command_handler: change 'cmd_ctx' to CMD_CTX
[fw/openocd] / src / target / cortex_a8.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   This program is free software; you can redistribute it and/or modify  *
15  *   it under the terms of the GNU General Public License as published by  *
16  *   the Free Software Foundation; either version 2 of the License, or     *
17  *   (at your option) any later version.                                   *
18  *                                                                         *
19  *   This program is distributed in the hope that it will be useful,       *
20  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
21  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
22  *   GNU General Public License for more details.                          *
23  *                                                                         *
24  *   You should have received a copy of the GNU General Public License     *
25  *   along with this program; if not, write to the                         *
26  *   Free Software Foundation, Inc.,                                       *
27  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
28  *                                                                         *
29  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
30  *                                                                         *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "breakpoints.h"
37 #include "cortex_a8.h"
38 #include "register.h"
39 #include "target_request.h"
40 #include "target_type.h"
41
42 static int cortex_a8_poll(struct target *target);
43 static int cortex_a8_debug_entry(struct target *target);
44 static int cortex_a8_restore_context(struct target *target);
45 static int cortex_a8_set_breakpoint(struct target *target,
46                 struct breakpoint *breakpoint, uint8_t matchmode);
47 static int cortex_a8_unset_breakpoint(struct target *target,
48                 struct breakpoint *breakpoint);
49 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
50                 uint32_t *value, int regnum);
51 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
52                 uint32_t value, int regnum);
53 /*
54  * FIXME do topology discovery using the ROM; don't
55  * assume this is an OMAP3.
56  */
57 #define swjdp_memoryap 0
58 #define swjdp_debugap 1
59 #define OMAP3530_DEBUG_BASE 0x54011000
60
61 /*
62  * Cortex-A8 Basic debug access, very low level assumes state is saved
63  */
64 static int cortex_a8_init_debug_access(struct target *target)
65 {
66         struct armv7a_common *armv7a = target_to_armv7a(target);
67         struct swjdp_common *swjdp = &armv7a->swjdp_info;
68
69         int retval;
70         uint32_t dummy;
71
72         LOG_DEBUG(" ");
73
74         /* Unlocking the debug registers for modification */
75         /* The debugport might be uninitialised so try twice */
76         retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
77         if (retval != ERROR_OK)
78                 mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
79         /* Clear Sticky Power Down status Bit in PRSR to enable access to
80            the registers in the Core Power Domain */
81         retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_PRSR, &dummy);
82         /* Enabling of instruction execution in debug mode is done in debug_entry code */
83
84         /* Resync breakpoint registers */
85
86         /* Since this is likley called from init or reset, update targtet state information*/
87         cortex_a8_poll(target);
88
89         return retval;
90 }
91
92 int cortex_a8_exec_opcode(struct target *target, uint32_t opcode)
93 {
94         uint32_t dscr;
95         int retval;
96         struct armv7a_common *armv7a = target_to_armv7a(target);
97         struct swjdp_common *swjdp = &armv7a->swjdp_info;
98
99         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
100         do
101         {
102                 retval = mem_ap_read_atomic_u32(swjdp,
103                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
104                 if (retval != ERROR_OK)
105                 {
106                         LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
107                         return retval;
108                 }
109         }
110         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
111
112         mem_ap_write_u32(swjdp, armv7a->debug_base + CPUDBG_ITR, opcode);
113
114         do
115         {
116                 retval = mem_ap_read_atomic_u32(swjdp,
117                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
118                 if (retval != ERROR_OK)
119                 {
120                         LOG_ERROR("Could not read DSCR register");
121                         return retval;
122                 }
123         }
124         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
125
126         return retval;
127 }
128
129 /**************************************************************************
130 Read core register with very few exec_opcode, fast but needs work_area.
131 This can cause problems with MMU active.
132 **************************************************************************/
133 static int cortex_a8_read_regs_through_mem(struct target *target, uint32_t address,
134                 uint32_t * regfile)
135 {
136         int retval = ERROR_OK;
137         struct armv7a_common *armv7a = target_to_armv7a(target);
138         struct swjdp_common *swjdp = &armv7a->swjdp_info;
139
140         cortex_a8_dap_read_coreregister_u32(target, regfile, 0);
141         cortex_a8_dap_write_coreregister_u32(target, address, 0);
142         cortex_a8_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0));
143         dap_ap_select(swjdp, swjdp_memoryap);
144         mem_ap_read_buf_u32(swjdp, (uint8_t *)(&regfile[1]), 4*15, address);
145         dap_ap_select(swjdp, swjdp_debugap);
146
147         return retval;
148 }
149
150 static int cortex_a8_read_cp(struct target *target, uint32_t *value, uint8_t CP,
151                 uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
152 {
153         int retval;
154         struct armv7a_common *armv7a = target_to_armv7a(target);
155         struct swjdp_common *swjdp = &armv7a->swjdp_info;
156
157         cortex_a8_exec_opcode(target, ARMV4_5_MRC(CP, op1, 0, CRn, CRm, op2));
158         /* Move R0 to DTRTX */
159         cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
160
161         /* Read DCCTX */
162         retval = mem_ap_read_atomic_u32(swjdp,
163                         armv7a->debug_base + CPUDBG_DTRTX, value);
164
165         return retval;
166 }
167
168 static int cortex_a8_write_cp(struct target *target, uint32_t value,
169         uint8_t CP, uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
170 {
171         int retval;
172         uint32_t dscr;
173         struct armv7a_common *armv7a = target_to_armv7a(target);
174         struct swjdp_common *swjdp = &armv7a->swjdp_info;
175
176         LOG_DEBUG("CP%i, CRn %i, value 0x%08" PRIx32, CP, CRn, value);
177
178         /* Check that DCCRX is not full */
179         retval = mem_ap_read_atomic_u32(swjdp,
180                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
181         if (dscr & (1 << DSCR_DTR_RX_FULL))
182         {
183                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
184                 /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode  0xEE000E15 */
185                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
186         }
187
188         retval = mem_ap_write_u32(swjdp,
189                         armv7a->debug_base + CPUDBG_DTRRX, value);
190         /* Move DTRRX to r0 */
191         cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
192
193         cortex_a8_exec_opcode(target, ARMV4_5_MCR(CP, op1, 0, CRn, CRm, op2));
194         return retval;
195 }
196
197 static int cortex_a8_read_cp15(struct target *target, uint32_t op1, uint32_t op2,
198                 uint32_t CRn, uint32_t CRm, uint32_t *value)
199 {
