mips: fix gaffe when removing dynamic array allocation
[fw/openocd] / src / target / cortex_a8.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   This program is free software; you can redistribute it and/or modify  *
15  *   it under the terms of the GNU General Public License as published by  *
16  *   the Free Software Foundation; either version 2 of the License, or     *
17  *   (at your option) any later version.                                   *
18  *                                                                         *
19  *   This program is distributed in the hope that it will be useful,       *
20  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
21  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
22  *   GNU General Public License for more details.                          *
23  *                                                                         *
24  *   You should have received a copy of the GNU General Public License     *
25  *   along with this program; if not, write to the                         *
26  *   Free Software Foundation, Inc.,                                       *
27  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
28  *                                                                         *
29  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
30  *                                                                         *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "breakpoints.h"
37 #include "cortex_a8.h"
38 #include "register.h"
39 #include "target_request.h"
40 #include "target_type.h"
41
42 static int cortex_a8_poll(struct target *target);
43 static int cortex_a8_debug_entry(struct target *target);
44 static int cortex_a8_restore_context(struct target *target);
45 static int cortex_a8_set_breakpoint(struct target *target,
46                 struct breakpoint *breakpoint, uint8_t matchmode);
47 static int cortex_a8_unset_breakpoint(struct target *target,
48                 struct breakpoint *breakpoint);
49 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
50                 uint32_t *value, int regnum);
51 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
52                 uint32_t value, int regnum);
53 /*
54  * FIXME do topology discovery using the ROM; don't
55  * assume this is an OMAP3.
56  */
57 #define swjdp_memoryap 0
58 #define swjdp_debugap 1
59 #define OMAP3530_DEBUG_BASE 0x54011000
60
61 /*
62  * Cortex-A8 Basic debug access, very low level assumes state is saved
63  */
64 static int cortex_a8_init_debug_access(struct target *target)
65 {
66         struct armv7a_common *armv7a = target_to_armv7a(target);
67         struct swjdp_common *swjdp = &armv7a->swjdp_info;
68
69         int retval;
70         uint32_t dummy;
71
72         LOG_DEBUG(" ");
73
74         /* Unlocking the debug registers for modification */
75         /* The debugport might be uninitialised so try twice */
76         retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
77         if (retval != ERROR_OK)
78                 mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
79         /* Clear Sticky Power Down status Bit in PRSR to enable access to
80            the registers in the Core Power Domain */
81         retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_PRSR, &dummy);
82         /* Enabling of instruction execution in debug mode is done in debug_entry code */
83
84         /* Resync breakpoint registers */
85
86         /* Since this is likley called from init or reset, update targtet state information*/
87         cortex_a8_poll(target);
88
89         return retval;
90 }
91
92 int cortex_a8_exec_opcode(struct target *target, uint32_t opcode)
93 {
94         uint32_t dscr;
95         int retval;
96         struct armv7a_common *armv7a = target_to_armv7a(target);
97         struct swjdp_common *swjdp = &armv7a->swjdp_info;
98
99         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
100         do
101         {
102                 retval = mem_ap_read_atomic_u32(swjdp,
103                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
104                 if (retval != ERROR_OK)
105                 {
106                         LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
107                         return retval;
108                 }
109         }
110         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
111
112         mem_ap_write_u32(swjdp, armv7a->debug_base + CPUDBG_ITR, opcode);
113
114         do
115         {
116                 retval = mem_ap_read_atomic_u32(swjdp,
117                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
118                 if (retval != ERROR_OK)
119                 {
120                         LOG_ERROR("Could not read DSCR register");
121                         return retval;
122                 }
123         }
124         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
125
126         return retval;
127 }
128
129 /**************************************************************************
130 Read core register with very few exec_opcode, fast but needs work_area.
131 This can cause problems with MMU active.
132 **************************************************************************/
133 static int cortex_a8_read_regs_through_mem(struct target *target, uint32_t address,
134                 uint32_t * regfile)
135 {
136         int retval = ERROR_OK;
137         struct armv7a_common *armv7a = target_to_armv7a(target);
138         struct swjdp_common *swjdp = &armv7a->swjdp_info;
139
140         cortex_a8_dap_read_coreregister_u32(target, regfile, 0);
141         cortex_a8_dap_write_coreregister_u32(target, address, 0);
142         cortex_a8_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0));
143         dap_ap_select(swjdp, swjdp_memoryap);
144         mem_ap_read_buf_u32(swjdp, (uint8_t *)(&regfile[1]), 4*15, address);
145         dap_ap_select(swjdp, swjdp_debugap);
146
147         return retval;
148 }
149
150 static int cortex_a8_read_cp(struct target *target, uint32_t *value, uint8_t CP,
151                 uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
152 {
153         int retval;
154         struct armv7a_common *armv7a = target_to_armv7a(target);
155         struct swjdp_common *swjdp = &armv7a->swjdp_info;
156
157         cortex_a8_exec_opcode(target, ARMV4_5_MRC(CP, op1, 0, CRn, CRm, op2));
158         /* Move R0 to DTRTX */
159         cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
160
161         /* Read DCCTX */
162         retval = mem_ap_read_atomic_u32(swjdp,
163                         armv7a->debug_base + CPUDBG_DTRTX, value);
164
165         return retval;
166 }
167
168 static int cortex_a8_write_cp(struct target *target, uint32_t value,
169         uint8_t CP, uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
170 {
171         int retval;
172         uint32_t dscr;
173         struct armv7a_common *armv7a = target_to_armv7a(target);
174         struct swjdp_common *swjdp = &armv7a->swjdp_info;
175
176         LOG_DEBUG("CP%i, CRn %i, value 0x%08" PRIx32, CP, CRn, value);
177
178         /* Check that DCCRX is not full */
179         retval = mem_ap_read_atomic_u32(swjdp,
180                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
181         if (dscr & (1 << DSCR_DTR_RX_FULL))
182         {
183                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
184                 /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode  0xEE000E15 */
185                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
186         }
187
188         retval = mem_ap_write_u32(swjdp,
189                         armv7a->debug_base + CPUDBG_DTRRX, value);
190         /* Move DTRRX to r0 */
191         cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
192
193         cortex_a8_exec_opcode(target, ARMV4_5_MCR(CP, op1, 0, CRn, CRm, op2));
194         return retval;
195 }
196
197 static int cortex_a8_read_cp15(struct target *target, uint32_t op1, uint32_t op2,
198                 uint32_t CRn, uint32_t CRm, uint32_t *value)
199 {
200         return cortex_a8_read_cp(target, value, 15, op1, CRn, CRm, op2);
201 }
202
203 static int cortex_a8_write_cp15(struct target *target, uint32_t op1, uint32_t op2,
204                 uint32_t CRn, uint32_t CRm, uint32_t value)
205 {
206         return cortex_a8_write_cp(target, value, 15, op1, CRn, CRm, op2);
207 }
208
