address & 0xFFFFFFFE,
1097                                         2, 1, breakpoint->orig_instr);
1098                         if (retval != ERROR_OK)
1099                                 return retval;
1100                 }
1101         }
1102         breakpoint->set = 0;
1103
1104         return ERROR_OK;
1105 }
1106
1107 int cortex_a8_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1108 {
1109         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1110
1111         if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1))
1112         {
1113                 LOG_INFO("no hardware breakpoint available");
1114                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1115         }
1116
1117         if (breakpoint->type == BKPT_HARD)
1118                 cortex_a8->brp_num_available--;
1119         cortex_a8_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1120
1121         return ERROR_OK;
1122 }
1123
1124 static int cortex_a8_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1125 {
1126         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1127
1128 #if 0
1129 /* It is perfectly possible to remove brakpoints while the taget is running */
1130         if (target->state != TARGET_HALTED)
1131         {
1132                 LOG_WARNING("target not halted");
1133                 return ERROR_TARGET_NOT_HALTED;
1134         }
1135 #endif
1136
1137         if (breakpoint->set)
1138         {
1139                 cortex_a8_unset_breakpoint(target, breakpoint);
1140                 if (breakpoint->type == BKPT_HARD)
1141                         cortex_a8->brp_num_available++ ;
1142         }
1143
1144
1145         return ERROR_OK;
1146 }
1147
1148
1149
1150 /*
1151  * Cortex-A8 Reset fuctions
1152  */
1153
1154 static int cortex_a8_assert_reset(struct target *target)
1155 {
1156
1157         LOG_DEBUG(" ");
1158
1159         /* registers are now invalid */
1160         armv4_5_invalidate_core_regs(target);
1161
1162         target->state = TARGET_RESET;
1163
1164         return ERROR_OK;
1165 }
1166
1167 static int cortex_a8_deassert_reset(struct target *target)
1168 {
1169
1170         LOG_DEBUG(" ");
1171
1172         if (target->reset_halt)
1173         {
1174                 int retval;
1175                 if ((retval = target_halt(target)) != ERROR_OK)
1176                         return retval;
1177         }
1178
1179         return ERROR_OK;
1180 }
1181
1182 /*
1183  * Cortex-A8 Memory access
1184  *
1185  * This is same Cortex M3 but we must also use the correct
1186  * ap number for every access.
1187  */
1188
1189 static int cortex_a8_read_memory(struct target *target, uint32_t address,
1190                 uint32_t size, uint32_t count, uint8_t *buffer)
1191 {
1192         struct armv7a_common *armv7a = target_to_armv7a(target);
1193         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1194         int retval = ERROR_INVALID_ARGUMENTS;
1195
1196         /* cortex_a8 handles unaligned memory access */
1197
1198 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1199
1200         if (count && buffer) {
1201                 switch (size) {
1202                 case 4:
1203                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1204                         break;
1205                 case 2:
1206                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1207                         break;
1208                 case 1:
1209                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1210                         break;
1211                 }
1212         }
1213
1214         return retval;
1215 }
1216
1217 int cortex_a8_write_memory(struct target *target, uint32_t address,
1218                 uint32_t size, uint32_t count, uint8_t *buffer)
1219 {
1220         struct armv7a_common *armv7a = target_to_armv7a(target);
1221         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1222         int retval = ERROR_INVALID_ARGUMENTS;
1223
1224 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1225
1226         if (count && buffer) {
1227                 switch (size) {
1228                 case 4:
1229                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1230                         break;
1231                 case 2:
1232                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1233                         break;
1234                 case 1:
1235                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1236                         break;
1237                 }
1238         }
1239
1240         if (retval == ERROR_OK && target->state == TARGET_HALTED)
1241         {
1242                 /* The Cache handling will NOT work with MMU active, the wrong addresses will be invalidated */
