Matt Hsu <matt@0xlab.org> cortex_a8_exec_opcode is writing the ARM instruction into
[fw/openocd] / src / target / cortex_a8.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   This program is free software; you can redistribute it and/or modify  *
15  *   it under the terms of the GNU General Public License as published by  *
16  *   the Free Software Foundation; either version 2 of the License, or     *
17  *   (at your option) any later version.                                   *
18  *                                                                         *
19  *   This program is distributed in the hope that it will be useful,       *
20  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
21  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
22  *   GNU General Public License for more details.                          *
23  *                                                                         *
24  *   You should have received a copy of the GNU General Public License     *
25  *   along with this program; if not, write to the                         *
26  *   Free Software Foundation, Inc.,                                       *
27  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
28  *                                                                         *
29  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
30  *                                                                         *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "cortex_a8.h"
37 #include "armv7a.h"
38 #include "armv4_5.h"
39
40 #include "target_request.h"
41 #include "target_type.h"
42
43 /* cli handling */
44 int cortex_a8_register_commands(struct command_context_s *cmd_ctx);
45
46 /* forward declarations */
47 int cortex_a8_target_create(struct target_s *target, Jim_Interp *interp);
48 int cortex_a8_init_target(struct command_context_s *cmd_ctx,
49                 struct target_s *target);
50 int cortex_a8_examine(struct target_s *target);
51 int cortex_a8_poll(target_t *target);
52 int cortex_a8_halt(target_t *target);
53 int cortex_a8_resume(struct target_s *target, int current, uint32_t address,
54                 int handle_breakpoints, int debug_execution);
55 int cortex_a8_step(struct target_s *target, int current, uint32_t address,
56                 int handle_breakpoints);
57 int cortex_a8_debug_entry(target_t *target);
58 int cortex_a8_restore_context(target_t *target);
59 int cortex_a8_bulk_write_memory(target_t *target, uint32_t address,
60                 uint32_t count, uint8_t *buffer);
61 int cortex_a8_set_breakpoint(struct target_s *target,
62                 breakpoint_t *breakpoint, uint8_t matchmode);
63 int cortex_a8_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint);
64 int cortex_a8_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint);
65 int cortex_a8_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoint);
66 int cortex_a8_dap_read_coreregister_u32(target_t *target,
67                 uint32_t *value, int regnum);
68 int cortex_a8_dap_write_coreregister_u32(target_t *target,
69                 uint32_t value, int regnum);
70
71 target_type_t cortexa8_target =
72 {
73         .name = "cortex_a8",
74
75         .poll = cortex_a8_poll,
76         .arch_state = armv7a_arch_state,
77
78         .target_request_data = NULL,
79
80         .halt = cortex_a8_halt,
81         .resume = cortex_a8_resume,
82         .step = cortex_a8_step,
83
84         .assert_reset = NULL,
85         .deassert_reset = NULL,
86         .soft_reset_halt = NULL,
87
88 //      .get_gdb_reg_list = armv4_5_get_gdb_reg_list,
89         .get_gdb_reg_list = armv4_5_get_gdb_reg_list,
90
91         .read_memory = cortex_a8_read_memory,
92         .write_memory = cortex_a8_write_memory,
93         .bulk_write_memory = cortex_a8_bulk_write_memory,
94         .checksum_memory = arm7_9_checksum_memory,
95         .blank_check_memory = arm7_9_blank_check_memory,
96
97         .run_algorithm = armv4_5_run_algorithm,
98
99         .add_breakpoint = cortex_a8_add_breakpoint,
100         .remove_breakpoint = cortex_a8_remove_breakpoint,
101         .add_watchpoint = NULL,
102         .remove_watchpoint = NULL,
103
104         .register_commands = cortex_a8_register_commands,
105         .target_create = cortex_a8_target_create,
106         .init_target = cortex_a8_init_target,
107         .examine = cortex_a8_examine,
108         .quit = NULL
109 };
110
111 /*
112  * FIXME do topology discovery using the ROM; don't
113  * assume this is an OMAP3.
114  */
115 #define swjdp_memoryap 0
116 #define swjdp_debugap 1
117 #define OMAP3530_DEBUG_BASE 0x54011000
118
119 /*
120  * Cortex-A8 Basic debug access, very low level assumes state is saved
121  */
122 int cortex_a8_init_debug_access(target_t *target)
123 {
124 #if 0
125 # Unlocking the debug registers for modification
126 mww 0x54011FB0 0xC5ACCE55 4
127
128 # Clear Sticky Power Down status Bit to enable access to
129 # the registers in the Core Power Domain
130 mdw 0x54011314
131 # Check that it is cleared
132 mdw 0x54011314
133 # Now we can read Core Debug Registers at offset 0x080
134 mdw 0x54011080 4
135 # We can also read RAM.
136 mdw 0x80000000 32
137
138 mdw 0x5401d030
139 mdw 0x54011FB8
140
141 # Set DBGEN line for hardware debug (OMAP35xx)
142 mww 0x5401d030 0x00002000
143
144 #Check AUTHSTATUS
145 mdw 0x54011FB8
146
147 # Instr enable
148 mww 0x54011088 0x2000
149 mdw 0x54011080 4
150 #endif
151         return ERROR_OK;
152 }
153
154 int cortex_a8_exec_opcode(target_t *target, uint32_t opcode)
155 {
156         uint32_t dscr;
157         int retvalue;
158         /* get pointers to arch-specific information */
159         armv4_5_common_t *armv4_5 = target->arch_info;
160         armv7a_common_t *armv7a = armv4_5->arch_info;
161         swjdp_common_t *swjdp = &armv7a->swjdp_info;
162
163         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
164         do
165         {
166                 retvalue = mem_ap_read_atomic_u32(swjdp,
167                                 OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
168         }
169         while ((dscr & (1 << 24)) == 0); /* Wait for InstrCompl bit to be set */
170
171         mem_ap_write_u32(swjdp, OMAP3530_DEBUG_BASE + CPUDBG_ITR, opcode);
172
173         do
174         {
175                 retvalue = mem_ap_read_atomic_u32(swjdp,
176                                 OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
177         }
178         while ((dscr & (1 << 24)) == 0); /* Wait for InstrCompl bit to be set */
179
180         return retvalue;