209 static int cortex_a8_mrc(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value)
210 {
211         if (cpnum!=15)
212         {
213                 LOG_ERROR("Only cp15 is supported");
214                 return ERROR_FAIL;
215         }
216         return cortex_a8_read_cp15(target, op1, op2, CRn, CRm, value);
217 }
218
219 static int cortex_a8_mcr(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value)
220 {
221         if (cpnum!=15)
222         {
223                 LOG_ERROR("Only cp15 is supported");
224                 return ERROR_FAIL;
225         }
226         return cortex_a8_write_cp15(target, op1, op2, CRn, CRm, value);
227 }
228
229
230
231 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
232                 uint32_t *value, int regnum)
233 {
234         int retval = ERROR_OK;
235         uint8_t reg = regnum&0xFF;
236         uint32_t dscr;
237         struct armv7a_common *armv7a = target_to_armv7a(target);
238         struct swjdp_common *swjdp = &armv7a->swjdp_info;
239
240         if (reg > 17)
241                 return retval;
242
243         if (reg < 15)
244         {
245                 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0"  0xEE00nE15 */
246                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, reg, 0, 5, 0));
247         }
248         else if (reg == 15)
249         {
250                 /* "MOV r0, r15"; then move r0 to DCCTX */
251                 cortex_a8_exec_opcode(target, 0xE1A0000F);
252                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
253         }
254         else
255         {
256                 /* "MRS r0, CPSR" or "MRS r0, SPSR"
257                  * then move r0 to DCCTX
258                  */
259                 cortex_a8_exec_opcode(target, ARMV4_5_MRS(0, reg & 1));
260                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
261         }
262
263         /* Read DTRRTX */
264         do
265         {
266                 retval = mem_ap_read_atomic_u32(swjdp,
267                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
268         }
269         while ((dscr & (1 << DSCR_DTR_TX_FULL)) == 0); /* Wait for DTRRXfull */
270
271         retval = mem_ap_read_atomic_u32(swjdp,
272                         armv7a->debug_base + CPUDBG_DTRTX, value);
273         LOG_DEBUG("read DCC 0x%08" PRIx32, *value);
274
275         return retval;
276 }
277
278 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
279                 uint32_t value, int regnum)
280 {
281         int retval = ERROR_OK;
282         uint8_t Rd = regnum&0xFF;
283         uint32_t dscr;
284         struct armv7a_common *armv7a = target_to_armv7a(target);
285         struct swjdp_common *swjdp = &armv7a->swjdp_info;
286
287         LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
288
289         /* Check that DCCRX is not full */
290         retval = mem_ap_read_atomic_u32(swjdp,
291                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
292         if (dscr & (1 << DSCR_DTR_RX_FULL))
293         {
294                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
295                 /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode  0xEE000E15 */
296                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
297         }
298
299         if (Rd > 17)
300                 return retval;
301
302         /* Write to DCCRX */
303         LOG_DEBUG("write DCC 0x%08" PRIx32, value);
304         retval = mem_ap_write_u32(swjdp,
305                         armv7a->debug_base + CPUDBG_DTRRX, value);
306
307         if (Rd < 15)
308         {
309                 /* DCCRX to Rn, "MCR p14, 0, Rn, c0, c5, 0", 0xEE00nE15 */
310                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0));
311         }
312         else if (Rd == 15)
313         {
314                 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15
315                  * then "mov r15, r0"
316                  */
317                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
318                 cortex_a8_exec_opcode(target, 0xE1A0F000);
319         }
320         else
321         {
322                 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15
323                  * then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
324                  */
325                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
326                 cortex_a8_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, Rd & 1));
327
328                 /* "Prefetch flush" after modifying execution status in CPSR */
329                 if (Rd == 16)
330                         cortex_a8_exec_opcode(target,
331                                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4));
332         }
333
334         return retval;
335 }
336
337 /* Write to memory mapped registers directly with no cache or mmu handling */
338 static int cortex_a8_dap_write_memap_register_u32(struct target *target, uint32_t address, uint32_t value)
339 {
340         int retval;
341         struct armv7a_common *armv7a = target_to_armv7a(target);
342         struct swjdp_common *swjdp = &armv7a->swjdp_info;
343
344         retval = mem_ap_write_atomic_u32(swjdp, address, value);
345
346         return retval;
347 }
348
349 /*
350  * Cortex-A8 Run control
351  */
352
353 static int cortex_a8_poll(struct target *target)
354 {
355         int retval = ERROR_OK;
356         uint32_t dscr;
357         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
358         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
359         struct swjdp_common *swjdp = &armv7a->swjdp_info;
360         enum target_state prev_target_state = target->state;
361         uint8_t saved_apsel = dap_ap_get_select(swjdp);
362
363         dap_ap_select(swjdp, swjdp_debugap);
364         retval = mem_ap_read_atomic_u32(swjdp,
365                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
366         if (retval != ERROR_OK)
367         {
368                 dap_ap_select(swjdp, saved_apsel);
369                 return retval;
370         }
371         cortex_a8->cpudbg_dscr = dscr;
372
373         if ((dscr & 0x3) == 0x3)
374         {
375                 if (prev_target_state != TARGET_HALTED)
376                 {
377                         /* We have a halting debug event */
378                         LOG_DEBUG("Target halted");
379                         target->state = TARGET_HALTED;
380                         if ((prev_target_state == TARGET_RUNNING)
381                                         || (prev_target_state == TARGET_RESET))
382                         {
383                                 retval = cortex_a8_debug_entry(target);
384                                 if (retval != ERROR_OK)
385                                         return retval;
386
387                                 target_call_event_callbacks(target,
388                                                 TARGET_EVENT_HALTED);
389                         }
390                         if (prev_target_state == TARGET_DEBUG_RUNNING)
391                         {
392                                 LOG_DEBUG(" ");
393
394                                 retval = cortex_a8_debug_entry(target);
395                                 if (retval != ERROR_OK)
396                                         return retval;
397
398                                 target_call_event_callbacks(target,
399                                                 TARGET_EVENT_DEBUG_HALTED);
400                         }
401                 }
402         }
403         else if ((dscr & 0x3) == 0x2)
404         {
405                 target->state = TARGET_RUNNING;
406         }
407         else
408         {
409                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
410                 target->state = TARGET_UNKNOWN;
411         }
412
413         dap_ap_select(swjdp, saved_apsel);
414
415         return retval;
416 }
417
418 static int cortex_a8_halt(struct target *target)
419 {
420         int retval = ERROR_OK;
421         uint32_t dscr;
422         struct armv7a_common *armv7a = target_to_armv7a(target);
423         struct swjdp_common *swjdp = &armv7a->swjdp_info;
424         uint8_t saved_apsel = dap_ap_get_select(swjdp);
425         dap_ap_select(swjdp, swjdp_debugap);
426
427         /*
428          * Tell the core to be halted by writing DRCR with 0x1
429          * and then wait for the core to be halted.
