Remove annoying end-of-line whitespace from most src/*
[fw/openocd] / src / target / cortex_a8.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   This program is free software; you can redistribute it and/or modify  *
15  *   it under the terms of the GNU General Public License as published by  *
16  *   the Free Software Foundation; either version 2 of the License, or     *
17  *   (at your option) any later version.                                   *
18  *                                                                         *
19  *   This program is distributed in the hope that it will be useful,       *
20  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
21  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
22  *   GNU General Public License for more details.                          *
23  *                                                                         *
24  *   You should have received a copy of the GNU General Public License     *
25  *   along with this program; if not, write to the                         *
26  *   Free Software Foundation, Inc.,                                       *
27  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
28  *                                                                         *
29  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
30  *                                                                         *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "cortex_a8.h"
37 #include "armv7a.h"
38 #include "armv4_5.h"
39
40 #include "target_request.h"
41 #include "target_type.h"
42
43 /* cli handling */
44 int cortex_a8_register_commands(struct command_context_s *cmd_ctx);
45
46 /* forward declarations */
47 int cortex_a8_target_create(struct target_s *target, Jim_Interp *interp);
48 int cortex_a8_init_target(struct command_context_s *cmd_ctx,
49                 struct target_s *target);
50 int cortex_a8_examine(struct target_s *target);
51 int cortex_a8_poll(target_t *target);
52 int cortex_a8_halt(target_t *target);
53 int cortex_a8_resume(struct target_s *target, int current, uint32_t address,
54                 int handle_breakpoints, int debug_execution);
55 int cortex_a8_step(struct target_s *target, int current, uint32_t address,
56                 int handle_breakpoints);
57 int cortex_a8_debug_entry(target_t *target);
58 int cortex_a8_restore_context(target_t *target);
59 int cortex_a8_bulk_write_memory(target_t *target, uint32_t address,
60                 uint32_t count, uint8_t *buffer);
61 int cortex_a8_set_breakpoint(struct target_s *target,
62                 breakpoint_t *breakpoint, uint8_t matchmode);
63 int cortex_a8_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint);
64 int cortex_a8_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint);
65 int cortex_a8_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoint);
66 int cortex_a8_dap_read_coreregister_u32(target_t *target,
67                 uint32_t *value, int regnum);
68 int cortex_a8_dap_write_coreregister_u32(target_t *target,
69                 uint32_t value, int regnum);
70
71 target_type_t cortexa8_target =
72 {
73         .name = "cortex_a8",
74
75         .poll = cortex_a8_poll,
76         .arch_state = armv7a_arch_state,
77
78         .target_request_data = NULL,
79
80         .halt = cortex_a8_halt,
81         .resume = cortex_a8_resume,
82         .step = cortex_a8_step,
83
84         .assert_reset = NULL,
85         .deassert_reset = NULL,
86         .soft_reset_halt = NULL,
87
88         .get_gdb_reg_list = armv4_5_get_gdb_reg_list,
89
90         .read_memory = cortex_a8_read_memory,
91         .write_memory = cortex_a8_write_memory,
92         .bulk_write_memory = cortex_a8_bulk_write_memory,
93         .checksum_memory = arm7_9_checksum_memory,
94         .blank_check_memory = arm7_9_blank_check_memory,
95
96         .run_algorithm = armv4_5_run_algorithm,
97
98         .add_breakpoint = cortex_a8_add_breakpoint,
99         .remove_breakpoint = cortex_a8_remove_breakpoint,
100         .add_watchpoint = NULL,
101         .remove_watchpoint = NULL,
102
103         .register_commands = cortex_a8_register_commands,
104         .target_create = cortex_a8_target_create,
105         .init_target = cortex_a8_init_target,
106         .examine = cortex_a8_examine,
107         .quit = NULL
108 };
109
110 /*
111  * FIXME do topology discovery using the ROM; don't
112  * assume this is an OMAP3.
113  */
114 #define swjdp_memoryap 0
115 #define swjdp_debugap 1
116 #define OMAP3530_DEBUG_BASE 0x54011000
117
118 /*
119  * Cortex-A8 Basic debug access, very low level assumes state is saved
120  */
121 int cortex_a8_init_debug_access(target_t *target)
122 {
123         /* get pointers to arch-specific information */
124         armv4_5_common_t *armv4_5 = target->arch_info;
125         armv7a_common_t *armv7a = armv4_5->arch_info;
126         swjdp_common_t *swjdp = &armv7a->swjdp_info;
127
128         int retval;
129         uint32_t dummy;
130
131         LOG_DEBUG(" ");
132
133         /* Unlocking the debug registers for modification */
134         /* The debugport might be uninitialised so try twice */
135         retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
136         if (retval != ERROR_OK)
137                 mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
138         /* Clear Sticky Power Down status Bit in PRSR to enable access to
139            the registers in the Core Power Domain */
140         retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_PRSR, &dummy);
141         /* Enabling of instruction execution in debug mode is done in debug_entry code */
142
143         return retval;
144 }
145
146 int cortex_a8_exec_opcode(target_t *target, uint32_t opcode)
147 {
148         uint32_t dscr;
149         int retval;
150         /* get pointers to arch-specific information */
151         armv4_5_common_t *armv4_5 = target->arch_info;
152         armv7a_common_t *armv7a = armv4_5->arch_info;
153         swjdp_common_t *swjdp = &armv7a->swjdp_info;
154
155         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
156         do
157         {
158                 retval = mem_ap_read_atomic_u32(swjdp,
159                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
160                 if (retval != ERROR_OK)
161                         return retval;
162                 }
163         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
164
165         mem_ap_write_u32(swjdp, armv7a->debug_base + CPUDBG_ITR, opcode);
166
167         do
168         {
169                 retval = mem_ap_read_atomic_u32(swjdp,
170                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
171                 if (retval != ERROR_OK)
172                         return retval;
173                 }
174         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
175
176         return retval;
