Added asser_reset and deassert_reset for cortex_a8
[fw/openocd] / src / target / cortex_a8.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   This program is free software; you can redistribute it and/or modify  *
15  *   it under the terms of the GNU General Public License as published by  *
16  *   the Free Software Foundation; either version 2 of the License, or     *
17  *   (at your option) any later version.                                   *
18  *                                                                         *
19  *   This program is distributed in the hope that it will be useful,       *
20  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
21  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
22  *   GNU General Public License for more details.                          *
23  *                                                                         *
24  *   You should have received a copy of the GNU General Public License     *
25  *   along with this program; if not, write to the                         *
26  *   Free Software Foundation, Inc.,                                       *
27  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
28  *                                                                         *
29  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
30  *                                                                         *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "cortex_a8.h"
37 #include "armv7a.h"
38 #include "armv4_5.h"
39
40 #include "target_request.h"
41 #include "target_type.h"
42
43 /* cli handling */
44 int cortex_a8_register_commands(struct command_context_s *cmd_ctx);
45
46 /* forward declarations */
47 int cortex_a8_target_create(struct target_s *target, Jim_Interp *interp);
48 int cortex_a8_init_target(struct command_context_s *cmd_ctx,
49                 struct target_s *target);
50 int cortex_a8_examine(struct target_s *target);
51 int cortex_a8_poll(target_t *target);
52 int cortex_a8_halt(target_t *target);
53 int cortex_a8_resume(struct target_s *target, int current, uint32_t address,
54                 int handle_breakpoints, int debug_execution);
55 int cortex_a8_step(struct target_s *target, int current, uint32_t address,
56                 int handle_breakpoints);
57 int cortex_a8_debug_entry(target_t *target);
58 int cortex_a8_restore_context(target_t *target);
59 int cortex_a8_bulk_write_memory(target_t *target, uint32_t address,
60                 uint32_t count, uint8_t *buffer);
61 int cortex_a8_set_breakpoint(struct target_s *target,
62                 breakpoint_t *breakpoint, uint8_t matchmode);
63 int cortex_a8_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint);
64 int cortex_a8_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint);
65 int cortex_a8_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoint);
66 int cortex_a8_dap_read_coreregister_u32(target_t *target,
67                 uint32_t *value, int regnum);
68 int cortex_a8_dap_write_coreregister_u32(target_t *target,
69                 uint32_t value, int regnum);
70 int cortex_a8_assert_reset(target_t *target);
71 int cortex_a8_deassert_reset(target_t *target);
72
73 target_type_t cortexa8_target =
74 {
75         .name = "cortex_a8",
76
77         .poll = cortex_a8_poll,
78         .arch_state = armv7a_arch_state,
79
80         .target_request_data = NULL,
81
82         .halt = cortex_a8_halt,
83         .resume = cortex_a8_resume,
84         .step = cortex_a8_step,
85
86         .assert_reset = cortex_a8_assert_reset,
87         .deassert_reset = cortex_a8_deassert_reset,
88         .soft_reset_halt = NULL,
89
90         .get_gdb_reg_list = armv4_5_get_gdb_reg_list,
91
92         .read_memory = cortex_a8_read_memory,
93         .write_memory = cortex_a8_write_memory,
94         .bulk_write_memory = cortex_a8_bulk_write_memory,
95         .checksum_memory = arm7_9_checksum_memory,
96         .blank_check_memory = arm7_9_blank_check_memory,
97
98         .run_algorithm = armv4_5_run_algorithm,
99
100         .add_breakpoint = cortex_a8_add_breakpoint,
101         .remove_breakpoint = cortex_a8_remove_breakpoint,
102         .add_watchpoint = NULL,
103         .remove_watchpoint = NULL,
104
105         .register_commands = cortex_a8_register_commands,
106         .target_create = cortex_a8_target_create,
107         .init_target = cortex_a8_init_target,
108         .examine = cortex_a8_examine,
109         .quit = NULL
110 };
111
112 /*
113  * FIXME do topology discovery using the ROM; don't
114  * assume this is an OMAP3.
115  */
116 #define swjdp_memoryap 0
117 #define swjdp_debugap 1
118 #define OMAP3530_DEBUG_BASE 0x54011000
119
120 /*
121  * Cortex-A8 Basic debug access, very low level assumes state is saved
122  */
123 int cortex_a8_init_debug_access(target_t *target)
124 {
125         /* get pointers to arch-specific information */
126         armv4_5_common_t *armv4_5 = target->arch_info;
127         armv7a_common_t *armv7a = armv4_5->arch_info;
128         swjdp_common_t *swjdp = &armv7a->swjdp_info;
129
130         int retval;
131         uint32_t dummy;
132
133         LOG_DEBUG(" ");
134
135         /* Unlocking the debug registers for modification */
136         /* The debugport might be uninitialised so try twice */
137         retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
138         if (retval != ERROR_OK)
139                 mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
140         /* Clear Sticky Power Down status Bit in PRSR to enable access to
141            the registers in the Core Power Domain */
142         retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_PRSR, &dummy);
143         /* Enabling of instruction execution in debug mode is done in debug_entry code */ 
144         
145         /* Resync breakpoint registers */
146         
147         /* Since this is likley called from init or reset, update targtet state information*/
148         cortex_a8_poll(target);
149         
150         return retval;
151 }
152
153 int cortex_a8_exec_opcode(target_t *target, uint32_t opcode)
154 {
155         uint32_t dscr;
156         int retval;
157         /* get pointers to arch-specific information */
158         armv4_5_common_t *armv4_5 = target->arch_info;
159         armv7a_common_t *armv7a = armv4_5->arch_info;
160         swjdp_common_t *swjdp = &armv7a->swjdp_info;
161
162         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
163         do
164         {
165                 retval = mem_ap_read_atomic_u32(swjdp,
166                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
167                 if (retval != ERROR_OK)
168                         return retval;
169                 }
170         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
171
172         mem_ap_write_u32(swjdp, armv7a->debug_base + CPUDBG_ITR, opcode);
173
174         do
175         {
176                 retval = mem_ap_read_atomic_u32(swjdp,
177                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
178                 if (retval != ERROR_OK)
179                         return retval;
180                 }
181         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
182
183         return retval;