181 }
182
183 /**************************************************************************
184 Read core register with very few exec_opcode, fast but needs work_area.
185 This can cause problems with MMU active.
186 **************************************************************************/
187 int cortex_a8_read_regs_through_mem(target_t *target, uint32_t address,
188                 uint32_t * regfile)
189 {
190         int retval = ERROR_OK;
191         /* get pointers to arch-specific information */
192         armv4_5_common_t *armv4_5 = target->arch_info;
193         armv7a_common_t *armv7a = armv4_5->arch_info;
194         swjdp_common_t *swjdp = &armv7a->swjdp_info;
195
196         cortex_a8_dap_read_coreregister_u32(target, regfile, 0);
197         cortex_a8_dap_write_coreregister_u32(target, address, 0);
198         cortex_a8_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0));
199         dap_ap_select(swjdp, swjdp_memoryap);
200         mem_ap_read_buf_u32(swjdp, (uint8_t *)(&regfile[1]), 4*15, address);
201         dap_ap_select(swjdp, swjdp_debugap);
202
203         return retval;
204 }
205
206 int cortex_a8_read_cp(target_t *target, uint32_t *value, uint8_t CP,
207                 uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
208 {
209         int retval;
210         /* get pointers to arch-specific information */
211         armv4_5_common_t *armv4_5 = target->arch_info;
212         armv7a_common_t *armv7a = armv4_5->arch_info;
213         swjdp_common_t *swjdp = &armv7a->swjdp_info;
214
215         cortex_a8_exec_opcode(target, ARMV4_5_MRC(CP, op1, 0, CRn, CRm, op2));
216         /* Move R0 to DTRTX */
217         cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
218
219         /* Read DCCTX */
220         retval = mem_ap_read_atomic_u32(swjdp,
221                         OMAP3530_DEBUG_BASE + CPUDBG_DTRTX, value);
222
223         return retval;
224 }
225
226 int cortex_a8_write_cp(target_t *target, uint32_t value,
227         uint8_t CP, uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
228 /* TODO Fix this */
229 {
230         int retval;
231         /* get pointers to arch-specific information */
232         armv4_5_common_t *armv4_5 = target->arch_info;
233         armv7a_common_t *armv7a = armv4_5->arch_info;
234         swjdp_common_t *swjdp = &armv7a->swjdp_info;
235
236         retval = mem_ap_write_u32(swjdp,
237                         OMAP3530_DEBUG_BASE + CPUDBG_DTRRX, value);
238         /* Move DTRRX to r0 */
239         cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
240
241         cortex_a8_exec_opcode(target, ARMV4_5_MCR(CP, 0, 0, 0, 5, 0));
242         return retval;
243 }
244
245 int cortex_a8_read_cp15(target_t *target, uint32_t op1, uint32_t op2,
246                 uint32_t CRn, uint32_t CRm, uint32_t *value)
247 {
248         return cortex_a8_read_cp(target, value, 15, op1, CRn, CRm, op2);
249 }
250
251 int cortex_a8_write_cp15(target_t *target, uint32_t op1, uint32_t op2,
252                 uint32_t CRn, uint32_t CRm, uint32_t value)
253 {
254         return cortex_a8_write_cp(target, value, 15, op1, CRn, CRm, op2);
255 }
256
257 int cortex_a8_dap_read_coreregister_u32(target_t *target,
258                 uint32_t *value, int regnum)
259 {
260         int retval = ERROR_OK;
261         uint8_t reg = regnum&0xFF;
262         uint32_t dscr;
263
264         /* get pointers to arch-specific information */
265         armv4_5_common_t *armv4_5 = target->arch_info;
266         armv7a_common_t *armv7a = armv4_5->arch_info;
267         swjdp_common_t *swjdp = &armv7a->swjdp_info;
268
269         if (reg > 16)
270                 return retval;
271
272         if (reg < 15)
273         {
274                 /* Rn to DCCTX, MCR p14, 0, Rd, c0, c5, 0,  0xEE000E15 */
275                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, reg, 0, 5, 0));
276         }
277         else if (reg == 15)
278         {
279                 cortex_a8_exec_opcode(target, 0xE1A0000F);
280                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
281         }
282         else if (reg == 16)
283         {
284                 cortex_a8_exec_opcode(target, ARMV4_5_MRS(0, 0));
285                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
286         }
287
288         /* Read DTRRTX */
289         do
290         {
291                 retval = mem_ap_read_atomic_u32(swjdp,
292                                 OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
293         }
294         while ((dscr & (1 << 29)) == 0); /* Wait for DTRRXfull */
295
296         retval = mem_ap_read_atomic_u32(swjdp,
297                         OMAP3530_DEBUG_BASE + CPUDBG_DTRTX, value);
298
299         return retval;
300 }
301
302 int cortex_a8_dap_write_coreregister_u32(target_t *target, uint32_t value, int regnum)
303 {
304         int retval = ERROR_OK;
305         uint8_t Rd = regnum&0xFF;
306
307         /* get pointers to arch-specific information */
308         armv4_5_common_t *armv4_5 = target->arch_info;
309         armv7a_common_t *armv7a = armv4_5->arch_info;
310         swjdp_common_t *swjdp = &armv7a->swjdp_info;
311
312         if (Rd > 16)
313                 return retval;
314
315         /* Write to DCCRX */
316         retval = mem_ap_write_u32(swjdp,
317                         OMAP3530_DEBUG_BASE + CPUDBG_DTRRX, value);
318
319         if (Rd < 15)
320         {
321                 /* DCCRX to Rd, MCR p14, 0, Rd, c0, c5, 0,  0xEE000E15 */
322                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0));
323         }
324         else if (Rd == 15)
325         {
326                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
327                 cortex_a8_exec_opcode(target, 0xE1A0F000);
328         }
329         else if (Rd == 16)
330         {
331                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
332                 cortex_a8_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, 0));
333                 /* Execute a PrefetchFlush instruction through the ITR. */
334                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(15, 0, 0, 7, 5, 4));
335         }
336
337         return retval;
338 }
339
340 /*
341  * Cortex-A8 Run control
342  */
343
344 int cortex_a8_poll(target_t *target)
345 {
346         int retval = ERROR_OK;
347         uint32_t dscr;
348         /* get pointers to arch-specific information */
349         armv4_5_common_t *armv4_5 = target->arch_info;
350         armv7a_common_t *armv7a = armv4_5->arch_info;
351         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
352         swjdp_common_t *swjdp = &armv7a->swjdp_info;
353
354
355         enum target_state prev_target_state = target->state;
356
357         uint8_t saved_apsel = dap_ap_get_select(swjdp);
358         dap_ap_select(swjdp, swjdp_debugap);
359         retval = mem_ap_read_atomic_u32(swjdp,
360                         OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
361         if (retval != ERROR_OK)
362         {
363                 dap_ap_select(swjdp, saved_apsel);
364                 return retval;
365         }
366         cortex_a8->cpudbg_dscr = dscr;
367
368         if ((dscr & 0x3) == 0x3)
369         {
370                 if (prev_target_state != TARGET_HALTED)
371                 {
372                         /* We have a halting debug event */
373                         LOG_DEBUG("Target halted");
374                         target->state = TARGET_HALTED;
375                         if ((prev_target_state == TARGET_RUNNING)
376                                         || (prev_target_state == TARGET_RESET))
377                         {
378                                 retval = cortex_a8_debug_entry(target);