1243                 /* invalidate I-Cache */
1244                 if (armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
1245                 {
1246                         /* Invalidate ICache single entry with MVA, repeat this for all cache
1247                            lines in the address range, Cortex-A8 has fixed 64 byte line length */
1248                         /* Invalidate Cache single entry with MVA to PoU */
1249                         for (uint32_t cacheline=address; cacheline<address+size*count; cacheline+=64)
1250                                 armv7a->write_cp15(target, 0, 1, 7, 5, cacheline); /* I-Cache to PoU */
1251                 }
1252                 /* invalidate D-Cache */
1253                 if (armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
1254                 {
1255                         /* Invalidate Cache single entry with MVA to PoC */
1256                         for (uint32_t cacheline=address; cacheline<address+size*count; cacheline+=64)
1257                                 armv7a->write_cp15(target, 0, 1, 7, 6, cacheline); /* U/D cache to PoC */
1258                 }
1259         }
1260
1261         return retval;
1262 }
1263
1264 static int cortex_a8_bulk_write_memory(struct target *target, uint32_t address,
1265                 uint32_t count, uint8_t *buffer)
1266 {
1267         return cortex_a8_write_memory(target, address, 4, count, buffer);
1268 }
1269
1270
1271 static int cortex_a8_dcc_read(struct swjdp_common *swjdp, uint8_t *value, uint8_t *ctrl)
1272 {
1273 #if 0
1274         u16 dcrdr;
1275
1276         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1277         *ctrl = (uint8_t)dcrdr;
1278         *value = (uint8_t)(dcrdr >> 8);
1279
1280         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1281
1282         /* write ack back to software dcc register
1283          * signify we have read data */
1284         if (dcrdr & (1 << 0))
1285         {
1286                 dcrdr = 0;
1287                 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1288         }
1289 #endif
1290         return ERROR_OK;
1291 }
1292
1293
1294 static int cortex_a8_handle_target_request(void *priv)
1295 {
1296         struct target *target = priv;
1297         struct armv7a_common *armv7a = target_to_armv7a(target);
1298         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1299
1300         if (!target_was_examined(target))
1301                 return ERROR_OK;
1302         if (!target->dbg_msg_enabled)
1303                 return ERROR_OK;
1304
1305         if (target->state == TARGET_RUNNING)
1306         {
1307                 uint8_t data = 0;
1308                 uint8_t ctrl = 0;
1309
1310                 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1311
1312                 /* check if we have data */
1313                 if (ctrl & (1 << 0))
1314                 {
1315                         uint32_t request;
1316
1317                         /* we assume target is quick enough */
1318                         request = data;
1319                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1320                         request |= (data << 8);
1321                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1322                         request |= (data << 16);
1323                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1324                         request |= (data << 24);
1325                         target_request(target, request);
1326                 }
1327         }
1328
1329         return ERROR_OK;
1330 }
1331
1332 /*
1333  * Cortex-A8 target information and configuration
1334  */
1335
1336 static int cortex_a8_examine(struct target *target)
1337 {
1338         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1339         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1340         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1341         int i;
1342         int retval = ERROR_OK;
1343         uint32_t didr, ctypr, ttypr, cpuid;
1344
1345         LOG_DEBUG("TODO");
1346
1347         /* Here we shall insert a proper ROM Table scan */
1348         armv7a->debug_base = OMAP3530_DEBUG_BASE;
1349
1350         /* We do one extra read to ensure DAP is configured,
1351          * we call ahbap_debugport_init(swjdp) instead
1352          */
1353         ahbap_debugport_init(swjdp);
1354         mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_CPUID, &cpuid);
1355         if ((retval = mem_ap_read_atomic_u32(swjdp,
1356                         armv7a->debug_base + CPUDBG_CPUID, &cpuid)) != ERROR_OK)
1357         {
1358                 LOG_DEBUG("Examine failed");
