target: don't implicitly include "breakpoint.h"
[fw/openocd] / src / target / cortex_a8.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   This program is free software; you can redistribute it and/or modify  *
15  *   it under the terms of the GNU General Public License as published by  *
16  *   the Free Software Foundation; either version 2 of the License, or     *
17  *   (at your option) any later version.                                   *
18  *                                                                         *
19  *   This program is distributed in the hope that it will be useful,       *
20  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
21  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
22  *   GNU General Public License for more details.                          *
23  *                                                                         *
24  *   You should have received a copy of the GNU General Public License     *
25  *   along with this program; if not, write to the                         *
26  *   Free Software Foundation, Inc.,                                       *
27  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
28  *                                                                         *
29  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
30  *                                                                         *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "breakpoints.h"
37 #include "cortex_a8.h"
38 #include "armv7a.h"
39 #include "armv4_5.h"
40
41 #include "target_request.h"
42 #include "target_type.h"
43
44 static int cortex_a8_poll(struct target *target);
45 static int cortex_a8_debug_entry(struct target *target);
46 static int cortex_a8_restore_context(struct target *target);
47 static int cortex_a8_set_breakpoint(struct target *target,
48                 struct breakpoint *breakpoint, uint8_t matchmode);
49 static int cortex_a8_unset_breakpoint(struct target *target,
50                 struct breakpoint *breakpoint);
51 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
52                 uint32_t *value, int regnum);
53 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
54                 uint32_t value, int regnum);
55 /*
56  * FIXME do topology discovery using the ROM; don't
57  * assume this is an OMAP3.
58  */
59 #define swjdp_memoryap 0
60 #define swjdp_debugap 1
61 #define OMAP3530_DEBUG_BASE 0x54011000
62
63 /*
64  * Cortex-A8 Basic debug access, very low level assumes state is saved
65  */
66 static int cortex_a8_init_debug_access(struct target *target)
67 {
68         struct armv7a_common *armv7a = target_to_armv7a(target);
69         struct swjdp_common *swjdp = &armv7a->swjdp_info;
70
71         int retval;
72         uint32_t dummy;
73
74         LOG_DEBUG(" ");
75
76         /* Unlocking the debug registers for modification */
77         /* The debugport might be uninitialised so try twice */
78         retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
79         if (retval != ERROR_OK)
80                 mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
81         /* Clear Sticky Power Down status Bit in PRSR to enable access to
82            the registers in the Core Power Domain */
83         retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_PRSR, &dummy);
84         /* Enabling of instruction execution in debug mode is done in debug_entry code */
85
86         /* Resync breakpoint registers */
87
88         /* Since this is likley called from init or reset, update targtet state information*/
89         cortex_a8_poll(target);
90
91         return retval;
92 }
93
94 int cortex_a8_exec_opcode(struct target *target, uint32_t opcode)
95 {
96         uint32_t dscr;
97         int retval;
98         struct armv7a_common *armv7a = target_to_armv7a(target);
99         struct swjdp_common *swjdp = &armv7a->swjdp_info;
100
101         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
102         do
103         {
104                 retval = mem_ap_read_atomic_u32(swjdp,
105                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
106                 if (retval != ERROR_OK)
107                 {
108                         LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
109                         return retval;
110                 }
111         }
112         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
113
114         mem_ap_write_u32(swjdp, armv7a->debug_base + CPUDBG_ITR, opcode);
115
116         do
117         {
118                 retval = mem_ap_read_atomic_u32(swjdp,
119                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
120                 if (retval != ERROR_OK)
121                 {
122                         LOG_ERROR("Could not read DSCR register");
123                         return retval;
124                 }
125         }
126         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
127
128         return retval;