379                                 if (retval != ERROR_OK)
380                                         return retval;
381
382                                 target_call_event_callbacks(target,
383                                                 TARGET_EVENT_HALTED);
384                         }
385                         if (prev_target_state == TARGET_DEBUG_RUNNING)
386                         {
387                                 LOG_DEBUG(" ");
388
389                                 retval = cortex_a8_debug_entry(target);
390                                 if (retval != ERROR_OK)
391                                         return retval;
392
393                                 target_call_event_callbacks(target,
394                                                 TARGET_EVENT_DEBUG_HALTED);
395                         }
396                 }
397         }
398         else if ((dscr & 0x3) == 0x2)
399         {
400                 target->state = TARGET_RUNNING;
401         }
402         else
403         {
404                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
405                 target->state = TARGET_UNKNOWN;
406         }
407
408         dap_ap_select(swjdp, saved_apsel);
409
410         return retval;
411 }
412
413 int cortex_a8_halt(target_t *target)
414 {
415         int retval = ERROR_OK;
416         /* get pointers to arch-specific information */
417         armv4_5_common_t *armv4_5 = target->arch_info;
418         armv7a_common_t *armv7a = armv4_5->arch_info;
419         swjdp_common_t *swjdp = &armv7a->swjdp_info;
420
421         uint8_t saved_apsel = dap_ap_get_select(swjdp);
422         dap_ap_select(swjdp, swjdp_debugap);
423
424         /* Perhaps we should do a read-modify-write here */
425         retval = mem_ap_write_atomic_u32(swjdp,
426                         OMAP3530_DEBUG_BASE + CPUDBG_DRCR, 0x1);
427
428         target->debug_reason = DBG_REASON_DBGRQ;
429         dap_ap_select(swjdp, saved_apsel);
430
431         return retval;
432 }
433
434 int cortex_a8_resume(struct target_s *target, int current,
435                 uint32_t address, int handle_breakpoints, int debug_execution)
436 {
437         /* get pointers to arch-specific information */
438         armv4_5_common_t *armv4_5 = target->arch_info;
439         armv7a_common_t *armv7a = armv4_5->arch_info;
440         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
441         swjdp_common_t *swjdp = &armv7a->swjdp_info;
442
443 //      breakpoint_t *breakpoint = NULL;
444         uint32_t resume_pc;
445
446         uint8_t saved_apsel = dap_ap_get_select(swjdp);
447         dap_ap_select(swjdp, swjdp_debugap);
448
449         if (!debug_execution)
450         {
451                 target_free_all_working_areas(target);
452 //              cortex_m3_enable_breakpoints(target);
453 //              cortex_m3_enable_watchpoints(target);
454         }
455
456 #if 0
457         if (debug_execution)
458         {
459                 /* Disable interrupts */
460                 /* We disable interrupts in the PRIMASK register instead of
461                  * masking with C_MASKINTS,
462                  * This is probably the same issue as Cortex-M3 Errata 377493:
463                  * C_MASKINTS in parallel with disabled interrupts can cause
464                  * local faults to not be taken. */
465                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
466                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
467                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
468
469                 /* Make sure we are in Thumb mode */
470                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
471                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
472                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
473                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
474         }
475 #endif
476
477         /* current = 1: continue on current pc, otherwise continue at <address> */
478         resume_pc = buf_get_u32(
479                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
480                                 armv4_5->core_mode, 15).value,
481                         0, 32);
482         if (!current)
483                 resume_pc = address;
484
485         /* Make sure that the Armv7 gdb thumb fixups does not
486          * kill the return address
487          */
488         if (!(cortex_a8->cpudbg_dscr & (1 << 5)))
489         {
490                 resume_pc &= 0xFFFFFFFC;
491         }
492         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
493         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
494                                 armv4_5->core_mode, 15).value,
495                         0, 32, resume_pc);
496         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
497                         armv4_5->core_mode, 15).dirty = 1;
498         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
499                         armv4_5->core_mode, 15).valid = 1;
500
501         cortex_a8_restore_context(target);
502 //      arm7_9_restore_context(target); TODO Context is currently NOT Properly restored
503 #if 0
504         /* the front-end may request us not to handle breakpoints */
505         if (handle_breakpoints)
506         {
507                 /* Single step past breakpoint at current address */
508                 if ((breakpoint = breakpoint_find(target, resume_pc)))
509                 {
510                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
511                         cortex_m3_unset_breakpoint(target, breakpoint);
512                         cortex_m3_single_step_core(target);
513                         cortex_m3_set_breakpoint(target, breakpoint);
514                 }
515         }
516
517 #endif
518         /* Restart core */
519         /* Perhaps we should do a read-modify-write here */
520         mem_ap_write_atomic_u32(swjdp, OMAP3530_DEBUG_BASE + CPUDBG_DRCR, 0x2);
521
522         target->debug_reason = DBG_REASON_NOTHALTED;
523         target->state = TARGET_RUNNING;
524
525         /* registers are now invalid */
526         armv4_5_invalidate_core_regs(target);
527
528         if (!debug_execution)
529         {
530                 target->state = TARGET_RUNNING;
531                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
532                 LOG_DEBUG("target resumed at 0x%" PRIx32, resume_pc);
533         }
534         else
535         {
536                 target->state = TARGET_DEBUG_RUNNING;
537                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
538                 LOG_DEBUG("target debug resumed at 0x%" PRIx32, resume_pc);
539         }
540
541         dap_ap_select(swjdp, saved_apsel);
542
543         return ERROR_OK;
544 }
545
546 int cortex_a8_debug_entry(target_t *target)
547 {
548         int i;
549         uint32_t regfile[16], pc, cpsr, dscr;
550         int retval = ERROR_OK;
551         working_area_t *regfile_working_area = NULL;
552
553         /* get pointers to arch-specific information */
554         armv4_5_common_t *armv4_5 = target->arch_info;
555         armv7a_common_t *armv7a = armv4_5->arch_info;
556         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
557         swjdp_common_t *swjdp = &armv7a->swjdp_info;
558
559         if (armv7a->pre_debug_entry)
560                 armv7a->pre_debug_entry(target);
561
562         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a8->cpudbg_dscr);
563
564         /* Enable the ITR execution once we are in debug mode */
565         mem_ap_read_atomic_u32(swjdp,
566                                 OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