200         return cortex_a8_read_cp(target, value, 15, op1, CRn, CRm, op2);
201 }
202
203 static int cortex_a8_write_cp15(struct target *target, uint32_t op1, uint32_t op2,
204                 uint32_t CRn, uint32_t CRm, uint32_t value)
205 {
206         return cortex_a8_write_cp(target, value, 15, op1, CRn, CRm, op2);
207 }
208
209 static int cortex_a8_mrc(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value)
210 {
211         if (cpnum!=15)
212         {
213                 LOG_ERROR("Only cp15 is supported");
214                 return ERROR_FAIL;
215         }
216         return cortex_a8_read_cp15(target, op1, op2, CRn, CRm, value);
217 }
218
219 static int cortex_a8_mcr(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value)
220 {
221         if (cpnum!=15)
222         {
223                 LOG_ERROR("Only cp15 is supported");
224                 return ERROR_FAIL;
225         }
226         return cortex_a8_write_cp15(target, op1, op2, CRn, CRm, value);
227 }
228
229
230
231 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
232                 uint32_t *value, int regnum)
233 {
234         int retval = ERROR_OK;
235         uint8_t reg = regnum&0xFF;
236         uint32_t dscr;
237         struct armv7a_common *armv7a = target_to_armv7a(target);
238         struct swjdp_common *swjdp = &armv7a->swjdp_info;
239
240         if (reg > 16)
241                 return retval;
242
243         if (reg < 15)
244         {
245                 /* Rn to DCCTX, MCR p14, 0, Rd, c0, c5, 0,  0xEE000E15 */
246                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, reg, 0, 5, 0));
247         }
248         else if (reg == 15)
249         {
250                 cortex_a8_exec_opcode(target, 0xE1A0000F);
251                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
252         }
253         else if (reg == 16)
254         {
255                 cortex_a8_exec_opcode(target, ARMV4_5_MRS(0, 0));
256                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
257         }
258
259         /* Read DTRRTX */
260         do
261         {
262                 retval = mem_ap_read_atomic_u32(swjdp,
263                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
264         }
265         while ((dscr & (1 << DSCR_DTR_TX_FULL)) == 0); /* Wait for DTRRXfull */
266
267         retval = mem_ap_read_atomic_u32(swjdp,
268                         armv7a->debug_base + CPUDBG_DTRTX, value);
269
270         return retval;
271 }
272
273 static int cortex_a8_dap_write_coreregister_u32(struct target *target, uint32_t value, int regnum)
274 {
275         int retval = ERROR_OK;
276         uint8_t Rd = regnum&0xFF;
277         uint32_t dscr;
278         struct armv7a_common *armv7a = target_to_armv7a(target);
279         struct swjdp_common *swjdp = &armv7a->swjdp_info;
280
281         LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
282
283         /* Check that DCCRX is not full */
284         retval = mem_ap_read_atomic_u32(swjdp,
285                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
286         if (dscr & (1 << DSCR_DTR_RX_FULL))
287         {
288                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
289                 /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode  0xEE000E15 */
290                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
291         }
292
293         if (Rd > 16)
294                 return retval;
295
296         /* Write to DCCRX */
297         retval = mem_ap_write_u32(swjdp,
298                         armv7a->debug_base + CPUDBG_DTRRX, value);
299
300         if (Rd < 15)
301         {
302                 /* DCCRX to Rd, MCR p14, 0, Rd, c0, c5, 0,  0xEE000E15 */
303                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0));
304         }
305         else if (Rd == 15)
306         {
307                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
308                 cortex_a8_exec_opcode(target, 0xE1A0F000);
309         }
310         else if (Rd == 16)
311         {
312                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
313                 cortex_a8_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, 0));
314                 /* Execute a PrefetchFlush instruction through the ITR. */
315                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(15, 0, 0, 7, 5, 4));
316         }
317
318         return retval;
319 }
320
321 /* Write to memory mapped registers directly with no cache or mmu handling */
322 static int cortex_a8_dap_write_memap_register_u32(struct target *target, uint32_t address, uint32_t value)
323 {
324         int retval;
325         struct armv7a_common *armv7a = target_to_armv7a(target);
326         struct swjdp_common *swjdp = &armv7a->swjdp_info;
327
328         retval = mem_ap_write_atomic_u32(swjdp, address, value);
329
330         return retval;
331 }
332
333 /*
334  * Cortex-A8 Run control
335  */
336
337 static int cortex_a8_poll(struct target *target)
338 {
339         int retval = ERROR_OK;
340         uint32_t dscr;
341         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
342         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
343         struct swjdp_common *swjdp = &armv7a->swjdp_info;
344         enum target_state prev_target_state = target->state;
345         uint8_t saved_apsel = dap_ap_get_select(swjdp);
346
347         dap_ap_select(swjdp, swjdp_debugap);
348         retval = mem_ap_read_atomic_u32(swjdp,
349                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
350         if (retval != ERROR_OK)
351         {
352                 dap_ap_select(swjdp, saved_apsel);
353                 return retval;
354         }
355         cortex_a8->cpudbg_dscr = dscr;
356
357         if ((dscr & 0x3) == 0x3)
358         {
359                 if (prev_target_state != TARGET_HALTED)
360                 {
361                         /* We have a halting debug event */
362                         LOG_DEBUG("Target halted");
363                         target->state = TARGET_HALTED;
364                         if ((prev_target_state == TARGET_RUNNING)
365                                         || (prev_target_state == TARGET_RESET))
366                         {
367                                 retval = cortex_a8_debug_entry(target);
368                                 if (retval != ERROR_OK)
369                                         return retval;
370
371                                 target_call_event_callbacks(target,
372                                                 TARGET_EVENT_HALTED);
373                         }
374                         if (prev_target_state == TARGET_DEBUG_RUNNING)
375                         {
376                                 LOG_DEBUG(" ");
377
378                                 retval = cortex_a8_debug_entry(target);
379                                 if (retval != ERROR_OK)
380                                         return retval;
381
382                                 target_call_event_callbacks(target,
383                                                 TARGET_EVENT_DEBUG_HALTED);
384                         }
385                 }
386         }
387         else if ((dscr & 0x3) == 0x2)
388         {
389                 target->state = TARGET_RUNNING;
390         }
391         else
392         {
393                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
394                 target->state = TARGET_UNKNOWN;
395         }
396
397         dap_ap_select(swjdp, saved_apsel);
398
399         return retval;
400 }
401
402 static int cortex_a8_halt(struct target *target)
403 {
404         int retval = ERROR_OK;
405         uint32_t dscr;
406         struct armv7a_common *armv7a = target_to_armv7a(target);
407         struct swjdp_common *swjdp = &armv7a->swjdp_info;
408         uint8_t saved_apsel = dap_ap_get_select(swjdp);
409         dap_ap_select(swjdp, swjdp_debugap);
410
411         /*
412          * Tell the core to be halted by writing DRCR with 0x1
413          * and then wait for the core to be halted.
