Matt Hsu <matt@0xlab.org> Tidy up the bit-offset operation for DSCR register
[fw/openocd] / src / target / cortex_a8.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   This program is free software; you can redistribute it and/or modify  *
15  *   it under the terms of the GNU General Public License as published by  *
16  *   the Free Software Foundation; either version 2 of the License, or     *
17  *   (at your option) any later version.                                   *
18  *                                                                         *
19  *   This program is distributed in the hope that it will be useful,       *
20  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
21  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
22  *   GNU General Public License for more details.                          *
23  *                                                                         *
24  *   You should have received a copy of the GNU General Public License     *
25  *   along with this program; if not, write to the                         *
26  *   Free Software Foundation, Inc.,                                       *
27  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
28  *                                                                         *
29  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
30  *                                                                         *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "cortex_a8.h"
37 #include "armv7a.h"
38 #include "armv4_5.h"
39
40 #include "target_request.h"
41 #include "target_type.h"
42
43 /* cli handling */
44 int cortex_a8_register_commands(struct command_context_s *cmd_ctx);
45
46 /* forward declarations */
47 int cortex_a8_target_create(struct target_s *target, Jim_Interp *interp);
48 int cortex_a8_init_target(struct command_context_s *cmd_ctx,
49                 struct target_s *target);
50 int cortex_a8_examine(struct target_s *target);
51 int cortex_a8_poll(target_t *target);
52 int cortex_a8_halt(target_t *target);
53 int cortex_a8_resume(struct target_s *target, int current, uint32_t address,
54                 int handle_breakpoints, int debug_execution);
55 int cortex_a8_step(struct target_s *target, int current, uint32_t address,
56                 int handle_breakpoints);
57 int cortex_a8_debug_entry(target_t *target);
58 int cortex_a8_restore_context(target_t *target);
59 int cortex_a8_bulk_write_memory(target_t *target, uint32_t address,
60                 uint32_t count, uint8_t *buffer);
61 int cortex_a8_set_breakpoint(struct target_s *target,
62                 breakpoint_t *breakpoint, uint8_t matchmode);
63 int cortex_a8_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint);
64 int cortex_a8_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint);
65 int cortex_a8_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoint);
66 int cortex_a8_dap_read_coreregister_u32(target_t *target,
67                 uint32_t *value, int regnum);
68 int cortex_a8_dap_write_coreregister_u32(target_t *target,
69                 uint32_t value, int regnum);
70
71 target_type_t cortexa8_target =
72 {
73         .name = "cortex_a8",
74
75         .poll = cortex_a8_poll,
76         .arch_state = armv7a_arch_state,
77
78         .target_request_data = NULL,
79
80         .halt = cortex_a8_halt,
81         .resume = cortex_a8_resume,
82         .step = cortex_a8_step,
83
84         .assert_reset = NULL,
85         .deassert_reset = NULL,
86         .soft_reset_halt = NULL,
87
88 //      .get_gdb_reg_list = armv4_5_get_gdb_reg_list,
89         .get_gdb_reg_list = armv4_5_get_gdb_reg_list,
90
91         .read_memory = cortex_a8_read_memory,
92         .write_memory = cortex_a8_write_memory,
93         .bulk_write_memory = cortex_a8_bulk_write_memory,
94         .checksum_memory = arm7_9_checksum_memory,
95         .blank_check_memory = arm7_9_blank_check_memory,
96
97         .run_algorithm = armv4_5_run_algorithm,
98
99         .add_breakpoint = cortex_a8_add_breakpoint,
100         .remove_breakpoint = cortex_a8_remove_breakpoint,
101         .add_watchpoint = NULL,
102         .remove_watchpoint = NULL,
103
104         .register_commands = cortex_a8_register_commands,
105         .target_create = cortex_a8_target_create,
106         .init_target = cortex_a8_init_target,
107         .examine = cortex_a8_examine,
108         .quit = NULL
109 };
110
111 /*
112  * FIXME do topology discovery using the ROM; don't
113  * assume this is an OMAP3.
114  */
115 #define swjdp_memoryap 0
116 #define swjdp_debugap 1
117 #define OMAP3530_DEBUG_BASE 0x54011000
118
119 /*
120  * Cortex-A8 Basic debug access, very low level assumes state is saved
121  */
122 int cortex_a8_init_debug_access(target_t *target)
123 {
124 #if 0
125 # Unlocking the debug registers for modification
126 mww 0x54011FB0 0xC5ACCE55 4
127
128 # Clear Sticky Power Down status Bit to enable access to
129 # the registers in the Core Power Domain
130 mdw 0x54011314
131 # Check that it is cleared
132 mdw 0x54011314
133 # Now we can read Core Debug Registers at offset 0x080
134 mdw 0x54011080 4
135 # We can also read RAM.
136 mdw 0x80000000 32
137
138 mdw 0x5401d030
139 mdw 0x54011FB8
140
141 # Set DBGEN line for hardware debug (OMAP35xx)
142 mww 0x5401d030 0x00002000
143
144 #Check AUTHSTATUS
145 mdw 0x54011FB8
146
147 # Instr enable
148 mww 0x54011088 0x2000
149 mdw 0x54011080 4
150 #endif
151         return ERROR_OK;
152 }
153
154 int cortex_a8_exec_opcode(target_t *target, uint32_t opcode)
155 {
156         uint32_t dscr;
157         int retvalue;
158         /* get pointers to arch-specific information */
159         armv4_5_common_t *armv4_5 = target->arch_info;
160         armv7a_common_t *armv7a = armv4_5->arch_info;
161         swjdp_common_t *swjdp = &armv7a->swjdp_info;
162
163         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
164         do
165         {
166                 retvalue = mem_ap_read_atomic_u32(swjdp,
167                                 OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
168         }
169         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
170
171         mem_ap_write_u32(swjdp, OMAP3530_DEBUG_BASE + CPUDBG_ITR, opcode);
172
173         do
174         {
175                 retvalue = mem_ap_read_atomic_u32(swjdp,
176                                 OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
177         }
178         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
179
180         return retvalue;