567         dscr |= (1 << 13);
568         retval = mem_ap_write_atomic_u32(swjdp,
569                         OMAP3530_DEBUG_BASE + CPUDBG_DSCR, dscr);
570
571
572         /* Examine debug reason */
573         switch ((cortex_a8->cpudbg_dscr >> 2)&0xF)
574         {
575                 case 0:
576                 case 4:
577                         target->debug_reason = DBG_REASON_DBGRQ;
578                         break;
579                 case 1:
580                 case 3:
581                         target->debug_reason = DBG_REASON_BREAKPOINT;
582                         break;
583                 case 10:
584                         target->debug_reason = DBG_REASON_WATCHPOINT;
585                         break;
586                 default:
587                         target->debug_reason = DBG_REASON_UNDEFINED;
588                         break;
589         }
590
591         /* Examine target state and mode */
592         dap_ap_select(swjdp, swjdp_memoryap);
593         if (cortex_a8->fast_reg_read)
594                 target_alloc_working_area(target, 64, &regfile_working_area);
595
596         /* First load register acessible through core debug port*/
597         if (!regfile_working_area)
598         {
599                 for (i = 0; i <= 15; i++)
600                         cortex_a8_dap_read_coreregister_u32(target,
601                                         &regfile[i], i);
602         }
603         else
604         {
605                 cortex_a8_read_regs_through_mem(target,
606                                 regfile_working_area->address, regfile);
607                 dap_ap_select(swjdp, swjdp_memoryap);
608                 target_free_working_area(target, regfile_working_area);
609         }
610
611         cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16);
612         pc = regfile[15];
613         dap_ap_select(swjdp, swjdp_debugap);
614         LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
615
616         armv4_5->core_mode = cpsr & 0x3F;
617
618         for (i = 0; i <= ARM_PC; i++)
619         {
620                 buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
621                                         armv4_5->core_mode, i).value,
622                                 0, 32, regfile[i]);
623                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
624                                 armv4_5->core_mode, i).valid = 1;
625                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
626                                 armv4_5->core_mode, i).dirty = 0;
627         }
628         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
629                                 armv4_5->core_mode, 16).value,
630                         0, 32, cpsr);
631         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).valid = 1;
632         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).dirty = 0;
633
634         /* Fixup PC Resume Address */
635         /* TODO Her we should use arch->core_state */
636         if (cortex_a8->cpudbg_dscr & (1 << 5))
637         {
638                 // T bit set for Thumb or ThumbEE state
639                 regfile[ARM_PC] -= 4;
640         }
641         else
642         {
643                 // ARM state
644                 regfile[ARM_PC] -= 8;
645         }
646         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
647                                 armv4_5->core_mode, ARM_PC).value,
648                         0, 32, regfile[ARM_PC]);
649
650         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0)
651                 .dirty = ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
652                                 armv4_5->core_mode, 0).valid;
653         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15)
654                 .dirty = ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
655                                 armv4_5->core_mode, 15).valid;
656
657 #if 0
658 /* TODO, Move this */
659         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
660         cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
661         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
662
663         cortex_a8_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
664         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
665
666         cortex_a8_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
667         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
668 #endif
669
670         /* Are we in an exception handler */
671 //      armv4_5->exception_number = 0;
672         if (armv7a->post_debug_entry)
673                 armv7a->post_debug_entry(target);
674
675
676
677         return retval;
678
679 }
680
681 void cortex_a8_post_debug_entry(target_t *target)
682 {
683         /* get pointers to arch-specific information */
684         armv4_5_common_t *armv4_5 = target->arch_info;
685         armv7a_common_t *armv7a = armv4_5->arch_info;
686         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
687
688 //      cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
689         /* examine cp15 control reg */
690         armv7a->read_cp15(target, 0, 0, 1, 0, &cortex_a8->cp15_control_reg);
691         jtag_execute_queue();
692         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
693
694         if (armv7a->armv4_5_mmu.armv4_5_cache.ctype == -1)
695         {
696                 uint32_t cache_type_reg;
697                 /* identify caches */
698                 armv7a->read_cp15(target, 0, 1, 0, 0, &cache_type_reg);
699                 jtag_execute_queue();
700                 /* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A8 */
701                 armv4_5_identify_cache(cache_type_reg,
702                                 &armv7a->armv4_5_mmu.armv4_5_cache);
703         }
704
705         armv7a->armv4_5_mmu.mmu_enabled =
706                         (cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0;
707         armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
708                         (cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0;
709         armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
710                         (cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0;
711
712
713 }
714
715 int cortex_a8_step(struct target_s *target, int current, uint32_t address,
716                 int handle_breakpoints)
717 {
718         /* get pointers to arch-specific information */
719         armv4_5_common_t *armv4_5 = target->arch_info;
720         armv7a_common_t *armv7a = armv4_5->arch_info;
721         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
722         breakpoint_t *breakpoint = NULL;
723         breakpoint_t stepbreakpoint;
724
725         int timeout = 100;
726
727         if (target->state != TARGET_HALTED)
728         {
729                 LOG_WARNING("target not halted");
730                 return ERROR_TARGET_NOT_HALTED;
731         }
732
733         /* current = 1: continue on current pc, otherwise continue at <address> */
734         if (!current)
735         {
736                 buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
737                                         armv4_5->core_mode, ARM_PC).value,
738                                 0, 32, address);
739         }
740         else
741         {
742                 address = buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
743                                         armv4_5->core_mode, ARM_PC).value,
744                                 0, 32);
745         }
746
747         /* The front-end may request us not to handle breakpoints.
748          * But since Cortex-A8 uses breakpoint for single step,
749          * we MUST handle breakpoints.