414          */
415         retval = mem_ap_write_atomic_u32(swjdp,
416                         armv7a->debug_base + CPUDBG_DRCR, 0x1);
417
418         /*
419          * enter halting debug mode
420          */
421         mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DSCR, &dscr);
422         retval = mem_ap_write_atomic_u32(swjdp,
423                 armv7a->debug_base + CPUDBG_DSCR, dscr | (1 << DSCR_HALT_DBG_MODE));
424
425         if (retval != ERROR_OK)
426                 goto out;
427
428         do {
429                 mem_ap_read_atomic_u32(swjdp,
430                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
431         } while ((dscr & (1 << DSCR_CORE_HALTED)) == 0);
432
433         target->debug_reason = DBG_REASON_DBGRQ;
434
435 out:
436         dap_ap_select(swjdp, saved_apsel);
437         return retval;
438 }
439
440 static int cortex_a8_resume(struct target *target, int current,
441                 uint32_t address, int handle_breakpoints, int debug_execution)
442 {
443         struct armv7a_common *armv7a = target_to_armv7a(target);
444         struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common;
445         struct swjdp_common *swjdp = &armv7a->swjdp_info;
446
447 //      struct breakpoint *breakpoint = NULL;
448         uint32_t resume_pc, dscr;
449
450         uint8_t saved_apsel = dap_ap_get_select(swjdp);
451         dap_ap_select(swjdp, swjdp_debugap);
452
453         if (!debug_execution)
454         {
455                 target_free_all_working_areas(target);
456 //              cortex_m3_enable_breakpoints(target);
457 //              cortex_m3_enable_watchpoints(target);
458         }
459
460 #if 0
461         if (debug_execution)
462         {
463                 /* Disable interrupts */
464                 /* We disable interrupts in the PRIMASK register instead of
465                  * masking with C_MASKINTS,
466                  * This is probably the same issue as Cortex-M3 Errata 377493:
467                  * C_MASKINTS in parallel with disabled interrupts can cause
468                  * local faults to not be taken. */
469                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
470                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
471                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
472
473                 /* Make sure we are in Thumb mode */
474                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
475                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
476                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
477                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
478         }
479 #endif
480
481         /* current = 1: continue on current pc, otherwise continue at <address> */
482         resume_pc = buf_get_u32(
483                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
484                                 armv4_5->core_mode, 15).value,
485                         0, 32);
486         if (!current)
487                 resume_pc = address;
488
489         /* Make sure that the Armv7 gdb thumb fixups does not
490          * kill the return address
491          */
492         if (armv7a->core_state == ARMV7A_STATE_ARM)
493         {
494                 resume_pc &= 0xFFFFFFFC;
495         }
496         /* When the return address is loaded into PC
497          * bit 0 must be 1 to stay in Thumb state
498          */
499         if (armv7a->core_state == ARMV7A_STATE_THUMB)
500         {
501                 resume_pc |= 0x1;
502         }
503         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
504         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
505                                 armv4_5->core_mode, 15).value,
506                         0, 32, resume_pc);
507         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
508                         armv4_5->core_mode, 15).dirty = 1;
509         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
510                         armv4_5->core_mode, 15).valid = 1;
511
512         cortex_a8_restore_context(target);
513 //      arm7_9_restore_context(target); TODO Context is currently NOT Properly restored
514 #if 0
515         /* the front-end may request us not to handle breakpoints */
516         if (handle_breakpoints)
517         {
518                 /* Single step past breakpoint at current address */
519                 if ((breakpoint = breakpoint_find(target, resume_pc)))
520                 {
521                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
522                         cortex_m3_unset_breakpoint(target, breakpoint);
523                         cortex_m3_single_step_core(target);
524                         cortex_m3_set_breakpoint(target, breakpoint);
525                 }
526         }
527
528 #endif
529         /* Restart core and wait for it to be started */
530         mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DRCR, 0x2);
531
532         do {
533                 mem_ap_read_atomic_u32(swjdp,
534                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
535         } while ((dscr & (1 << DSCR_CORE_RESTARTED)) == 0);
536
537         target->debug_reason = DBG_REASON_NOTHALTED;
538         target->state = TARGET_RUNNING;
539
540         /* registers are now invalid */
541         armv4_5_invalidate_core_regs(target);
542
543         if (!debug_execution)
544         {
545                 target->state = TARGET_RUNNING;
546                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
547                 LOG_DEBUG("target resumed at 0x%" PRIx32, resume_pc);
548         }
549         else
550         {
551                 target->state = TARGET_DEBUG_RUNNING;
552                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
553                 LOG_DEBUG("target debug resumed at 0x%" PRIx32, resume_pc);
554         }
555
556         dap_ap_select(swjdp, saved_apsel);
557
558         return ERROR_OK;
559 }
560
561 static int cortex_a8_debug_entry(struct target *target)
562 {
563         int i;
564         uint32_t regfile[16], pc, cpsr, dscr;
565         int retval = ERROR_OK;
566         struct working_area *regfile_working_area = NULL;
567         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
568         struct armv7a_common *armv7a = target_to_armv7a(target);
569         struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common;
570         struct swjdp_common *swjdp = &armv7a->swjdp_info;
571
572         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a8->cpudbg_dscr);
573
574         /* Enable the ITR execution once we are in debug mode */
575         mem_ap_read_atomic_u32(swjdp,
576                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
577         dscr |= (1 << DSCR_EXT_INT_EN);
578         retval = mem_ap_write_atomic_u32(swjdp,
579                         armv7a->debug_base + CPUDBG_DSCR, dscr);
580
581         /* Examine debug reason */
582         switch ((cortex_a8->cpudbg_dscr >> 2)&0xF)
583         {
584                 case 0:
585                 case 4:
586                         target->debug_reason = DBG_REASON_DBGRQ;
587                         break;
588                 case 1:
589                 case 3:
590                         target->debug_reason = DBG_REASON_BREAKPOINT;
591                         break;
592                 case 10:
593                         target->debug_reason = DBG_REASON_WATCHPOINT;
594                         break;
595                 default:
596                         target->debug_reason = DBG_REASON_UNDEFINED;
597                         break;
598         }
599
600         /* Examine target state and mode */
601         if (cortex_a8->fast_reg_read)