181 }
182
183 /**************************************************************************
184 Read core register with very few exec_opcode, fast but needs work_area.
185 This can cause problems with MMU active.
186 **************************************************************************/
187 int cortex_a8_read_regs_through_mem(target_t *target, uint32_t address,
188                 uint32_t * regfile)
189 {
190         int retval = ERROR_OK;
191         /* get pointers to arch-specific information */
192         armv4_5_common_t *armv4_5 = target->arch_info;
193         armv7a_common_t *armv7a = armv4_5->arch_info;
194         swjdp_common_t *swjdp = &armv7a->swjdp_info;
195
196         cortex_a8_dap_read_coreregister_u32(target, regfile, 0);
197         cortex_a8_dap_write_coreregister_u32(target, address, 0);
198         cortex_a8_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0));
199         dap_ap_select(swjdp, swjdp_memoryap);
200         mem_ap_read_buf_u32(swjdp, (uint8_t *)(&regfile[1]), 4*15, address);
201         dap_ap_select(swjdp, swjdp_debugap);
202
203         return retval;
204 }
205
206 int cortex_a8_read_cp(target_t *target, uint32_t *value, uint8_t CP,
207                 uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
208 {
209         int retval;
210         /* get pointers to arch-specific information */
211         armv4_5_common_t *armv4_5 = target->arch_info;
212         armv7a_common_t *armv7a = armv4_5->arch_info;
213         swjdp_common_t *swjdp = &armv7a->swjdp_info;
214
215         cortex_a8_exec_opcode(target, ARMV4_5_MRC(CP, op1, 0, CRn, CRm, op2));
216         /* Move R0 to DTRTX */
217         cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
218
219         /* Read DCCTX */
220         retval = mem_ap_read_atomic_u32(swjdp,
221                         OMAP3530_DEBUG_BASE + CPUDBG_DTRTX, value);
222
223         return retval;
224 }
225
226 int cortex_a8_write_cp(target_t *target, uint32_t value,
227         uint8_t CP, uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
228 /* TODO Fix this */
229 {
230         int retval;
231         /* get pointers to arch-specific information */
232         armv4_5_common_t *armv4_5 = target->arch_info;
233         armv7a_common_t *armv7a = armv4_5->arch_info;
234         swjdp_common_t *swjdp = &armv7a->swjdp_info;
235
236         retval = mem_ap_write_u32(swjdp,
237                         OMAP3530_DEBUG_BASE + CPUDBG_DTRRX, value);
238         /* Move DTRRX to r0 */
239         cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
240
241         cortex_a8_exec_opcode(target, ARMV4_5_MCR(CP, 0, 0, 0, 5, 0));
242         return retval;
243 }
244
245 int cortex_a8_read_cp15(target_t *target, uint32_t op1, uint32_t op2,
246                 uint32_t CRn, uint32_t CRm, uint32_t *value)
247 {
248         return cortex_a8_read_cp(target, value, 15, op1, CRn, CRm, op2);
249 }
250
251 int cortex_a8_write_cp15(target_t *target, uint32_t op1, uint32_t op2,
252                 uint32_t CRn, uint32_t CRm, uint32_t value)
253 {
254         return cortex_a8_write_cp(target, value, 15, op1, CRn, CRm, op2);
255 }
256
257 int cortex_a8_dap_read_coreregister_u32(target_t *target,
258                 uint32_t *value, int regnum)
259 {
260         int retval = ERROR_OK;
261         uint8_t reg = regnum&0xFF;
262         uint32_t dscr;
263
264         /* get pointers to arch-specific information */
265         armv4_5_common_t *armv4_5 = target->arch_info;
266         armv7a_common_t *armv7a = armv4_5->arch_info;
267         swjdp_common_t *swjdp = &armv7a->swjdp_info;
268
269         if (reg > 16)
270                 return retval;
271
272         if (reg < 15)
273         {
274                 /* Rn to DCCTX, MCR p14, 0, Rd, c0, c5, 0,  0xEE000E15 */
275                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, reg, 0, 5, 0));
276         }
277         else if (reg == 15)
278         {
279                 cortex_a8_exec_opcode(target, 0xE1A0000F);
280                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
281         }
282         else if (reg == 16)
283         {
284                 cortex_a8_exec_opcode(target, ARMV4_5_MRS(0, 0));
285                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
286         }
287
288         /* Read DTRRTX */
289         do
290         {
291                 retval = mem_ap_read_atomic_u32(swjdp,
292                                 OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
293         }
294         while ((dscr & (1 << DSCR_DTR_TX_FULL)) == 0); /* Wait for DTRRXfull */
295
296         retval = mem_ap_read_atomic_u32(swjdp,
297                         OMAP3530_DEBUG_BASE + CPUDBG_DTRTX, value);
298
299         return retval;
300 }
301
302 int cortex_a8_dap_write_coreregister_u32(target_t *target, uint32_t value, int regnum)
303 {
304         int retval = ERROR_OK;
305         uint8_t Rd = regnum&0xFF;
306
307         /* get pointers to arch-specific information */
308         armv4_5_common_t *armv4_5 = target->arch_info;
309         armv7a_common_t *armv7a = armv4_5->arch_info;
310         swjdp_common_t *swjdp = &armv7a->swjdp_info;
311
312         if (Rd > 16)
313                 return retval;
314
315         /* Write to DCCRX */
316         retval = mem_ap_write_u32(swjdp,
317                         OMAP3530_DEBUG_BASE + CPUDBG_DTRRX, value);
318
319         if (Rd < 15)
320         {
321                 /* DCCRX to Rd, MCR p14, 0, Rd, c0, c5, 0,  0xEE000E15 */
322                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0));
323         }
324         else if (Rd == 15)
325         {
326                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
327                 cortex_a8_exec_opcode(target, 0xE1A0F000);
328         }
329         else if (Rd == 16)
330         {
331                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
332                 cortex_a8_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, 0));
333                 /* Execute a PrefetchFlush instruction through the ITR. */
334                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(15, 0, 0, 7, 5, 4));
335         }
336
337         return retval;
338 }
339
340 /*
341  * Cortex-A8 Run control
342  */
343
344 int cortex_a8_poll(target_t *target)
345 {
346         int retval = ERROR_OK;
347         uint32_t dscr;
348         /* get pointers to arch-specific information */
349         armv4_5_common_t *armv4_5 = target->arch_info;
350         armv7a_common_t *armv7a = armv4_5->arch_info;
351         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
352         swjdp_common_t *swjdp = &armv7a->swjdp_info;
353
354
355         enum target_state prev_target_state = target->state;
356
357         uint8_t saved_apsel = dap_ap_get_select(swjdp);
358         dap_ap_select(swjdp, swjdp_debugap);
359         retval = mem_ap_read_atomic_u32(swjdp,
360                         OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
361         if (retval != ERROR_OK)
362         {
363                 dap_ap_select(swjdp, saved_apsel);
364                 return retval;
365         }
366         cortex_a8->cpudbg_dscr = dscr;
367
368         if ((dscr & 0x3) == 0x3)
369         {
370                 if (prev_target_state != TARGET_HALTED)
371                 {
372                         /* We have a halting debug event */
373                         LOG_DEBUG("Target halted");
374                         target->state = TARGET_HALTED;
375                         if ((prev_target_state == TARGET_RUNNING)
376                                         || (prev_target_state == TARGET_RESET))
377                         {
378                                 retval = cortex_a8_debug_entry(target);
379                                 if (retval != ERROR_OK)
380                                         return retval;
381
382                                 target_call_event_callbacks(target,
383                                                 TARGET_EVENT_HALTED);
384                         }
385                         if (prev_target_state == TARGET_DEBUG_RUNNING)
386                         {
387                                 LOG_DEBUG(" ");
388
389                                 retval = cortex_a8_debug_entry(target);
390                                 if (retval != ERROR_OK)
391                                         return retval;
392
393                                 target_call_event_callbacks(target,
394                                                 TARGET_EVENT_DEBUG_HALTED);
395                         }
396                 }
397         }
398         else if ((dscr & 0x3) == 0x2)
399         {
400                 target->state = TARGET_RUNNING;
401         }
402         else
403         {
404                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
405                 target->state = TARGET_UNKNOWN;
406         }
407
408         dap_ap_select(swjdp, saved_apsel);
409
410         return retval;
411 }
412
413 int cortex_a8_halt(target_t *target)
414 {
415         int retval = ERROR_OK;
416         uint32_t dscr;
417
418         /* get pointers to arch-specific information */
419         armv4_5_common_t *armv4_5 = target->arch_info;
420         armv7a_common_t *armv7a = armv4_5->arch_info;
421         swjdp_common_t *swjdp = &armv7a->swjdp_info;
422
423         uint8_t saved_apsel = dap_ap_get_select(swjdp);
424         dap_ap_select(swjdp, swjdp_debugap);
425
426         /*
427          * Tell the core to be halted by writing DRCR with 0x1
428          * and then wait for the core to be halted.