750          */
751         handle_breakpoints = 1;
752         if (handle_breakpoints) {
753                 breakpoint = breakpoint_find(target,
754                                 buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
755                                         armv4_5->core_mode, 15).value,
756                         0, 32));
757                 if (breakpoint)
758                         cortex_a8_unset_breakpoint(target, breakpoint);
759         }
760
761         /* Setup single step breakpoint */
762         stepbreakpoint.address = address;
763         stepbreakpoint.length = (cortex_a8->cpudbg_dscr & (1 << 5)) ? 2 : 4;
764         stepbreakpoint.type = BKPT_HARD;
765         stepbreakpoint.set = 0;
766
767         /* Break on IVA mismatch */
768         cortex_a8_set_breakpoint(target, &stepbreakpoint, 0x04);
769
770         target->debug_reason = DBG_REASON_SINGLESTEP;
771
772         cortex_a8_resume(target, 1, address, 0, 0);
773
774         while (target->state != TARGET_HALTED)
775         {
776                 cortex_a8_poll(target);
777                 if (--timeout == 0)
778                 {
779                         LOG_WARNING("timeout waiting for target halt");
780                         break;
781                 }
782         }
783
784         cortex_a8_unset_breakpoint(target, &stepbreakpoint);
785         if (timeout > 0) target->debug_reason = DBG_REASON_BREAKPOINT;
786
787         if (breakpoint)
788                 cortex_a8_set_breakpoint(target, breakpoint, 0);
789
790         if (target->state != TARGET_HALTED)
791                 LOG_DEBUG("target stepped");
792
793         return ERROR_OK;
794 }
795
796 int cortex_a8_restore_context(target_t *target)
797 {
798         int i;
799         uint32_t value;
800
801         /* get pointers to arch-specific information */
802         armv4_5_common_t *armv4_5 = target->arch_info;
803         armv7a_common_t *armv7a = armv4_5->arch_info;
804
805         LOG_DEBUG(" ");
806
807         if (armv7a->pre_restore_context)
808                 armv7a->pre_restore_context(target);
809
810         for (i = 15; i >= 0; i--)
811         {
812                 if (ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
813                                         armv4_5->core_mode, i).dirty)
814                 {
815                         value = buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
816                                                 armv4_5->core_mode, i).value,
817                                         0, 32);
818                         /* TODO Check return values */
819                         cortex_a8_dap_write_coreregister_u32(target, value, i);
820                 }
821         }
822
823         if (armv7a->post_restore_context)
824                 armv7a->post_restore_context(target);
825
826         return ERROR_OK;
827 }
828
829
830 /*
831  * Cortex-A8 Core register functions
832  */
833
834 int cortex_a8_load_core_reg_u32(struct target_s *target, int num,
835                 armv4_5_mode_t mode, uint32_t * value)
836 {
837         int retval;
838         /* get pointers to arch-specific information */
839         armv4_5_common_t *armv4_5 = target->arch_info;
840
841         if ((num <= ARM_CPSR))
842         {
843                 /* read a normal core register */
844                 retval = cortex_a8_dap_read_coreregister_u32(target, value, num);
845
846                 if (retval != ERROR_OK)
847                 {
848                         LOG_ERROR("JTAG failure %i", retval);
849                         return ERROR_JTAG_DEVICE_ERROR;
850                 }
851                 LOG_DEBUG("load from core reg %i value 0x%" PRIx32, num, *value);
852         }
853         else
854         {
855                 return ERROR_INVALID_ARGUMENTS;
856         }
857
858         /* Register other than r0 - r14 uses r0 for access */
859         if (num > 14)
860                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
861                                 armv4_5->core_mode, 0).dirty =
862                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
863                                 armv4_5->core_mode, 0).valid;
864         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
865                                 armv4_5->core_mode, 15).dirty =
866                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
867                                 armv4_5->core_mode, 15).valid;
868
869         return ERROR_OK;
870 }
871
872 int cortex_a8_store_core_reg_u32(struct target_s *target, int num,
873                 armv4_5_mode_t mode, uint32_t value)
874 {
875         int retval;
876 //      uint32_t reg;
877
878         /* get pointers to arch-specific information */
879         armv4_5_common_t *armv4_5 = target->arch_info;
880
881 #ifdef ARMV7_GDB_HACKS
882         /* If the LR register is being modified, make sure it will put us
883          * in "thumb" mode, or an INVSTATE exception will occur. This is a
884          * hack to deal with the fact that gdb will sometimes "forge"
885          * return addresses, and doesn't set the LSB correctly (i.e., when
886          * printing expressions containing function calls, it sets LR=0.) */
887
888         if (num == 14)
889                 value |= 0x01;
890 #endif
891
892         if ((num <= ARM_CPSR))
893         {
894                 retval = cortex_a8_dap_write_coreregister_u32(target, value, num);
895                 if (retval != ERROR_OK)
896                 {
897                         LOG_ERROR("JTAG failure %i", retval);
898                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
899                                         armv4_5->core_mode, num).dirty =
900                                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
901                                         armv4_5->core_mode, num).valid;
902                         return ERROR_JTAG_DEVICE_ERROR;
903                 }
904                 LOG_DEBUG("write core reg %i value 0x%" PRIx32, num, value);
905         }
906         else
907         {
908                 return ERROR_INVALID_ARGUMENTS;
909         }
910
911         return ERROR_OK;
912 }
913
914
915 int cortex_a8_read_core_reg(struct target_s *target, int num,
916                 enum armv4_5_mode mode)
917 {
918         uint32_t value;
919         int retval;
920         armv4_5_common_t *armv4_5 = target->arch_info;
921         cortex_a8_dap_read_coreregister_u32(target, &value, num);
922
923         if ((retval = jtag_execute_queue()) != ERROR_OK)
924         {
925                 return retval;
926         }
927
928         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
929         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
930         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
931                         mode, num).value, 0, 32, value);
932
933         return ERROR_OK;
934 }
935
936 int cortex_a8_write_core_reg(struct target_s *target, int num,
937                 enum armv4_5_mode mode, uint32_t value)
938 {
939         int retval;
940         armv4_5_common_t *armv4_5 = target->arch_info;
941
942         cortex_a8_dap_write_coreregister_u32(target, value, num);
943         if ((retval = jtag_execute_queue()) != ERROR_OK)
944         {
945                 return retval;
946         }
947
948         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
949         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
950
951         return ERROR_OK;
952 }
953
954
955 /*
956  * Cortex-A8 Breakpoint and watchpoint fuctions
957  */
958
959 /* Setup hardware Breakpoint Register Pair */
960 int cortex_a8_set_breakpoint(struct target_s *target,
961                 breakpoint_t *breakpoint, uint8_t matchmode)
962 {
963         int retval;
964         int brp_i=0;
965         uint32_t control;
966         uint8_t byte_addr_select = 0x0F;