177 }
178
179 /**************************************************************************
180 Read core register with very few exec_opcode, fast but needs work_area.
181 This can cause problems with MMU active.
182 **************************************************************************/
183 int cortex_a8_read_regs_through_mem(target_t *target, uint32_t address,
184                 uint32_t * regfile)
185 {
186         int retval = ERROR_OK;
187         /* get pointers to arch-specific information */
188         armv4_5_common_t *armv4_5 = target->arch_info;
189         armv7a_common_t *armv7a = armv4_5->arch_info;
190         swjdp_common_t *swjdp = &armv7a->swjdp_info;
191
192         cortex_a8_dap_read_coreregister_u32(target, regfile, 0);
193         cortex_a8_dap_write_coreregister_u32(target, address, 0);
194         cortex_a8_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0));
195         dap_ap_select(swjdp, swjdp_memoryap);
196         mem_ap_read_buf_u32(swjdp, (uint8_t *)(&regfile[1]), 4*15, address);
197         dap_ap_select(swjdp, swjdp_debugap);
198
199         return retval;
200 }
201
202 int cortex_a8_read_cp(target_t *target, uint32_t *value, uint8_t CP,
203                 uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
204 {
205         int retval;
206         /* get pointers to arch-specific information */
207         armv4_5_common_t *armv4_5 = target->arch_info;
208         armv7a_common_t *armv7a = armv4_5->arch_info;
209         swjdp_common_t *swjdp = &armv7a->swjdp_info;
210
211         cortex_a8_exec_opcode(target, ARMV4_5_MRC(CP, op1, 0, CRn, CRm, op2));
212         /* Move R0 to DTRTX */
213         cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
214
215         /* Read DCCTX */
216         retval = mem_ap_read_atomic_u32(swjdp,
217                         armv7a->debug_base + CPUDBG_DTRTX, value);
218
219         return retval;
220 }
221
222 int cortex_a8_write_cp(target_t *target, uint32_t value,
223         uint8_t CP, uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
224 {
225         int retval;
226         /* get pointers to arch-specific information */
227         armv4_5_common_t *armv4_5 = target->arch_info;
228         armv7a_common_t *armv7a = armv4_5->arch_info;
229         swjdp_common_t *swjdp = &armv7a->swjdp_info;
230
231         retval = mem_ap_write_u32(swjdp,
232                         armv7a->debug_base + CPUDBG_DTRRX, value);
233         /* Move DTRRX to r0 */
234         cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
235
236         cortex_a8_exec_opcode(target, ARMV4_5_MCR(CP, op1, 0, CRn, CRm, op2));
237         return retval;
238 }
239
240 int cortex_a8_read_cp15(target_t *target, uint32_t op1, uint32_t op2,
241                 uint32_t CRn, uint32_t CRm, uint32_t *value)
242 {
243         return cortex_a8_read_cp(target, value, 15, op1, CRn, CRm, op2);
244 }
245
246 int cortex_a8_write_cp15(target_t *target, uint32_t op1, uint32_t op2,
247                 uint32_t CRn, uint32_t CRm, uint32_t value)
248 {
249         return cortex_a8_write_cp(target, value, 15, op1, CRn, CRm, op2);
250 }
251
252 int cortex_a8_dap_read_coreregister_u32(target_t *target,
253                 uint32_t *value, int regnum)
254 {
255         int retval = ERROR_OK;
256         uint8_t reg = regnum&0xFF;
257         uint32_t dscr;
258
259         /* get pointers to arch-specific information */
260         armv4_5_common_t *armv4_5 = target->arch_info;
261         armv7a_common_t *armv7a = armv4_5->arch_info;
262         swjdp_common_t *swjdp = &armv7a->swjdp_info;
263
264         if (reg > 16)
265                 return retval;
266
267         if (reg < 15)
268         {
269                 /* Rn to DCCTX, MCR p14, 0, Rd, c0, c5, 0,  0xEE000E15 */
270                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, reg, 0, 5, 0));
271         }
272         else if (reg == 15)
273         {
274                 cortex_a8_exec_opcode(target, 0xE1A0000F);
275                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
276         }
277         else if (reg == 16)
278         {
279                 cortex_a8_exec_opcode(target, ARMV4_5_MRS(0, 0));
280                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
281         }
282
283         /* Read DTRRTX */
284         do
285         {
286                 retval = mem_ap_read_atomic_u32(swjdp,
287                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
288         }
289         while ((dscr & (1 << DSCR_DTR_TX_FULL)) == 0); /* Wait for DTRRXfull */
290
291         retval = mem_ap_read_atomic_u32(swjdp,
292                         armv7a->debug_base + CPUDBG_DTRTX, value);
293
294         return retval;
295 }
296
297 int cortex_a8_dap_write_coreregister_u32(target_t *target, uint32_t value, int regnum)
298 {
299         int retval = ERROR_OK;
300         uint8_t Rd = regnum&0xFF;
301
302         /* get pointers to arch-specific information */
303         armv4_5_common_t *armv4_5 = target->arch_info;
304         armv7a_common_t *armv7a = armv4_5->arch_info;
305         swjdp_common_t *swjdp = &armv7a->swjdp_info;
306
307         if (Rd > 16)
308                 return retval;
309
310         /* Write to DCCRX */
311         retval = mem_ap_write_u32(swjdp,
312                         armv7a->debug_base + CPUDBG_DTRRX, value);
313
314         if (Rd < 15)
315         {
316                 /* DCCRX to Rd, MCR p14, 0, Rd, c0, c5, 0,  0xEE000E15 */
317                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0));
318         }
319         else if (Rd == 15)
320         {
321                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
322                 cortex_a8_exec_opcode(target, 0xE1A0F000);
323         }
324         else if (Rd == 16)
325         {
326                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
327                 cortex_a8_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, 0));
328                 /* Execute a PrefetchFlush instruction through the ITR. */
329                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(15, 0, 0, 7, 5, 4));
330         }
331
332         return retval;
333 }
334
335 /* Write to memory mapped registers directly with no cache or mmu handling */
336 int cortex_a8_dap_write_memap_register_u32(target_t *target, uint32_t address, uint32_t value)
337 {
338         int retval;
339
340         /* get pointers to arch-specific information */
341         armv4_5_common_t *armv4_5 = target->arch_info;
342         armv7a_common_t *armv7a = armv4_5->arch_info;
343         swjdp_common_t *swjdp = &armv7a->swjdp_info;
344
345         retval = mem_ap_write_atomic_u32(swjdp, address, value);
346
347         return retval;
348 }
349
350 /*
351  * Cortex-A8 Run control
352  */
353
354 int cortex_a8_poll(target_t *target)
355 {
356         int retval = ERROR_OK;
357         uint32_t dscr;
358         /* get pointers to arch-specific information */
359         armv4_5_common_t *armv4_5 = target->arch_info;
360         armv7a_common_t *armv7a = armv4_5->arch_info;
361         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
362         swjdp_common_t *swjdp = &armv7a->swjdp_info;
363
364
365         enum target_state prev_target_state = target->state;
366
367         uint8_t saved_apsel = dap_ap_get_select(swjdp);
368         dap_ap_select(swjdp, swjdp_debugap);
369         retval = mem_ap_read_atomic_u32(swjdp,
370                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
371         if (retval != ERROR_OK)
372         {
373                 dap_ap_select(swjdp, saved_apsel);
374                 return retval;
375         }
376         cortex_a8->cpudbg_dscr = dscr;
377
378         if ((dscr & 0x3) == 0x3)
379         {
380                 if (prev_target_state != TARGET_HALTED)
381                 {
382                         /* We have a halting debug event */
383                         LOG_DEBUG("Target halted");
384                         target->state = TARGET_HALTED;
385                         if ((prev_target_state == TARGET_RUNNING)
386                                         || (prev_target_state == TARGET_RESET))
387                         {
388                                 retval = cortex_a8_debug_entry(target);
389                                 if (retval != ERROR_OK)
390                                         return retval;
391
392                                 target_call_event_callbacks(target,
393                                                 TARGET_EVENT_HALTED);
394                         }
395                         if (prev_target_state == TARGET_DEBUG_RUNNING)
396                         {
397                                 LOG_DEBUG(" ");
398
399                                 retval = cortex_a8_debug_entry(target);
400                                 if (retval != ERROR_OK)
401                                         return retval;
402
403                                 target_call_event_callbacks(target,
404                                                 TARGET_EVENT_DEBUG_HALTED);
405                         }
406                 }
407         }
408         else if ((dscr & 0x3) == 0x2)
409         {
410                 target->state = TARGET_RUNNING;
411         }
412         else
413         {
414                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
415                 target->state = TARGET_UNKNOWN;
416         }
417
418         dap_ap_select(swjdp, saved_apsel);
419
420         return retval;
421 }
422
423 int cortex_a8_halt(target_t *target)
424 {
425         int retval = ERROR_OK;
426         uint32_t dscr;
427
428         /* get pointers to arch-specific information */
429         armv4_5_common_t *armv4_5 = target->arch_info;
430         armv7a_common_t *armv7a = armv4_5->arch_info;
431         swjdp_common_t *swjdp = &armv7a->swjdp_info;
432
433         uint8_t saved_apsel = dap_ap_get_select(swjdp);
434         dap_ap_select(swjdp, swjdp_debugap);
435
436         /*
437          * Tell the core to be halted by writing DRCR with 0x1
438          * and then wait for the core to be halted.