1359                 return retval;
1360         }
1361
1362         if ((retval = mem_ap_read_atomic_u32(swjdp,
1363                         armv7a->debug_base + CPUDBG_CTYPR, &ctypr)) != ERROR_OK)
1364         {
1365                 LOG_DEBUG("Examine failed");
1366                 return retval;
1367         }
1368
1369         if ((retval = mem_ap_read_atomic_u32(swjdp,
1370                         armv7a->debug_base + CPUDBG_TTYPR, &ttypr)) != ERROR_OK)
1371         {
1372                 LOG_DEBUG("Examine failed");
1373                 return retval;
1374         }
1375
1376         if ((retval = mem_ap_read_atomic_u32(swjdp,
1377                         armv7a->debug_base + CPUDBG_DIDR, &didr)) != ERROR_OK)
1378         {
1379                 LOG_DEBUG("Examine failed");
1380                 return retval;
1381         }
1382
1383         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1384         LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
1385         LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
1386         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
1387
1388         /* Setup Breakpoint Register Pairs */
1389         cortex_a8->brp_num = ((didr >> 24) & 0x0F) + 1;
1390         cortex_a8->brp_num_context = ((didr >> 20) & 0x0F) + 1;
1391         cortex_a8->brp_num_available = cortex_a8->brp_num;
1392         cortex_a8->brp_list = calloc(cortex_a8->brp_num, sizeof(struct cortex_a8_brp));
1393 //      cortex_a8->brb_enabled = ????;
1394         for (i = 0; i < cortex_a8->brp_num; i++)
1395         {
1396                 cortex_a8->brp_list[i].used = 0;
1397                 if (i < (cortex_a8->brp_num-cortex_a8->brp_num_context))
1398                         cortex_a8->brp_list[i].type = BRP_NORMAL;
1399                 else
1400                         cortex_a8->brp_list[i].type = BRP_CONTEXT;
1401                 cortex_a8->brp_list[i].value = 0;
1402                 cortex_a8->brp_list[i].control = 0;
1403                 cortex_a8->brp_list[i].BRPn = i;
1404         }
1405
1406         /* Setup Watchpoint Register Pairs */
1407         cortex_a8->wrp_num = ((didr >> 28) & 0x0F) + 1;
1408         cortex_a8->wrp_num_available = cortex_a8->wrp_num;
1409         cortex_a8->wrp_list = calloc(cortex_a8->wrp_num, sizeof(struct cortex_a8_wrp));
1410         for (i = 0; i < cortex_a8->wrp_num; i++)
1411         {
1412                 cortex_a8->wrp_list[i].used = 0;
1413                 cortex_a8->wrp_list[i].type = 0;
1414                 cortex_a8->wrp_list[i].value = 0;
1415                 cortex_a8->wrp_list[i].control = 0;
1416                 cortex_a8->wrp_list[i].WRPn = i;
1417         }
1418         LOG_DEBUG("Configured %i hw breakpoint pairs and %i hw watchpoint pairs",
1419                         cortex_a8->brp_num , cortex_a8->wrp_num);
1420
1421         /* Configure core debug access */
1422         cortex_a8_init_debug_access(target);
1423
1424         target_set_examined(target);
1425
1426         return retval;
1427 }
1428
1429 /*
1430  *      Cortex-A8 target creation and initialization
1431  */
1432
1433 static void cortex_a8_build_reg_cache(struct target *target)
1434 {
1435         struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
1436         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
1437
1438         armv4_5->core_type = ARM_MODE_MON;
1439
1440         (*cache_p) = armv4_5_build_reg_cache(target, armv4_5);
1441         armv4_5->core_cache = (*cache_p);
1442 }
1443
1444
1445 static int cortex_a8_init_target(struct command_context *cmd_ctx,
1446                 struct target *target)
1447 {
1448         cortex_a8_build_reg_cache(target);
1449         return ERROR_OK;
1450 }
1451
1452 int cortex_a8_init_arch_info(struct target *target,
1453                 struct cortex_a8_common *cortex_a8, struct jtag_tap *tap)
1454 {
1455         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1456         struct arm *armv4_5 = &armv7a->armv4_5_common;
1457         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1458
1459         /* Setup struct cortex_a8_common */
1460         cortex_a8->common_magic = CORTEX_A8_COMMON_MAGIC;
1461         armv4_5->arch_info = armv7a;
1462
1463         /* prepare JTAG information for the new target */
1464         cortex_a8->jtag_info.tap = tap;
1465         cortex_a8->jtag_info.scann_size = 4;
1466 LOG_DEBUG(" ");
1467         swjdp->dp_select_value = -1;
1468         swjdp->ap_csw_value = -1;
1469         swjdp->ap_tar_value = -1;
1470         swjdp->jtag_info = &cortex_a8->jtag_info;
1471         swjdp->memaccess_tck = 80;
1472
1473         /* Number of bits for tar autoincrement, impl. dep. at least 10 */
1474         swjdp->tar_autoincr_block = (1 << 10);