602                 target_alloc_working_area(target, 64, &regfile_working_area);
603
604         /* First load register acessible through core debug port*/
605         if (!regfile_working_area)
606         {
607                 for (i = 0; i <= 15; i++)
608                         cortex_a8_dap_read_coreregister_u32(target,
609                                         &regfile[i], i);
610         }
611         else
612         {
613                 dap_ap_select(swjdp, swjdp_memoryap);
614                 cortex_a8_read_regs_through_mem(target,
615                                 regfile_working_area->address, regfile);
616                 dap_ap_select(swjdp, swjdp_memoryap);
617                 target_free_working_area(target, regfile_working_area);
618         }
619
620         cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16);
621         pc = regfile[15];
622         dap_ap_select(swjdp, swjdp_debugap);
623         LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
624
625         armv4_5->core_mode = cpsr & 0x1F;
626         armv7a->core_state = (cpsr & 0x20)?ARMV7A_STATE_THUMB:ARMV7A_STATE_ARM;
627
628         for (i = 0; i <= ARM_PC; i++)
629         {
630                 buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
631                                         armv4_5->core_mode, i).value,
632                                 0, 32, regfile[i]);
633                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
634                                 armv4_5->core_mode, i).valid = 1;
635                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
636                                 armv4_5->core_mode, i).dirty = 0;
637         }
638         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
639                                 armv4_5->core_mode, 16).value,
640                         0, 32, cpsr);
641         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).valid = 1;
642         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).dirty = 0;
643
644         /* Fixup PC Resume Address */
645         if (armv7a->core_state == ARMV7A_STATE_THUMB)
646         {
647                 // T bit set for Thumb or ThumbEE state
648                 regfile[ARM_PC] -= 4;
649         }
650         else
651         {
652                 // ARM state
653                 regfile[ARM_PC] -= 8;
654         }
655         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
656                                 armv4_5->core_mode, ARM_PC).value,
657                         0, 32, regfile[ARM_PC]);
658
659         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0)
660                 .dirty = ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
661                                 armv4_5->core_mode, 0).valid;
662         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15)
663                 .dirty = ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
664                                 armv4_5->core_mode, 15).valid;
665
666 #if 0
667 /* TODO, Move this */
668         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
669         cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
670         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
671
672         cortex_a8_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
673         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
674
675         cortex_a8_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
676         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
677 #endif
678
679         /* Are we in an exception handler */
680 //      armv4_5->exception_number = 0;
681         if (armv7a->post_debug_entry)
682                 armv7a->post_debug_entry(target);
683
684
685
686         return retval;
687
688 }
689
690 static void cortex_a8_post_debug_entry(struct target *target)
691 {
692         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
693         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
694
695 //      cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
696         /* examine cp15 control reg */
697         armv7a->read_cp15(target, 0, 0, 1, 0, &cortex_a8->cp15_control_reg);
698         jtag_execute_queue();
699         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
700
701         if (armv7a->armv4_5_mmu.armv4_5_cache.ctype == -1)
702         {
703                 uint32_t cache_type_reg;
704                 /* identify caches */
705                 armv7a->read_cp15(target, 0, 1, 0, 0, &cache_type_reg);
706                 jtag_execute_queue();
707                 /* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A8 */
708                 armv4_5_identify_cache(cache_type_reg,
709                                 &armv7a->armv4_5_mmu.armv4_5_cache);
710         }
711
712         armv7a->armv4_5_mmu.mmu_enabled =
713                         (cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0;
714         armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
715                         (cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0;
716         armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
717                         (cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0;
718
719
720 }
721
722 static int cortex_a8_step(struct target *target, int current, uint32_t address,
723                 int handle_breakpoints)
724 {
725         struct armv7a_common *armv7a = target_to_armv7a(target);
726         struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common;
727         struct breakpoint *breakpoint = NULL;
728         struct breakpoint stepbreakpoint;
729
730         int timeout = 100;
731
732         if (target->state != TARGET_HALTED)
733         {
734                 LOG_WARNING("target not halted");
735                 return ERROR_TARGET_NOT_HALTED;
736         }
737
738         /* current = 1: continue on current pc, otherwise continue at <address> */
739         if (!current)
740         {
741                 buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
742                                         armv4_5->core_mode, ARM_PC).value,
743                                 0, 32, address);
744         }
745         else
746         {
747                 address = buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
748                                         armv4_5->core_mode, ARM_PC).value,
749                                 0, 32);
750         }
751
752         /* The front-end may request us not to handle breakpoints.
753          * But since Cortex-A8 uses breakpoint for single step,
754          * we MUST handle breakpoints.
755          */
756         handle_breakpoints = 1;
757         if (handle_breakpoints) {
758                 breakpoint = breakpoint_find(target,
759                                 buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
760                                         armv4_5->core_mode, 15).value,
761                         0, 32));
762                 if (breakpoint)
763                         cortex_a8_unset_breakpoint(target, breakpoint);
764         }
765
766         /* Setup single step breakpoint */
767         stepbreakpoint.address = address;
768         stepbreakpoint.length = (armv7a->core_state == ARMV7A_STATE_THUMB) ? 2 : 4;
769         stepbreakpoint.type = BKPT_HARD;
770         stepbreakpoint.set = 0;
771
772         /* Break on IVA mismatch */
773         cortex_a8_set_breakpoint(target, &stepbreakpoint, 0x04);
774
775         target->debug_reason = DBG_REASON_SINGLESTEP;
776
777         cortex_a8_resume(target, 1, address, 0, 0);
778
779         while (target->state != TARGET_HALTED)
780         {
781                 cortex_a8_poll(target);
782                 if (--timeout == 0)
783                 {
784                         LOG_WARNING("timeout waiting for target halt");