439          */
440         retval = mem_ap_write_atomic_u32(swjdp,
441                         armv7a->debug_base + CPUDBG_DRCR, 0x1);
442
443         /*
444          * enter halting debug mode
445          */
446         mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DSCR, &dscr);
447         retval = mem_ap_write_atomic_u32(swjdp,
448                 armv7a->debug_base + CPUDBG_DSCR, dscr | (1 << DSCR_HALT_DBG_MODE));
449
450         if (retval != ERROR_OK)
451                 goto out;
452
453         do {
454                 mem_ap_read_atomic_u32(swjdp,
455                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
456         } while ((dscr & (1 << DSCR_CORE_HALTED)) == 0);
457
458         target->debug_reason = DBG_REASON_DBGRQ;
459
460 out:
461         dap_ap_select(swjdp, saved_apsel);
462         return retval;
463 }
464
465 int cortex_a8_resume(struct target_s *target, int current,
466                 uint32_t address, int handle_breakpoints, int debug_execution)
467 {
468         /* get pointers to arch-specific information */
469         armv4_5_common_t *armv4_5 = target->arch_info;
470         armv7a_common_t *armv7a = armv4_5->arch_info;
471         swjdp_common_t *swjdp = &armv7a->swjdp_info;
472
473 //      breakpoint_t *breakpoint = NULL;
474         uint32_t resume_pc, dscr;
475
476         uint8_t saved_apsel = dap_ap_get_select(swjdp);
477         dap_ap_select(swjdp, swjdp_debugap);
478
479         if (!debug_execution)
480         {
481                 target_free_all_working_areas(target);
482 //              cortex_m3_enable_breakpoints(target);
483 //              cortex_m3_enable_watchpoints(target);
484         }
485
486 #if 0
487         if (debug_execution)
488         {
489                 /* Disable interrupts */
490                 /* We disable interrupts in the PRIMASK register instead of
491                  * masking with C_MASKINTS,
492                  * This is probably the same issue as Cortex-M3 Errata 377493:
493                  * C_MASKINTS in parallel with disabled interrupts can cause
494                  * local faults to not be taken. */
495                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
496                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
497                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
498
499                 /* Make sure we are in Thumb mode */
500                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
501                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
502                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
503                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
504         }
505 #endif
506
507         /* current = 1: continue on current pc, otherwise continue at <address> */
508         resume_pc = buf_get_u32(
509                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
510                                 armv4_5->core_mode, 15).value,
511                         0, 32);
512         if (!current)
513                 resume_pc = address;
514
515         /* Make sure that the Armv7 gdb thumb fixups does not
516          * kill the return address
517          */
518         if (armv7a->core_state == ARMV7A_STATE_ARM)
519         {
520                 resume_pc &= 0xFFFFFFFC;
521         }
522         /* When the return address is loaded into PC
523          * bit 0 must be 1 to stay in Thumb state
524          */
525         if (armv7a->core_state == ARMV7A_STATE_THUMB)
526         {
527                 resume_pc |= 0x1;
528         }
529         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
530         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
531                                 armv4_5->core_mode, 15).value,
532                         0, 32, resume_pc);
533         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
534                         armv4_5->core_mode, 15).dirty = 1;
535         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
536                         armv4_5->core_mode, 15).valid = 1;
537
538         cortex_a8_restore_context(target);
539 //      arm7_9_restore_context(target); TODO Context is currently NOT Properly restored
540 #if 0
541         /* the front-end may request us not to handle breakpoints */
542         if (handle_breakpoints)
543         {
544                 /* Single step past breakpoint at current address */
545                 if ((breakpoint = breakpoint_find(target, resume_pc)))
546                 {
547                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
548                         cortex_m3_unset_breakpoint(target, breakpoint);
549                         cortex_m3_single_step_core(target);
550                         cortex_m3_set_breakpoint(target, breakpoint);
551                 }
552         }
553
554 #endif
555         /* Restart core and wait for it to be started */
556         mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DRCR, 0x2);
557
558         do {
559                 mem_ap_read_atomic_u32(swjdp,
560                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
561         } while ((dscr & (1 << DSCR_CORE_RESTARTED)) == 0);
562
563         target->debug_reason = DBG_REASON_NOTHALTED;
564         target->state = TARGET_RUNNING;
565
566         /* registers are now invalid */
567         armv4_5_invalidate_core_regs(target);
568
569         if (!debug_execution)
570         {
571                 target->state = TARGET_RUNNING;
572                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
573                 LOG_DEBUG("target resumed at 0x%" PRIx32, resume_pc);
574         }
575         else
576         {
577                 target->state = TARGET_DEBUG_RUNNING;
578                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
579                 LOG_DEBUG("target debug resumed at 0x%" PRIx32, resume_pc);
580         }
581
582         dap_ap_select(swjdp, saved_apsel);
583
584         return ERROR_OK;
585 }
586
587 int cortex_a8_debug_entry(target_t *target)
588 {
589         int i;
590         uint32_t regfile[16], pc, cpsr, dscr;
591         int retval = ERROR_OK;
592         working_area_t *regfile_working_area = NULL;
593
594         /* get pointers to arch-specific information */
595         armv4_5_common_t *armv4_5 = target->arch_info;
596         armv7a_common_t *armv7a = armv4_5->arch_info;
597         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
598         swjdp_common_t *swjdp = &armv7a->swjdp_info;
599
600         if (armv7a->pre_debug_entry)
601                 armv7a->pre_debug_entry(target);
602
603         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a8->cpudbg_dscr);
604
605         /* Enable the ITR execution once we are in debug mode */
606         mem_ap_read_atomic_u32(swjdp,
607                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
608         dscr |= (1 << DSCR_EXT_INT_EN);
609         retval = mem_ap_write_atomic_u32(swjdp,
610                         armv7a->debug_base + CPUDBG_DSCR, dscr);
611
612         /* Examine debug reason */
613         switch ((cortex_a8->cpudbg_dscr >> 2)&0xF)
614         {
615                 case 0:
616                 case 4:
617                         target->debug_reason = DBG_REASON_DBGRQ;