967
968
969         /* get pointers to arch-specific information */
970         armv4_5_common_t *armv4_5 = target->arch_info;
971         armv7a_common_t *armv7a = armv4_5->arch_info;
972         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
973         cortex_a8_brp_t * brp_list = cortex_a8->brp_list;
974
975         if (breakpoint->set)
976         {
977                 LOG_WARNING("breakpoint already set");
978                 return ERROR_OK;
979         }
980
981         if (breakpoint->type == BKPT_HARD)
982         {
983                 while (brp_list[brp_i].used && (brp_i < cortex_a8->brp_num))
984                         brp_i++ ;
985                 if (brp_i >= cortex_a8->brp_num)
986                 {
987                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
988                         exit(-1);
989                 }
990                 breakpoint->set = brp_i + 1;
991                 if (breakpoint->length == 2)
992                 {
993                         byte_addr_select = (3 << (breakpoint->address & 0x02));
994                 }
995                 control = ((matchmode & 0x7) << 20)
996                                 | (byte_addr_select << 5)
997                                 | (3 << 1) | 1;
998                 brp_list[brp_i].used = 1;
999                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1000                 brp_list[brp_i].control = control;
1001                 target_write_u32(target, OMAP3530_DEBUG_BASE
1002                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1003                                 brp_list[brp_i].value);
1004                 target_write_u32(target, OMAP3530_DEBUG_BASE
1005                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1006                                 brp_list[brp_i].control);
1007                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1008                                 brp_list[brp_i].control,
1009                                 brp_list[brp_i].value);
1010         }
1011         else if (breakpoint->type == BKPT_SOFT)
1012         {
1013                 uint8_t code[4];
1014                 if (breakpoint->length == 2)
1015                 {
1016                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1017                 }
1018                 else
1019                 {
1020                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1021                 }
1022                 retval = target->type->read_memory(target,
1023                                 breakpoint->address & 0xFFFFFFFE,
1024                                 breakpoint->length, 1,
1025                                 breakpoint->orig_instr);
1026                 if (retval != ERROR_OK)
1027                         return retval;
1028                 retval = target->type->write_memory(target,
1029                                 breakpoint->address & 0xFFFFFFFE,
1030                                 breakpoint->length, 1, code);
1031                 if (retval != ERROR_OK)
1032                         return retval;
1033                 breakpoint->set = 0x11; /* Any nice value but 0 */
1034         }
1035
1036         return ERROR_OK;
1037 }
1038
1039 int cortex_a8_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
1040 {
1041         int retval;
1042         /* get pointers to arch-specific information */
1043         armv4_5_common_t *armv4_5 = target->arch_info;
1044         armv7a_common_t *armv7a = armv4_5->arch_info;
1045         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1046         cortex_a8_brp_t * brp_list = cortex_a8->brp_list;
1047
1048         if (!breakpoint->set)
1049         {
1050                 LOG_WARNING("breakpoint not set");
1051                 return ERROR_OK;
1052         }
1053
1054         if (breakpoint->type == BKPT_HARD)
1055         {
1056                 int brp_i = breakpoint->set - 1;
1057                 if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num))
1058                 {
1059                         LOG_DEBUG("Invalid BRP number in breakpoint");
1060                         return ERROR_OK;
1061                 }
1062                 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1063                                 brp_list[brp_i].control, brp_list[brp_i].value);
1064                 brp_list[brp_i].used = 0;
1065                 brp_list[brp_i].value = 0;
1066                 brp_list[brp_i].control = 0;
1067                 target_write_u32(target, OMAP3530_DEBUG_BASE
1068                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1069                                 brp_list[brp_i].control);
1070                 target_write_u32(target, OMAP3530_DEBUG_BASE
1071                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1072                                 brp_list[brp_i].value);
1073         }
1074         else
1075         {
1076                 /* restore original instruction (kept in target endianness) */
1077                 if (breakpoint->length == 4)
1078                 {
1079                         retval = target->type->write_memory(target,
1080                                         breakpoint->address & 0xFFFFFFFE,
1081                                         4, 1, breakpoint->orig_instr);
1082                         if (retval != ERROR_OK)
1083                                 return retval;
1084                 }
1085                 else
1086                 {
1087                         retval = target->type->write_memory(target,
1088                                         breakpoint->address & 0xFFFFFFFE,
1089                                         2, 1, breakpoint->orig_instr);
1090                         if (retval != ERROR_OK)
1091                                 return retval;
1092                 }
1093         }
1094         breakpoint->set = 0;
1095
1096         return ERROR_OK;
1097 }
1098
1099 int cortex_a8_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
1100 {
1101         /* get pointers to arch-specific information */
1102         armv4_5_common_t *armv4_5 = target->arch_info;
1103         armv7a_common_t *armv7a = armv4_5->arch_info;
1104         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1105
1106         if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1))
1107         {
1108                 LOG_INFO("no hardware breakpoint available");
1109                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1110         }
1111
1112         if (breakpoint->type == BKPT_HARD)
1113                 cortex_a8->brp_num_available--;
1114         cortex_a8_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1115
1116         return ERROR_OK;
1117 }
1118
1119 int cortex_a8_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
1120 {
1121         /* get pointers to arch-specific information */
1122         armv4_5_common_t *armv4_5 = target->arch_info;
1123         armv7a_common_t *armv7a = armv4_5->arch_info;
1124         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1125
1126 #if 0
1127 /* It is perfectly possible to remove brakpoints while the taget is running */
1128         if (target->state != TARGET_HALTED)
1129         {
1130                 LOG_WARNING("target not halted");
1131                 return ERROR_TARGET_NOT_HALTED;
1132         }
1133 #endif
1134
1135         if (breakpoint->set)
1136         {
1137                 cortex_a8_unset_breakpoint(target, breakpoint);
1138                 if (breakpoint->type == BKPT_HARD)
1139                         cortex_a8->brp_num_available++ ;
1140         }
1141
1142
1143         return ERROR_OK;
1144 }
1145
1146
1147
1148 /*
1149  * Cortex-A8 Reset fuctions
1150  */
1151
1152
1153 /*
1154  * Cortex-A8 Memory access
1155  *
1156  * This is same Cortex M3 but we must also use the correct
1157  * ap number for every access.