785                         break;
786                 }
787         }
788
789         cortex_a8_unset_breakpoint(target, &stepbreakpoint);
790         if (timeout > 0) target->debug_reason = DBG_REASON_BREAKPOINT;
791
792         if (breakpoint)
793                 cortex_a8_set_breakpoint(target, breakpoint, 0);
794
795         if (target->state != TARGET_HALTED)
796                 LOG_DEBUG("target stepped");
797
798         return ERROR_OK;
799 }
800
801 static int cortex_a8_restore_context(struct target *target)
802 {
803         int i;
804         uint32_t value;
805         struct armv7a_common *armv7a = target_to_armv7a(target);
806         struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common;
807
808         LOG_DEBUG(" ");
809
810         if (armv7a->pre_restore_context)
811                 armv7a->pre_restore_context(target);
812
813         for (i = 15; i >= 0; i--)
814         {
815                 if (ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
816                                         armv4_5->core_mode, i).dirty)
817                 {
818                         value = buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
819                                                 armv4_5->core_mode, i).value,
820                                         0, 32);
821                         /* TODO Check return values */
822                         cortex_a8_dap_write_coreregister_u32(target, value, i);
823                 }
824         }
825
826         if (armv7a->post_restore_context)
827                 armv7a->post_restore_context(target);
828
829         return ERROR_OK;
830 }
831
832
833 #if 0
834 /*
835  * Cortex-A8 Core register functions
836  */
837 static int cortex_a8_load_core_reg_u32(struct target *target, int num,
838                 armv4_5_mode_t mode, uint32_t * value)
839 {
840         int retval;
841         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
842
843         if ((num <= ARM_CPSR))
844         {
845                 /* read a normal core register */
846                 retval = cortex_a8_dap_read_coreregister_u32(target, value, num);
847
848                 if (retval != ERROR_OK)
849                 {
850                         LOG_ERROR("JTAG failure %i", retval);
851                         return ERROR_JTAG_DEVICE_ERROR;
852                 }
853                 LOG_DEBUG("load from core reg %i value 0x%" PRIx32, num, *value);
854         }
855         else
856         {
857                 return ERROR_INVALID_ARGUMENTS;
858         }
859
860         /* Register other than r0 - r14 uses r0 for access */
861         if (num > 14)
862                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
863                                 armv4_5->core_mode, 0).dirty =
864                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
865                                 armv4_5->core_mode, 0).valid;
866         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
867                                 armv4_5->core_mode, 15).dirty =
868                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
869                                 armv4_5->core_mode, 15).valid;
870
871         return ERROR_OK;
872 }
873
874 static int cortex_a8_store_core_reg_u32(struct target *target, int num,
875                 armv4_5_mode_t mode, uint32_t value)
876 {
877         int retval;
878 //      uint32_t reg;
879         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
880
881 #ifdef ARMV7_GDB_HACKS
882         /* If the LR register is being modified, make sure it will put us
883          * in "thumb" mode, or an INVSTATE exception will occur. This is a
884          * hack to deal with the fact that gdb will sometimes "forge"
885          * return addresses, and doesn't set the LSB correctly (i.e., when
886          * printing expressions containing function calls, it sets LR=0.) */
887
888         if (num == 14)
889                 value |= 0x01;
890 #endif
891
892         if ((num <= ARM_CPSR))
893         {
894                 retval = cortex_a8_dap_write_coreregister_u32(target, value, num);
895                 if (retval != ERROR_OK)
896                 {
897                         LOG_ERROR("JTAG failure %i", retval);
898                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
899                                         armv4_5->core_mode, num).dirty =
900                                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
901                                         armv4_5->core_mode, num).valid;
902                         return ERROR_JTAG_DEVICE_ERROR;
903                 }
904                 LOG_DEBUG("write core reg %i value 0x%" PRIx32, num, value);
905         }
906         else
907         {
908                 return ERROR_INVALID_ARGUMENTS;
909         }
910
911         return ERROR_OK;
912 }
913 #endif
914
915
916 static int cortex_a8_read_core_reg(struct target *target, int num,
917                 enum armv4_5_mode mode)
918 {
919         uint32_t value;
920         int retval;
921         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
922
923         cortex_a8_dap_read_coreregister_u32(target, &value, num);
924
925         if ((retval = jtag_execute_queue()) != ERROR_OK)
926         {
927                 return retval;
928         }
929
930         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
931         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
932         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
933                         mode, num).value, 0, 32, value);
934
935         return ERROR_OK;
936 }
937
938 int cortex_a8_write_core_reg(struct target *target, int num,
939                 enum armv4_5_mode mode, uint32_t value)
940 {
941         int retval;
942         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
943
944         cortex_a8_dap_write_coreregister_u32(target, value, num);
945         if ((retval = jtag_execute_queue()) != ERROR_OK)
946         {
947                 return retval;
948         }
949
950         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
951         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
952
953         return ERROR_OK;
954 }
955
956
957 /*
958  * Cortex-A8 Breakpoint and watchpoint fuctions
959  */
960
961 /* Setup hardware Breakpoint Register Pair */
962 static int cortex_a8_set_breakpoint(struct target *target,
963                 struct breakpoint *breakpoint, uint8_t matchmode)
964 {
965         int retval;
966         int brp_i=0;
967         uint32_t control;
968         uint8_t byte_addr_select = 0x0F;
969         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
970         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
971         struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
972
973         if (breakpoint->set)
974         {
975                 LOG_WARNING("breakpoint already set");
976                 return ERROR_OK;
977         }
978
979         if (breakpoint->type == BKPT_HARD)
980         {
981                 while (brp_list[brp_i].used && (brp_i < cortex_a8->brp_num))
982                         brp_i++ ;
983                 if (brp_i >= cortex_a8->brp_num)
984                 {
985                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
986                         return ERROR_FAIL;
987                 }
988                 breakpoint->set = brp_i + 1;
989                 if (breakpoint->length == 2)
990                 {
991                         byte_addr_select = (3 << (breakpoint->address & 0x02));
992                 }
993                 control = ((matchmode & 0x7) << 20)
994                                 | (byte_addr_select << 5)
995                                 | (3 << 1) | 1;