430          */
431         retval = mem_ap_write_atomic_u32(swjdp,
432                         armv7a->debug_base + CPUDBG_DRCR, 0x1);
433
434         /*
435          * enter halting debug mode
436          */
437         mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DSCR, &dscr);
438         retval = mem_ap_write_atomic_u32(swjdp,
439                 armv7a->debug_base + CPUDBG_DSCR, dscr | (1 << DSCR_HALT_DBG_MODE));
440
441         if (retval != ERROR_OK)
442                 goto out;
443
444         do {
445                 mem_ap_read_atomic_u32(swjdp,
446                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
447         } while ((dscr & (1 << DSCR_CORE_HALTED)) == 0);
448
449         target->debug_reason = DBG_REASON_DBGRQ;
450
451 out:
452         dap_ap_select(swjdp, saved_apsel);
453         return retval;
454 }
455
456 static int cortex_a8_resume(struct target *target, int current,
457                 uint32_t address, int handle_breakpoints, int debug_execution)
458 {
459         struct armv7a_common *armv7a = target_to_armv7a(target);
460         struct arm *armv4_5 = &armv7a->armv4_5_common;
461         struct swjdp_common *swjdp = &armv7a->swjdp_info;
462
463 //      struct breakpoint *breakpoint = NULL;
464         uint32_t resume_pc, dscr;
465
466         uint8_t saved_apsel = dap_ap_get_select(swjdp);
467         dap_ap_select(swjdp, swjdp_debugap);
468
469         if (!debug_execution)
470         {
471                 target_free_all_working_areas(target);
472 //              cortex_m3_enable_breakpoints(target);
473 //              cortex_m3_enable_watchpoints(target);
474         }
475
476 #if 0
477         if (debug_execution)
478         {
479                 /* Disable interrupts */
480                 /* We disable interrupts in the PRIMASK register instead of
481                  * masking with C_MASKINTS,
482                  * This is probably the same issue as Cortex-M3 Errata 377493:
483                  * C_MASKINTS in parallel with disabled interrupts can cause
484                  * local faults to not be taken. */
485                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
486                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
487                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
488
489                 /* Make sure we are in Thumb mode */
490                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
491                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
492                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
493                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
494         }
495 #endif
496
497         /* current = 1: continue on current pc, otherwise continue at <address> */
498         resume_pc = buf_get_u32(
499                         armv4_5->core_cache->reg_list[15].value,
500                         0, 32);
501         if (!current)
502                 resume_pc = address;
503
504         /* Make sure that the Armv7 gdb thumb fixups does not
505          * kill the return address
506          */
507         switch (armv4_5->core_state)
508         {
509         case ARMV4_5_STATE_ARM:
510                 resume_pc &= 0xFFFFFFFC;
511                 break;
512         case ARMV4_5_STATE_THUMB:
513         case ARM_STATE_THUMB_EE:
514                 /* When the return address is loaded into PC
515                  * bit 0 must be 1 to stay in Thumb state
516                  */
517                 resume_pc |= 0x1;
518                 break;
519         case ARMV4_5_STATE_JAZELLE:
520                 LOG_ERROR("How do I resume into Jazelle state??");
521                 return ERROR_FAIL;
522         }
523         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
524         buf_set_u32(armv4_5->core_cache->reg_list[15].value,
525                         0, 32, resume_pc);
526         armv4_5->core_cache->reg_list[15].dirty = 1;
527         armv4_5->core_cache->reg_list[15].valid = 1;
528
529         cortex_a8_restore_context(target);
530
531 #if 0
532         /* the front-end may request us not to handle breakpoints */
533         if (handle_breakpoints)
534         {
535                 /* Single step past breakpoint at current address */
536                 if ((breakpoint = breakpoint_find(target, resume_pc)))
537                 {
538                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
539                         cortex_m3_unset_breakpoint(target, breakpoint);
540                         cortex_m3_single_step_core(target);
541                         cortex_m3_set_breakpoint(target, breakpoint);
542                 }
543         }
544
545 #endif
546         /* Restart core and wait for it to be started */
547         mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DRCR, 0x2);
548
549         do {
550                 mem_ap_read_atomic_u32(swjdp,
551                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
552         } while ((dscr & (1 << DSCR_CORE_RESTARTED)) == 0);
553
554         target->debug_reason = DBG_REASON_NOTHALTED;
555         target->state = TARGET_RUNNING;
556
557         /* registers are now invalid */
558         register_cache_invalidate(armv4_5->core_cache);
559
560         if (!debug_execution)
561         {
562                 target->state = TARGET_RUNNING;
563                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
564                 LOG_DEBUG("target resumed at 0x%" PRIx32, resume_pc);
565         }
566         else
567         {
568                 target->state = TARGET_DEBUG_RUNNING;
569                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
570                 LOG_DEBUG("target debug resumed at 0x%" PRIx32, resume_pc);
571         }
572
573         dap_ap_select(swjdp, saved_apsel);
574
575         return ERROR_OK;
576 }
577
578 static int cortex_a8_debug_entry(struct target *target)
579 {
580         int i;
581         uint32_t regfile[16], pc, cpsr, dscr;
582         int retval = ERROR_OK;
583         struct working_area *regfile_working_area = NULL;
584         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
585         struct armv7a_common *armv7a = target_to_armv7a(target);
586         struct arm *armv4_5 = &armv7a->armv4_5_common;
587         struct swjdp_common *swjdp = &armv7a->swjdp_info;
588         struct reg *reg;
589
590         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a8->cpudbg_dscr);
591
592         /* Enable the ITR execution once we are in debug mode */
593         mem_ap_read_atomic_u32(swjdp,
594                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
595         dscr |= (1 << DSCR_EXT_INT_EN);
596         retval = mem_ap_write_atomic_u32(swjdp,
597                         armv7a->debug_base + CPUDBG_DSCR, dscr);
598
599         /* Examine debug reason */
600         switch ((cortex_a8->cpudbg_dscr >> 2)&0xF)
601         {
602                 case 0:
603                 case 4:
604                         target->debug_reason = DBG_REASON_DBGRQ;
605                         break;
606                 case 1:
607                 case 3:
608                         target->debug_reason = DBG_REASON_BREAKPOINT;
609                         break;
610                 case 10:
611                         target->debug_reason = DBG_REASON_WATCHPOINT;
612                         break;
613                 default:
614                         target->debug_reason = DBG_REASON_UNDEFINED;
615                         break;
616         }
617
618         /* Examine target state and mode */
619         if (cortex_a8->fast_reg_read)
620                 target_alloc_working_area(target, 64, &regfile_working_area);
621
622         /* First load register acessible through core debug port*/
623         if (!regfile_working_area)
624         {
625                 /* FIXME we don't actually need all these registers;
626                  * reading them slows us down.  Just R0, PC, CPSR...