129 }
130
131 /**************************************************************************
132 Read core register with very few exec_opcode, fast but needs work_area.
133 This can cause problems with MMU active.
134 **************************************************************************/
135 static int cortex_a8_read_regs_through_mem(struct target *target, uint32_t address,
136                 uint32_t * regfile)
137 {
138         int retval = ERROR_OK;
139         struct armv7a_common *armv7a = target_to_armv7a(target);
140         struct swjdp_common *swjdp = &armv7a->swjdp_info;
141
142         cortex_a8_dap_read_coreregister_u32(target, regfile, 0);
143         cortex_a8_dap_write_coreregister_u32(target, address, 0);
144         cortex_a8_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0));
145         dap_ap_select(swjdp, swjdp_memoryap);
146         mem_ap_read_buf_u32(swjdp, (uint8_t *)(&regfile[1]), 4*15, address);
147         dap_ap_select(swjdp, swjdp_debugap);
148
149         return retval;
150 }
151
152 static int cortex_a8_read_cp(struct target *target, uint32_t *value, uint8_t CP,
153                 uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
154 {
155         int retval;
156         struct armv7a_common *armv7a = target_to_armv7a(target);
157         struct swjdp_common *swjdp = &armv7a->swjdp_info;
158
159         cortex_a8_exec_opcode(target, ARMV4_5_MRC(CP, op1, 0, CRn, CRm, op2));
160         /* Move R0 to DTRTX */
161         cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
162
163         /* Read DCCTX */
164         retval = mem_ap_read_atomic_u32(swjdp,
165                         armv7a->debug_base + CPUDBG_DTRTX, value);
166
167         return retval;
168 }
169
170 static int cortex_a8_write_cp(struct target *target, uint32_t value,
171         uint8_t CP, uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
172 {
173         int retval;
174         uint32_t dscr;
175         struct armv7a_common *armv7a = target_to_armv7a(target);
176         struct swjdp_common *swjdp = &armv7a->swjdp_info;
177
178         LOG_DEBUG("CP%i, CRn %i, value 0x%08" PRIx32, CP, CRn, value);
179
180         /* Check that DCCRX is not full */
181         retval = mem_ap_read_atomic_u32(swjdp,
182                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
183         if (dscr & (1 << DSCR_DTR_RX_FULL))
184         {
185                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
186                 /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode  0xEE000E15 */
187                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
188         }
189
190         retval = mem_ap_write_u32(swjdp,
191                         armv7a->debug_base + CPUDBG_DTRRX, value);
192         /* Move DTRRX to r0 */
193         cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
194
195         cortex_a8_exec_opcode(target, ARMV4_5_MCR(CP, op1, 0, CRn, CRm, op2));
196         return retval;
197 }
198
199 static int cortex_a8_read_cp15(struct target *target, uint32_t op1, uint32_t op2,
200                 uint32_t CRn, uint32_t CRm, uint32_t *value)
201 {
202         return cortex_a8_read_cp(target, value, 15, op1, CRn, CRm, op2);
203 }
204
205 static int cortex_a8_write_cp15(struct target *target, uint32_t op1, uint32_t op2,
206                 uint32_t CRn, uint32_t CRm, uint32_t value)
207 {
208         return cortex_a8_write_cp(target, value, 15, op1, CRn, CRm, op2);
209 }
210
211 static int cortex_a8_mrc(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value)
212 {
213         if (cpnum!=15)
214         {
215                 LOG_ERROR("Only cp15 is supported");
216                 return ERROR_FAIL;
217         }
218         return cortex_a8_read_cp15(target, op1, op2, CRn, CRm, value);
219 }
220
221 static int cortex_a8_mcr(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value)
222 {
223         if (cpnum!=15)
224         {
225                 LOG_ERROR("Only cp15 is supported");
226                 return ERROR_FAIL;
227         }
228         return cortex_a8_write_cp15(target, op1, op2, CRn, CRm, value);
229 }
230
231
232
233 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
234                 uint32_t *value, int regnum)
235 {
236         int retval = ERROR_OK;
237         uint8_t reg = regnum&0xFF;
238         uint32_t dscr;
239         struct armv7a_common *armv7a = target_to_armv7a(target);
240         struct swjdp_common *swjdp = &armv7a->swjdp_info;
241
242         if (reg > 16)
243                 return retval;
244
245         if (reg < 15)
246         {
247                 /* Rn to DCCTX, MCR p14, 0, Rd, c0, c5, 0,  0xEE000E15 */
248                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, reg, 0, 5, 0));
249         }
250         else if (reg == 15)
251         {
252                 cortex_a8_exec_opcode(target, 0xE1A0000F);