996                 brp_list[brp_i].used = 1;
997                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
998                 brp_list[brp_i].control = control;
999                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1000                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1001                                 brp_list[brp_i].value);
1002                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1003                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1004                                 brp_list[brp_i].control);
1005                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1006                                 brp_list[brp_i].control,
1007                                 brp_list[brp_i].value);
1008         }
1009         else if (breakpoint->type == BKPT_SOFT)
1010         {
1011                 uint8_t code[4];
1012                 if (breakpoint->length == 2)
1013                 {
1014                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1015                 }
1016                 else
1017                 {
1018                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1019                 }
1020                 retval = target->type->read_memory(target,
1021                                 breakpoint->address & 0xFFFFFFFE,
1022                                 breakpoint->length, 1,
1023                                 breakpoint->orig_instr);
1024                 if (retval != ERROR_OK)
1025                         return retval;
1026                 retval = target->type->write_memory(target,
1027                                 breakpoint->address & 0xFFFFFFFE,
1028                                 breakpoint->length, 1, code);
1029                 if (retval != ERROR_OK)
1030                         return retval;
1031                 breakpoint->set = 0x11; /* Any nice value but 0 */
1032         }
1033
1034         return ERROR_OK;
1035 }
1036
1037 static int cortex_a8_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1038 {
1039         int retval;
1040         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1041         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1042         struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1043
1044         if (!breakpoint->set)
1045         {
1046                 LOG_WARNING("breakpoint not set");
1047                 return ERROR_OK;
1048         }
1049
1050         if (breakpoint->type == BKPT_HARD)
1051         {
1052                 int brp_i = breakpoint->set - 1;
1053                 if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num))
1054                 {
1055                         LOG_DEBUG("Invalid BRP number in breakpoint");
1056                         return ERROR_OK;
1057                 }
1058                 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1059                                 brp_list[brp_i].control, brp_list[brp_i].value);
1060                 brp_list[brp_i].used = 0;
1061                 brp_list[brp_i].value = 0;
1062                 brp_list[brp_i].control = 0;
1063                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1064                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1065                                 brp_list[brp_i].control);
1066                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1067                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1068                                 brp_list[brp_i].value);
1069         }
1070         else
1071         {
1072                 /* restore original instruction (kept in target endianness) */
1073                 if (breakpoint->length == 4)
1074                 {
1075                         retval = target->type->write_memory(target,
1076                                         breakpoint->address & 0xFFFFFFFE,
1077                                         4, 1, breakpoint->orig_instr);
1078                         if (retval != ERROR_OK)
1079                                 return retval;
1080                 }
1081                 else
1082                 {
1083                         retval = target->type->write_memory(target,
1084                                         breakpoint->address & 0xFFFFFFFE,
1085                                         2, 1, breakpoint->orig_instr);
1086                         if (retval != ERROR_OK)
1087                                 return retval;
1088                 }
1089         }
1090         breakpoint->set = 0;
1091
1092         return ERROR_OK;
1093 }
1094
1095 int cortex_a8_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1096 {
1097         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1098
1099         if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1))
1100         {
1101                 LOG_INFO("no hardware breakpoint available");
1102                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1103         }
1104
1105         if (breakpoint->type == BKPT_HARD)
1106                 cortex_a8->brp_num_available--;
1107         cortex_a8_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1108
1109         return ERROR_OK;
1110 }
1111
1112 static int cortex_a8_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1113 {
1114         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1115
1116 #if 0
1117 /* It is perfectly possible to remove brakpoints while the taget is running */
1118         if (target->state != TARGET_HALTED)
1119         {
1120                 LOG_WARNING("target not halted");
1121                 return ERROR_TARGET_NOT_HALTED;
1122         }
1123 #endif
1124
1125         if (breakpoint->set)
1126         {
1127                 cortex_a8_unset_breakpoint(target, breakpoint);
1128                 if (breakpoint->type == BKPT_HARD)
1129                         cortex_a8->brp_num_available++ ;
1130         }
1131
1132
1133         return ERROR_OK;
1134 }
1135
1136
1137
1138 /*
1139  * Cortex-A8 Reset fuctions
1140  */
1141
1142 static int cortex_a8_assert_reset(struct target *target)
1143 {
1144
1145         LOG_DEBUG(" ");
1146
1147         /* registers are now invalid */
1148         armv4_5_invalidate_core_regs(target);
1149
1150         target->state = TARGET_RESET;
1151
1152         return ERROR_OK;
1153 }
1154
1155 static int cortex_a8_deassert_reset(struct target *target)
1156 {
1157
1158         LOG_DEBUG(" ");
1159
1160         if (target->reset_halt)
1161         {
1162                 int retval;
1163                 if ((retval = target_halt(target)) != ERROR_OK)
1164                         return retval;
1165         }
1166
1167         return ERROR_OK;
1168 }
1169
1170 /*
1171  * Cortex-A8 Memory access
1172  *
1173  * This is same Cortex M3 but we must also use the correct
1174  * ap number for every access.
1175  */
1176
1177 static int cortex_a8_read_memory(struct target *target, uint32_t address,
1178                 uint32_t size, uint32_t count, uint8_t *buffer)
1179 {
1180         struct armv7a_common *armv7a = target_to_armv7a(target);
1181         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1182         int retval = ERROR_INVALID_ARGUMENTS;
1183
1184         /* cortex_a8 handles unaligned memory access */
1185
1186 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1187
1188         if (count && buffer) {
1189                 switch (size) {
1190                 case 4:
1191                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1192                         break;
1193                 case 2:
1194                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1195                         break;
1196                 case 1:
1197                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1198                         break;