184 }
185
186 /**************************************************************************
187 Read core register with very few exec_opcode, fast but needs work_area.
188 This can cause problems with MMU active.
189 **************************************************************************/
190 int cortex_a8_read_regs_through_mem(target_t *target, uint32_t address,
191                 uint32_t * regfile)
192 {
193         int retval = ERROR_OK;
194         /* get pointers to arch-specific information */
195         armv4_5_common_t *armv4_5 = target->arch_info;
196         armv7a_common_t *armv7a = armv4_5->arch_info;
197         swjdp_common_t *swjdp = &armv7a->swjdp_info;
198
199         cortex_a8_dap_read_coreregister_u32(target, regfile, 0);
200         cortex_a8_dap_write_coreregister_u32(target, address, 0);
201         cortex_a8_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0));
202         dap_ap_select(swjdp, swjdp_memoryap);
203         mem_ap_read_buf_u32(swjdp, (uint8_t *)(&regfile[1]), 4*15, address);
204         dap_ap_select(swjdp, swjdp_debugap);
205
206         return retval;
207 }
208
209 int cortex_a8_read_cp(target_t *target, uint32_t *value, uint8_t CP,
210                 uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
211 {
212         int retval;
213         /* get pointers to arch-specific information */
214         armv4_5_common_t *armv4_5 = target->arch_info;
215         armv7a_common_t *armv7a = armv4_5->arch_info;
216         swjdp_common_t *swjdp = &armv7a->swjdp_info;
217
218         cortex_a8_exec_opcode(target, ARMV4_5_MRC(CP, op1, 0, CRn, CRm, op2));
219         /* Move R0 to DTRTX */
220         cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
221
222         /* Read DCCTX */
223         retval = mem_ap_read_atomic_u32(swjdp,
224                         armv7a->debug_base + CPUDBG_DTRTX, value);
225
226         return retval;
227 }
228
229 int cortex_a8_write_cp(target_t *target, uint32_t value,
230         uint8_t CP, uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
231 {
232         int retval;
233         /* get pointers to arch-specific information */
234         armv4_5_common_t *armv4_5 = target->arch_info;
235         armv7a_common_t *armv7a = armv4_5->arch_info;
236         swjdp_common_t *swjdp = &armv7a->swjdp_info;
237
238         retval = mem_ap_write_u32(swjdp,
239                         armv7a->debug_base + CPUDBG_DTRRX, value);
240         /* Move DTRRX to r0 */
241         cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
242
243         cortex_a8_exec_opcode(target, ARMV4_5_MCR(CP, op1, 0, CRn, CRm, op2));
244         return retval;
245 }
246
247 int cortex_a8_read_cp15(target_t *target, uint32_t op1, uint32_t op2,
248                 uint32_t CRn, uint32_t CRm, uint32_t *value)
249 {
250         return cortex_a8_read_cp(target, value, 15, op1, CRn, CRm, op2);
251 }
252
253 int cortex_a8_write_cp15(target_t *target, uint32_t op1, uint32_t op2,
254                 uint32_t CRn, uint32_t CRm, uint32_t value)
255 {
256         return cortex_a8_write_cp(target, value, 15, op1, CRn, CRm, op2);
257 }
258
259 int cortex_a8_dap_read_coreregister_u32(target_t *target,
260                 uint32_t *value, int regnum)
261 {
262         int retval = ERROR_OK;
263         uint8_t reg = regnum&0xFF;
264         uint32_t dscr;
265
266         /* get pointers to arch-specific information */
267         armv4_5_common_t *armv4_5 = target->arch_info;
268         armv7a_common_t *armv7a = armv4_5->arch_info;
269         swjdp_common_t *swjdp = &armv7a->swjdp_info;
270
271         if (reg > 16)
272                 return retval;
273
274         if (reg < 15)
275         {
276                 /* Rn to DCCTX, MCR p14, 0, Rd, c0, c5, 0,  0xEE000E15 */
277                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, reg, 0, 5, 0));
278         }
279         else if (reg == 15)
280         {
281                 cortex_a8_exec_opcode(target, 0xE1A0000F);
282                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
283         }
284         else if (reg == 16)
285         {
286                 cortex_a8_exec_opcode(target, ARMV4_5_MRS(0, 0));
287                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
288         }
289
290         /* Read DTRRTX */
291         do
292         {
293                 retval = mem_ap_read_atomic_u32(swjdp,
294                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
295         }
296         while ((dscr & (1 << DSCR_DTR_TX_FULL)) == 0); /* Wait for DTRRXfull */
297
298         retval = mem_ap_read_atomic_u32(swjdp,
299                         armv7a->debug_base + CPUDBG_DTRTX, value);
300
301         return retval;
302 }
303
304 int cortex_a8_dap_write_coreregister_u32(target_t *target, uint32_t value, int regnum)
305 {
306         int retval = ERROR_OK;
307         uint8_t Rd = regnum&0xFF;
308
309         /* get pointers to arch-specific information */
310         armv4_5_common_t *armv4_5 = target->arch_info;
311         armv7a_common_t *armv7a = armv4_5->arch_info;
312         swjdp_common_t *swjdp = &armv7a->swjdp_info;
313         
314         if (Rd > 16)
315                 return retval;
316
317         /* Write to DCCRX */
318         retval = mem_ap_write_u32(swjdp,
319                         armv7a->debug_base + CPUDBG_DTRRX, value);
320
321         if (Rd < 15)
322         {
323                 /* DCCRX to Rd, MCR p14, 0, Rd, c0, c5, 0,  0xEE000E15 */
324                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0));
325         }
326         else if (Rd == 15)
327         {
328                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
329                 cortex_a8_exec_opcode(target, 0xE1A0F000);
330         }
331         else if (Rd == 16)
332         {
333                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
334                 cortex_a8_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, 0));
335                 /* Execute a PrefetchFlush instruction through the ITR. */
336                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(15, 0, 0, 7, 5, 4));
337         }
338
339         return retval;
340 }
341
342 /* Write to memory mapped registers directly with no cache or mmu handling */
343 int cortex_a8_dap_write_memap_register_u32(target_t *target, uint32_t address, uint32_t value)
344 {
345         int retval;
346
347         /* get pointers to arch-specific information */
348         armv4_5_common_t *armv4_5 = target->arch_info;
349         armv7a_common_t *armv7a = armv4_5->arch_info;
350         swjdp_common_t *swjdp = &armv7a->swjdp_info;
351
352         retval = mem_ap_write_atomic_u32(swjdp, address, value);
353
354         return retval;
355 }
356
357 /*
358  * Cortex-A8 Run control
359  */
360
361 int cortex_a8_poll(target_t *target)
362 {
363         int retval = ERROR_OK;
364         uint32_t dscr;
365         /* get pointers to arch-specific information */
366         armv4_5_common_t *armv4_5 = target->arch_info;
367         armv7a_common_t *armv7a = armv4_5->arch_info;
368         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
369         swjdp_common_t *swjdp = &armv7a->swjdp_info;
370
371
372         enum target_state prev_target_state = target->state;
373
374         uint8_t saved_apsel = dap_ap_get_select(swjdp);
375         dap_ap_select(swjdp, swjdp_debugap);
376         retval = mem_ap_read_atomic_u32(swjdp,
377                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
378         if (retval != ERROR_OK)
379         {
380                 dap_ap_select(swjdp, saved_apsel);
381                 return retval;
382         }
383         cortex_a8->cpudbg_dscr = dscr;
384
385         if ((dscr & 0x3) == 0x3)
386         {
387                 if (prev_target_state != TARGET_HALTED)
388                 {
389                         /* We have a halting debug event */
390                         LOG_DEBUG("Target halted");
391                         target->state = TARGET_HALTED;
392                         if ((prev_target_state == TARGET_RUNNING)
393                                         || (prev_target_state == TARGET_RESET))
394                         {
395                                 retval = cortex_a8_debug_entry(target);
396                                 if (retval != ERROR_OK)
397                                         return retval;
398
399                                 target_call_event_callbacks(target,
400                                                 TARGET_EVENT_HALTED);
401                         }
402                         if (prev_target_state == TARGET_DEBUG_RUNNING)
403                         {
404                                 LOG_DEBUG(" ");
405
406                                 retval = cortex_a8_debug_entry(target);
407                                 if (retval != ERROR_OK)
408                                         return retval;
409
410                                 target_call_event_callbacks(target,
411                                                 TARGET_EVENT_DEBUG_HALTED);
412                         }
413                 }
414         }
415         else if ((dscr & 0x3) == 0x2)
416         {
417                 target->state = TARGET_RUNNING;
418         }
419         else
420         {
421                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
422                 target->state = TARGET_UNKNOWN;
423         }
424
425         dap_ap_select(swjdp, saved_apsel);
426
427         return retval;
428 }
429
430 int cortex_a8_halt(target_t *target)
431 {
432         int retval = ERROR_OK;
433         uint32_t dscr;
434
435         /* get pointers to arch-specific information */
436         armv4_5_common_t *armv4_5 = target->arch_info;
437         armv7a_common_t *armv7a = armv4_5->arch_info;
438         swjdp_common_t *swjdp = &armv7a->swjdp_info;
439
440         uint8_t saved_apsel = dap_ap_get_select(swjdp);
441         dap_ap_select(swjdp, swjdp_debugap);
442
443         /*
444          * Tell the core to be halted by writing DRCR with 0x1
445          * and then wait for the core to be halted.