618                         break;
619                 case 1:
620                 case 3:
621                         target->debug_reason = DBG_REASON_BREAKPOINT;
622                         break;
623                 case 10:
624                         target->debug_reason = DBG_REASON_WATCHPOINT;
625                         break;
626                 default:
627                         target->debug_reason = DBG_REASON_UNDEFINED;
628                         break;
629         }
630
631         /* Examine target state and mode */
632         if (cortex_a8->fast_reg_read)
633                 target_alloc_working_area(target, 64, &regfile_working_area);
634
635         /* First load register acessible through core debug port*/
636         if (!regfile_working_area)
637         {
638                 for (i = 0; i <= 15; i++)
639                         cortex_a8_dap_read_coreregister_u32(target,
640                                         &regfile[i], i);
641         }
642         else
643         {
644                 dap_ap_select(swjdp, swjdp_memoryap);
645                 cortex_a8_read_regs_through_mem(target,
646                                 regfile_working_area->address, regfile);
647                 dap_ap_select(swjdp, swjdp_memoryap);
648                 target_free_working_area(target, regfile_working_area);
649         }
650
651         cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16);
652         pc = regfile[15];
653         dap_ap_select(swjdp, swjdp_debugap);
654         LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
655
656         armv4_5->core_mode = cpsr & 0x1F;
657         armv7a->core_state = (cpsr & 0x20)?ARMV7A_STATE_THUMB:ARMV7A_STATE_ARM;
658
659         for (i = 0; i <= ARM_PC; i++)
660         {
661                 buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
662                                         armv4_5->core_mode, i).value,
663                                 0, 32, regfile[i]);
664                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
665                                 armv4_5->core_mode, i).valid = 1;
666                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
667                                 armv4_5->core_mode, i).dirty = 0;
668         }
669         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
670                                 armv4_5->core_mode, 16).value,
671                         0, 32, cpsr);
672         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).valid = 1;
673         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).dirty = 0;
674
675         /* Fixup PC Resume Address */
676         if (armv7a->core_state == ARMV7A_STATE_THUMB)
677         {
678                 // T bit set for Thumb or ThumbEE state
679                 regfile[ARM_PC] -= 4;
680         }
681         else
682         {
683                 // ARM state
684                 regfile[ARM_PC] -= 8;
685         }
686         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
687                                 armv4_5->core_mode, ARM_PC).value,
688                         0, 32, regfile[ARM_PC]);
689
690         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0)
691                 .dirty = ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
692                                 armv4_5->core_mode, 0).valid;
693         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15)
694                 .dirty = ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
695                                 armv4_5->core_mode, 15).valid;
696
697 #if 0
698 /* TODO, Move this */
699         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
700         cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
701         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
702
703         cortex_a8_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
704         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
705
706         cortex_a8_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
707         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
708 #endif
709
710         /* Are we in an exception handler */
711 //      armv4_5->exception_number = 0;
712         if (armv7a->post_debug_entry)
713                 armv7a->post_debug_entry(target);
714
715
716
717         return retval;
718
719 }
720
721 void cortex_a8_post_debug_entry(target_t *target)
722 {
723         /* get pointers to arch-specific information */
724         armv4_5_common_t *armv4_5 = target->arch_info;
725         armv7a_common_t *armv7a = armv4_5->arch_info;
726         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
727
728 //      cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
729         /* examine cp15 control reg */
730         armv7a->read_cp15(target, 0, 0, 1, 0, &cortex_a8->cp15_control_reg);
731         jtag_execute_queue();
732         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
733
734         if (armv7a->armv4_5_mmu.armv4_5_cache.ctype == -1)
735         {
736                 uint32_t cache_type_reg;
737                 /* identify caches */
738                 armv7a->read_cp15(target, 0, 1, 0, 0, &cache_type_reg);
739                 jtag_execute_queue();
740                 /* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A8 */
741                 armv4_5_identify_cache(cache_type_reg,
742                                 &armv7a->armv4_5_mmu.armv4_5_cache);
743         }
744
745         armv7a->armv4_5_mmu.mmu_enabled =
746                         (cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0;
747         armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
748                         (cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0;
749         armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
750                         (cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0;
751
752
753 }
754
755 int cortex_a8_step(struct target_s *target, int current, uint32_t address,
756                 int handle_breakpoints)
757 {
758         /* get pointers to arch-specific information */
759         armv4_5_common_t *armv4_5 = target->arch_info;
760         armv7a_common_t *armv7a = armv4_5->arch_info;
761         breakpoint_t *breakpoint = NULL;
762         breakpoint_t stepbreakpoint;
763
764         int timeout = 100;
765
766         if (target->state != TARGET_HALTED)
767         {
768                 LOG_WARNING("target not halted");
769                 return ERROR_TARGET_NOT_HALTED;
770         }
771
772         /* current = 1: continue on current pc, otherwise continue at <address> */
773         if (!current)
774         {
775                 buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
776                                         armv4_5->core_mode, ARM_PC).value,
777                                 0, 32, address);
778         }
779         else
780         {
781                 address = buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
782                                         armv4_5->core_mode, ARM_PC).value,
783                                 0, 32);
784         }
785
786         /* The front-end may request us not to handle breakpoints.
787          * But since Cortex-A8 uses breakpoint for single step,
788          * we MUST handle breakpoints.