253                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
254         }
255         else if (reg == 16)
256         {
257                 cortex_a8_exec_opcode(target, ARMV4_5_MRS(0, 0));
258                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
259         }
260
261         /* Read DTRRTX */
262         do
263         {
264                 retval = mem_ap_read_atomic_u32(swjdp,
265                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
266         }
267         while ((dscr & (1 << DSCR_DTR_TX_FULL)) == 0); /* Wait for DTRRXfull */
268
269         retval = mem_ap_read_atomic_u32(swjdp,
270                         armv7a->debug_base + CPUDBG_DTRTX, value);
271
272         return retval;
273 }
274
275 static int cortex_a8_dap_write_coreregister_u32(struct target *target, uint32_t value, int regnum)
276 {
277         int retval = ERROR_OK;
278         uint8_t Rd = regnum&0xFF;
279         uint32_t dscr;
280         struct armv7a_common *armv7a = target_to_armv7a(target);
281         struct swjdp_common *swjdp = &armv7a->swjdp_info;
282
283         LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
284
285         /* Check that DCCRX is not full */
286         retval = mem_ap_read_atomic_u32(swjdp,
287                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
288         if (dscr & (1 << DSCR_DTR_RX_FULL))
289         {
290                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
291                 /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode  0xEE000E15 */
292                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
293         }
294
295         if (Rd > 16)
296                 return retval;
297
298         /* Write to DCCRX */
299         retval = mem_ap_write_u32(swjdp,
300                         armv7a->debug_base + CPUDBG_DTRRX, value);
301
302         if (Rd < 15)
303         {
304                 /* DCCRX to Rd, MCR p14, 0, Rd, c0, c5, 0,  0xEE000E15 */
305                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0));
306         }
307         else if (Rd == 15)
308         {
309                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
310                 cortex_a8_exec_opcode(target, 0xE1A0F000);
311         }
312         else if (Rd == 16)
313         {
314                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
315                 cortex_a8_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, 0));
316                 /* Execute a PrefetchFlush instruction through the ITR. */
317                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(15, 0, 0, 7, 5, 4));
318         }
319
320         return retval;
321 }
322
323 /* Write to memory mapped registers directly with no cache or mmu handling */
324 static int cortex_a8_dap_write_memap_register_u32(struct target *target, uint32_t address, uint32_t value)
325 {
326         int retval;
327         struct armv7a_common *armv7a = target_to_armv7a(target);
328         struct swjdp_common *swjdp = &armv7a->swjdp_info;
329
330         retval = mem_ap_write_atomic_u32(swjdp, address, value);
331
332         return retval;
333 }
334
335 /*
336  * Cortex-A8 Run control
337  */
338
339 static int cortex_a8_poll(struct target *target)
340 {
341         int retval = ERROR_OK;
342         uint32_t dscr;
343         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
344         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
345         struct swjdp_common *swjdp = &armv7a->swjdp_info;
346         enum target_state prev_target_state = target->state;
347         uint8_t saved_apsel = dap_ap_get_select(swjdp);
348
349         dap_ap_select(swjdp, swjdp_debugap);
350         retval = mem_ap_read_atomic_u32(swjdp,
351                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
352         if (retval != ERROR_OK)
353         {
354                 dap_ap_select(swjdp, saved_apsel);
355                 return retval;
356         }
357         cortex_a8->cpudbg_dscr = dscr;
358
359         if ((dscr & 0x3) == 0x3)
360         {
361                 if (prev_target_state != TARGET_HALTED)
362                 {
363                         /* We have a halting debug event */
364                         LOG_DEBUG("Target halted");
365                         target->state = TARGET_HALTED;
366                         if ((prev_target_state == TARGET_RUNNING)
367                                         || (prev_target_state == TARGET_RESET))
368                         {
369                                 retval = cortex_a8_debug_entry(target);
370                                 if (retval != ERROR_OK)
371                                         return retval;
372
373                                 target_call_event_callbacks(target,
374                                                 TARGET_EVENT_HALTED);
375                         }