429          */
430         retval = mem_ap_write_atomic_u32(swjdp,
431                         OMAP3530_DEBUG_BASE + CPUDBG_DRCR, 0x1);
432
433         if (retval != ERROR_OK)
434                 goto out;
435
436         do {
437                 mem_ap_read_atomic_u32(swjdp,
438                         OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
439         } while ((dscr & (1 << DSCR_CORE_HALTED)) == 0);
440
441         target->debug_reason = DBG_REASON_DBGRQ;
442
443 out:
444         dap_ap_select(swjdp, saved_apsel);
445         return retval;
446 }
447
448 int cortex_a8_resume(struct target_s *target, int current,
449                 uint32_t address, int handle_breakpoints, int debug_execution)
450 {
451         /* get pointers to arch-specific information */
452         armv4_5_common_t *armv4_5 = target->arch_info;
453         armv7a_common_t *armv7a = armv4_5->arch_info;
454         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
455         swjdp_common_t *swjdp = &armv7a->swjdp_info;
456
457 //      breakpoint_t *breakpoint = NULL;
458         uint32_t resume_pc, dscr;
459
460         uint8_t saved_apsel = dap_ap_get_select(swjdp);
461         dap_ap_select(swjdp, swjdp_debugap);
462
463         if (!debug_execution)
464         {
465                 target_free_all_working_areas(target);
466 //              cortex_m3_enable_breakpoints(target);
467 //              cortex_m3_enable_watchpoints(target);
468         }
469
470 #if 0
471         if (debug_execution)
472         {
473                 /* Disable interrupts */
474                 /* We disable interrupts in the PRIMASK register instead of
475                  * masking with C_MASKINTS,
476                  * This is probably the same issue as Cortex-M3 Errata 377493:
477                  * C_MASKINTS in parallel with disabled interrupts can cause
478                  * local faults to not be taken. */
479                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
480                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
481                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
482
483                 /* Make sure we are in Thumb mode */
484                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
485                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
486                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
487                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
488         }
489 #endif
490
491         /* current = 1: continue on current pc, otherwise continue at <address> */
492         resume_pc = buf_get_u32(
493                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
494                                 armv4_5->core_mode, 15).value,
495                         0, 32);
496         if (!current)
497                 resume_pc = address;
498
499         /* Make sure that the Armv7 gdb thumb fixups does not
500          * kill the return address
501          */
502         if (!(cortex_a8->cpudbg_dscr & (1 << 5)))
503         {
504                 resume_pc &= 0xFFFFFFFC;
505         }
506         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
507         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
508                                 armv4_5->core_mode, 15).value,
509                         0, 32, resume_pc);
510         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
511                         armv4_5->core_mode, 15).dirty = 1;
512         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
513                         armv4_5->core_mode, 15).valid = 1;
514
515         cortex_a8_restore_context(target);
516 //      arm7_9_restore_context(target); TODO Context is currently NOT Properly restored
517 #if 0
518         /* the front-end may request us not to handle breakpoints */
519         if (handle_breakpoints)
520         {
521                 /* Single step past breakpoint at current address */
522                 if ((breakpoint = breakpoint_find(target, resume_pc)))
523                 {
524                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
525                         cortex_m3_unset_breakpoint(target, breakpoint);
526                         cortex_m3_single_step_core(target);
527                         cortex_m3_set_breakpoint(target, breakpoint);
528                 }
529         }
530
531 #endif
532         /* Restart core and wait for it to be started */
533         mem_ap_write_atomic_u32(swjdp, OMAP3530_DEBUG_BASE + CPUDBG_DRCR, 0x2);
534
535         do {
536                 mem_ap_read_atomic_u32(swjdp,
537                         OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
538         } while ((dscr & (1 << DSCR_CORE_RESTARTED)) == 0);
539
540         target->debug_reason = DBG_REASON_NOTHALTED;
541         target->state = TARGET_RUNNING;
542
543         /* registers are now invalid */
544         armv4_5_invalidate_core_regs(target);
545
546         if (!debug_execution)
547         {
548                 target->state = TARGET_RUNNING;
549                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
550                 LOG_DEBUG("target resumed at 0x%" PRIx32, resume_pc);
551         }
552         else
553         {
554                 target->state = TARGET_DEBUG_RUNNING;
555                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
556                 LOG_DEBUG("target debug resumed at 0x%" PRIx32, resume_pc);
557         }
558
559         dap_ap_select(swjdp, saved_apsel);
560
561         return ERROR_OK;
562 }
563
564 int cortex_a8_debug_entry(target_t *target)
565 {
566         int i;
567         uint32_t regfile[16], pc, cpsr, dscr;
568         int retval = ERROR_OK;
569         working_area_t *regfile_working_area = NULL;
570
571         /* get pointers to arch-specific information */
572         armv4_5_common_t *armv4_5 = target->arch_info;
573         armv7a_common_t *armv7a = armv4_5->arch_info;
574         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
575         swjdp_common_t *swjdp = &armv7a->swjdp_info;
576
577         if (armv7a->pre_debug_entry)
578                 armv7a->pre_debug_entry(target);
579
580         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a8->cpudbg_dscr);
581
582         /* Enable the ITR execution once we are in debug mode */
583         mem_ap_read_atomic_u32(swjdp,
584                                 OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
585         dscr |= (1 << DSCR_EXT_INT_EN);
586         retval = mem_ap_write_atomic_u32(swjdp,
587                         OMAP3530_DEBUG_BASE + CPUDBG_DSCR, dscr);
588
589
590         /* Examine debug reason */
591         switch ((cortex_a8->cpudbg_dscr >> 2)&0xF)
592         {
593                 case 0:
594                 case 4:
595                         target->debug_reason = DBG_REASON_DBGRQ;
596                         break;
597                 case 1:
598                 case 3:
599                         target->debug_reason = DBG_REASON_BREAKPOINT;
600                         break;
601                 case 10:
602                         target->debug_reason = DBG_REASON_WATCHPOINT;
603                         break;
604                 default:
605                         target->debug_reason = DBG_REASON_UNDEFINED;
606                         break;
607         }
608
609         /* Examine target state and mode */
610         if (cortex_a8->fast_reg_read)
611                 target_alloc_working_area(target, 64, &regfile_working_area);
612
613         /* First load register acessible through core debug port*/
614         if (!regfile_working_area)
615         {
616                 for (i = 0; i <= 15; i++)
617                         cortex_a8_dap_read_coreregister_u32(target,
618                                         &regfile[i], i);
619         }
620         else
621         {
622                 dap_ap_select(swjdp, swjdp_memoryap);
623                 cortex_a8_read_regs_through_mem(target,
624                                 regfile_working_area->address, regfile);
625                 dap_ap_select(swjdp, swjdp_memoryap);
626                 target_free_working_area(target, regfile_working_area);
627         }
628
629         cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16);
630         pc = regfile[15];
631         dap_ap_select(swjdp, swjdp_debugap);
632         LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
633
634         armv4_5->core_mode = cpsr & 0x3F;
635
636         for (i = 0; i <= ARM_PC; i++)
637         {
638                 buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
639                                         armv4_5->core_mode, i).value,
640                                 0, 32, regfile[i]);
641                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
642                                 armv4_5->core_mode, i).valid = 1;
643                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
644                                 armv4_5->core_mode, i).dirty = 0;
645         }
646         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
647                                 armv4_5->core_mode, 16).value,
648                         0, 32, cpsr);
649         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).valid = 1;
650         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).dirty = 0;
651
652         /* Fixup PC Resume Address */
653         /* TODO Her we should use arch->core_state */
654         if (cortex_a8->cpudbg_dscr & (1 << 5))
655         {
656                 // T bit set for Thumb or ThumbEE state
657                 regfile[ARM_PC] -= 4;
658         }
659         else
660         {
661                 // ARM state
662                 regfile[ARM_PC] -= 8;
663         }
664         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
665                                 armv4_5->core_mode, ARM_PC).value,
666                         0, 32, regfile[ARM_PC]);
667
668         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0)
669                 .dirty = ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
670                                 armv4_5->core_mode, 0).valid;
671         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15)
672                 .dirty = ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
673                                 armv4_5->core_mode, 15).valid;
674
675 #if 0
676 /* TODO, Move this */
677         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
678         cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
679         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
680
681         cortex_a8_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
682         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
683
684         cortex_a8_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
685         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
686 #endif
687
688         /* Are we in an exception handler */
689 //      armv4_5->exception_number = 0;
690         if (armv7a->post_debug_entry)
691                 armv7a->post_debug_entry(target);
692
693
694
695         return retval;
696
697 }
698
699 void cortex_a8_post_debug_entry(target_t *target)
700 {
701         /* get pointers to arch-specific information */
702         armv4_5_common_t *armv4_5 = target->arch_info;
703         armv7a_common_t *armv7a = armv4_5->arch_info;
704         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
705
706 //      cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
707         /* examine cp15 control reg */
708         armv7a->read_cp15(target, 0, 0, 1, 0, &cortex_a8->cp15_control_reg);
709         jtag_execute_queue();
710         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
711
712         if (armv7a->armv4_5_mmu.armv4_5_cache.ctype == -1)
713         {
714                 uint32_t cache_type_reg;
715                 /* identify caches */
716                 armv7a->read_cp15(target, 0, 1, 0, 0, &cache_type_reg);
717                 jtag_execute_queue();
718                 /* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A8 */
719                 armv4_5_identify_cache(cache_type_reg,
720                                 &armv7a->armv4_5_mmu.armv4_5_cache);
721         }
722
723         armv7a->armv4_5_mmu.mmu_enabled =
724                         (cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0;
725         armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
726                         (cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0;
727         armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
728                         (cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0;
729
730
731 }
732
733 int cortex_a8_step(struct target_s *target, int current, uint32_t address,
734                 int handle_breakpoints)
735 {
736         /* get pointers to arch-specific information */
737         armv4_5_common_t *armv4_5 = target->arch_info;
738         armv7a_common_t *armv7a = armv4_5->arch_info;
739         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
740         breakpoint_t *breakpoint = NULL;
741         breakpoint_t stepbreakpoint;
742
743         int timeout = 100;
744
745         if (target->state != TARGET_HALTED)
746         {
747                 LOG_WARNING("target not halted");
748                 return ERROR_TARGET_NOT_HALTED;
749         }
750
751         /* current = 1: continue on current pc, otherwise continue at <address> */
752         if (!current)
753         {
754                 buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
755                                         armv4_5->core_mode, ARM_PC).value,
756                                 0, 32, address);
757         }
758         else
759         {
760                 address = buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
761                                         armv4_5->core_mode, ARM_PC).value,
762                                 0, 32);
763         }
764
765         /* The front-end may request us not to handle breakpoints.
766          * But since Cortex-A8 uses breakpoint for single step,
767          * we MUST handle breakpoints.