789          */
790         handle_breakpoints = 1;
791         if (handle_breakpoints) {
792                 breakpoint = breakpoint_find(target,
793                                 buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
794                                         armv4_5->core_mode, 15).value,
795                         0, 32));
796                 if (breakpoint)
797                         cortex_a8_unset_breakpoint(target, breakpoint);
798         }
799
800         /* Setup single step breakpoint */
801         stepbreakpoint.address = address;
802         stepbreakpoint.length = (armv7a->core_state == ARMV7A_STATE_THUMB) ? 2 : 4;
803         stepbreakpoint.type = BKPT_HARD;
804         stepbreakpoint.set = 0;
805
806         /* Break on IVA mismatch */
807         cortex_a8_set_breakpoint(target, &stepbreakpoint, 0x04);
808
809         target->debug_reason = DBG_REASON_SINGLESTEP;
810
811         cortex_a8_resume(target, 1, address, 0, 0);
812
813         while (target->state != TARGET_HALTED)
814         {
815                 cortex_a8_poll(target);
816                 if (--timeout == 0)
817                 {
818                         LOG_WARNING("timeout waiting for target halt");
819                         break;
820                 }
821         }
822
823         cortex_a8_unset_breakpoint(target, &stepbreakpoint);
824         if (timeout > 0) target->debug_reason = DBG_REASON_BREAKPOINT;
825
826         if (breakpoint)
827                 cortex_a8_set_breakpoint(target, breakpoint, 0);
828
829         if (target->state != TARGET_HALTED)
830                 LOG_DEBUG("target stepped");
831
832         return ERROR_OK;
833 }
834
835 int cortex_a8_restore_context(target_t *target)
836 {
837         int i;
838         uint32_t value;
839
840         /* get pointers to arch-specific information */
841         armv4_5_common_t *armv4_5 = target->arch_info;
842         armv7a_common_t *armv7a = armv4_5->arch_info;
843
844         LOG_DEBUG(" ");
845
846         if (armv7a->pre_restore_context)
847                 armv7a->pre_restore_context(target);
848
849         for (i = 15; i >= 0; i--)
850         {
851                 if (ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
852                                         armv4_5->core_mode, i).dirty)
853                 {
854                         value = buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
855                                                 armv4_5->core_mode, i).value,
856                                         0, 32);
857                         /* TODO Check return values */
858                         cortex_a8_dap_write_coreregister_u32(target, value, i);
859                 }
860         }
861
862         if (armv7a->post_restore_context)
863                 armv7a->post_restore_context(target);
864
865         return ERROR_OK;
866 }
867
868
869 /*
870  * Cortex-A8 Core register functions
871  */
872
873 int cortex_a8_load_core_reg_u32(struct target_s *target, int num,
874                 armv4_5_mode_t mode, uint32_t * value)
875 {
876         int retval;
877         /* get pointers to arch-specific information */
878         armv4_5_common_t *armv4_5 = target->arch_info;
879
880         if ((num <= ARM_CPSR))
881         {
882                 /* read a normal core register */
883                 retval = cortex_a8_dap_read_coreregister_u32(target, value, num);
884
885                 if (retval != ERROR_OK)
886                 {
887                         LOG_ERROR("JTAG failure %i", retval);
888                         return ERROR_JTAG_DEVICE_ERROR;
889                 }
890                 LOG_DEBUG("load from core reg %i value 0x%" PRIx32, num, *value);
891         }
892         else
893         {
894                 return ERROR_INVALID_ARGUMENTS;
895         }
896
897         /* Register other than r0 - r14 uses r0 for access */
898         if (num > 14)
899                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
900                                 armv4_5->core_mode, 0).dirty =
901                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
902                                 armv4_5->core_mode, 0).valid;
903         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
904                                 armv4_5->core_mode, 15).dirty =
905                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
906                                 armv4_5->core_mode, 15).valid;
907
908         return ERROR_OK;
909 }
910
911 int cortex_a8_store_core_reg_u32(struct target_s *target, int num,
912                 armv4_5_mode_t mode, uint32_t value)
913 {
914         int retval;
915 //      uint32_t reg;
916
917         /* get pointers to arch-specific information */
918         armv4_5_common_t *armv4_5 = target->arch_info;
919
920 #ifdef ARMV7_GDB_HACKS
921         /* If the LR register is being modified, make sure it will put us
922          * in "thumb" mode, or an INVSTATE exception will occur. This is a
923          * hack to deal with the fact that gdb will sometimes "forge"
924          * return addresses, and doesn't set the LSB correctly (i.e., when
925          * printing expressions containing function calls, it sets LR=0.) */
926
927         if (num == 14)
928                 value |= 0x01;
929 #endif
930
931         if ((num <= ARM_CPSR))
932         {
933                 retval = cortex_a8_dap_write_coreregister_u32(target, value, num);
934                 if (retval != ERROR_OK)
935                 {
936                         LOG_ERROR("JTAG failure %i", retval);
937                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
938                                         armv4_5->core_mode, num).dirty =
939                                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
940                                         armv4_5->core_mode, num).valid;
941                         return ERROR_JTAG_DEVICE_ERROR;
942                 }
943                 LOG_DEBUG("write core reg %i value 0x%" PRIx32, num, value);
944         }
945         else
946         {
947                 return ERROR_INVALID_ARGUMENTS;
948         }
949
950         return ERROR_OK;
951 }
952
953
954 int cortex_a8_read_core_reg(struct target_s *target, int num,
955                 enum armv4_5_mode mode)
956 {
957         uint32_t value;
958         int retval;
959         armv4_5_common_t *armv4_5 = target->arch_info;
960         cortex_a8_dap_read_coreregister_u32(target, &value, num);
961
962         if ((retval = jtag_execute_queue()) != ERROR_OK)
963         {
964                 return retval;
965         }
966
967         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
968         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
969         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
970                         mode, num).value, 0, 32, value);
971
972         return ERROR_OK;
973 }
974
975 int cortex_a8_write_core_reg(struct target_s *target, int num,
976                 enum armv4_5_mode mode, uint32_t value)
977 {
978         int retval;
979         armv4_5_common_t *armv4_5 = target->arch_info;
980
981         cortex_a8_dap_write_coreregister_u32(target, value, num);
982         if ((retval = jtag_execute_queue()) != ERROR_OK)
983         {
984                 return retval;
985         }
986
987         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
988         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
989
990         return ERROR_OK;
991 }
992
993
994 /*
995  * Cortex-A8 Breakpoint and watchpoint fuctions
996  */
997
998 /* Setup hardware Breakpoint Register Pair */
999 int cortex_a8_set_breakpoint(struct target_s *target,
1000                 breakpoint_t *breakpoint, uint8_t matchmode)
1001 {
1002         int retval;
1003         int brp_i=0;
1004         uint32_t control;
1005         uint8_t byte_addr_select = 0x0F;