376                         if (prev_target_state == TARGET_DEBUG_RUNNING)
377                         {
378                                 LOG_DEBUG(" ");
379
380                                 retval = cortex_a8_debug_entry(target);
381                                 if (retval != ERROR_OK)
382                                         return retval;
383
384                                 target_call_event_callbacks(target,
385                                                 TARGET_EVENT_DEBUG_HALTED);
386                         }
387                 }
388         }
389         else if ((dscr & 0x3) == 0x2)
390         {
391                 target->state = TARGET_RUNNING;
392         }
393         else
394         {
395                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
396                 target->state = TARGET_UNKNOWN;
397         }
398
399         dap_ap_select(swjdp, saved_apsel);
400
401         return retval;
402 }
403
404 static int cortex_a8_halt(struct target *target)
405 {
406         int retval = ERROR_OK;
407         uint32_t dscr;
408         struct armv7a_common *armv7a = target_to_armv7a(target);
409         struct swjdp_common *swjdp = &armv7a->swjdp_info;
410         uint8_t saved_apsel = dap_ap_get_select(swjdp);
411         dap_ap_select(swjdp, swjdp_debugap);
412
413         /*
414          * Tell the core to be halted by writing DRCR with 0x1
415          * and then wait for the core to be halted.
416          */
417         retval = mem_ap_write_atomic_u32(swjdp,
418                         armv7a->debug_base + CPUDBG_DRCR, 0x1);
419
420         /*
421          * enter halting debug mode
422          */
423         mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DSCR, &dscr);
424         retval = mem_ap_write_atomic_u32(swjdp,
425                 armv7a->debug_base + CPUDBG_DSCR, dscr | (1 << DSCR_HALT_DBG_MODE));
426
427         if (retval != ERROR_OK)
428                 goto out;
429
430         do {
431                 mem_ap_read_atomic_u32(swjdp,
432                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
433         } while ((dscr & (1 << DSCR_CORE_HALTED)) == 0);
434
435         target->debug_reason = DBG_REASON_DBGRQ;
436
437 out:
438         dap_ap_select(swjdp, saved_apsel);
439         return retval;
440 }
441
442 static int cortex_a8_resume(struct target *target, int current,
443                 uint32_t address, int handle_breakpoints, int debug_execution)
444 {
445         struct armv7a_common *armv7a = target_to_armv7a(target);
446         struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common;
447         struct swjdp_common *swjdp = &armv7a->swjdp_info;
448
449 //      struct breakpoint *breakpoint = NULL;
450         uint32_t resume_pc, dscr;
451
452         uint8_t saved_apsel = dap_ap_get_select(swjdp);
453         dap_ap_select(swjdp, swjdp_debugap);
454
455         if (!debug_execution)
456         {
457                 target_free_all_working_areas(target);
458 //              cortex_m3_enable_breakpoints(target);
459 //              cortex_m3_enable_watchpoints(target);
460         }
461
462 #if 0
463         if (debug_execution)
464         {
465                 /* Disable interrupts */
466                 /* We disable interrupts in the PRIMASK register instead of
467                  * masking with C_MASKINTS,
468                  * This is probably the same issue as Cortex-M3 Errata 377493:
469                  * C_MASKINTS in parallel with disabled interrupts can cause
470                  * local faults to not be taken. */
471                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
472                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
473                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
474
475                 /* Make sure we are in Thumb mode */
476                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
477                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
478                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
479                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
480         }
481 #endif
482
483         /* current = 1: continue on current pc, otherwise continue at <address> */
484         resume_pc = buf_get_u32(
485                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
486                                 armv4_5->core_mode, 15).value,
487                         0, 32);
488         if (!current)
489                 resume_pc = address;
490
491         /* Make sure that the Armv7 gdb thumb fixups does not
492          * kill the return address
493          */
494         if (armv7a->core_state == ARMV7A_STATE_ARM)
495         {
496                 resume_pc &= 0xFFFFFFFC;
497         }
498         /* When the return address is loaded into PC
499          * bit 0 must be 1 to stay in Thumb state