627                  */
628                 for (i = 0; i <= 15; i++)
629                         cortex_a8_dap_read_coreregister_u32(target,
630                                         &regfile[i], i);
631         }
632         else
633         {
634                 dap_ap_select(swjdp, swjdp_memoryap);
635                 cortex_a8_read_regs_through_mem(target,
636                                 regfile_working_area->address, regfile);
637                 dap_ap_select(swjdp, swjdp_memoryap);
638                 target_free_working_area(target, regfile_working_area);
639         }
640
641         /* read Current PSR */
642         cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16);
643         pc = regfile[15];
644         dap_ap_select(swjdp, swjdp_debugap);
645         LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
646
647         arm_set_cpsr(armv4_5, cpsr);
648
649         /* update cache */
650         for (i = 0; i <= ARM_PC; i++)
651         {
652                 reg = arm_reg_current(armv4_5, i);
653
654                 buf_set_u32(reg->value, 0, 32, regfile[i]);
655                 reg->valid = 1;
656                 reg->dirty = 0;
657         }
658
659         /* Fixup PC Resume Address */
660         if (cpsr & (1 << 5))
661         {
662                 // T bit set for Thumb or ThumbEE state
663                 regfile[ARM_PC] -= 4;
664         }
665         else
666         {
667                 // ARM state
668                 regfile[ARM_PC] -= 8;
669         }
670
671         reg = armv4_5->core_cache->reg_list + 15;
672         buf_set_u32(reg->value, 0, 32, regfile[ARM_PC]);
673         reg->dirty = reg->valid;
674         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15)
675                 .dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
676                                 armv4_5->core_mode, 15).valid;
677
678 #if 0
679 /* TODO, Move this */
680         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
681         cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
682         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
683
684         cortex_a8_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
685         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
686
687         cortex_a8_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
688         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
689 #endif
690
691         /* Are we in an exception handler */
692 //      armv4_5->exception_number = 0;
693         if (armv7a->post_debug_entry)
694                 armv7a->post_debug_entry(target);
695
696
697
698         return retval;
699
700 }
701
702 static void cortex_a8_post_debug_entry(struct target *target)
703 {
704         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
705         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
706
707 //      cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
708         /* examine cp15 control reg */
709         armv7a->read_cp15(target, 0, 0, 1, 0, &cortex_a8->cp15_control_reg);
710         jtag_execute_queue();
711         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
712
713         if (armv7a->armv4_5_mmu.armv4_5_cache.ctype == -1)
714         {
715                 uint32_t cache_type_reg;
716                 /* identify caches */
717                 armv7a->read_cp15(target, 0, 1, 0, 0, &cache_type_reg);
718                 jtag_execute_queue();
719                 /* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A8 */
720                 armv4_5_identify_cache(cache_type_reg,
721                                 &armv7a->armv4_5_mmu.armv4_5_cache);
722         }
723
724         armv7a->armv4_5_mmu.mmu_enabled =
725                         (cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0;
726         armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
727                         (cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0;
728         armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
729                         (cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0;
730
731
732 }
733
734 static int cortex_a8_step(struct target *target, int current, uint32_t address,
735                 int handle_breakpoints)
736 {
737         struct armv7a_common *armv7a = target_to_armv7a(target);
738         struct arm *armv4_5 = &armv7a->armv4_5_common;
739         struct breakpoint *breakpoint = NULL;
740         struct breakpoint stepbreakpoint;
741
742         int timeout = 100;
743
744         if (target->state != TARGET_HALTED)
745         {
746                 LOG_WARNING("target not halted");
747                 return ERROR_TARGET_NOT_HALTED;
748         }
749
750         /* current = 1: continue on current pc, otherwise continue at <address> */
751         if (!current)
752         {
753                 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
754                                         armv4_5->core_mode, ARM_PC).value,
755                                 0, 32, address);
756         }
757         else
758         {
759                 address = buf_get_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
760                                         armv4_5->core_mode, ARM_PC).value,
761                                 0, 32);
762         }
763
764         /* The front-end may request us not to handle breakpoints.
765          * But since Cortex-A8 uses breakpoint for single step,
766          * we MUST handle breakpoints.
767          */
768         handle_breakpoints = 1;
769         if (handle_breakpoints) {
770                 breakpoint = breakpoint_find(target,
771                                 buf_get_u32(ARMV4_5_CORE_REG_MODE(
772                                         armv4_5->core_cache,
773                                         armv4_5->core_mode, 15).value,
774                         0, 32));
775                 if (breakpoint)
776                         cortex_a8_unset_breakpoint(target, breakpoint);
777         }
778
779         /* Setup single step breakpoint */
780         stepbreakpoint.address = address;
781         stepbreakpoint.length = (armv4_5->core_state == ARMV4_5_STATE_THUMB)
782                         ? 2 : 4;
783         stepbreakpoint.type = BKPT_HARD;
784         stepbreakpoint.set = 0;
785
786         /* Break on IVA mismatch */
787         cortex_a8_set_breakpoint(target, &stepbreakpoint, 0x04);
788
789         target->debug_reason = DBG_REASON_SINGLESTEP;
790
791         cortex_a8_resume(target, 1, address, 0, 0);
792
793         while (target->state != TARGET_HALTED)
794         {
795                 cortex_a8_poll(target);
796                 if (--timeout == 0)
797                 {
798                         LOG_WARNING("timeout waiting for target halt");
799                         break;
800                 }
801         }
802
803         cortex_a8_unset_breakpoint(target, &stepbreakpoint);
804         if (timeout > 0) target->debug_reason = DBG_REASON_BREAKPOINT;
805
806         if (breakpoint)
807                 cortex_a8_set_breakpoint(target, breakpoint, 0);
808
809         if (target->state != TARGET_HALTED)
810                 LOG_DEBUG("target stepped");
811
812         return ERROR_OK;
813 }
814
815 static int cortex_a8_restore_context(struct target *target)
816 {
817         uint32_t value;
818         struct armv7a_common *armv7a = target_to_armv7a(target);
819         struct reg_cache *cache = armv7a->armv4_5_common.core_cache;
820         unsigned max = cache->num_regs;
821         struct reg *r;
822         bool flushed, flush_cpsr = false;
823
824         LOG_DEBUG(" ");
825
826         if (armv7a->pre_restore_context)
827                 armv7a->pre_restore_context(target);
828
829         /* Flush all dirty registers from the cache, one mode at a time so
830          * that we write CPSR as little as possible.  Save CPSR and R0 for
831          * last; they're used to change modes and write other registers.
832          *
833          * REVISIT be smarter:  save eventual mode for last loop, don't
834          * need to write CPSR an extra time.
835          */
836         do {
837                 enum armv4_5_mode mode = ARMV4_5_MODE_ANY;
838                 unsigned i;
839
840                 flushed = false;
841
842                 /* write dirty non-{R0,CPSR} registers sharing the same mode */
843                 for (i = max - 1, r = cache->reg_list + 1; i > 0; i--, r++) {
844                         struct arm_reg *reg;
845
846                         if (!r->dirty || r == armv7a->armv4_5_common.cpsr)
847                                 continue;
848                         reg = r->arch_info;
849
850                         /* TODO Check return values */
851
852                         /* Pick a mode and update CPSR; else ignore this
853                          * register if it's for a different mode than what
854                          * we're handling on this pass.
855                          *
856                          * REVISIT don't distinguish SYS and USR modes.
857                          *
858                          * FIXME if we restore from FIQ mode, R8..R12 will
859                          * get wrongly flushed onto FIQ shadows...