1006
1007
1008         /* get pointers to arch-specific information */
1009         armv4_5_common_t *armv4_5 = target->arch_info;
1010         armv7a_common_t *armv7a = armv4_5->arch_info;
1011         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1012         cortex_a8_brp_t * brp_list = cortex_a8->brp_list;
1013
1014         if (breakpoint->set)
1015         {
1016                 LOG_WARNING("breakpoint already set");
1017                 return ERROR_OK;
1018         }
1019
1020         if (breakpoint->type == BKPT_HARD)
1021         {
1022                 while (brp_list[brp_i].used && (brp_i < cortex_a8->brp_num))
1023                         brp_i++ ;
1024                 if (brp_i >= cortex_a8->brp_num)
1025                 {
1026                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1027                         exit(-1);
1028                 }
1029                 breakpoint->set = brp_i + 1;
1030                 if (breakpoint->length == 2)
1031                 {
1032                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1033                 }
1034                 control = ((matchmode & 0x7) << 20)
1035                                 | (byte_addr_select << 5)
1036                                 | (3 << 1) | 1;
1037                 brp_list[brp_i].used = 1;
1038                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1039                 brp_list[brp_i].control = control;
1040                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1041                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1042                                 brp_list[brp_i].value);
1043                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1044                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1045                                 brp_list[brp_i].control);
1046                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1047                                 brp_list[brp_i].control,
1048                                 brp_list[brp_i].value);
1049         }
1050         else if (breakpoint->type == BKPT_SOFT)
1051         {
1052                 uint8_t code[4];
1053                 if (breakpoint->length == 2)
1054                 {
1055                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1056                 }
1057                 else
1058                 {
1059                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1060                 }
1061                 retval = target->type->read_memory(target,
1062                                 breakpoint->address & 0xFFFFFFFE,
1063                                 breakpoint->length, 1,
1064                                 breakpoint->orig_instr);
1065                 if (retval != ERROR_OK)
1066                         return retval;
1067                 retval = target->type->write_memory(target,
1068                                 breakpoint->address & 0xFFFFFFFE,
1069                                 breakpoint->length, 1, code);
1070                 if (retval != ERROR_OK)
1071                         return retval;
1072                 breakpoint->set = 0x11; /* Any nice value but 0 */
1073         }
1074
1075         return ERROR_OK;
1076 }
1077
1078 int cortex_a8_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
1079 {
1080         int retval;
1081         /* get pointers to arch-specific information */
1082         armv4_5_common_t *armv4_5 = target->arch_info;
1083         armv7a_common_t *armv7a = armv4_5->arch_info;
1084         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1085         cortex_a8_brp_t * brp_list = cortex_a8->brp_list;
1086
1087         if (!breakpoint->set)
1088         {
1089                 LOG_WARNING("breakpoint not set");
1090                 return ERROR_OK;
1091         }
1092
1093         if (breakpoint->type == BKPT_HARD)
1094         {
1095                 int brp_i = breakpoint->set - 1;
1096                 if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num))
1097                 {
1098                         LOG_DEBUG("Invalid BRP number in breakpoint");
1099                         return ERROR_OK;
1100                 }
1101                 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1102                                 brp_list[brp_i].control, brp_list[brp_i].value);
1103                 brp_list[brp_i].used = 0;
1104                 brp_list[brp_i].value = 0;
1105                 brp_list[brp_i].control = 0;
1106                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1107                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1108                                 brp_list[brp_i].control);
1109                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1110                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1111                                 brp_list[brp_i].value);
1112         }
1113         else
1114         {
1115                 /* restore original instruction (kept in target endianness) */
1116                 if (breakpoint->length == 4)
1117                 {
1118                         retval = target->type->write_memory(target,
1119                                         breakpoint->address & 0xFFFFFFFE,
1120                                         4, 1, breakpoint->orig_instr);
1121                         if (retval != ERROR_OK)
1122                                 return retval;
1123                 }
1124                 else
1125                 {
1126                         retval = target->type->write_memory(target,
1127                                         breakpoint->address & 0xFFFFFFFE,
1128                                         2, 1, breakpoint->orig_instr);
1129                         if (retval != ERROR_OK)
1130                                 return retval;
1131                 }
1132         }
1133         breakpoint->set = 0;
1134
1135         return ERROR_OK;
1136 }
1137
1138 int cortex_a8_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
1139 {
1140         /* get pointers to arch-specific information */
1141         armv4_5_common_t *armv4_5 = target->arch_info;
1142         armv7a_common_t *armv7a = armv4_5->arch_info;
1143         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1144
1145         if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1))
1146         {
1147                 LOG_INFO("no hardware breakpoint available");
1148                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1149         }
1150
1151         if (breakpoint->type == BKPT_HARD)
1152                 cortex_a8->brp_num_available--;
1153         cortex_a8_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1154
1155         return ERROR_OK;
1156 }
1157
1158 int cortex_a8_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
1159 {
1160         /* get pointers to arch-specific information */
1161         armv4_5_common_t *armv4_5 = target->arch_info;
1162         armv7a_common_t *armv7a = armv4_5->arch_info;
1163         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1164
1165 #if 0
1166 /* It is perfectly possible to remove brakpoints while the taget is running */
1167         if (target->state != TARGET_HALTED)
1168         {
1169                 LOG_WARNING("target not halted");
1170                 return ERROR_TARGET_NOT_HALTED;
1171         }
1172 #endif
1173
1174         if (breakpoint->set)
1175         {
1176                 cortex_a8_unset_breakpoint(target, breakpoint);
1177                 if (breakpoint->type == BKPT_HARD)
1178                         cortex_a8->brp_num_available++ ;
1179         }
1180
1181
1182         return ERROR_OK;
1183 }
1184
1185
1186
1187 /*
1188  * Cortex-A8 Reset fuctions
1189  */
1190
1191
1192 /*
1193  * Cortex-A8 Memory access
1194  *
1195  * This is same Cortex M3 but we must also use the correct
1196  * ap number for every access.