768          */
769         handle_breakpoints = 1;
770         if (handle_breakpoints) {
771                 breakpoint = breakpoint_find(target,
772                                 buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
773                                         armv4_5->core_mode, 15).value,
774                         0, 32));
775                 if (breakpoint)
776                         cortex_a8_unset_breakpoint(target, breakpoint);
777         }
778
779         /* Setup single step breakpoint */
780         stepbreakpoint.address = address;
781         stepbreakpoint.length = (cortex_a8->cpudbg_dscr & (1 << 5)) ? 2 : 4;
782         stepbreakpoint.type = BKPT_HARD;
783         stepbreakpoint.set = 0;
784
785         /* Break on IVA mismatch */
786         cortex_a8_set_breakpoint(target, &stepbreakpoint, 0x04);
787
788         target->debug_reason = DBG_REASON_SINGLESTEP;
789
790         cortex_a8_resume(target, 1, address, 0, 0);
791
792         while (target->state != TARGET_HALTED)
793         {
794                 cortex_a8_poll(target);
795                 if (--timeout == 0)
796                 {
797                         LOG_WARNING("timeout waiting for target halt");
798                         break;
799                 }
800         }
801
802         cortex_a8_unset_breakpoint(target, &stepbreakpoint);
803         if (timeout > 0) target->debug_reason = DBG_REASON_BREAKPOINT;
804
805         if (breakpoint)
806                 cortex_a8_set_breakpoint(target, breakpoint, 0);
807
808         if (target->state != TARGET_HALTED)
809                 LOG_DEBUG("target stepped");
810
811         return ERROR_OK;
812 }
813
814 int cortex_a8_restore_context(target_t *target)
815 {
816         int i;
817         uint32_t value;
818
819         /* get pointers to arch-specific information */
820         armv4_5_common_t *armv4_5 = target->arch_info;
821         armv7a_common_t *armv7a = armv4_5->arch_info;
822
823         LOG_DEBUG(" ");
824
825         if (armv7a->pre_restore_context)
826                 armv7a->pre_restore_context(target);
827
828         for (i = 15; i >= 0; i--)
829         {
830                 if (ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
831                                         armv4_5->core_mode, i).dirty)
832                 {
833                         value = buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
834                                                 armv4_5->core_mode, i).value,
835                                         0, 32);
836                         /* TODO Check return values */
837                         cortex_a8_dap_write_coreregister_u32(target, value, i);
838                 }
839         }
840
841         if (armv7a->post_restore_context)
842                 armv7a->post_restore_context(target);
843
844         return ERROR_OK;
845 }
846
847
848 /*
849  * Cortex-A8 Core register functions
850  */
851
852 int cortex_a8_load_core_reg_u32(struct target_s *target, int num,
853                 armv4_5_mode_t mode, uint32_t * value)
854 {
855         int retval;
856         /* get pointers to arch-specific information */
857         armv4_5_common_t *armv4_5 = target->arch_info;
858
859         if ((num <= ARM_CPSR))
860         {
861                 /* read a normal core register */
862                 retval = cortex_a8_dap_read_coreregister_u32(target, value, num);
863
864                 if (retval != ERROR_OK)
865                 {
866                         LOG_ERROR("JTAG failure %i", retval);
867                         return ERROR_JTAG_DEVICE_ERROR;
868                 }
869                 LOG_DEBUG("load from core reg %i value 0x%" PRIx32, num, *value);
870         }
871         else
872         {
873                 return ERROR_INVALID_ARGUMENTS;
874         }
875
876         /* Register other than r0 - r14 uses r0 for access */
877         if (num > 14)
878                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
879                                 armv4_5->core_mode, 0).dirty =
880                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
881                                 armv4_5->core_mode, 0).valid;
882         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
883                                 armv4_5->core_mode, 15).dirty =
884                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
885                                 armv4_5->core_mode, 15).valid;
886
887         return ERROR_OK;
888 }
889
890 int cortex_a8_store_core_reg_u32(struct target_s *target, int num,
891                 armv4_5_mode_t mode, uint32_t value)
892 {
893         int retval;
894 //      uint32_t reg;
895
896         /* get pointers to arch-specific information */
897         armv4_5_common_t *armv4_5 = target->arch_info;
898
899 #ifdef ARMV7_GDB_HACKS
900         /* If the LR register is being modified, make sure it will put us
901          * in "thumb" mode, or an INVSTATE exception will occur. This is a
902          * hack to deal with the fact that gdb will sometimes "forge"
903          * return addresses, and doesn't set the LSB correctly (i.e., when
904          * printing expressions containing function calls, it sets LR=0.) */
905
906         if (num == 14)
907                 value |= 0x01;
908 #endif
909
910         if ((num <= ARM_CPSR))
911         {
912                 retval = cortex_a8_dap_write_coreregister_u32(target, value, num);
913                 if (retval != ERROR_OK)
914                 {
915                         LOG_ERROR("JTAG failure %i", retval);
916                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
917                                         armv4_5->core_mode, num).dirty =
918                                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
919                                         armv4_5->core_mode, num).valid;
920                         return ERROR_JTAG_DEVICE_ERROR;
921                 }
922                 LOG_DEBUG("write core reg %i value 0x%" PRIx32, num, value);
923         }
924         else
925         {
926                 return ERROR_INVALID_ARGUMENTS;
927         }
928
929         return ERROR_OK;
930 }
931
932
933 int cortex_a8_read_core_reg(struct target_s *target, int num,
934                 enum armv4_5_mode mode)
935 {
936         uint32_t value;
937         int retval;
938         armv4_5_common_t *armv4_5 = target->arch_info;
939         cortex_a8_dap_read_coreregister_u32(target, &value, num);
940
941         if ((retval = jtag_execute_queue()) != ERROR_OK)
942         {
943                 return retval;
944         }
945
946         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
947         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
948         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
949                         mode, num).value, 0, 32, value);
950
951         return ERROR_OK;
952 }
953
954 int cortex_a8_write_core_reg(struct target_s *target, int num,
955                 enum armv4_5_mode mode, uint32_t value)
956 {
957         int retval;
958         armv4_5_common_t *armv4_5 = target->arch_info;
959
960         cortex_a8_dap_write_coreregister_u32(target, value, num);
961         if ((retval = jtag_execute_queue()) != ERROR_OK)
962         {
963                 return retval;
964         }
965
966         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
967         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
968
969         return ERROR_OK;
970 }
971
972
973 /*
974  * Cortex-A8 Breakpoint and watchpoint fuctions
975  */
976
977 /* Setup hardware Breakpoint Register Pair */
978 int cortex_a8_set_breakpoint(struct target_s *target,
979                 breakpoint_t *breakpoint, uint8_t matchmode)
980 {
981         int retval;
982         int brp_i=0;
983         uint32_t control;
984         uint8_t byte_addr_select = 0x0F;