446          */
447         retval = mem_ap_write_atomic_u32(swjdp,
448                         armv7a->debug_base + CPUDBG_DRCR, 0x1);
449
450         /*
451          * enter halting debug mode
452          */
453         mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DSCR, &dscr);
454         retval = mem_ap_write_atomic_u32(swjdp,
455                 armv7a->debug_base + CPUDBG_DSCR, dscr | (1 << DSCR_HALT_DBG_MODE));
456
457         if (retval != ERROR_OK)
458                 goto out;
459
460         do {
461                 mem_ap_read_atomic_u32(swjdp,
462                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
463         } while ((dscr & (1 << DSCR_CORE_HALTED)) == 0);
464
465         target->debug_reason = DBG_REASON_DBGRQ;
466
467 out:
468         dap_ap_select(swjdp, saved_apsel);
469         return retval;
470 }
471
472 int cortex_a8_resume(struct target_s *target, int current,
473                 uint32_t address, int handle_breakpoints, int debug_execution)
474 {
475         /* get pointers to arch-specific information */
476         armv4_5_common_t *armv4_5 = target->arch_info;
477         armv7a_common_t *armv7a = armv4_5->arch_info;
478         swjdp_common_t *swjdp = &armv7a->swjdp_info;
479
480 //      breakpoint_t *breakpoint = NULL;
481         uint32_t resume_pc, dscr;
482
483         uint8_t saved_apsel = dap_ap_get_select(swjdp);
484         dap_ap_select(swjdp, swjdp_debugap);
485
486         if (!debug_execution)
487         {
488                 target_free_all_working_areas(target);
489 //              cortex_m3_enable_breakpoints(target);
490 //              cortex_m3_enable_watchpoints(target);
491         }
492
493 #if 0
494         if (debug_execution)
495         {
496                 /* Disable interrupts */
497                 /* We disable interrupts in the PRIMASK register instead of
498                  * masking with C_MASKINTS,
499                  * This is probably the same issue as Cortex-M3 Errata 377493:
500                  * C_MASKINTS in parallel with disabled interrupts can cause
501                  * local faults to not be taken. */
502                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
503                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
504                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
505
506                 /* Make sure we are in Thumb mode */
507                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
508                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
509                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
510                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
511         }
512 #endif
513
514         /* current = 1: continue on current pc, otherwise continue at <address> */
515         resume_pc = buf_get_u32(
516                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
517                                 armv4_5->core_mode, 15).value,
518                         0, 32);
519         if (!current)
520                 resume_pc = address;
521
522         /* Make sure that the Armv7 gdb thumb fixups does not
523          * kill the return address
524          */
525         if (armv7a->core_state == ARMV7A_STATE_ARM)
526         {
527                 resume_pc &= 0xFFFFFFFC;
528         }
529         /* When the return address is loaded into PC
530          * bit 0 must be 1 to stay in Thumb state
531          */
532         if (armv7a->core_state == ARMV7A_STATE_THUMB)
533         {
534                 resume_pc |= 0x1;
535         }
536         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
537         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
538                                 armv4_5->core_mode, 15).value,
539                         0, 32, resume_pc);
540         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
541                         armv4_5->core_mode, 15).dirty = 1;
542         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
543                         armv4_5->core_mode, 15).valid = 1;
544
545         cortex_a8_restore_context(target);
546 //      arm7_9_restore_context(target); TODO Context is currently NOT Properly restored
547 #if 0
548         /* the front-end may request us not to handle breakpoints */
549         if (handle_breakpoints)
550         {
551                 /* Single step past breakpoint at current address */
552                 if ((breakpoint = breakpoint_find(target, resume_pc)))
553                 {
554                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
555                         cortex_m3_unset_breakpoint(target, breakpoint);
556                         cortex_m3_single_step_core(target);
557                         cortex_m3_set_breakpoint(target, breakpoint);
558                 }
559         }
560
561 #endif
562         /* Restart core and wait for it to be started */
563         mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DRCR, 0x2);
564
565         do {
566                 mem_ap_read_atomic_u32(swjdp,
567                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
568         } while ((dscr & (1 << DSCR_CORE_RESTARTED)) == 0);
569
570         target->debug_reason = DBG_REASON_NOTHALTED;
571         target->state = TARGET_RUNNING;
572
573         /* registers are now invalid */
574         armv4_5_invalidate_core_regs(target);
575
576         if (!debug_execution)
577         {
578                 target->state = TARGET_RUNNING;
579                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
580                 LOG_DEBUG("target resumed at 0x%" PRIx32, resume_pc);
581         }
582         else
583         {
584                 target->state = TARGET_DEBUG_RUNNING;
585                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
586                 LOG_DEBUG("target debug resumed at 0x%" PRIx32, resume_pc);
587         }
588
589         dap_ap_select(swjdp, saved_apsel);
590
591         return ERROR_OK;
592 }
593
594 int cortex_a8_debug_entry(target_t *target)
595 {
596         int i;
597         uint32_t regfile[16], pc, cpsr, dscr;
598         int retval = ERROR_OK;
599         working_area_t *regfile_working_area = NULL;
600
601         /* get pointers to arch-specific information */
602         armv4_5_common_t *armv4_5 = target->arch_info;
603         armv7a_common_t *armv7a = armv4_5->arch_info;
604         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
605         swjdp_common_t *swjdp = &armv7a->swjdp_info;
606
607         if (armv7a->pre_debug_entry)
608                 armv7a->pre_debug_entry(target);
609
610         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a8->cpudbg_dscr);
611
612         /* Enable the ITR execution once we are in debug mode */
613         mem_ap_read_atomic_u32(swjdp,
614                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
615         dscr |= (1 << DSCR_EXT_INT_EN);
616         retval = mem_ap_write_atomic_u32(swjdp,
617                         armv7a->debug_base + CPUDBG_DSCR, dscr);
618
619         /* Examine debug reason */
620         switch ((cortex_a8->cpudbg_dscr >> 2)&0xF)
621         {
622                 case 0:
623                 case 4:
624                         target->debug_reason = DBG_REASON_DBGRQ;