1199                 }
1200         }
1201
1202         return retval;
1203 }
1204
1205 int cortex_a8_write_memory(struct target *target, uint32_t address,
1206                 uint32_t size, uint32_t count, uint8_t *buffer)
1207 {
1208         struct armv7a_common *armv7a = target_to_armv7a(target);
1209         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1210         int retval = ERROR_INVALID_ARGUMENTS;
1211
1212 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1213
1214         if (count && buffer) {
1215                 switch (size) {
1216                 case 4:
1217                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1218                         break;
1219                 case 2:
1220                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1221                         break;
1222                 case 1:
1223                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1224                         break;
1225                 }
1226         }
1227
1228         if (retval == ERROR_OK && target->state == TARGET_HALTED)
1229         {
1230                 /* The Cache handling will NOT work with MMU active, the wrong addresses will be invalidated */
1231                 /* invalidate I-Cache */
1232                 if (armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
1233                 {
1234                         /* Invalidate ICache single entry with MVA, repeat this for all cache
1235                            lines in the address range, Cortex-A8 has fixed 64 byte line length */
1236                         /* Invalidate Cache single entry with MVA to PoU */
1237                         for (uint32_t cacheline=address; cacheline<address+size*count; cacheline+=64)
1238                                 armv7a->write_cp15(target, 0, 1, 7, 5, cacheline); /* I-Cache to PoU */
1239                 }
1240                 /* invalidate D-Cache */
1241                 if (armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
1242                 {
1243                         /* Invalidate Cache single entry with MVA to PoC */
1244                         for (uint32_t cacheline=address; cacheline<address+size*count; cacheline+=64)
1245                                 armv7a->write_cp15(target, 0, 1, 7, 6, cacheline); /* U/D cache to PoC */
1246                 }
1247         }
1248
1249         return retval;
1250 }
1251
1252 static int cortex_a8_bulk_write_memory(struct target *target, uint32_t address,
1253                 uint32_t count, uint8_t *buffer)
1254 {
1255         return cortex_a8_write_memory(target, address, 4, count, buffer);
1256 }
1257
1258
1259 static int cortex_a8_dcc_read(struct swjdp_common *swjdp, uint8_t *value, uint8_t *ctrl)
1260 {
1261 #if 0
1262         u16 dcrdr;
1263
1264         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1265         *ctrl = (uint8_t)dcrdr;
1266         *value = (uint8_t)(dcrdr >> 8);
1267
1268         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1269
1270         /* write ack back to software dcc register
1271          * signify we have read data */
1272         if (dcrdr & (1 << 0))
1273         {
1274                 dcrdr = 0;
1275                 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1276         }
1277 #endif
1278         return ERROR_OK;
1279 }
1280
1281
1282 static int cortex_a8_handle_target_request(void *priv)
1283 {
1284         struct target *target = priv;
1285         struct armv7a_common *armv7a = target_to_armv7a(target);
1286         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1287
1288         if (!target_was_examined(target))
1289                 return ERROR_OK;
1290         if (!target->dbg_msg_enabled)
1291                 return ERROR_OK;
1292
1293         if (target->state == TARGET_RUNNING)
1294         {
1295                 uint8_t data = 0;
1296                 uint8_t ctrl = 0;
1297
1298                 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1299
1300                 /* check if we have data */
1301                 if (ctrl & (1 << 0))
1302                 {
1303                         uint32_t request;
1304
1305                         /* we assume target is quick enough */
1306                         request = data;
1307                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1308                         request |= (data << 8);
1309                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1310                         request |= (data << 16);
1311                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1312                         request |= (data << 24);
1313                         target_request(target, request);
1314                 }
1315         }
1316
1317         return ERROR_OK;
1318 }
1319
1320 /*
1321  * Cortex-A8 target information and configuration
1322  */
1323
1324 static int cortex_a8_examine(struct target *target)
1325 {
1326         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1327         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1328         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1329         int i;
1330         int retval = ERROR_OK;
1331         uint32_t didr, ctypr, ttypr, cpuid;
1332
1333         LOG_DEBUG("TODO");
1334
1335         /* Here we shall insert a proper ROM Table scan */
1336         armv7a->debug_base = OMAP3530_DEBUG_BASE;
1337
1338         /* We do one extra read to ensure DAP is configured,
1339          * we call ahbap_debugport_init(swjdp) instead
1340          */
1341         ahbap_debugport_init(swjdp);
1342         mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_CPUID, &cpuid);
1343         if ((retval = mem_ap_read_atomic_u32(swjdp,
1344                         armv7a->debug_base + CPUDBG_CPUID, &cpuid)) != ERROR_OK)
1345         {
1346                 LOG_DEBUG("Examine failed");
1347                 return retval;
1348         }
1349
1350         if ((retval = mem_ap_read_atomic_u32(swjdp,
1351                         armv7a->debug_base + CPUDBG_CTYPR, &ctypr)) != ERROR_OK)
1352         {
1353                 LOG_DEBUG("Examine failed");
1354                 return retval;
1355         }
1356
1357         if ((retval = mem_ap_read_atomic_u32(swjdp,
1358                         armv7a->debug_base + CPUDBG_TTYPR, &ttypr)) != ERROR_OK)
1359         {
1360                 LOG_DEBUG("Examine failed");
1361                 return retval;
1362         }
1363
1364         if ((retval = mem_ap_read_atomic_u32(swjdp,
1365                         armv7a->debug_base + CPUDBG_DIDR, &didr)) != ERROR_OK)
1366         {
1367                 LOG_DEBUG("Examine failed");
1368                 return retval;
1369         }
1370
1371         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1372         LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
1373         LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
1374         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
1375
1376         /* Setup Breakpoint Register Pairs */
1377         cortex_a8->brp_num = ((didr >> 24) & 0x0F) + 1;
1378         cortex_a8->brp_num_context = ((didr >> 20) & 0x0F) + 1;
1379         cortex_a8->brp_num_available = cortex_a8->brp_num;
1380         cortex_a8->brp_list = calloc(cortex_a8->brp_num, sizeof(struct cortex_a8_brp));
1381 //      cortex_a8->brb_enabled = ????;
1382         for (i = 0; i < cortex_a8->brp_num; i++)
1383         {
1384                 cortex_a8->brp_list[i].used = 0;
1385                 if (i < (cortex_a8->brp_num-cortex_a8->brp_num_context))
1386                         cortex_a8->brp_list[i].type = BRP_NORMAL;
1387                 else
1388                         cortex_a8->brp_list[i].type = BRP_CONTEXT;
1389                 cortex_a8->brp_list[i].value = 0;