985
986
987         /* get pointers to arch-specific information */
988         armv4_5_common_t *armv4_5 = target->arch_info;
989         armv7a_common_t *armv7a = armv4_5->arch_info;
990         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
991         cortex_a8_brp_t * brp_list = cortex_a8->brp_list;
992
993         if (breakpoint->set)
994         {
995                 LOG_WARNING("breakpoint already set");
996                 return ERROR_OK;
997         }
998
999         if (breakpoint->type == BKPT_HARD)
1000         {
1001                 while (brp_list[brp_i].used && (brp_i < cortex_a8->brp_num))
1002                         brp_i++ ;
1003                 if (brp_i >= cortex_a8->brp_num)
1004                 {
1005                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1006                         exit(-1);
1007                 }
1008                 breakpoint->set = brp_i + 1;
1009                 if (breakpoint->length == 2)
1010                 {
1011                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1012                 }
1013                 control = ((matchmode & 0x7) << 20)
1014                                 | (byte_addr_select << 5)
1015                                 | (3 << 1) | 1;
1016                 brp_list[brp_i].used = 1;
1017                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1018                 brp_list[brp_i].control = control;
1019                 target_write_u32(target, OMAP3530_DEBUG_BASE
1020                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1021                                 brp_list[brp_i].value);
1022                 target_write_u32(target, OMAP3530_DEBUG_BASE
1023                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1024                                 brp_list[brp_i].control);
1025                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1026                                 brp_list[brp_i].control,
1027                                 brp_list[brp_i].value);
1028         }
1029         else if (breakpoint->type == BKPT_SOFT)
1030         {
1031                 uint8_t code[4];
1032                 if (breakpoint->length == 2)
1033                 {
1034                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1035                 }
1036                 else
1037                 {
1038                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1039                 }
1040                 retval = target->type->read_memory(target,
1041                                 breakpoint->address & 0xFFFFFFFE,
1042                                 breakpoint->length, 1,
1043                                 breakpoint->orig_instr);
1044                 if (retval != ERROR_OK)
1045                         return retval;
1046                 retval = target->type->write_memory(target,
1047                                 breakpoint->address & 0xFFFFFFFE,
1048                                 breakpoint->length, 1, code);
1049                 if (retval != ERROR_OK)
1050                         return retval;
1051                 breakpoint->set = 0x11; /* Any nice value but 0 */
1052         }
1053
1054         return ERROR_OK;
1055 }
1056
1057 int cortex_a8_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
1058 {
1059         int retval;
1060         /* get pointers to arch-specific information */
1061         armv4_5_common_t *armv4_5 = target->arch_info;
1062         armv7a_common_t *armv7a = armv4_5->arch_info;
1063         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1064         cortex_a8_brp_t * brp_list = cortex_a8->brp_list;
1065
1066         if (!breakpoint->set)
1067         {
1068                 LOG_WARNING("breakpoint not set");
1069                 return ERROR_OK;
1070         }
1071
1072         if (breakpoint->type == BKPT_HARD)
1073         {
1074                 int brp_i = breakpoint->set - 1;
1075                 if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num))
1076                 {
1077                         LOG_DEBUG("Invalid BRP number in breakpoint");
1078                         return ERROR_OK;
1079                 }
1080                 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1081                                 brp_list[brp_i].control, brp_list[brp_i].value);
1082                 brp_list[brp_i].used = 0;
1083                 brp_list[brp_i].value = 0;
1084                 brp_list[brp_i].control = 0;
1085                 target_write_u32(target, OMAP3530_DEBUG_BASE
1086                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1087                                 brp_list[brp_i].control);
1088                 target_write_u32(target, OMAP3530_DEBUG_BASE
1089                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1090                                 brp_list[brp_i].value);
1091         }
1092         else
1093         {
1094                 /* restore original instruction (kept in target endianness) */
1095                 if (breakpoint->length == 4)
1096                 {
1097                         retval = target->type->write_memory(target,
1098                                         breakpoint->address & 0xFFFFFFFE,
1099                                         4, 1, breakpoint->orig_instr);
1100                         if (retval != ERROR_OK)
1101                                 return retval;
1102                 }
1103                 else
1104                 {
1105                         retval = target->type->write_memory(target,
1106                                         breakpoint->address & 0xFFFFFFFE,
1107                                         2, 1, breakpoint->orig_instr);
1108                         if (retval != ERROR_OK)
1109                                 return retval;
1110                 }
1111         }
1112         breakpoint->set = 0;
1113
1114         return ERROR_OK;
1115 }
1116
1117 int cortex_a8_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
1118 {
1119         /* get pointers to arch-specific information */
1120         armv4_5_common_t *armv4_5 = target->arch_info;
1121         armv7a_common_t *armv7a = armv4_5->arch_info;
1122         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1123
1124         if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1))
1125         {
1126                 LOG_INFO("no hardware breakpoint available");
1127                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1128         }
1129
1130         if (breakpoint->type == BKPT_HARD)
1131                 cortex_a8->brp_num_available--;
1132         cortex_a8_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1133
1134         return ERROR_OK;
1135 }
1136
1137 int cortex_a8_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
1138 {
1139         /* get pointers to arch-specific information */
1140         armv4_5_common_t *armv4_5 = target->arch_info;
1141         armv7a_common_t *armv7a = armv4_5->arch_info;
1142         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1143
1144 #if 0
1145 /* It is perfectly possible to remove brakpoints while the taget is running */
1146         if (target->state != TARGET_HALTED)
1147         {
1148                 LOG_WARNING("target not halted");
1149                 return ERROR_TARGET_NOT_HALTED;
1150         }
1151 #endif
1152
1153         if (breakpoint->set)
1154         {
1155                 cortex_a8_unset_breakpoint(target, breakpoint);
1156                 if (breakpoint->type == BKPT_HARD)
1157                         cortex_a8->brp_num_available++ ;
1158         }
1159
1160
1161         return ERROR_OK;
1162 }
1163
1164
1165
1166 /*
1167  * Cortex-A8 Reset fuctions
1168  */
1169
1170
1171 /*
1172  * Cortex-A8 Memory access
1173  *
1174  * This is same Cortex M3 but we must also use the correct
1175  * ap number for every access.