625                         break;
626                 case 1:
627                 case 3:
628                         target->debug_reason = DBG_REASON_BREAKPOINT;
629                         break;
630                 case 10:
631                         target->debug_reason = DBG_REASON_WATCHPOINT;
632                         break;
633                 default:
634                         target->debug_reason = DBG_REASON_UNDEFINED;
635                         break;
636         }
637
638         /* Examine target state and mode */
639         if (cortex_a8->fast_reg_read)
640                 target_alloc_working_area(target, 64, &regfile_working_area);
641
642         /* First load register acessible through core debug port*/
643         if (!regfile_working_area)
644         {
645                 for (i = 0; i <= 15; i++)
646                         cortex_a8_dap_read_coreregister_u32(target,
647                                         &regfile[i], i);
648         }
649         else
650         {
651                 dap_ap_select(swjdp, swjdp_memoryap);
652                 cortex_a8_read_regs_through_mem(target,
653                                 regfile_working_area->address, regfile);
654                 dap_ap_select(swjdp, swjdp_memoryap);
655                 target_free_working_area(target, regfile_working_area);
656         }
657
658         cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16);
659         pc = regfile[15];
660         dap_ap_select(swjdp, swjdp_debugap);
661         LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
662
663         armv4_5->core_mode = cpsr & 0x1F;
664         armv7a->core_state = (cpsr & 0x20)?ARMV7A_STATE_THUMB:ARMV7A_STATE_ARM;
665
666         for (i = 0; i <= ARM_PC; i++)
667         {
668                 buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
669                                         armv4_5->core_mode, i).value,
670                                 0, 32, regfile[i]);
671                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
672                                 armv4_5->core_mode, i).valid = 1;
673                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
674                                 armv4_5->core_mode, i).dirty = 0;
675         }
676         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
677                                 armv4_5->core_mode, 16).value,
678                         0, 32, cpsr);
679         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).valid = 1;
680         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).dirty = 0;
681
682         /* Fixup PC Resume Address */
683         if (armv7a->core_state == ARMV7A_STATE_THUMB)
684         {
685                 // T bit set for Thumb or ThumbEE state
686                 regfile[ARM_PC] -= 4;
687         }
688         else
689         {
690                 // ARM state
691                 regfile[ARM_PC] -= 8;
692         }
693         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
694                                 armv4_5->core_mode, ARM_PC).value,
695                         0, 32, regfile[ARM_PC]);
696
697         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0)
698                 .dirty = ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
699                                 armv4_5->core_mode, 0).valid;
700         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15)
701                 .dirty = ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
702                                 armv4_5->core_mode, 15).valid;
703
704 #if 0
705 /* TODO, Move this */
706         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
707         cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
708         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
709
710         cortex_a8_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
711         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
712
713         cortex_a8_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
714         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
715 #endif
716
717         /* Are we in an exception handler */
718 //      armv4_5->exception_number = 0;
719         if (armv7a->post_debug_entry)
720                 armv7a->post_debug_entry(target);
721
722
723
724         return retval;
725
726 }
727
728 void cortex_a8_post_debug_entry(target_t *target)
729 {
730         /* get pointers to arch-specific information */
731         armv4_5_common_t *armv4_5 = target->arch_info;
732         armv7a_common_t *armv7a = armv4_5->arch_info;
733         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
734
735 //      cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
736         /* examine cp15 control reg */
737         armv7a->read_cp15(target, 0, 0, 1, 0, &cortex_a8->cp15_control_reg);
738         jtag_execute_queue();
739         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
740
741         if (armv7a->armv4_5_mmu.armv4_5_cache.ctype == -1)
742         {
743                 uint32_t cache_type_reg;
744                 /* identify caches */
745                 armv7a->read_cp15(target, 0, 1, 0, 0, &cache_type_reg);
746                 jtag_execute_queue();
747                 /* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A8 */
748                 armv4_5_identify_cache(cache_type_reg,
749                                 &armv7a->armv4_5_mmu.armv4_5_cache);
750         }
751
752         armv7a->armv4_5_mmu.mmu_enabled =
753                         (cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0;
754         armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
755                         (cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0;
756         armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
757                         (cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0;
758
759
760 }
761
762 int cortex_a8_step(struct target_s *target, int current, uint32_t address,
763                 int handle_breakpoints)
764 {
765         /* get pointers to arch-specific information */
766         armv4_5_common_t *armv4_5 = target->arch_info;
767         armv7a_common_t *armv7a = armv4_5->arch_info;
768         breakpoint_t *breakpoint = NULL;
769         breakpoint_t stepbreakpoint;
770
771         int timeout = 100;
772
773         if (target->state != TARGET_HALTED)
774         {
775                 LOG_WARNING("target not halted");
776                 return ERROR_TARGET_NOT_HALTED;
777         }
778
779         /* current = 1: continue on current pc, otherwise continue at <address> */
780         if (!current)
781         {
782                 buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
783                                         armv4_5->core_mode, ARM_PC).value,
784                                 0, 32, address);
785         }
786         else
787         {
788                 address = buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
789                                         armv4_5->core_mode, ARM_PC).value,
790                                 0, 32);
791         }
792
793         /* The front-end may request us not to handle breakpoints.
794          * But since Cortex-A8 uses breakpoint for single step,
795          * we MUST handle breakpoints.