1158  */
1159
1160 int cortex_a8_read_memory(struct target_s *target, uint32_t address,
1161                 uint32_t size, uint32_t count, uint8_t *buffer)
1162 {
1163         /* get pointers to arch-specific information */
1164         armv4_5_common_t *armv4_5 = target->arch_info;
1165         armv7a_common_t *armv7a = armv4_5->arch_info;
1166         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1167
1168         int retval = ERROR_OK;
1169
1170         /* sanitize arguments */
1171         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
1172                 return ERROR_INVALID_ARGUMENTS;
1173
1174         /* cortex_a8 handles unaligned memory access */
1175
1176 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1177
1178         switch (size)
1179         {
1180                 case 4:
1181                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1182                         break;
1183                 case 2:
1184                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1185                         break;
1186                 case 1:
1187                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1188                         break;
1189                 default:
1190                         LOG_ERROR("BUG: we shouldn't get here");
1191                         exit(-1);
1192         }
1193
1194         return retval;
1195 }
1196
1197 int cortex_a8_write_memory(struct target_s *target, uint32_t address,
1198                 uint32_t size, uint32_t count, uint8_t *buffer)
1199 {
1200         /* get pointers to arch-specific information */
1201         armv4_5_common_t *armv4_5 = target->arch_info;
1202         armv7a_common_t *armv7a = armv4_5->arch_info;
1203         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1204
1205         int retval;
1206
1207         /* sanitize arguments */
1208         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
1209                 return ERROR_INVALID_ARGUMENTS;
1210
1211 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1212
1213         switch (size)
1214         {
1215                 case 4:
1216                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1217                         break;
1218                 case 2:
1219                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1220                         break;
1221                 case 1:
1222                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1223                         break;
1224                 default:
1225                         LOG_ERROR("BUG: we shouldn't get here");
1226                         exit(-1);
1227         }
1228
1229         return retval;
1230 }
1231
1232 int cortex_a8_bulk_write_memory(target_t *target, uint32_t address,
1233                 uint32_t count, uint8_t *buffer)
1234 {
1235         return cortex_a8_write_memory(target, address, 4, count, buffer);
1236 }
1237
1238
1239 int cortex_a8_dcc_read(swjdp_common_t *swjdp, uint8_t *value, uint8_t *ctrl)
1240 {
1241 #if 0
1242         u16 dcrdr;
1243
1244         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1245         *ctrl = (uint8_t)dcrdr;
1246         *value = (uint8_t)(dcrdr >> 8);
1247
1248         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1249
1250         /* write ack back to software dcc register
1251          * signify we have read data */
1252         if (dcrdr & (1 << 0))
1253         {
1254                 dcrdr = 0;
1255                 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1256         }
1257 #endif
1258         return ERROR_OK;
1259 }
1260
1261
1262 int cortex_a8_handle_target_request(void *priv)
1263 {
1264         target_t *target = priv;
1265         if (!target->type->examined)
1266                 return ERROR_OK;
1267         armv4_5_common_t *armv4_5 = target->arch_info;
1268         armv7a_common_t *armv7a = armv4_5->arch_info;
1269         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1270
1271
1272         if (!target->dbg_msg_enabled)
1273                 return ERROR_OK;
1274
1275         if (target->state == TARGET_RUNNING)
1276         {
1277                 uint8_t data = 0;
1278                 uint8_t ctrl = 0;
1279
1280                 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1281
1282                 /* check if we have data */
1283                 if (ctrl & (1 << 0))
1284                 {
1285                         uint32_t request;
1286
1287                         /* we assume target is quick enough */
1288                         request = data;
1289                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1290                         request |= (data << 8);
1291                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1292                         request |= (data << 16);
1293                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1294                         request |= (data << 24);
1295                         target_request(target, request);
1296                 }
1297         }
1298
1299         return ERROR_OK;
1300 }
1301
1302 /*
1303  * Cortex-A8 target information and configuration
1304  */
1305
1306 int cortex_a8_examine(struct target_s *target)
1307 {
1308         /* get pointers to arch-specific information */
1309         armv4_5_common_t *armv4_5 = target->arch_info;
1310         armv7a_common_t *armv7a = armv4_5->arch_info;
1311         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1312         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1313
1314
1315         int i;
1316         int retval = ERROR_OK;
1317         uint32_t didr, ctypr, ttypr, cpuid;
1318
1319         LOG_DEBUG("TODO");
1320
1321         /* We do one extra read to ensure DAP is configured,
1322          * we call ahbap_debugport_init(swjdp) instead
1323          */
1324         ahbap_debugport_init(swjdp);
1325         mem_ap_read_atomic_u32(swjdp, OMAP3530_DEBUG_BASE + CPUDBG_CPUID, &cpuid);
1326         if ((retval = mem_ap_read_atomic_u32(swjdp,
1327                         OMAP3530_DEBUG_BASE + CPUDBG_CPUID, &cpuid)) != ERROR_OK)
1328         {
1329                 LOG_DEBUG("Examine failed");
1330                 return retval;
1331         }
1332
1333         if ((retval = mem_ap_read_atomic_u32(swjdp,
1334                         OMAP3530_DEBUG_BASE + CPUDBG_CTYPR, &ctypr)) != ERROR_OK)
1335         {
1336                 LOG_DEBUG("Examine failed");
1337                 return retval;
1338         }
1339
1340         if ((retval = mem_ap_read_atomic_u32(swjdp,
1341                         OMAP3530_DEBUG_BASE + CPUDBG_TTYPR, &ttypr)) != ERROR_OK)
1342         {
1343                 LOG_DEBUG("Examine failed");
1344                 return retval;
1345         }
1346
1347         if ((retval = mem_ap_read_atomic_u32(swjdp,
1348                         OMAP3530_DEBUG_BASE + CPUDBG_DIDR, &didr)) != ERROR_OK)
1349         {
1350                 LOG_DEBUG("Examine failed");
1351                 return retval;
1352         }
1353
1354         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1355         LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