1475
1476         cortex_a8->fast_reg_read = 0;
1477
1478
1479         /* register arch-specific functions */
1480         armv7a->examine_debug_reason = NULL;
1481
1482         armv7a->post_debug_entry = cortex_a8_post_debug_entry;
1483
1484         armv7a->pre_restore_context = NULL;
1485         armv7a->post_restore_context = NULL;
1486         armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1;
1487 //      armv7a->armv4_5_mmu.get_ttb = armv7a_get_ttb;
1488         armv7a->armv4_5_mmu.read_memory = cortex_a8_read_memory;
1489         armv7a->armv4_5_mmu.write_memory = cortex_a8_write_memory;
1490 //      armv7a->armv4_5_mmu.disable_mmu_caches = armv7a_disable_mmu_caches;
1491 //      armv7a->armv4_5_mmu.enable_mmu_caches = armv7a_enable_mmu_caches;
1492         armv7a->armv4_5_mmu.has_tiny_pages = 1;
1493         armv7a->armv4_5_mmu.mmu_enabled = 0;
1494         armv7a->read_cp15 = cortex_a8_read_cp15;
1495         armv7a->write_cp15 = cortex_a8_write_cp15;
1496
1497
1498 //      arm7_9->handle_target_request = cortex_a8_handle_target_request;
1499
1500         armv4_5->read_core_reg = cortex_a8_read_core_reg;
1501         armv4_5->write_core_reg = cortex_a8_write_core_reg;
1502
1503         /* REVISIT v7a setup should be in a v7a-specific routine */
1504         armv4_5_init_arch_info(target, armv4_5);
1505         armv7a->common_magic = ARMV7_COMMON_MAGIC;
1506
1507         target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target);
1508
1509         return ERROR_OK;
1510 }
1511
1512 static int cortex_a8_target_create(struct target *target, Jim_Interp *interp)
1513 {
1514         struct cortex_a8_common *cortex_a8 = calloc(1, sizeof(struct cortex_a8_common));
1515
1516         cortex_a8_init_arch_info(target, cortex_a8, target->tap);
1517
1518         return ERROR_OK;
1519 }
1520
1521 COMMAND_HANDLER(cortex_a8_handle_cache_info_command)
1522 {
1523         struct target *target = get_current_target(CMD_CTX);
1524         struct armv7a_common *armv7a = target_to_armv7a(target);
1525
1526         return armv4_5_handle_cache_info_command(CMD_CTX,
1527                         &armv7a->armv4_5_mmu.armv4_5_cache);
1528 }
1529
1530
1531 COMMAND_HANDLER(cortex_a8_handle_dbginit_command)
1532 {
1533         struct target *target = get_current_target(CMD_CTX);
1534
1535         cortex_a8_init_debug_access(target);
1536
1537         return ERROR_OK;
1538 }
1539
1540
1541 static int cortex_a8_register_commands(struct command_context *cmd_ctx)
1542 {
1543         struct command *cortex_a8_cmd;
1544         int retval = ERROR_OK;
1545
1546         armv4_5_register_commands(cmd_ctx);
1547         armv7a_register_commands(cmd_ctx);
1548
1549         cortex_a8_cmd = register_command(cmd_ctx, NULL, "cortex_a8",
1550                         NULL, COMMAND_ANY,
1551                         "cortex_a8 specific commands");
1552
1553         register_command(cmd_ctx, cortex_a8_cmd, "cache_info",
1554                         cortex_a8_handle_cache_info_command, COMMAND_EXEC,
1555                         "display information about target caches");
1556
1557         register_command(cmd_ctx, cortex_a8_cmd, "dbginit",
1558                         cortex_a8_handle_dbginit_command, COMMAND_EXEC,
1559                         "Initialize core debug");
1560
1561         return retval;
1562 }
1563
1564 struct target_type cortexa8_target = {
1565         .name = "cortex_a8",
1566
1567         .poll = cortex_a8_poll,
1568         .arch_state = armv7a_arch_state,
1569
1570         .target_request_data = NULL,
1571
1572         .halt = cortex_a8_halt,
1573         .resume = cortex_a8_resume,
1574         .step = cortex_a8_step,
1575
1576         .assert_reset = cortex_a8_assert_reset,
1577         .deassert_reset = cortex_a8_deassert_reset,
1578         .soft_reset_halt = NULL,
1579
1580         .get_gdb_reg_list = armv4_5_get_gdb_reg_list,
1581
1582         .read_memory = cortex_a8_read_memory,
1583         .write_memory = cortex_a8_write_memory,
1584         .bulk_write_memory = cortex_a8_bulk_write_memory,
1585
1586         .checksum_memory = arm_checksum_memory,
1587         .blank_check_memory = arm_blank_check_memory,
1588
1589         .run_algorithm = armv4_5_run_algorithm,
1590
1591         .add_breakpoint = cortex_a8_add_breakpoint,
1592         .remove_breakpoint = cortex_a8_remove_breakpoint,
1593         .add_watchpoint = NULL,
1594         .remove_watchpoint = NULL,
1595
1596         .register_commands = cortex_a8_register_commands,
1597         .target_create = cortex_a8_target_create,
1598         .init_target = cortex_a8_init_target,
1599         .examine = cortex_a8_examine,
1600         .mrc = cortex_a8_mrc,
1601         .mcr = cortex_a8_mcr,
1602 };