796          */
797         handle_breakpoints = 1;
798         if (handle_breakpoints) {
799                 breakpoint = breakpoint_find(target,
800                                 buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
801                                         armv4_5->core_mode, 15).value,
802                         0, 32));
803                 if (breakpoint)
804                         cortex_a8_unset_breakpoint(target, breakpoint);
805         }
806
807         /* Setup single step breakpoint */
808         stepbreakpoint.address = address;
809         stepbreakpoint.length = (armv7a->core_state == ARMV7A_STATE_THUMB) ? 2 : 4;
810         stepbreakpoint.type = BKPT_HARD;
811         stepbreakpoint.set = 0;
812
813         /* Break on IVA mismatch */
814         cortex_a8_set_breakpoint(target, &stepbreakpoint, 0x04);
815
816         target->debug_reason = DBG_REASON_SINGLESTEP;
817
818         cortex_a8_resume(target, 1, address, 0, 0);
819
820         while (target->state != TARGET_HALTED)
821         {
822                 cortex_a8_poll(target);
823                 if (--timeout == 0)
824                 {
825                         LOG_WARNING("timeout waiting for target halt");
826                         break;
827                 }
828         }
829
830         cortex_a8_unset_breakpoint(target, &stepbreakpoint);
831         if (timeout > 0) target->debug_reason = DBG_REASON_BREAKPOINT;
832
833         if (breakpoint)
834                 cortex_a8_set_breakpoint(target, breakpoint, 0);
835
836         if (target->state != TARGET_HALTED)
837                 LOG_DEBUG("target stepped");
838
839         return ERROR_OK;
840 }
841
842 int cortex_a8_restore_context(target_t *target)
843 {
844         int i;
845         uint32_t value;
846
847         /* get pointers to arch-specific information */
848         armv4_5_common_t *armv4_5 = target->arch_info;
849         armv7a_common_t *armv7a = armv4_5->arch_info;
850
851         LOG_DEBUG(" ");
852
853         if (armv7a->pre_restore_context)
854                 armv7a->pre_restore_context(target);
855
856         for (i = 15; i >= 0; i--)
857         {
858                 if (ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
859                                         armv4_5->core_mode, i).dirty)
860                 {
861                         value = buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
862                                                 armv4_5->core_mode, i).value,
863                                         0, 32);
864                         /* TODO Check return values */
865                         cortex_a8_dap_write_coreregister_u32(target, value, i);
866                 }
867         }
868
869         if (armv7a->post_restore_context)
870                 armv7a->post_restore_context(target);
871
872         return ERROR_OK;
873 }
874
875
876 /*
877  * Cortex-A8 Core register functions
878  */
879
880 int cortex_a8_load_core_reg_u32(struct target_s *target, int num,
881                 armv4_5_mode_t mode, uint32_t * value)
882 {
883         int retval;
884         /* get pointers to arch-specific information */
885         armv4_5_common_t *armv4_5 = target->arch_info;
886
887         if ((num <= ARM_CPSR))
888         {
889                 /* read a normal core register */
890                 retval = cortex_a8_dap_read_coreregister_u32(target, value, num);
891
892                 if (retval != ERROR_OK)
893                 {
894                         LOG_ERROR("JTAG failure %i", retval);
895                         return ERROR_JTAG_DEVICE_ERROR;
896                 }
897                 LOG_DEBUG("load from core reg %i value 0x%" PRIx32, num, *value);
898         }
899         else
900         {
901                 return ERROR_INVALID_ARGUMENTS;
902         }
903
904         /* Register other than r0 - r14 uses r0 for access */
905         if (num > 14)
906                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
907                                 armv4_5->core_mode, 0).dirty =
908                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
909                                 armv4_5->core_mode, 0).valid;
910         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
911                                 armv4_5->core_mode, 15).dirty =
912                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
913                                 armv4_5->core_mode, 15).valid;
914
915         return ERROR_OK;
916 }
917
918 int cortex_a8_store_core_reg_u32(struct target_s *target, int num,
919                 armv4_5_mode_t mode, uint32_t value)
920 {
921         int retval;
922 //      uint32_t reg;
923
924         /* get pointers to arch-specific information */
925         armv4_5_common_t *armv4_5 = target->arch_info;
926
927 #ifdef ARMV7_GDB_HACKS
928         /* If the LR register is being modified, make sure it will put us
929          * in "thumb" mode, or an INVSTATE exception will occur. This is a
930          * hack to deal with the fact that gdb will sometimes "forge"
931          * return addresses, and doesn't set the LSB correctly (i.e., when
932          * printing expressions containing function calls, it sets LR=0.) */
933
934         if (num == 14)
935                 value |= 0x01;
936 #endif
937
938         if ((num <= ARM_CPSR))
939         {
940                 retval = cortex_a8_dap_write_coreregister_u32(target, value, num);
941                 if (retval != ERROR_OK)
942                 {
943                         LOG_ERROR("JTAG failure %i", retval);
944                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
945                                         armv4_5->core_mode, num).dirty =
946                                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
947                                         armv4_5->core_mode, num).valid;
948                         return ERROR_JTAG_DEVICE_ERROR;
949                 }
950                 LOG_DEBUG("write core reg %i value 0x%" PRIx32, num, value);
951         }
952         else
953         {
954                 return ERROR_INVALID_ARGUMENTS;
955         }
956
957         return ERROR_OK;
958 }
959
960
961 int cortex_a8_read_core_reg(struct target_s *target, int num,
962                 enum armv4_5_mode mode)
963 {
964         uint32_t value;
965         int retval;
966         armv4_5_common_t *armv4_5 = target->arch_info;
967         cortex_a8_dap_read_coreregister_u32(target, &value, num);
968
969         if ((retval = jtag_execute_queue()) != ERROR_OK)
970         {
971                 return retval;
972         }
973
974         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
975         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
976         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
977                         mode, num).value, 0, 32, value);
978
979         return ERROR_OK;
980 }
981
982 int cortex_a8_write_core_reg(struct target_s *target, int num,
983                 enum armv4_5_mode mode, uint32_t value)
984 {
985         int retval;
986         armv4_5_common_t *armv4_5 = target->arch_info;
987
988         cortex_a8_dap_write_coreregister_u32(target, value, num);
989         if ((retval = jtag_execute_queue()) != ERROR_OK)
990         {
991                 return retval;
992         }
993
994         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
995         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
996
997         return ERROR_OK;
998 }
999
1000
1001 /*
1002  * Cortex-A8 Breakpoint and watchpoint fuctions
1003  */
1004
1005 /* Setup hardware Breakpoint Register Pair */
1006 int cortex_a8_set_breakpoint(struct target_s *target,
1007                 breakpoint_t *breakpoint, uint8_t matchmode)
1008 {
1009         int retval;
1010         int brp_i=0;
1011         uint32_t control;
1012         uint8_t byte_addr_select = 0x0F;
1013
1014
1015         /* get pointers to arch-specific information */
1016         armv4_5_common_t *armv4_5 = target->arch_info;
1017         armv7a_common_t *armv7a = armv4_5->arch_info;
1018         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1019         cortex_a8_brp_t * brp_list = cortex_a8->brp_list;