500          */
501         if (armv7a->core_state == ARMV7A_STATE_THUMB)
502         {
503                 resume_pc |= 0x1;
504         }
505         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
506         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
507                                 armv4_5->core_mode, 15).value,
508                         0, 32, resume_pc);
509         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
510                         armv4_5->core_mode, 15).dirty = 1;
511         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
512                         armv4_5->core_mode, 15).valid = 1;
513
514         cortex_a8_restore_context(target);
515 //      arm7_9_restore_context(target); TODO Context is currently NOT Properly restored
516 #if 0
517         /* the front-end may request us not to handle breakpoints */
518         if (handle_breakpoints)
519         {
520                 /* Single step past breakpoint at current address */
521                 if ((breakpoint = breakpoint_find(target, resume_pc)))
522                 {
523                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
524                         cortex_m3_unset_breakpoint(target, breakpoint);
525                         cortex_m3_single_step_core(target);
526                         cortex_m3_set_breakpoint(target, breakpoint);
527                 }
528         }
529
530 #endif
531         /* Restart core and wait for it to be started */
532         mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DRCR, 0x2);
533
534         do {
535                 mem_ap_read_atomic_u32(swjdp,
536                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
537         } while ((dscr & (1 << DSCR_CORE_RESTARTED)) == 0);
538
539         target->debug_reason = DBG_REASON_NOTHALTED;
540         target->state = TARGET_RUNNING;
541
542         /* registers are now invalid */
543         armv4_5_invalidate_core_regs(target);
544
545         if (!debug_execution)
546         {
547                 target->state = TARGET_RUNNING;
548                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
549                 LOG_DEBUG("target resumed at 0x%" PRIx32, resume_pc);
550         }
551         else
552         {
553                 target->state = TARGET_DEBUG_RUNNING;
554                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
555                 LOG_DEBUG("target debug resumed at 0x%" PRIx32, resume_pc);
556         }
557
558         dap_ap_select(swjdp, saved_apsel);
559
560         return ERROR_OK;
561 }
562
563 static int cortex_a8_debug_entry(struct target *target)
564 {
565         int i;
566         uint32_t regfile[16], pc, cpsr, dscr;
567         int retval = ERROR_OK;
568         struct working_area *regfile_working_area = NULL;
569         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
570         struct armv7a_common *armv7a = target_to_armv7a(target);
571         struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common;
572         struct swjdp_common *swjdp = &armv7a->swjdp_info;
573
574         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a8->cpudbg_dscr);
575
576         /* Enable the ITR execution once we are in debug mode */
577         mem_ap_read_atomic_u32(swjdp,
578                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
579         dscr |= (1 << DSCR_EXT_INT_EN);
580         retval = mem_ap_write_atomic_u32(swjdp,
581                         armv7a->debug_base + CPUDBG_DSCR, dscr);
582
583         /* Examine debug reason */
584         switch ((cortex_a8->cpudbg_dscr >> 2)&0xF)
585         {
586                 case 0:
587                 case 4:
588                         target->debug_reason = DBG_REASON_DBGRQ;
589                         break;
590                 case 1:
591                 case 3:
592                         target->debug_reason = DBG_REASON_BREAKPOINT;
593                         break;
594                 case 10:
595                         target->debug_reason = DBG_REASON_WATCHPOINT;
596                         break;
597                 default:
598                         target->debug_reason = DBG_REASON_UNDEFINED;
599                         break;
600         }
601
602         /* Examine target state and mode */
603         if (cortex_a8->fast_reg_read)
604                 target_alloc_working_area(target, 64, &regfile_working_area);
605
606         /* First load register acessible through core debug port*/
607         if (!regfile_working_area)
608         {
609                 for (i = 0; i <= 15; i++)
610                         cortex_a8_dap_read_coreregister_u32(target,
611                                         &regfile[i], i);
612         }
613         else
614         {
615                 dap_ap_select(swjdp, swjdp_memoryap);
616                 cortex_a8_read_regs_through_mem(target,