860                          */
861                         if (mode == ARMV4_5_MODE_ANY) {
862                                 mode = reg->mode;
863                                 if (mode != ARMV4_5_MODE_ANY) {
864                                         cortex_a8_dap_write_coreregister_u32(
865                                                         target, mode, 16);
866                                         flush_cpsr = true;
867                                 }
868                         } else if (mode != reg->mode)
869                                 continue;
870
871                         /* Write this register */
872                         value = buf_get_u32(r->value, 0, 32);
873                         cortex_a8_dap_write_coreregister_u32(target, value,
874                                         (reg->num == 16) ? 17 : reg->num);
875                         r->dirty = false;
876                         flushed = true;
877                 }
878
879         } while (flushed);
880
881         /* now flush CPSR if needed ... */
882         r = armv7a->armv4_5_common.cpsr;
883         if (flush_cpsr || r->dirty) {
884                 value = buf_get_u32(r->value, 0, 32);
885                 cortex_a8_dap_write_coreregister_u32(target, value, 16);
886                 r->dirty = false;
887         }
888
889         /* ... and R0 always (it was dirtied when we saved context) */
890         r = cache->reg_list + 0;
891         value = buf_get_u32(r->value, 0, 32);
892         cortex_a8_dap_write_coreregister_u32(target, value, 0);
893         r->dirty = false;
894
895         if (armv7a->post_restore_context)
896                 armv7a->post_restore_context(target);
897
898         return ERROR_OK;
899 }
900
901
902 #if 0
903 /*
904  * Cortex-A8 Core register functions
905  */
906 static int cortex_a8_load_core_reg_u32(struct target *target, int num,
907                 armv4_5_mode_t mode, uint32_t * value)
908 {
909         int retval;
910         struct arm *armv4_5 = target_to_armv4_5(target);
911
912         if ((num <= ARM_CPSR))
913         {
914                 /* read a normal core register */
915                 retval = cortex_a8_dap_read_coreregister_u32(target, value, num);
916
917                 if (retval != ERROR_OK)
918                 {
919                         LOG_ERROR("JTAG failure %i", retval);
920                         return ERROR_JTAG_DEVICE_ERROR;
921                 }
922                 LOG_DEBUG("load from core reg %i value 0x%" PRIx32, num, *value);
923         }
924         else
925         {
926                 return ERROR_INVALID_ARGUMENTS;
927         }
928
929         /* Register other than r0 - r14 uses r0 for access */
930         if (num > 14)
931                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
932                                 armv4_5->core_mode, 0).dirty =
933                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
934                                 armv4_5->core_mode, 0).valid;
935         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
936                                 armv4_5->core_mode, 15).dirty =
937                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
938                                 armv4_5->core_mode, 15).valid;
939
940         return ERROR_OK;
941 }
942
943 static int cortex_a8_store_core_reg_u32(struct target *target, int num,
944                 armv4_5_mode_t mode, uint32_t value)
945 {
946         int retval;
947 //      uint32_t reg;
948         struct arm *armv4_5 = target_to_armv4_5(target);
949
950 #ifdef ARMV7_GDB_HACKS
951         /* If the LR register is being modified, make sure it will put us
952          * in "thumb" mode, or an INVSTATE exception will occur. This is a
953          * hack to deal with the fact that gdb will sometimes "forge"
954          * return addresses, and doesn't set the LSB correctly (i.e., when
955          * printing expressions containing function calls, it sets LR=0.) */
956
957         if (num == 14)
958                 value |= 0x01;
959 #endif
960
961         if ((num <= ARM_CPSR))
962         {
963                 retval = cortex_a8_dap_write_coreregister_u32(target, value, num);
964                 if (retval != ERROR_OK)
965                 {
966                         LOG_ERROR("JTAG failure %i", retval);
967                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
968                                         armv4_5->core_mode, num).dirty =
969                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
970                                         armv4_5->core_mode, num).valid;
971                         return ERROR_JTAG_DEVICE_ERROR;
972                 }
973                 LOG_DEBUG("write core reg %i value 0x%" PRIx32, num, value);
974         }
975         else
976         {
977                 return ERROR_INVALID_ARGUMENTS;
978         }
979
980         return ERROR_OK;
981 }
982 #endif
983
984
985 static int cortex_a8_write_core_reg(struct target *target, struct reg *r,
986                 int num, enum armv4_5_mode mode, uint32_t value);
987
988 static int cortex_a8_read_core_reg(struct target *target, struct reg *r,
989                 int num, enum armv4_5_mode mode)
990 {
991         uint32_t value;
992         int retval;
993         struct arm *armv4_5 = target_to_armv4_5(target);
994         struct reg *cpsr_r = NULL;
995         uint32_t cpsr = 0;
996         unsigned cookie = num;
997
998         /* avoid some needless mode changes
999          * FIXME move some of these to shared ARM code...
1000          */
1001         if (mode != armv4_5->core_mode) {
1002                 if ((armv4_5->core_mode == ARMV4_5_MODE_SYS)
1003                                 && (mode == ARMV4_5_MODE_USR))
1004                         mode = ARMV4_5_MODE_ANY;
1005                 else if ((mode != ARMV4_5_MODE_FIQ) && (num <= 12))
1006                         mode = ARMV4_5_MODE_ANY;
1007
1008                 if (mode != ARMV4_5_MODE_ANY) {
1009                         cpsr_r = armv4_5->cpsr;
1010                         cpsr = buf_get_u32(cpsr_r->value, 0, 32);
1011                         cortex_a8_write_core_reg(target, cpsr_r,
1012                                         16, ARMV4_5_MODE_ANY, mode);
1013                 }
1014         }
1015
1016         if (num == 16) {
1017                 switch (mode) {
1018                 case ARMV4_5_MODE_USR:
1019                 case ARMV4_5_MODE_SYS:
1020                 case ARMV4_5_MODE_ANY:
1021                         /* CPSR */
1022                         break;
1023                 default:
1024                         /* SPSR */
1025                         cookie++;
1026                         break;
1027                 }
1028         }
1029
1030         cortex_a8_dap_read_coreregister_u32(target, &value, cookie);
1031         retval = jtag_execute_queue();
1032         if (retval == ERROR_OK) {
1033                 r->valid = 1;
1034                 r->dirty = 0;
1035                 buf_set_u32(r->value, 0, 32, value);
1036         }
1037
1038         if (cpsr_r)
1039                 cortex_a8_write_core_reg(target, cpsr_r,
1040                                 16, ARMV4_5_MODE_ANY, cpsr);
1041         return retval;
1042 }
1043
1044 static int cortex_a8_write_core_reg(struct target *target, struct reg *r,
1045                 int num, enum armv4_5_mode mode, uint32_t value)
1046 {
1047         int retval;
1048         struct arm *armv4_5 = target_to_armv4_5(target);
1049         struct reg *cpsr_r = NULL;
1050         uint32_t cpsr = 0;
1051         unsigned cookie = num;
1052
1053         /* avoid some needless mode changes
1054          * FIXME move some of these to shared ARM code...