1020
1021         if (breakpoint->set)
1022         {
1023                 LOG_WARNING("breakpoint already set");
1024                 return ERROR_OK;
1025         }
1026
1027         if (breakpoint->type == BKPT_HARD)
1028         {
1029                 while (brp_list[brp_i].used && (brp_i < cortex_a8->brp_num))
1030                         brp_i++ ;
1031                 if (brp_i >= cortex_a8->brp_num)
1032                 {
1033                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1034                         exit(-1);
1035                 }
1036                 breakpoint->set = brp_i + 1;
1037                 if (breakpoint->length == 2)
1038                 {
1039                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1040                 }
1041                 control = ((matchmode & 0x7) << 20)
1042                                 | (byte_addr_select << 5)
1043                                 | (3 << 1) | 1;
1044                 brp_list[brp_i].used = 1;
1045                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1046                 brp_list[brp_i].control = control;
1047                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1048                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1049                                 brp_list[brp_i].value);
1050                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1051                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1052                                 brp_list[brp_i].control);
1053                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1054                                 brp_list[brp_i].control,
1055                                 brp_list[brp_i].value);
1056         }
1057         else if (breakpoint->type == BKPT_SOFT)
1058         {
1059                 uint8_t code[4];
1060                 if (breakpoint->length == 2)
1061                 {
1062                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1063                 }
1064                 else
1065                 {
1066                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1067                 }
1068                 retval = target->type->read_memory(target,
1069                                 breakpoint->address & 0xFFFFFFFE,
1070                                 breakpoint->length, 1,
1071                                 breakpoint->orig_instr);
1072                 if (retval != ERROR_OK)
1073                         return retval;
1074                 retval = target->type->write_memory(target,
1075                                 breakpoint->address & 0xFFFFFFFE,
1076                                 breakpoint->length, 1, code);
1077                 if (retval != ERROR_OK)
1078                         return retval;
1079                 breakpoint->set = 0x11; /* Any nice value but 0 */
1080         }
1081
1082         return ERROR_OK;
1083 }
1084
1085 int cortex_a8_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
1086 {
1087         int retval;
1088         /* get pointers to arch-specific information */
1089         armv4_5_common_t *armv4_5 = target->arch_info;
1090         armv7a_common_t *armv7a = armv4_5->arch_info;
1091         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1092         cortex_a8_brp_t * brp_list = cortex_a8->brp_list;
1093
1094         if (!breakpoint->set)
1095         {
1096                 LOG_WARNING("breakpoint not set");
1097                 return ERROR_OK;
1098         }
1099
1100         if (breakpoint->type == BKPT_HARD)
1101         {
1102                 int brp_i = breakpoint->set - 1;
1103                 if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num))
1104                 {
1105                         LOG_DEBUG("Invalid BRP number in breakpoint");
1106                         return ERROR_OK;
1107                 }
1108                 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1109                                 brp_list[brp_i].control, brp_list[brp_i].value);
1110                 brp_list[brp_i].used = 0;
1111                 brp_list[brp_i].value = 0;
1112                 brp_list[brp_i].control = 0;
1113                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1114                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1115                                 brp_list[brp_i].control);
1116                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1117                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1118                                 brp_list[brp_i].value);
1119         }
1120         else
1121         {
1122                 /* restore original instruction (kept in target endianness) */
1123                 if (breakpoint->length == 4)
1124                 {
1125                         retval = target->type->write_memory(target,
1126                                         breakpoint->address & 0xFFFFFFFE,
1127                                         4, 1, breakpoint->orig_instr);
1128                         if (retval != ERROR_OK)
1129                                 return retval;
1130                 }
1131                 else
1132                 {
1133                         retval = target->type->write_memory(target,
1134                                         breakpoint->address & 0xFFFFFFFE,
1135                                         2, 1, breakpoint->orig_instr);
1136                         if (retval != ERROR_OK)
1137                                 return retval;
1138                 }
1139         }
1140         breakpoint->set = 0;
1141
1142         return ERROR_OK;
1143 }
1144
1145 int cortex_a8_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
1146 {
1147         /* get pointers to arch-specific information */
1148         armv4_5_common_t *armv4_5 = target->arch_info;
1149         armv7a_common_t *armv7a = armv4_5->arch_info;
1150         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1151
1152         if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1))
1153         {
1154                 LOG_INFO("no hardware breakpoint available");
1155                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1156         }
1157
1158         if (breakpoint->type == BKPT_HARD)
1159                 cortex_a8->brp_num_available--;
1160         cortex_a8_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1161
1162         return ERROR_OK;
1163 }
1164
1165 int cortex_a8_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
1166 {
1167         /* get pointers to arch-specific information */
1168         armv4_5_common_t *armv4_5 = target->arch_info;
1169         armv7a_common_t *armv7a = armv4_5->arch_info;
1170         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1171
1172 #if 0
1173 /* It is perfectly possible to remove brakpoints while the taget is running */
1174         if (target->state != TARGET_HALTED)
1175         {
1176                 LOG_WARNING("target not halted");
1177                 return ERROR_TARGET_NOT_HALTED;
1178         }
1179 #endif
1180
1181         if (breakpoint->set)
1182         {
1183                 cortex_a8_unset_breakpoint(target, breakpoint);
1184                 if (breakpoint->type == BKPT_HARD)
1185                         cortex_a8->brp_num_available++ ;
1186         }
1187
1188
1189         return ERROR_OK;
1190 }
1191
1192
1193
1194 /*
1195  * Cortex-A8 Reset fuctions
1196  */
1197
1198 int cortex_a8_assert_reset(target_t *target)
1199 {
1200
1201         LOG_DEBUG(" ");
1202
1203         /* registers are now invalid */
1204         armv4_5_invalidate_core_regs(target);
1205
1206         target->state = TARGET_RESET;
1207         
1208         return ERROR_OK;
1209 }
1210
1211 int cortex_a8_deassert_reset(target_t *target)
1212 {
1213
1214         LOG_DEBUG(" ");
1215
1216         if (target->reset_halt)
1217         {
1218                 int retval;
1219                 if ((retval = target_halt(target)) != ERROR_OK)
1220                         return retval;
1221         }
1222
1223         return ERROR_OK;
1224 }
1225
1226 /*
1227  * Cortex-A8 Memory access
1228  *
1229  * This is same Cortex M3 but we must also use the correct
1230  * ap number for every access.