1176  */
1177
1178 int cortex_a8_read_memory(struct target_s *target, uint32_t address,
1179                 uint32_t size, uint32_t count, uint8_t *buffer)
1180 {
1181         /* get pointers to arch-specific information */
1182         armv4_5_common_t *armv4_5 = target->arch_info;
1183         armv7a_common_t *armv7a = armv4_5->arch_info;
1184         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1185
1186         int retval = ERROR_OK;
1187
1188         /* sanitize arguments */
1189         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
1190                 return ERROR_INVALID_ARGUMENTS;
1191
1192         /* cortex_a8 handles unaligned memory access */
1193
1194 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1195
1196         switch (size)
1197         {
1198                 case 4:
1199                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1200                         break;
1201                 case 2:
1202                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1203                         break;
1204                 case 1:
1205                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1206                         break;
1207                 default:
1208                         LOG_ERROR("BUG: we shouldn't get here");
1209                         exit(-1);
1210         }
1211
1212         return retval;
1213 }
1214
1215 int cortex_a8_write_memory(struct target_s *target, uint32_t address,
1216                 uint32_t size, uint32_t count, uint8_t *buffer)
1217 {
1218         /* get pointers to arch-specific information */
1219         armv4_5_common_t *armv4_5 = target->arch_info;
1220         armv7a_common_t *armv7a = armv4_5->arch_info;
1221         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1222
1223         int retval;
1224
1225         /* sanitize arguments */
1226         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
1227                 return ERROR_INVALID_ARGUMENTS;
1228
1229 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1230
1231         switch (size)
1232         {
1233                 case 4:
1234                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1235                         break;
1236                 case 2:
1237                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1238                         break;
1239                 case 1:
1240                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1241                         break;
1242                 default:
1243                         LOG_ERROR("BUG: we shouldn't get here");
1244                         exit(-1);
1245         }
1246
1247         return retval;
1248 }
1249
1250 int cortex_a8_bulk_write_memory(target_t *target, uint32_t address,
1251                 uint32_t count, uint8_t *buffer)
1252 {
1253         return cortex_a8_write_memory(target, address, 4, count, buffer);
1254 }
1255
1256
1257 int cortex_a8_dcc_read(swjdp_common_t *swjdp, uint8_t *value, uint8_t *ctrl)
1258 {
1259 #if 0
1260         u16 dcrdr;
1261
1262         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1263         *ctrl = (uint8_t)dcrdr;
1264         *value = (uint8_t)(dcrdr >> 8);
1265
1266         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1267
1268         /* write ack back to software dcc register
1269          * signify we have read data */
1270         if (dcrdr & (1 << 0))
1271         {
1272                 dcrdr = 0;
1273                 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1274         }
1275 #endif
1276         return ERROR_OK;
1277 }
1278
1279
1280 int cortex_a8_handle_target_request(void *priv)
1281 {
1282         target_t *target = priv;
1283         if (!target->type->examined)
1284                 return ERROR_OK;
1285         armv4_5_common_t *armv4_5 = target->arch_info;
1286         armv7a_common_t *armv7a = armv4_5->arch_info;
1287         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1288
1289
1290         if (!target->dbg_msg_enabled)
1291                 return ERROR_OK;
1292
1293         if (target->state == TARGET_RUNNING)
1294         {
1295                 uint8_t data = 0;
1296                 uint8_t ctrl = 0;
1297
1298                 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1299
1300                 /* check if we have data */
1301                 if (ctrl & (1 << 0))
1302                 {
1303                         uint32_t request;
1304
1305                         /* we assume target is quick enough */
1306                         request = data;
1307                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1308                         request |= (data << 8);
1309                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1310                         request |= (data << 16);
1311                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1312                         request |= (data << 24);
1313                         target_request(target, request);
1314                 }
1315         }
1316
1317         return ERROR_OK;
1318 }
1319
1320 /*
1321  * Cortex-A8 target information and configuration
1322  */
1323
1324 int cortex_a8_examine(struct target_s *target)
1325 {
1326         /* get pointers to arch-specific information */
1327         armv4_5_common_t *armv4_5 = target->arch_info;
1328         armv7a_common_t *armv7a = armv4_5->arch_info;
1329         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1330         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1331
1332
1333         int i;
1334         int retval = ERROR_OK;
1335         uint32_t didr, ctypr, ttypr, cpuid;
1336
1337         LOG_DEBUG("TODO");
1338
1339         /* We do one extra read to ensure DAP is configured,
1340          * we call ahbap_debugport_init(swjdp) instead
1341          */
1342         ahbap_debugport_init(swjdp);
1343         mem_ap_read_atomic_u32(swjdp, OMAP3530_DEBUG_BASE + CPUDBG_CPUID, &cpuid);
1344         if ((retval = mem_ap_read_atomic_u32(swjdp,
1345                         OMAP3530_DEBUG_BASE + CPUDBG_CPUID, &cpuid)) != ERROR_OK)
1346         {
1347                 LOG_DEBUG("Examine failed");
1348                 return retval;
1349         }
1350
1351         if ((retval = mem_ap_read_atomic_u32(swjdp,
1352                         OMAP3530_DEBUG_BASE + CPUDBG_CTYPR, &ctypr)) != ERROR_OK)
1353         {
1354                 LOG_DEBUG("Examine failed");
1355                 return retval;
1356         }
1357
1358         if ((retval = mem_ap_read_atomic_u32(swjdp,
1359                         OMAP3530_DEBUG_BASE + CPUDBG_TTYPR, &ttypr)) != ERROR_OK)
1360         {
1361                 LOG_DEBUG("Examine failed");
1362                 return retval;
1363         }
1364
1365         if ((retval = mem_ap_read_atomic_u32(swjdp,
1366                         OMAP3530_DEBUG_BASE + CPUDBG_DIDR, &didr)) != ERROR_OK)
1367         {
1368                 LOG_DEBUG("Examine failed");
1369                 return retval;
1370         }
1371
1372         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1373         LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