1055          */
1056         if (mode != armv4_5->core_mode) {
1057                 if ((armv4_5->core_mode == ARMV4_5_MODE_SYS)
1058                                 && (mode == ARMV4_5_MODE_USR))
1059                         mode = ARMV4_5_MODE_ANY;
1060                 else if ((mode != ARMV4_5_MODE_FIQ) && (num <= 12))
1061                         mode = ARMV4_5_MODE_ANY;
1062
1063                 if (mode != ARMV4_5_MODE_ANY) {
1064                         cpsr_r = armv4_5->cpsr;
1065                         cpsr = buf_get_u32(cpsr_r->value, 0, 32);
1066                         cortex_a8_write_core_reg(target, cpsr_r,
1067                                         16, ARMV4_5_MODE_ANY, mode);
1068                 }
1069         }
1070
1071
1072         if (num == 16) {
1073                 switch (mode) {
1074                 case ARMV4_5_MODE_USR:
1075                 case ARMV4_5_MODE_SYS:
1076                 case ARMV4_5_MODE_ANY:
1077                         /* CPSR */
1078                         break;
1079                 default:
1080                         /* SPSR */
1081                         cookie++;
1082                         break;
1083                 }
1084         }
1085
1086         cortex_a8_dap_write_coreregister_u32(target, value, cookie);
1087         if ((retval = jtag_execute_queue()) == ERROR_OK) {
1088                 buf_set_u32(r->value, 0, 32, value);
1089                 r->valid = 1;
1090                 r->dirty = 0;
1091         }
1092
1093         if (cpsr_r)
1094                 cortex_a8_write_core_reg(target, cpsr_r,
1095                                 16, ARMV4_5_MODE_ANY, cpsr);
1096         return retval;
1097 }
1098
1099
1100 /*
1101  * Cortex-A8 Breakpoint and watchpoint fuctions
1102  */
1103
1104 /* Setup hardware Breakpoint Register Pair */
1105 static int cortex_a8_set_breakpoint(struct target *target,
1106                 struct breakpoint *breakpoint, uint8_t matchmode)
1107 {
1108         int retval;
1109         int brp_i=0;
1110         uint32_t control;
1111         uint8_t byte_addr_select = 0x0F;
1112         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1113         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1114         struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1115
1116         if (breakpoint->set)
1117         {
1118                 LOG_WARNING("breakpoint already set");
1119                 return ERROR_OK;
1120         }
1121
1122         if (breakpoint->type == BKPT_HARD)
1123         {
1124                 while (brp_list[brp_i].used && (brp_i < cortex_a8->brp_num))
1125                         brp_i++ ;
1126                 if (brp_i >= cortex_a8->brp_num)
1127                 {
1128                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1129                         return ERROR_FAIL;
1130                 }
1131                 breakpoint->set = brp_i + 1;
1132                 if (breakpoint->length == 2)
1133                 {
1134                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1135                 }
1136                 control = ((matchmode & 0x7) << 20)
1137                                 | (byte_addr_select << 5)
1138                                 | (3 << 1) | 1;
1139                 brp_list[brp_i].used = 1;
1140                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1141                 brp_list[brp_i].control = control;
1142                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1143                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1144                                 brp_list[brp_i].value);
1145                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1146                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1147                                 brp_list[brp_i].control);
1148                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1149                                 brp_list[brp_i].control,
1150                                 brp_list[brp_i].value);
1151         }
1152         else if (breakpoint->type == BKPT_SOFT)
1153         {
1154                 uint8_t code[4];
1155                 if (breakpoint->length == 2)
1156                 {
1157                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1158                 }
1159                 else
1160                 {
1161                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1162                 }
1163                 retval = target->type->read_memory(target,
1164                                 breakpoint->address & 0xFFFFFFFE,
1165                                 breakpoint->length, 1,
1166                                 breakpoint->orig_instr);
1167                 if (retval != ERROR_OK)
1168                         return retval;
1169                 retval = target->type->write_memory(target,
1170                                 breakpoint->address & 0xFFFFFFFE,
1171                                 breakpoint->length, 1, code);
1172                 if (retval != ERROR_OK)
1173                         return retval;
1174                 breakpoint->set = 0x11; /* Any nice value but 0 */
1175         }
1176
1177         return ERROR_OK;
1178 }
1179
1180 static int cortex_a8_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1181 {
1182         int retval;
1183         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1184         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1185         struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1186
1187         if (!breakpoint->set)
1188         {
1189                 LOG_WARNING("breakpoint not set");
1190                 return ERROR_OK;
1191         }
1192
1193         if (breakpoint->type == BKPT_HARD)
1194         {
1195                 int brp_i = breakpoint->set - 1;
1196                 if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num))
1197                 {
1198                         LOG_DEBUG("Invalid BRP number in breakpoint");
1199                         return ERROR_OK;
1200                 }
1201                 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1202                                 brp_list[brp_i].control, brp_list[brp_i].value);
1203                 brp_list[brp_i].used = 0;
1204                 brp_list[brp_i].value = 0;
1205                 brp_list[brp_i].control = 0;
1206                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1207                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1208                                 brp_list[brp_i].control);
1209                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1210                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1211                                 brp_list[brp_i].value);
1212         }
1213         else
1214         {
1215                 /* restore original instruction (kept in target endianness) */
1216                 if (breakpoint->length == 4)
1217                 {
1218                         retval = target->type->write_memory(target,
1219                                         breakpoint->address & 0xFFFFFFFE,
1220                                         4, 1, breakpoint->orig_instr);
1221                         if (retval != ERROR_OK)
1222                                 return retval;
1223                 }
1224                 else
1225                 {
1226                         retval = target->type->write_memory(target,
1227                                         breakpoint->address & 0xFFFFFFFE,
1228                                         2, 1, breakpoint->orig_instr);
1229                         if (retval != ERROR_OK)
1230                                 return retval;
1231                 }
1232         }
1233         breakpoint->set = 0;
1234
1235         return ERROR_OK;
1236 }
1237
1238 int cortex_a8_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1239 {
1240         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1241
1242         if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1))
1243         {
1244                 LOG_INFO("no hardware breakpoint available");
1245                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1246         }
1247
1248         if (breakpoint->type == BKPT_HARD)
1249                 cortex_a8->brp_num_available--;
1250         cortex_a8_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1251
1252         return ERROR_OK;
1253 }
1254
1255 static int cortex_a8_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1256 {
1257         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1258
1259 #if 0
1260 /* It is perfectly possible to remove brakpoints while the taget is running */
1261         if (target->state != TARGET_HALTED)
1262         {
1263                 LOG_WARNING("target not halted");
1264                 return ERROR_TARGET_NOT_HALTED;
1265         }
1266 #endif
1267
1268         if (breakpoint->set)
1269         {
1270                 cortex_a8_unset_breakpoint(target, breakpoint);
1271                 if (breakpoint->type == BKPT_HARD)
1272                         cortex_a8->brp_num_available++ ;
1273         }
1274
1275
1276         return ERROR_OK;
1277 }
1278
1279
1280
1281 /*
1282  * Cortex-A8 Reset fuctions
1283  */
1284
1285 static int cortex_a8_assert_reset(struct target *target)
1286 {
1287         struct armv7a_common *armv7a = target_to_armv7a(target);
1288
1289         LOG_DEBUG(" ");
1290
1291         /* registers are now invalid */
1292         register_cache_invalidate(armv7a->armv4_5_common.core_cache);
1293
1294         target->state = TARGET_RESET;
1295
1296         return ERROR_OK;
1297 }
1298
1299 static int cortex_a8_deassert_reset(struct target *target)
1300 {
1301
1302         LOG_DEBUG(" ");
1303
1304         if (target->reset_halt)
1305         {
1306                 int retval;
1307                 if ((retval = target_halt(target)) != ERROR_OK)
1308                         return retval;
1309         }
1310
1311         return ERROR_OK;
1312 }
1313
1314 /*
1315  * Cortex-A8 Memory access
1316  *
1317  * This is same Cortex M3 but we must also use the correct
1318  * ap number for every access.