1231  */
1232
1233 int cortex_a8_read_memory(struct target_s *target, uint32_t address,
1234                 uint32_t size, uint32_t count, uint8_t *buffer)
1235 {
1236         /* get pointers to arch-specific information */
1237         armv4_5_common_t *armv4_5 = target->arch_info;
1238         armv7a_common_t *armv7a = armv4_5->arch_info;
1239         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1240
1241         int retval = ERROR_OK;
1242
1243         /* sanitize arguments */
1244         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
1245                 return ERROR_INVALID_ARGUMENTS;
1246
1247         /* cortex_a8 handles unaligned memory access */
1248
1249 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1250
1251         switch (size)
1252         {
1253                 case 4:
1254                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1255                         break;
1256                 case 2:
1257                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1258                         break;
1259                 case 1:
1260                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1261                         break;
1262                 default:
1263                         LOG_ERROR("BUG: we shouldn't get here");
1264                         exit(-1);
1265         }
1266
1267         return retval;
1268 }
1269
1270 int cortex_a8_write_memory(struct target_s *target, uint32_t address,
1271                 uint32_t size, uint32_t count, uint8_t *buffer)
1272 {
1273         /* get pointers to arch-specific information */
1274         armv4_5_common_t *armv4_5 = target->arch_info;
1275         armv7a_common_t *armv7a = armv4_5->arch_info;
1276         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1277
1278         int retval;
1279
1280         /* sanitize arguments */
1281         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
1282                 return ERROR_INVALID_ARGUMENTS;
1283
1284 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1285
1286         switch (size)
1287         {
1288                 case 4:
1289                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1290                         break;
1291                 case 2:
1292                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1293                         break;
1294                 case 1:
1295                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1296                         break;
1297                 default:
1298                         LOG_ERROR("BUG: we shouldn't get here");
1299                         exit(-1);
1300         }
1301
1302                 /* The Cache handling will NOT work with MMU active, the wrong addresses will be invalidated */
1303                 /* invalidate I-Cache */
1304                 if (armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
1305                 {
1306                         /* Invalidate ICache single entry with MVA, repeat this for all cache
1307                            lines in the address range, Cortex-A8 has fixed 64 byte line length */
1308                         /* Invalidate Cache single entry with MVA to PoU */
1309                         for (uint32_t cacheline=address; cacheline<address+size*count; cacheline+=64)
1310                                 armv7a->write_cp15(target, 0, 1, 7, 5, cacheline); /* I-Cache to PoU */
1311                 }
1312                 /* invalidate D-Cache */
1313                 if (armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
1314                 {
1315                         /* Invalidate Cache single entry with MVA to PoC */
1316                         for (uint32_t cacheline=address; cacheline<address+size*count; cacheline+=64)
1317                                 armv7a->write_cp15(target, 0, 1, 7, 6, cacheline); /* U/D cache to PoC */
1318                 }
1319
1320         return retval;
1321 }
1322
1323 int cortex_a8_bulk_write_memory(target_t *target, uint32_t address,
1324                 uint32_t count, uint8_t *buffer)
1325 {
1326         return cortex_a8_write_memory(target, address, 4, count, buffer);
1327 }
1328
1329
1330 int cortex_a8_dcc_read(swjdp_common_t *swjdp, uint8_t *value, uint8_t *ctrl)
1331 {
1332 #if 0
1333         u16 dcrdr;
1334
1335         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1336         *ctrl = (uint8_t)dcrdr;
1337         *value = (uint8_t)(dcrdr >> 8);
1338
1339         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1340
1341         /* write ack back to software dcc register
1342          * signify we have read data */
1343         if (dcrdr & (1 << 0))
1344         {
1345                 dcrdr = 0;
1346                 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1347         }
1348 #endif
1349         return ERROR_OK;
1350 }
1351
1352
1353 int cortex_a8_handle_target_request(void *priv)
1354 {
1355         target_t *target = priv;
1356         if (!target->type->examined)
1357                 return ERROR_OK;
1358         armv4_5_common_t *armv4_5 = target->arch_info;
1359         armv7a_common_t *armv7a = armv4_5->arch_info;
1360         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1361
1362
1363         if (!target->dbg_msg_enabled)
1364                 return ERROR_OK;
1365
1366         if (target->state == TARGET_RUNNING)
1367         {
1368                 uint8_t data = 0;
1369                 uint8_t ctrl = 0;
1370
1371                 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1372
1373                 /* check if we have data */
1374                 if (ctrl & (1 << 0))
1375                 {
1376                         uint32_t request;
1377
1378                         /* we assume target is quick enough */
1379                         request = data;
1380                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1381                         request |= (data << 8);
1382                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1383                         request |= (data << 16);
1384                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1385                         request |= (data << 24);
1386                         target_request(target, request);
1387                 }
1388         }
1389
1390         return ERROR_OK;
1391 }
1392
1393 /*
1394  * Cortex-A8 target information and configuration
1395  */
1396
1397 int cortex_a8_examine(struct target_s *target)
1398 {
1399         /* get pointers to arch-specific information */
1400         armv4_5_common_t *armv4_5 = target->arch_info;
1401         armv7a_common_t *armv7a = armv4_5->arch_info;
1402         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1403         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1404
1405
1406         int i;
1407         int retval = ERROR_OK;
1408         uint32_t didr, ctypr, ttypr, cpuid;
1409
1410         LOG_DEBUG("TODO");
1411         
1412         /* Here we shall insert a proper ROM Table scan */
1413         armv7a->debug_base = OMAP3530_DEBUG_BASE;
1414
1415         /* We do one extra read to ensure DAP is configured,
1416          * we call ahbap_debugport_init(swjdp) instead
1417          */
1418         ahbap_debugport_init(swjdp);
1419         mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_CPUID, &cpuid);
1420         if ((retval = mem_ap_read_atomic_u32(swjdp,
1421                         armv7a->debug_base + CPUDBG_CPUID, &cpuid)) != ERROR_OK)
1422         {
1423                 LOG_DEBUG("Examine failed");
1424                 return retval;
1425         }
1426
1427         if ((retval = mem_ap_read_atomic_u32(swjdp,
1428                         armv7a->debug_base + CPUDBG_CTYPR, &ctypr)) != ERROR_OK)
1429         {
1430                 LOG_DEBUG("Examine failed");
1431                 return retval;
1432         }
1433
1434         if ((retval = mem_ap_read_atomic_u32(swjdp,
1435                         armv7a->debug_base + CPUDBG_TTYPR, &ttypr)) != ERROR_OK)
1436         {
1437                 LOG_DEBUG("Examine failed");