1374         LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
1375         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
1376
1377         /* Setup Breakpoint Register Pairs */
1378         cortex_a8->brp_num = ((didr >> 24) & 0x0F) + 1;
1379         cortex_a8->brp_num_context = ((didr >> 20) & 0x0F) + 1;
1380         cortex_a8->brp_num_available = cortex_a8->brp_num;
1381         cortex_a8->brp_list = calloc(cortex_a8->brp_num, sizeof(cortex_a8_brp_t));
1382 //      cortex_a8->brb_enabled = ????;
1383         for (i = 0; i < cortex_a8->brp_num; i++)
1384         {
1385                 cortex_a8->brp_list[i].used = 0;
1386                 if (i < (cortex_a8->brp_num-cortex_a8->brp_num_context))
1387                         cortex_a8->brp_list[i].type = BRP_NORMAL;
1388                 else
1389                         cortex_a8->brp_list[i].type = BRP_CONTEXT;
1390                 cortex_a8->brp_list[i].value = 0;
1391                 cortex_a8->brp_list[i].control = 0;
1392                 cortex_a8->brp_list[i].BRPn = i;
1393         }
1394
1395         /* Setup Watchpoint Register Pairs */
1396         cortex_a8->wrp_num = ((didr >> 28) & 0x0F) + 1;
1397         cortex_a8->wrp_num_available = cortex_a8->wrp_num;
1398         cortex_a8->wrp_list = calloc(cortex_a8->wrp_num, sizeof(cortex_a8_wrp_t));
1399         for (i = 0; i < cortex_a8->wrp_num; i++)
1400         {
1401                 cortex_a8->wrp_list[i].used = 0;
1402                 cortex_a8->wrp_list[i].type = 0;
1403                 cortex_a8->wrp_list[i].value = 0;
1404                 cortex_a8->wrp_list[i].control = 0;
1405                 cortex_a8->wrp_list[i].WRPn = i;
1406         }
1407         LOG_DEBUG("Configured %i hw breakpoint pairs and %i hw watchpoint pairs",
1408                         cortex_a8->brp_num , cortex_a8->wrp_num);
1409
1410         target->type->examined = 1;
1411
1412         return retval;
1413 }
1414
1415 /*
1416  *      Cortex-A8 target creation and initialization
1417  */
1418
1419 void cortex_a8_build_reg_cache(target_t *target)
1420 {
1421         reg_cache_t **cache_p = register_get_last_cache_p(&target->reg_cache);
1422         /* get pointers to arch-specific information */
1423         armv4_5_common_t *armv4_5 = target->arch_info;
1424
1425         (*cache_p) = armv4_5_build_reg_cache(target, armv4_5);
1426         armv4_5->core_cache = (*cache_p);
1427 }
1428
1429
1430 int cortex_a8_init_target(struct command_context_s *cmd_ctx,
1431                 struct target_s *target)
1432 {
1433         cortex_a8_build_reg_cache(target);
1434         return ERROR_OK;
1435 }
1436
1437 int cortex_a8_init_arch_info(target_t *target,
1438                 cortex_a8_common_t *cortex_a8, jtag_tap_t *tap)
1439 {
1440         armv4_5_common_t *armv4_5;
1441         armv7a_common_t *armv7a;
1442
1443         armv7a = &cortex_a8->armv7a_common;
1444         armv4_5 = &armv7a->armv4_5_common;
1445         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1446
1447         /* Setup cortex_a8_common_t */
1448         cortex_a8->common_magic = CORTEX_A8_COMMON_MAGIC;
1449         cortex_a8->arch_info = NULL;
1450         armv7a->arch_info = cortex_a8;
1451         armv4_5->arch_info = armv7a;
1452
1453         armv4_5_init_arch_info(target, armv4_5);
1454
1455         /* prepare JTAG information for the new target */
1456         cortex_a8->jtag_info.tap = tap;
1457         cortex_a8->jtag_info.scann_size = 4;
1458 LOG_DEBUG(" ");
1459         swjdp->dp_select_value = -1;
1460         swjdp->ap_csw_value = -1;
1461         swjdp->ap_tar_value = -1;
1462         swjdp->jtag_info = &cortex_a8->jtag_info;
1463         swjdp->memaccess_tck = 80;
1464
1465         /* Number of bits for tar autoincrement, impl. dep. at least 10 */
1466         swjdp->tar_autoincr_block = (1 << 10);
1467
1468         cortex_a8->fast_reg_read = 0;
1469
1470
1471         /* register arch-specific functions */
1472         armv7a->examine_debug_reason = NULL;
1473
1474         armv7a->pre_debug_entry = NULL;
1475         armv7a->post_debug_entry = cortex_a8_post_debug_entry;
1476
1477         armv7a->pre_restore_context = NULL;
1478         armv7a->post_restore_context = NULL;
1479         armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1;
1480 //      armv7a->armv4_5_mmu.get_ttb = armv7a_get_ttb;
1481         armv7a->armv4_5_mmu.read_memory = cortex_a8_read_memory;
1482         armv7a->armv4_5_mmu.write_memory = cortex_a8_write_memory;
1483 //      armv7a->armv4_5_mmu.disable_mmu_caches = armv7a_disable_mmu_caches;
1484 //      armv7a->armv4_5_mmu.enable_mmu_caches = armv7a_enable_mmu_caches;
1485         armv7a->armv4_5_mmu.has_tiny_pages = 1;
1486         armv7a->armv4_5_mmu.mmu_enabled = 0;
1487         armv7a->read_cp15 = cortex_a8_read_cp15;
1488         armv7a->write_cp15 = cortex_a8_write_cp15;
1489
1490
1491 //      arm7_9->handle_target_request = cortex_a8_handle_target_request;
1492
1493         armv4_5->read_core_reg = cortex_a8_read_core_reg;
1494         armv4_5->write_core_reg = cortex_a8_write_core_reg;
1495 //      armv4_5->full_context = arm7_9_full_context;
1496
1497 //      armv4_5->load_core_reg_u32 = cortex_a8_load_core_reg_u32;
1498 //      armv4_5->store_core_reg_u32 = cortex_a8_store_core_reg_u32;
1499 //      armv4_5->read_core_reg = armv4_5_read_core_reg; /* this is default */
1500 //      armv4_5->write_core_reg = armv4_5_write_core_reg;
1501
1502         target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target);
1503
1504         return ERROR_OK;
1505 }
1506
1507 int cortex_a8_target_create(struct target_s *target, Jim_Interp *interp)
1508 {
1509         cortex_a8_common_t *cortex_a8 = calloc(1, sizeof(cortex_a8_common_t));
1510
1511         cortex_a8_init_arch_info(target, cortex_a8, target->tap);
1512
1513         return ERROR_OK;
1514 }
1515
1516 static int cortex_a8_handle_cache_info_command(struct command_context_s *cmd_ctx,
1517                 char *cmd, char **args, int argc)
1518 {
1519         target_t *target = get_current_target(cmd_ctx);
1520         armv4_5_common_t *armv4_5 = target->arch_info;
1521         armv7a_common_t *armv7a = armv4_5->arch_info;
1522
1523         return armv4_5_handle_cache_info_command(cmd_ctx,
1524                         &armv7a->armv4_5_mmu.armv4_5_cache);
1525 }
1526
1527
1528 int cortex_a8_register_commands(struct command_context_s *cmd_ctx)
1529 {
1530         command_t *cortex_a8_cmd;
1531         int retval = ERROR_OK;
1532
1533         armv4_5_register_commands(cmd_ctx);
1534         armv7a_register_commands(cmd_ctx);
1535
1536         cortex_a8_cmd = register_command(cmd_ctx, NULL, "cortex_a8",
1537                         NULL, COMMAND_ANY,
1538                         "cortex_a8 specific commands");
1539
1540         register_command(cmd_ctx, cortex_a8_cmd, "cache_info",
1541                         cortex_a8_handle_cache_info_command, COMMAND_EXEC,
1542                         "display information about target caches");
1543
1544         return retval;
1545 }