1319  */
1320
1321 static int cortex_a8_read_memory(struct target *target, uint32_t address,
1322                 uint32_t size, uint32_t count, uint8_t *buffer)
1323 {
1324         struct armv7a_common *armv7a = target_to_armv7a(target);
1325         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1326         int retval = ERROR_INVALID_ARGUMENTS;
1327
1328         /* cortex_a8 handles unaligned memory access */
1329
1330 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1331
1332         if (count && buffer) {
1333                 switch (size) {
1334                 case 4:
1335                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1336                         break;
1337                 case 2:
1338                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1339                         break;
1340                 case 1:
1341                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1342                         break;
1343                 }
1344         }
1345
1346         return retval;
1347 }
1348
1349 int cortex_a8_write_memory(struct target *target, uint32_t address,
1350                 uint32_t size, uint32_t count, uint8_t *buffer)
1351 {
1352         struct armv7a_common *armv7a = target_to_armv7a(target);
1353         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1354         int retval = ERROR_INVALID_ARGUMENTS;
1355
1356 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1357
1358         if (count && buffer) {
1359                 switch (size) {
1360                 case 4:
1361                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1362                         break;
1363                 case 2:
1364                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1365                         break;
1366                 case 1:
1367                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1368                         break;
1369                 }
1370         }
1371
1372         if (retval == ERROR_OK && target->state == TARGET_HALTED)
1373         {
1374                 /* The Cache handling will NOT work with MMU active, the wrong addresses will be invalidated */
1375                 /* invalidate I-Cache */
1376                 if (armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
1377                 {
1378                         /* Invalidate ICache single entry with MVA, repeat this for all cache
1379                            lines in the address range, Cortex-A8 has fixed 64 byte line length */
1380                         /* Invalidate Cache single entry with MVA to PoU */
1381                         for (uint32_t cacheline=address; cacheline<address+size*count; cacheline+=64)
1382                                 armv7a->write_cp15(target, 0, 1, 7, 5, cacheline); /* I-Cache to PoU */
1383                 }
1384                 /* invalidate D-Cache */
1385                 if (armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
1386                 {
1387                         /* Invalidate Cache single entry with MVA to PoC */
1388                         for (uint32_t cacheline=address; cacheline<address+size*count; cacheline+=64)
1389                                 armv7a->write_cp15(target, 0, 1, 7, 6, cacheline); /* U/D cache to PoC */
1390                 }
1391         }
1392
1393         return retval;
1394 }
1395
1396 static int cortex_a8_bulk_write_memory(struct target *target, uint32_t address,
1397                 uint32_t count, uint8_t *buffer)
1398 {
1399         return cortex_a8_write_memory(target, address, 4, count, buffer);
1400 }
1401
1402
1403 static int cortex_a8_dcc_read(struct swjdp_common *swjdp, uint8_t *value, uint8_t *ctrl)
1404 {
1405 #if 0
1406         u16 dcrdr;
1407
1408         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1409         *ctrl = (uint8_t)dcrdr;
1410         *value = (uint8_t)(dcrdr >> 8);
1411
1412         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1413
1414         /* write ack back to software dcc register
1415          * signify we have read data */
1416         if (dcrdr & (1 << 0))
1417         {
1418                 dcrdr = 0;
1419                 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1420         }
1421 #endif
1422         return ERROR_OK;
1423 }
1424
1425
1426 static int cortex_a8_handle_target_request(void *priv)
1427 {
1428         struct target *target = priv;
1429         struct armv7a_common *armv7a = target_to_armv7a(target);
1430         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1431
1432         if (!target_was_examined(target))
1433                 return ERROR_OK;
1434         if (!target->dbg_msg_enabled)
1435                 return ERROR_OK;
1436
1437         if (target->state == TARGET_RUNNING)
1438         {
1439                 uint8_t data = 0;
1440                 uint8_t ctrl = 0;
1441
1442                 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1443
1444                 /* check if we have data */
1445                 if (ctrl & (1 << 0))
1446                 {
1447                         uint32_t request;
1448
1449                         /* we assume target is quick enough */
1450                         request = data;
1451                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1452                         request |= (data << 8);
1453                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1454                         request |= (data << 16);
1455                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1456                         request |= (data << 24);
1457                         target_request(target, request);
1458                 }
1459         }
1460
1461         return ERROR_OK;
1462 }
1463
1464 /*
1465  * Cortex-A8 target information and configuration
1466  */
1467
1468 static int cortex_a8_examine_first(struct target *target)
1469 {
1470         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1471         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1472         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1473         int i;
1474         int retval = ERROR_OK;
1475         uint32_t didr, ctypr, ttypr, cpuid;
1476
1477         LOG_DEBUG("TODO");
1478
1479         /* Here we shall insert a proper ROM Table scan */
1480         armv7a->debug_base = OMAP3530_DEBUG_BASE;
1481
1482         /* We do one extra read to ensure DAP is configured,
1483          * we call ahbap_debugport_init(swjdp) instead
1484          */
1485         ahbap_debugport_init(swjdp);
1486         mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_CPUID, &cpuid);
1487         if ((retval = mem_ap_read_atomic_u32(swjdp,
1488                         armv7a->debug_base + CPUDBG_CPUID, &cpuid)) != ERROR_OK)
1489         {
1490                 LOG_DEBUG("Examine failed");
1491                 return retval;
1492         }
1493
1494         if ((retval = mem_ap_read_atomic_u32(swjdp,
1495                         armv7a->debug_base + CPUDBG_CTYPR, &ctypr)) != ERROR_OK)
1496         {
1497                 LOG_DEBUG("Examine failed");
1498                 return retval;
1499         }
1500
1501         if ((retval = mem_ap_read_atomic_u32(swjdp,
1502                         armv7a->debug_base + CPUDBG_TTYPR, &ttypr)) != ERROR_OK)
1503         {
1504                 LOG_DEBUG("Examine failed");
1505                 return retval;
1506         }
1507
1508         if ((retval = mem_ap_read_atomic_u32(swjdp,
1509                         armv7a->debug_base + CPUDBG_DIDR, &didr)) != ERROR_OK)
1510         {
1511                 LOG_DEBUG("Examine failed");
1512                 return retval;
1513         }
1514
1515         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1516         LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
1517         LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
1518         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
1519
1520         /* Setup Breakpoint Register Pairs */
1521         cortex_a8->brp_num = ((didr >> 24) & 0x0F) + 1;
1522         cortex_a8->brp_num_context = ((didr >> 20) & 0x0F) + 1;
1523         cortex_a8->brp_num_available = cortex_a8->brp_num;
1524         cortex_a8->brp_list = calloc(cortex_a8->brp_num, sizeof(struct cortex_a8_brp));