1197  */
1198
1199 int cortex_a8_read_memory(struct target_s *target, uint32_t address,
1200                 uint32_t size, uint32_t count, uint8_t *buffer)
1201 {
1202         /* get pointers to arch-specific information */
1203         armv4_5_common_t *armv4_5 = target->arch_info;
1204         armv7a_common_t *armv7a = armv4_5->arch_info;
1205         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1206
1207         int retval = ERROR_OK;
1208
1209         /* sanitize arguments */
1210         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
1211                 return ERROR_INVALID_ARGUMENTS;
1212
1213         /* cortex_a8 handles unaligned memory access */
1214
1215 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1216
1217         switch (size)
1218         {
1219                 case 4:
1220                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1221                         break;
1222                 case 2:
1223                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1224                         break;
1225                 case 1:
1226                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1227                         break;
1228                 default:
1229                         LOG_ERROR("BUG: we shouldn't get here");
1230                         exit(-1);
1231         }
1232
1233         return retval;
1234 }
1235
1236 int cortex_a8_write_memory(struct target_s *target, uint32_t address,
1237                 uint32_t size, uint32_t count, uint8_t *buffer)
1238 {
1239         /* get pointers to arch-specific information */
1240         armv4_5_common_t *armv4_5 = target->arch_info;
1241         armv7a_common_t *armv7a = armv4_5->arch_info;
1242         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1243
1244         int retval;
1245
1246         /* sanitize arguments */
1247         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
1248                 return ERROR_INVALID_ARGUMENTS;
1249
1250 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1251
1252         switch (size)
1253         {
1254                 case 4:
1255                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1256                         break;
1257                 case 2:
1258                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1259                         break;
1260                 case 1:
1261                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1262                         break;
1263                 default:
1264                         LOG_ERROR("BUG: we shouldn't get here");
1265                         exit(-1);
1266         }
1267
1268         /* The Cache handling will NOT work with MMU active, the wrong addresses will be invalidated */
1269         /* invalidate I-Cache */
1270         if (armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
1271         {
1272                 /* Invalidate ICache single entry with MVA, repeat this for all cache
1273                    lines in the address range, Cortex-A8 has fixed 64 byte line length */
1274                 /* Invalidate Cache single entry with MVA to PoU */
1275                 for (uint32_t cacheline=address; cacheline<address+size*count; cacheline+=64)
1276                         armv7a->write_cp15(target, 0, 1, 7, 5, cacheline); /* I-Cache to PoU */
1277         }
1278         /* invalidate D-Cache */
1279         if (armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
1280         {
1281                 /* Invalidate Cache single entry with MVA to PoC */
1282                 for (uint32_t cacheline=address; cacheline<address+size*count; cacheline+=64)
1283                         armv7a->write_cp15(target, 0, 1, 7, 6, cacheline); /* U/D cache to PoC */
1284         }
1285
1286         return retval;
1287 }
1288
1289 int cortex_a8_bulk_write_memory(target_t *target, uint32_t address,
1290                 uint32_t count, uint8_t *buffer)
1291 {
1292         return cortex_a8_write_memory(target, address, 4, count, buffer);
1293 }
1294
1295
1296 int cortex_a8_dcc_read(swjdp_common_t *swjdp, uint8_t *value, uint8_t *ctrl)
1297 {
1298 #if 0
1299         u16 dcrdr;
1300
1301         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1302         *ctrl = (uint8_t)dcrdr;
1303         *value = (uint8_t)(dcrdr >> 8);
1304
1305         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1306
1307         /* write ack back to software dcc register
1308          * signify we have read data */
1309         if (dcrdr & (1 << 0))
1310         {
1311                 dcrdr = 0;
1312                 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1313         }
1314 #endif
1315         return ERROR_OK;
1316 }
1317
1318
1319 int cortex_a8_handle_target_request(void *priv)
1320 {
1321         target_t *target = priv;
1322         if (!target->type->examined)
1323                 return ERROR_OK;
1324         armv4_5_common_t *armv4_5 = target->arch_info;
1325         armv7a_common_t *armv7a = armv4_5->arch_info;
1326         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1327
1328
1329         if (!target->dbg_msg_enabled)
1330                 return ERROR_OK;
1331
1332         if (target->state == TARGET_RUNNING)
1333         {
1334                 uint8_t data = 0;
1335                 uint8_t ctrl = 0;
1336
1337                 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1338
1339                 /* check if we have data */
1340                 if (ctrl & (1 << 0))
1341                 {
1342                         uint32_t request;
1343
1344                         /* we assume target is quick enough */
1345                         request = data;
1346                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1347                         request |= (data << 8);
1348                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1349                         request |= (data << 16);
1350                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1351                         request |= (data << 24);
1352                         target_request(target, request);
1353                 }
1354         }
1355
1356         return ERROR_OK;
1357 }
1358
1359 /*
1360  * Cortex-A8 target information and configuration
1361  */
1362
1363 int cortex_a8_examine(struct target_s *target)
1364 {
1365         /* get pointers to arch-specific information */
1366         armv4_5_common_t *armv4_5 = target->arch_info;
1367         armv7a_common_t *armv7a = armv4_5->arch_info;
1368         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1369         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1370
1371
1372         int i;
1373         int retval = ERROR_OK;
1374         uint32_t didr, ctypr, ttypr, cpuid;
1375
1376         LOG_DEBUG("TODO");
1377
1378         /* Here we shall insert a proper ROM Table scan */
1379         armv7a->debug_base = OMAP3530_DEBUG_BASE;
1380
1381         /* We do one extra read to ensure DAP is configured,
1382          * we call ahbap_debugport_init(swjdp) instead
1383          */
1384         ahbap_debugport_init(swjdp);
1385         mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_CPUID, &cpuid);
1386         if ((retval = mem_ap_read_atomic_u32(swjdp,
1387                         armv7a->debug_base + CPUDBG_CPUID, &cpuid)) != ERROR_OK)
1388         {
1389                 LOG_DEBUG("Examine failed");
1390                 return retval;
1391         }
1392
1393         if ((retval = mem_ap_read_atomic_u32(swjdp,
1394                         armv7a->debug_base + CPUDBG_CTYPR, &ctypr)) != ERROR_OK)
1395         {
1396                 LOG_DEBUG("Examine failed");
1397                 return retval;
1398         }
1399
1400         if ((retval = mem_ap_read_atomic_u32(swjdp,
1401                         armv7a->debug_base + CPUDBG_TTYPR, &ttypr)) != ERROR_OK)
1402         {
1403                 LOG_DEBUG("Examine failed");
1404                 return retval;
1405         }
1406