1438                 return retval;
1439         }
1440
1441         if ((retval = mem_ap_read_atomic_u32(swjdp,
1442                         armv7a->debug_base + CPUDBG_DIDR, &didr)) != ERROR_OK)
1443         {
1444                 LOG_DEBUG("Examine failed");
1445                 return retval;
1446         }
1447
1448         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1449         LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
1450         LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
1451         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
1452
1453         /* Setup Breakpoint Register Pairs */
1454         cortex_a8->brp_num = ((didr >> 24) & 0x0F) + 1;
1455         cortex_a8->brp_num_context = ((didr >> 20) & 0x0F) + 1;
1456         cortex_a8->brp_num_available = cortex_a8->brp_num;
1457         cortex_a8->brp_list = calloc(cortex_a8->brp_num, sizeof(cortex_a8_brp_t));
1458 //      cortex_a8->brb_enabled = ????;
1459         for (i = 0; i < cortex_a8->brp_num; i++)
1460         {
1461                 cortex_a8->brp_list[i].used = 0;
1462                 if (i < (cortex_a8->brp_num-cortex_a8->brp_num_context))
1463                         cortex_a8->brp_list[i].type = BRP_NORMAL;
1464                 else
1465                         cortex_a8->brp_list[i].type = BRP_CONTEXT;
1466                 cortex_a8->brp_list[i].value = 0;
1467                 cortex_a8->brp_list[i].control = 0;
1468                 cortex_a8->brp_list[i].BRPn = i;
1469         }
1470
1471         /* Setup Watchpoint Register Pairs */
1472         cortex_a8->wrp_num = ((didr >> 28) & 0x0F) + 1;
1473         cortex_a8->wrp_num_available = cortex_a8->wrp_num;
1474         cortex_a8->wrp_list = calloc(cortex_a8->wrp_num, sizeof(cortex_a8_wrp_t));
1475         for (i = 0; i < cortex_a8->wrp_num; i++)
1476         {
1477                 cortex_a8->wrp_list[i].used = 0;
1478                 cortex_a8->wrp_list[i].type = 0;
1479                 cortex_a8->wrp_list[i].value = 0;
1480                 cortex_a8->wrp_list[i].control = 0;
1481                 cortex_a8->wrp_list[i].WRPn = i;
1482         }
1483         LOG_DEBUG("Configured %i hw breakpoint pairs and %i hw watchpoint pairs",
1484                         cortex_a8->brp_num , cortex_a8->wrp_num);
1485
1486         /* Configure core debug access */
1487         cortex_a8_init_debug_access(target);
1488         
1489         target->type->examined = 1;
1490
1491         return retval;
1492 }
1493
1494 /*
1495  *      Cortex-A8 target creation and initialization
1496  */
1497
1498 void cortex_a8_build_reg_cache(target_t *target)
1499 {
1500         reg_cache_t **cache_p = register_get_last_cache_p(&target->reg_cache);
1501         /* get pointers to arch-specific information */
1502         armv4_5_common_t *armv4_5 = target->arch_info;
1503
1504         (*cache_p) = armv4_5_build_reg_cache(target, armv4_5);
1505         armv4_5->core_cache = (*cache_p);
1506 }
1507
1508
1509 int cortex_a8_init_target(struct command_context_s *cmd_ctx,
1510                 struct target_s *target)
1511 {
1512         cortex_a8_build_reg_cache(target);
1513         return ERROR_OK;
1514 }
1515
1516 int cortex_a8_init_arch_info(target_t *target,
1517                 cortex_a8_common_t *cortex_a8, jtag_tap_t *tap)
1518 {
1519         armv4_5_common_t *armv4_5;
1520         armv7a_common_t *armv7a;
1521
1522         armv7a = &cortex_a8->armv7a_common;
1523         armv4_5 = &armv7a->armv4_5_common;
1524         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1525
1526         /* Setup cortex_a8_common_t */
1527         cortex_a8->common_magic = CORTEX_A8_COMMON_MAGIC;
1528         cortex_a8->arch_info = NULL;
1529         armv7a->arch_info = cortex_a8;
1530         armv4_5->arch_info = armv7a;
1531
1532         armv4_5_init_arch_info(target, armv4_5);
1533
1534         /* prepare JTAG information for the new target */
1535         cortex_a8->jtag_info.tap = tap;
1536         cortex_a8->jtag_info.scann_size = 4;
1537 LOG_DEBUG(" ");
1538         swjdp->dp_select_value = -1;
1539         swjdp->ap_csw_value = -1;
1540         swjdp->ap_tar_value = -1;
1541         swjdp->jtag_info = &cortex_a8->jtag_info;
1542         swjdp->memaccess_tck = 80;
1543
1544         /* Number of bits for tar autoincrement, impl. dep. at least 10 */
1545         swjdp->tar_autoincr_block = (1 << 10);
1546
1547         cortex_a8->fast_reg_read = 0;
1548
1549
1550         /* register arch-specific functions */
1551         armv7a->examine_debug_reason = NULL;
1552
1553         armv7a->pre_debug_entry = NULL;
1554         armv7a->post_debug_entry = cortex_a8_post_debug_entry;
1555
1556         armv7a->pre_restore_context = NULL;
1557         armv7a->post_restore_context = NULL;
1558         armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1;
1559 //      armv7a->armv4_5_mmu.get_ttb = armv7a_get_ttb;
1560         armv7a->armv4_5_mmu.read_memory = cortex_a8_read_memory;
1561         armv7a->armv4_5_mmu.write_memory = cortex_a8_write_memory;
1562 //      armv7a->armv4_5_mmu.disable_mmu_caches = armv7a_disable_mmu_caches;
1563 //      armv7a->armv4_5_mmu.enable_mmu_caches = armv7a_enable_mmu_caches;
1564         armv7a->armv4_5_mmu.has_tiny_pages = 1;
1565         armv7a->armv4_5_mmu.mmu_enabled = 0;
1566         armv7a->read_cp15 = cortex_a8_read_cp15;
1567         armv7a->write_cp15 = cortex_a8_write_cp15;
1568
1569
1570 //      arm7_9->handle_target_request = cortex_a8_handle_target_request;
1571
1572         armv4_5->read_core_reg = cortex_a8_read_core_reg;
1573         armv4_5->write_core_reg = cortex_a8_write_core_reg;
1574 //      armv4_5->full_context = arm7_9_full_context;
1575
1576 //      armv4_5->load_core_reg_u32 = cortex_a8_load_core_reg_u32;
1577 //      armv4_5->store_core_reg_u32 = cortex_a8_store_core_reg_u32;
1578 //      armv4_5->read_core_reg = armv4_5_read_core_reg; /* this is default */
1579 //      armv4_5->write_core_reg = armv4_5_write_core_reg;
1580
1581         target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target);
1582
1583         return ERROR_OK;
1584 }
1585
1586 int cortex_a8_target_create(struct target_s *target, Jim_Interp *interp)
1587 {
1588         cortex_a8_common_t *cortex_a8 = calloc(1, sizeof(cortex_a8_common_t));
1589
1590         cortex_a8_init_arch_info(target, cortex_a8, target->tap);
1591
1592         return ERROR_OK;
1593 }
1594
1595 static int cortex_a8_handle_cache_info_command(struct command_context_s *cmd_ctx,
1596                 char *cmd, char **args, int argc)
1597 {
1598         target_t *target = get_current_target(cmd_ctx);
1599         armv4_5_common_t *armv4_5 = target->arch_info;
1600         armv7a_common_t *armv7a = armv4_5->arch_info;
1601
1602         return armv4_5_handle_cache_info_command(cmd_ctx,
1603                         &armv7a->armv4_5_mmu.armv4_5_cache);
1604 }
1605
1606
1607 static int cortex_a8_handle_dbginit_command(struct command_context_s *cmd_ctx,
1608                 char *cmd, char **args, int argc)
1609 {
1610         target_t *target = get_current_target(cmd_ctx);
1611
1612         cortex_a8_init_debug_access(target);
1613
1614         return ERROR_OK;
1615 }
1616
1617
1618 int cortex_a8_register_commands(struct command_context_s *cmd_ctx)
1619 {
1620         command_t *cortex_a8_cmd;
1621         int retval = ERROR_OK;
1622
1623         armv4_5_register_commands(cmd_ctx);
1624         armv7a_register_commands(cmd_ctx);
1625
1626         cortex_a8_cmd = register_command(cmd_ctx, NULL, "cortex_a8",
1627                         NULL, COMMAND_ANY,
1628                         "cortex_a8 specific commands");
1629
1630         register_command(cmd_ctx, cortex_a8_cmd, "cache_info",
1631                         cortex_a8_handle_cache_info_command, COMMAND_EXEC,
1632                         "display information about target caches");
1633
1634         register_command(cmd_ctx, cortex_a8_cmd, "dbginit",
1635                         cortex_a8_handle_dbginit_command, COMMAND_EXEC,
1636                         "Initialize core debug");
1637
1638         return retval;
1639 }