1525 //      cortex_a8->brb_enabled = ????;
1526         for (i = 0; i < cortex_a8->brp_num; i++)
1527         {
1528                 cortex_a8->brp_list[i].used = 0;
1529                 if (i < (cortex_a8->brp_num-cortex_a8->brp_num_context))
1530                         cortex_a8->brp_list[i].type = BRP_NORMAL;
1531                 else
1532                         cortex_a8->brp_list[i].type = BRP_CONTEXT;
1533                 cortex_a8->brp_list[i].value = 0;
1534                 cortex_a8->brp_list[i].control = 0;
1535                 cortex_a8->brp_list[i].BRPn = i;
1536         }
1537
1538         /* Setup Watchpoint Register Pairs */
1539         cortex_a8->wrp_num = ((didr >> 28) & 0x0F) + 1;
1540         cortex_a8->wrp_num_available = cortex_a8->wrp_num;
1541         cortex_a8->wrp_list = calloc(cortex_a8->wrp_num, sizeof(struct cortex_a8_wrp));
1542         for (i = 0; i < cortex_a8->wrp_num; i++)
1543         {
1544                 cortex_a8->wrp_list[i].used = 0;
1545                 cortex_a8->wrp_list[i].type = 0;
1546                 cortex_a8->wrp_list[i].value = 0;
1547                 cortex_a8->wrp_list[i].control = 0;
1548                 cortex_a8->wrp_list[i].WRPn = i;
1549         }
1550         LOG_DEBUG("Configured %i hw breakpoint pairs and %i hw watchpoint pairs",
1551                         cortex_a8->brp_num , cortex_a8->wrp_num);
1552
1553         target_set_examined(target);
1554         return ERROR_OK;
1555 }
1556
1557 static int cortex_a8_examine(struct target *target)
1558 {
1559         int retval = ERROR_OK;
1560
1561         /* don't re-probe hardware after each reset */
1562         if (!target_was_examined(target))
1563                 retval = cortex_a8_examine_first(target);
1564
1565         /* Configure core debug access */
1566         if (retval == ERROR_OK)
1567                 retval = cortex_a8_init_debug_access(target);
1568
1569         return retval;
1570 }
1571
1572 /*
1573  *      Cortex-A8 target creation and initialization
1574  */
1575
1576 static void cortex_a8_build_reg_cache(struct target *target)
1577 {
1578         struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
1579         struct arm *armv4_5 = target_to_armv4_5(target);
1580
1581         armv4_5->core_type = ARM_MODE_MON;
1582
1583         (*cache_p) = armv4_5_build_reg_cache(target, armv4_5);
1584 }
1585
1586
1587 static int cortex_a8_init_target(struct command_context *cmd_ctx,
1588                 struct target *target)
1589 {
1590         cortex_a8_build_reg_cache(target);
1591         return ERROR_OK;
1592 }
1593
1594 int cortex_a8_init_arch_info(struct target *target,
1595                 struct cortex_a8_common *cortex_a8, struct jtag_tap *tap)
1596 {
1597         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1598         struct arm *armv4_5 = &armv7a->armv4_5_common;
1599         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1600
1601         /* Setup struct cortex_a8_common */
1602         cortex_a8->common_magic = CORTEX_A8_COMMON_MAGIC;
1603         armv4_5->arch_info = armv7a;
1604
1605         /* prepare JTAG information for the new target */
1606         cortex_a8->jtag_info.tap = tap;
1607         cortex_a8->jtag_info.scann_size = 4;
1608 LOG_DEBUG(" ");
1609         swjdp->dp_select_value = -1;
1610         swjdp->ap_csw_value = -1;
1611         swjdp->ap_tar_value = -1;
1612         swjdp->jtag_info = &cortex_a8->jtag_info;
1613         swjdp->memaccess_tck = 80;
1614
1615         /* Number of bits for tar autoincrement, impl. dep. at least 10 */
1616         swjdp->tar_autoincr_block = (1 << 10);
1617
1618         cortex_a8->fast_reg_read = 0;
1619
1620
1621         /* register arch-specific functions */
1622         armv7a->examine_debug_reason = NULL;
1623
1624         armv7a->post_debug_entry = cortex_a8_post_debug_entry;
1625
1626         armv7a->pre_restore_context = NULL;
1627         armv7a->post_restore_context = NULL;
1628         armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1;
1629 //      armv7a->armv4_5_mmu.get_ttb = armv7a_get_ttb;
1630         armv7a->armv4_5_mmu.read_memory = cortex_a8_read_memory;
1631         armv7a->armv4_5_mmu.write_memory = cortex_a8_write_memory;
1632 //      armv7a->armv4_5_mmu.disable_mmu_caches = armv7a_disable_mmu_caches;
1633 //      armv7a->armv4_5_mmu.enable_mmu_caches = armv7a_enable_mmu_caches;
1634         armv7a->armv4_5_mmu.has_tiny_pages = 1;
1635         armv7a->armv4_5_mmu.mmu_enabled = 0;
1636         armv7a->read_cp15 = cortex_a8_read_cp15;
1637         armv7a->write_cp15 = cortex_a8_write_cp15;
1638
1639
1640 //      arm7_9->handle_target_request = cortex_a8_handle_target_request;
1641
1642         armv4_5->read_core_reg = cortex_a8_read_core_reg;
1643         armv4_5->write_core_reg = cortex_a8_write_core_reg;
1644
1645         /* REVISIT v7a setup should be in a v7a-specific routine */
1646         armv4_5_init_arch_info(target, armv4_5);
1647         armv7a->common_magic = ARMV7_COMMON_MAGIC;
1648
1649         target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target);
1650
1651         return ERROR_OK;
1652 }
1653
1654 static int cortex_a8_target_create(struct target *target, Jim_Interp *interp)
1655 {
1656         struct cortex_a8_common *cortex_a8 = calloc(1, sizeof(struct cortex_a8_common));
1657
1658         cortex_a8_init_arch_info(target, cortex_a8, target->tap);
1659
1660         return ERROR_OK;
1661 }
1662
1663 COMMAND_HANDLER(cortex_a8_handle_cache_info_command)
1664 {
1665         struct target *target = get_current_target(CMD_CTX);
1666         struct armv7a_common *armv7a = target_to_armv7a(target);
1667
1668         return armv4_5_handle_cache_info_command(CMD_CTX,
1669                         &armv7a->armv4_5_mmu.armv4_5_cache);
1670 }
1671
1672
1673 COMMAND_HANDLER(cortex_a8_handle_dbginit_command)
1674 {
1675         struct target *target = get_current_target(CMD_CTX);
1676
1677         cortex_a8_init_debug_access(target);
1678
1679         return ERROR_OK;
1680 }
1681
1682
1683 static int cortex_a8_register_commands(struct command_context *cmd_ctx)
1684 {
1685         struct command *cortex_a8_cmd;
1686         int retval = ERROR_OK;
1687
1688         armv4_5_register_commands(cmd_ctx);
1689         armv7a_register_commands(cmd_ctx);
1690
1691         cortex_a8_cmd = register_command(cmd_ctx, NULL, "cortex_a8",
1692                         NULL, COMMAND_ANY,
1693                         "cortex_a8 specific commands");
1694
1695         register_command(cmd_ctx, cortex_a8_cmd, "cache_info",
1696                         cortex_a8_handle_cache_info_command, COMMAND_EXEC,
1697                         "display information about target caches");
1698
1699         register_command(cmd_ctx, cortex_a8_cmd, "dbginit",
1700                         cortex_a8_handle_dbginit_command, COMMAND_EXEC,
1701                         "Initialize core debug");
1702
1703         return retval;
1704 }
1705
1706 struct target_type cortexa8_target = {
1707         .name = "cortex_a8",
1708
1709         .poll = cortex_a8_poll,
1710         .arch_state = armv7a_arch_state,
1711
1712         .target_request_data = NULL,
1713
1714         .halt = cortex_a8_halt,
1715         .resume = cortex_a8_resume,
1716         .step = cortex_a8_step,
1717
1718         .assert_reset = cortex_a8_assert_reset,
1719         .deassert_reset = cortex_a8_deassert_reset,
1720         .soft_reset_halt = NULL,
1721
1722         .get_gdb_reg_list = armv4_5_get_gdb_reg_list,
1723
1724         .read_memory = cortex_a8_read_memory,
1725         .write_memory = cortex_a8_write_memory,
1726         .bulk_write_memory = cortex_a8_bulk_write_memory,
1727
1728         .checksum_memory = arm_checksum_memory,
1729         .blank_check_memory = arm_blank_check_memory,
1730
1731         .run_algorithm = armv4_5_run_algorithm,
1732
1733         .add_breakpoint = cortex_a8_add_breakpoint,
1734         .remove_breakpoint = cortex_a8_remove_breakpoint,
1735         .add_watchpoint = NULL,
1736         .remove_watchpoint = NULL,
1737
1738         .register_commands = cortex_a8_register_commands,
1739         .target_create = cortex_a8_target_create,
1740         .init_target = cortex_a8_init_target,
1741         .examine = cortex_a8_examine,
1742         .mrc = cortex_a8_mrc,
1743         .mcr = cortex_a8_mcr,
1744 };