1356         LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
1357         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
1358
1359         /* Setup Breakpoint Register Pairs */
1360         cortex_a8->brp_num = ((didr >> 24) & 0x0F) + 1;
1361         cortex_a8->brp_num_context = ((didr >> 20) & 0x0F) + 1;
1362         cortex_a8->brp_num_available = cortex_a8->brp_num;
1363         cortex_a8->brp_list = calloc(cortex_a8->brp_num, sizeof(cortex_a8_brp_t));
1364 //      cortex_a8->brb_enabled = ????;
1365         for (i = 0; i < cortex_a8->brp_num; i++)
1366         {
1367                 cortex_a8->brp_list[i].used = 0;
1368                 if (i < (cortex_a8->brp_num-cortex_a8->brp_num_context))
1369                         cortex_a8->brp_list[i].type = BRP_NORMAL;
1370                 else
1371                         cortex_a8->brp_list[i].type = BRP_CONTEXT;
1372                 cortex_a8->brp_list[i].value = 0;
1373                 cortex_a8->brp_list[i].control = 0;
1374                 cortex_a8->brp_list[i].BRPn = i;
1375         }
1376
1377         /* Setup Watchpoint Register Pairs */
1378         cortex_a8->wrp_num = ((didr >> 28) & 0x0F) + 1;
1379         cortex_a8->wrp_num_available = cortex_a8->wrp_num;
1380         cortex_a8->wrp_list = calloc(cortex_a8->wrp_num, sizeof(cortex_a8_wrp_t));
1381         for (i = 0; i < cortex_a8->wrp_num; i++)
1382         {
1383                 cortex_a8->wrp_list[i].used = 0;
1384                 cortex_a8->wrp_list[i].type = 0;
1385                 cortex_a8->wrp_list[i].value = 0;
1386                 cortex_a8->wrp_list[i].control = 0;
1387                 cortex_a8->wrp_list[i].WRPn = i;
1388         }
1389         LOG_DEBUG("Configured %i hw breakpoint pairs and %i hw watchpoint pairs",
1390                         cortex_a8->brp_num , cortex_a8->wrp_num);
1391
1392         target->type->examined = 1;
1393
1394         return retval;
1395 }
1396
1397 /*
1398  *      Cortex-A8 target creation and initialization
1399  */
1400
1401 void cortex_a8_build_reg_cache(target_t *target)
1402 {
1403         reg_cache_t **cache_p = register_get_last_cache_p(&target->reg_cache);
1404         /* get pointers to arch-specific information */
1405         armv4_5_common_t *armv4_5 = target->arch_info;
1406
1407         (*cache_p) = armv4_5_build_reg_cache(target, armv4_5);
1408         armv4_5->core_cache = (*cache_p);
1409 }
1410
1411
1412 int cortex_a8_init_target(struct command_context_s *cmd_ctx,
1413                 struct target_s *target)
1414 {
1415         cortex_a8_build_reg_cache(target);
1416         return ERROR_OK;
1417 }
1418
1419 int cortex_a8_init_arch_info(target_t *target,
1420                 cortex_a8_common_t *cortex_a8, jtag_tap_t *tap)
1421 {
1422         armv4_5_common_t *armv4_5;
1423         armv7a_common_t *armv7a;
1424
1425         armv7a = &cortex_a8->armv7a_common;
1426         armv4_5 = &armv7a->armv4_5_common;
1427         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1428
1429         /* Setup cortex_a8_common_t */
1430         cortex_a8->common_magic = CORTEX_A8_COMMON_MAGIC;
1431         cortex_a8->arch_info = NULL;
1432         armv7a->arch_info = cortex_a8;
1433         armv4_5->arch_info = armv7a;
1434
1435         armv4_5_init_arch_info(target, armv4_5);
1436
1437         /* prepare JTAG information for the new target */
1438         cortex_a8->jtag_info.tap = tap;
1439         cortex_a8->jtag_info.scann_size = 4;
1440 LOG_DEBUG(" ");
1441         swjdp->dp_select_value = -1;
1442         swjdp->ap_csw_value = -1;
1443         swjdp->ap_tar_value = -1;
1444         swjdp->jtag_info = &cortex_a8->jtag_info;
1445         swjdp->memaccess_tck = 80;
1446
1447         /* Number of bits for tar autoincrement, impl. dep. at least 10 */
1448         swjdp->tar_autoincr_block = (1 << 10);
1449
1450         cortex_a8->fast_reg_read = 0;
1451
1452
1453         /* register arch-specific functions */
1454         armv7a->examine_debug_reason = NULL;
1455
1456         armv7a->pre_debug_entry = NULL;
1457         armv7a->post_debug_entry = cortex_a8_post_debug_entry;
1458
1459         armv7a->pre_restore_context = NULL;
1460         armv7a->post_restore_context = NULL;
1461         armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1;
1462 //      armv7a->armv4_5_mmu.get_ttb = armv7a_get_ttb;
1463         armv7a->armv4_5_mmu.read_memory = cortex_a8_read_memory;
1464         armv7a->armv4_5_mmu.write_memory = cortex_a8_write_memory;
1465 //      armv7a->armv4_5_mmu.disable_mmu_caches = armv7a_disable_mmu_caches;
1466 //      armv7a->armv4_5_mmu.enable_mmu_caches = armv7a_enable_mmu_caches;
1467         armv7a->armv4_5_mmu.has_tiny_pages = 1;
1468         armv7a->armv4_5_mmu.mmu_enabled = 0;
1469         armv7a->read_cp15 = cortex_a8_read_cp15;
1470         armv7a->write_cp15 = cortex_a8_write_cp15;
1471
1472
1473 //      arm7_9->handle_target_request = cortex_a8_handle_target_request;
1474
1475         armv4_5->read_core_reg = cortex_a8_read_core_reg;
1476         armv4_5->write_core_reg = cortex_a8_write_core_reg;
1477 //      armv4_5->full_context = arm7_9_full_context;
1478
1479 //      armv4_5->load_core_reg_u32 = cortex_a8_load_core_reg_u32;
1480 //      armv4_5->store_core_reg_u32 = cortex_a8_store_core_reg_u32;
1481 //      armv4_5->read_core_reg = armv4_5_read_core_reg; /* this is default */
1482 //      armv4_5->write_core_reg = armv4_5_write_core_reg;
1483
1484         target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target);
1485
1486         return ERROR_OK;
1487 }
1488
1489 int cortex_a8_target_create(struct target_s *target, Jim_Interp *interp)
1490 {
1491         cortex_a8_common_t *cortex_a8 = calloc(1, sizeof(cortex_a8_common_t));
1492
1493         cortex_a8_init_arch_info(target, cortex_a8, target->tap);
1494
1495         return ERROR_OK;
1496 }
1497
1498 static int cortex_a8_handle_cache_info_command(struct command_context_s *cmd_ctx,
1499                 char *cmd, char **args, int argc)
1500 {
1501         target_t *target = get_current_target(cmd_ctx);
1502         armv4_5_common_t *armv4_5 = target->arch_info;
1503         armv7a_common_t *armv7a = armv4_5->arch_info;
1504
1505         return armv4_5_handle_cache_info_command(cmd_ctx,
1506                         &armv7a->armv4_5_mmu.armv4_5_cache);
1507 }
1508
1509
1510 int cortex_a8_register_commands(struct command_context_s *cmd_ctx)
1511 {
1512         command_t *cortex_a8_cmd;
1513         int retval = ERROR_OK;
1514
1515         armv4_5_register_commands(cmd_ctx);
1516         armv7a_register_commands(cmd_ctx);
1517
1518         cortex_a8_cmd = register_command(cmd_ctx, NULL, "cortex_a8",
1519                         NULL, COMMAND_ANY,
1520                         "cortex_a8 specific commands");
1521
1522         register_command(cmd_ctx, cortex_a8_cmd, "cache_info",
1523                         cortex_a8_handle_cache_info_command, COMMAND_EXEC,
1524                         "display information about target caches");
1525
1526         return retval;
1527 }