1390                 cortex_a8->brp_list[i].control = 0;
1391                 cortex_a8->brp_list[i].BRPn = i;
1392         }
1393
1394         /* Setup Watchpoint Register Pairs */
1395         cortex_a8->wrp_num = ((didr >> 28) & 0x0F) + 1;
1396         cortex_a8->wrp_num_available = cortex_a8->wrp_num;
1397         cortex_a8->wrp_list = calloc(cortex_a8->wrp_num, sizeof(struct cortex_a8_wrp));
1398         for (i = 0; i < cortex_a8->wrp_num; i++)
1399         {
1400                 cortex_a8->wrp_list[i].used = 0;
1401                 cortex_a8->wrp_list[i].type = 0;
1402                 cortex_a8->wrp_list[i].value = 0;
1403                 cortex_a8->wrp_list[i].control = 0;
1404                 cortex_a8->wrp_list[i].WRPn = i;
1405         }
1406         LOG_DEBUG("Configured %i hw breakpoint pairs and %i hw watchpoint pairs",
1407                         cortex_a8->brp_num , cortex_a8->wrp_num);
1408
1409         /* Configure core debug access */
1410         cortex_a8_init_debug_access(target);
1411
1412         target_set_examined(target);
1413
1414         return retval;
1415 }
1416
1417 /*
1418  *      Cortex-A8 target creation and initialization
1419  */
1420
1421 static void cortex_a8_build_reg_cache(struct target *target)
1422 {
1423         struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
1424         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
1425
1426         (*cache_p) = armv4_5_build_reg_cache(target, armv4_5);
1427         armv4_5->core_cache = (*cache_p);
1428 }
1429
1430
1431 static int cortex_a8_init_target(struct command_context *cmd_ctx,
1432                 struct target *target)
1433 {
1434         cortex_a8_build_reg_cache(target);
1435         return ERROR_OK;
1436 }
1437
1438 int cortex_a8_init_arch_info(struct target *target,
1439                 struct cortex_a8_common *cortex_a8, struct jtag_tap *tap)
1440 {
1441         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1442         struct arm *armv4_5 = &armv7a->armv4_5_common;
1443         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1444
1445         /* REVISIT v7a setup should be in a v7a-specific routine */
1446         armv4_5_init_arch_info(target, armv4_5);
1447         armv7a->common_magic = ARMV7_COMMON_MAGIC;
1448
1449         /* Setup struct cortex_a8_common */
1450         cortex_a8->common_magic = CORTEX_A8_COMMON_MAGIC;
1451         armv4_5->arch_info = armv7a;
1452
1453         /* prepare JTAG information for the new target */
1454         cortex_a8->jtag_info.tap = tap;
1455         cortex_a8->jtag_info.scann_size = 4;
1456 LOG_DEBUG(" ");
1457         swjdp->dp_select_value = -1;
1458         swjdp->ap_csw_value = -1;
1459         swjdp->ap_tar_value = -1;
1460         swjdp->jtag_info = &cortex_a8->jtag_info;
1461         swjdp->memaccess_tck = 80;
1462
1463         /* Number of bits for tar autoincrement, impl. dep. at least 10 */
1464         swjdp->tar_autoincr_block = (1 << 10);
1465
1466         cortex_a8->fast_reg_read = 0;
1467
1468
1469         /* register arch-specific functions */
1470         armv7a->examine_debug_reason = NULL;
1471
1472         armv7a->post_debug_entry = cortex_a8_post_debug_entry;
1473
1474         armv7a->pre_restore_context = NULL;
1475         armv7a->post_restore_context = NULL;
1476         armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1;
1477 //      armv7a->armv4_5_mmu.get_ttb = armv7a_get_ttb;
1478         armv7a->armv4_5_mmu.read_memory = cortex_a8_read_memory;
1479         armv7a->armv4_5_mmu.write_memory = cortex_a8_write_memory;
1480 //      armv7a->armv4_5_mmu.disable_mmu_caches = armv7a_disable_mmu_caches;
1481 //      armv7a->armv4_5_mmu.enable_mmu_caches = armv7a_enable_mmu_caches;
1482         armv7a->armv4_5_mmu.has_tiny_pages = 1;
1483         armv7a->armv4_5_mmu.mmu_enabled = 0;
1484         armv7a->read_cp15 = cortex_a8_read_cp15;
1485         armv7a->write_cp15 = cortex_a8_write_cp15;
1486
1487
1488 //      arm7_9->handle_target_request = cortex_a8_handle_target_request;
1489
1490         armv4_5->read_core_reg = cortex_a8_read_core_reg;
1491         armv4_5->write_core_reg = cortex_a8_write_core_reg;
1492 //      armv4_5->full_context = arm7_9_full_context;
1493
1494 //      armv4_5->load_core_reg_u32 = cortex_a8_load_core_reg_u32;
1495 //      armv4_5->store_core_reg_u32 = cortex_a8_store_core_reg_u32;
1496 //      armv4_5->read_core_reg = armv4_5_read_core_reg; /* this is default */
1497 //      armv4_5->write_core_reg = armv4_5_write_core_reg;
1498
1499         target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target);
1500
1501         return ERROR_OK;
1502 }
1503
1504 static int cortex_a8_target_create(struct target *target, Jim_Interp *interp)
1505 {
1506         struct cortex_a8_common *cortex_a8 = calloc(1, sizeof(struct cortex_a8_common));
1507
1508         cortex_a8_init_arch_info(target, cortex_a8, target->tap);
1509
1510         return ERROR_OK;
1511 }
1512
1513 COMMAND_HANDLER(cortex_a8_handle_cache_info_command)
1514 {
1515         struct target *target = get_current_target(CMD_CTX);
1516         struct armv7a_common *armv7a = target_to_armv7a(target);
1517
1518         return armv4_5_handle_cache_info_command(CMD_CTX,
1519                         &armv7a->armv4_5_mmu.armv4_5_cache);
1520 }
1521
1522
1523 COMMAND_HANDLER(cortex_a8_handle_dbginit_command)
1524 {
1525         struct target *target = get_current_target(CMD_CTX);
1526
1527         cortex_a8_init_debug_access(target);
1528
1529         return ERROR_OK;
1530 }
1531
1532
1533 static int cortex_a8_register_commands(struct command_context *cmd_ctx)
1534 {
1535         struct command *cortex_a8_cmd;
1536         int retval = ERROR_OK;
1537
1538         armv4_5_register_commands(cmd_ctx);
1539         armv7a_register_commands(cmd_ctx);
1540
1541         cortex_a8_cmd = register_command(cmd_ctx, NULL, "cortex_a8",
1542                         NULL, COMMAND_ANY,
1543                         "cortex_a8 specific commands");
1544
1545         register_command(cmd_ctx, cortex_a8_cmd, "cache_info",
1546                         cortex_a8_handle_cache_info_command, COMMAND_EXEC,
1547                         "display information about target caches");
1548
1549         register_command(cmd_ctx, cortex_a8_cmd, "dbginit",
1550                         cortex_a8_handle_dbginit_command, COMMAND_EXEC,
1551                         "Initialize core debug");
1552
1553         return retval;
1554 }
1555
1556 struct target_type cortexa8_target = {
1557         .name = "cortex_a8",
1558
1559         .poll = cortex_a8_poll,
1560         .arch_state = armv7a_arch_state,
1561
1562         .target_request_data = NULL,
1563
1564         .halt = cortex_a8_halt,
1565         .resume = cortex_a8_resume,
1566         .step = cortex_a8_step,
1567
1568         .assert_reset = cortex_a8_assert_reset,
1569         .deassert_reset = cortex_a8_deassert_reset,
1570         .soft_reset_halt = NULL,
1571
1572         .get_gdb_reg_list = armv4_5_get_gdb_reg_list,
1573
1574         .read_memory = cortex_a8_read_memory,
1575         .write_memory = cortex_a8_write_memory,
1576         .bulk_write_memory = cortex_a8_bulk_write_memory,
1577
1578         .checksum_memory = arm_checksum_memory,
1579         .blank_check_memory = arm_blank_check_memory,
1580
1581         .run_algorithm = armv4_5_run_algorithm,
1582
1583         .add_breakpoint = cortex_a8_add_breakpoint,
1584         .remove_breakpoint = cortex_a8_remove_breakpoint,
1585         .add_watchpoint = NULL,
1586         .remove_watchpoint = NULL,
1587
1588         .register_commands = cortex_a8_register_commands,
1589         .target_create = cortex_a8_target_create,
1590         .init_target = cortex_a8_init_target,
1591         .examine = cortex_a8_examine,
1592         .mrc = cortex_a8_mrc,
1593         .mcr = cortex_a8_mcr,
1594 };