1407         if ((retval = mem_ap_read_atomic_u32(swjdp,
1408                         armv7a->debug_base + CPUDBG_DIDR, &didr)) != ERROR_OK)
1409         {
1410                 LOG_DEBUG("Examine failed");
1411                 return retval;
1412         }
1413
1414         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1415         LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
1416         LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
1417         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
1418
1419         /* Setup Breakpoint Register Pairs */
1420         cortex_a8->brp_num = ((didr >> 24) & 0x0F) + 1;
1421         cortex_a8->brp_num_context = ((didr >> 20) & 0x0F) + 1;
1422         cortex_a8->brp_num_available = cortex_a8->brp_num;
1423         cortex_a8->brp_list = calloc(cortex_a8->brp_num, sizeof(cortex_a8_brp_t));
1424 //      cortex_a8->brb_enabled = ????;
1425         for (i = 0; i < cortex_a8->brp_num; i++)
1426         {
1427                 cortex_a8->brp_list[i].used = 0;
1428                 if (i < (cortex_a8->brp_num-cortex_a8->brp_num_context))
1429                         cortex_a8->brp_list[i].type = BRP_NORMAL;
1430                 else
1431                         cortex_a8->brp_list[i].type = BRP_CONTEXT;
1432                 cortex_a8->brp_list[i].value = 0;
1433                 cortex_a8->brp_list[i].control = 0;
1434                 cortex_a8->brp_list[i].BRPn = i;
1435         }
1436
1437         /* Setup Watchpoint Register Pairs */
1438         cortex_a8->wrp_num = ((didr >> 28) & 0x0F) + 1;
1439         cortex_a8->wrp_num_available = cortex_a8->wrp_num;
1440         cortex_a8->wrp_list = calloc(cortex_a8->wrp_num, sizeof(cortex_a8_wrp_t));
1441         for (i = 0; i < cortex_a8->wrp_num; i++)
1442         {
1443                 cortex_a8->wrp_list[i].used = 0;
1444                 cortex_a8->wrp_list[i].type = 0;
1445                 cortex_a8->wrp_list[i].value = 0;
1446                 cortex_a8->wrp_list[i].control = 0;
1447                 cortex_a8->wrp_list[i].WRPn = i;
1448         }
1449         LOG_DEBUG("Configured %i hw breakpoint pairs and %i hw watchpoint pairs",
1450                         cortex_a8->brp_num , cortex_a8->wrp_num);
1451
1452         /* Configure core debug access */
1453         cortex_a8_init_debug_access(target);
1454
1455         target->type->examined = 1;
1456
1457         return retval;
1458 }
1459
1460 /*
1461  *      Cortex-A8 target creation and initialization
1462  */
1463
1464 void cortex_a8_build_reg_cache(target_t *target)
1465 {
1466         reg_cache_t **cache_p = register_get_last_cache_p(&target->reg_cache);
1467         /* get pointers to arch-specific information */
1468         armv4_5_common_t *armv4_5 = target->arch_info;
1469
1470         (*cache_p) = armv4_5_build_reg_cache(target, armv4_5);
1471         armv4_5->core_cache = (*cache_p);
1472 }
1473
1474
1475 int cortex_a8_init_target(struct command_context_s *cmd_ctx,
1476                 struct target_s *target)
1477 {
1478         cortex_a8_build_reg_cache(target);
1479         return ERROR_OK;
1480 }
1481
1482 int cortex_a8_init_arch_info(target_t *target,
1483                 cortex_a8_common_t *cortex_a8, jtag_tap_t *tap)
1484 {
1485         armv4_5_common_t *armv4_5;
1486         armv7a_common_t *armv7a;
1487
1488         armv7a = &cortex_a8->armv7a_common;
1489         armv4_5 = &armv7a->armv4_5_common;
1490         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1491
1492         /* Setup cortex_a8_common_t */
1493         cortex_a8->common_magic = CORTEX_A8_COMMON_MAGIC;
1494         cortex_a8->arch_info = NULL;
1495         armv7a->arch_info = cortex_a8;
1496         armv4_5->arch_info = armv7a;
1497
1498         armv4_5_init_arch_info(target, armv4_5);
1499
1500         /* prepare JTAG information for the new target */
1501         cortex_a8->jtag_info.tap = tap;
1502         cortex_a8->jtag_info.scann_size = 4;
1503 LOG_DEBUG(" ");
1504         swjdp->dp_select_value = -1;
1505         swjdp->ap_csw_value = -1;
1506         swjdp->ap_tar_value = -1;
1507         swjdp->jtag_info = &cortex_a8->jtag_info;
1508         swjdp->memaccess_tck = 80;
1509
1510         /* Number of bits for tar autoincrement, impl. dep. at least 10 */
1511         swjdp->tar_autoincr_block = (1 << 10);
1512
1513         cortex_a8->fast_reg_read = 0;
1514
1515
1516         /* register arch-specific functions */
1517         armv7a->examine_debug_reason = NULL;
1518
1519         armv7a->pre_debug_entry = NULL;
1520         armv7a->post_debug_entry = cortex_a8_post_debug_entry;
1521
1522         armv7a->pre_restore_context = NULL;
1523         armv7a->post_restore_context = NULL;
1524         armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1;
1525 //      armv7a->armv4_5_mmu.get_ttb = armv7a_get_ttb;
1526         armv7a->armv4_5_mmu.read_memory = cortex_a8_read_memory;
1527         armv7a->armv4_5_mmu.write_memory = cortex_a8_write_memory;
1528 //      armv7a->armv4_5_mmu.disable_mmu_caches = armv7a_disable_mmu_caches;
1529 //      armv7a->armv4_5_mmu.enable_mmu_caches = armv7a_enable_mmu_caches;
1530         armv7a->armv4_5_mmu.has_tiny_pages = 1;
1531         armv7a->armv4_5_mmu.mmu_enabled = 0;
1532         armv7a->read_cp15 = cortex_a8_read_cp15;
1533         armv7a->write_cp15 = cortex_a8_write_cp15;
1534
1535
1536 //      arm7_9->handle_target_request = cortex_a8_handle_target_request;
1537
1538         armv4_5->read_core_reg = cortex_a8_read_core_reg;
1539         armv4_5->write_core_reg = cortex_a8_write_core_reg;
1540 //      armv4_5->full_context = arm7_9_full_context;
1541
1542 //      armv4_5->load_core_reg_u32 = cortex_a8_load_core_reg_u32;
1543 //      armv4_5->store_core_reg_u32 = cortex_a8_store_core_reg_u32;
1544 //      armv4_5->read_core_reg = armv4_5_read_core_reg; /* this is default */
1545 //      armv4_5->write_core_reg = armv4_5_write_core_reg;
1546
1547         target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target);
1548
1549         return ERROR_OK;
1550 }
1551
1552 int cortex_a8_target_create(struct target_s *target, Jim_Interp *interp)
1553 {
1554         cortex_a8_common_t *cortex_a8 = calloc(1, sizeof(cortex_a8_common_t));
1555
1556         cortex_a8_init_arch_info(target, cortex_a8, target->tap);
1557
1558         return ERROR_OK;
1559 }
1560
1561 static int cortex_a8_handle_cache_info_command(struct command_context_s *cmd_ctx,
1562                 char *cmd, char **args, int argc)
1563 {
1564         target_t *target = get_current_target(cmd_ctx);
1565         armv4_5_common_t *armv4_5 = target->arch_info;
1566         armv7a_common_t *armv7a = armv4_5->arch_info;
1567
1568         return armv4_5_handle_cache_info_command(cmd_ctx,
1569                         &armv7a->armv4_5_mmu.armv4_5_cache);
1570 }
1571
1572
1573 static int cortex_a8_handle_dbginit_command(struct command_context_s *cmd_ctx,
1574                 char *cmd, char **args, int argc)
1575 {
1576         target_t *target = get_current_target(cmd_ctx);
1577
1578         cortex_a8_init_debug_access(target);
1579
1580         return ERROR_OK;
1581 }
1582
1583
1584 int cortex_a8_register_commands(struct command_context_s *cmd_ctx)
1585 {
1586         command_t *cortex_a8_cmd;
1587         int retval = ERROR_OK;
1588
1589         armv4_5_register_commands(cmd_ctx);
1590         armv7a_register_commands(cmd_ctx);
1591
1592         cortex_a8_cmd = register_command(cmd_ctx, NULL, "cortex_a8",
1593                         NULL, COMMAND_ANY,
1594                         "cortex_a8 specific commands");
1595
1596         register_command(cmd_ctx, cortex_a8_cmd, "cache_info",
1597                         cortex_a8_handle_cache_info_command, COMMAND_EXEC,
1598                         "display information about target caches");
1599
1600         register_command(cmd_ctx, cortex_a8_cmd, "dbginit",
1601                         cortex_a8_handle_dbginit_command, COMMAND_EXEC,
1602                         "Initialize core debug");
1603
1604         return retval;
1605 }