617                                 regfile_working_area->address, regfile);
618                 dap_ap_select(swjdp, swjdp_memoryap);
619                 target_free_working_area(target, regfile_working_area);
620         }
621
622         cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16);
623         pc = regfile[15];
624         dap_ap_select(swjdp, swjdp_debugap);
625         LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
626
627         armv4_5->core_mode = cpsr & 0x1F;
628         armv7a->core_state = (cpsr & 0x20)?ARMV7A_STATE_THUMB:ARMV7A_STATE_ARM;
629
630         for (i = 0; i <= ARM_PC; i++)
631         {
632                 buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
633                                         armv4_5->core_mode, i).value,
634                                 0, 32, regfile[i]);
635                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
636                                 armv4_5->core_mode, i).valid = 1;
637                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
638                                 armv4_5->core_mode, i).dirty = 0;
639         }
640         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
641                                 armv4_5->core_mode, 16).value,
642                         0, 32, cpsr);
643         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).valid = 1;
644         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).dirty = 0;
645
646         /* Fixup PC Resume Address */
647         if (armv7a->core_state == ARMV7A_STATE_THUMB)
648         {
649                 // T bit set for Thumb or ThumbEE state
650                 regfile[ARM_PC] -= 4;
651         }
652         else
653         {
654                 // ARM state
655                 regfile[ARM_PC] -= 8;
656         }
657         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
658                                 armv4_5->core_mode, ARM_PC).value,
659                         0, 32, regfile[ARM_PC]);
660
661         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0)
662                 .dirty = ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
663                                 armv4_5->core_mode, 0).valid;
664         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15)
665                 .dirty = ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
666                                 armv4_5->core_mode, 15).valid;
667
668 #if 0
669 /* TODO, Move this */
670         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
671         cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
672         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
673
674         cortex_a8_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
675         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
676
677         cortex_a8_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
678         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
679 #endif
680
681         /* Are we in an exception handler */
682 //      armv4_5->exception_number = 0;
683         if (armv7a->post_debug_entry)
684                 armv7a->post_debug_entry(target);
685
686
687
688         return retval;
689
690 }
691
692 static void cortex_a8_post_debug_entry(struct target *target)
693 {
694         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
695         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
696
697 //      cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
698         /* examine cp15 control reg */
699         armv7a->read_cp15(target, 0, 0, 1, 0, &cortex_a8->cp15_control_reg);
700         jtag_execute_queue();
701         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
702
703         if (armv7a->armv4_5_mmu.armv4_5_cache.ctype == -1)
704         {
705                 uint32_t cache_type_reg;
706                 /* identify caches */
707                 armv7a->read_cp15(target, 0, 1, 0, 0, &cache_type_reg);
708                 jtag_execute_queue();
709                 /* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A8 */
710                 armv4_5_identify_cache(cache_type_reg,
711                                 &armv7a->armv4_5_mmu.armv4_5_cache);
712         }
713
714         armv7a->armv4_5_mmu.mmu_enabled =
715                         (cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0;
716         armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
717                         (cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0;
718         armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
719                         (cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0;
720
721
722 }
723
724 static int cortex_a8_step(struct target *target, int current, uint32_t address,
725                 int handle_breakpoints)
726 {
727         struct armv7a_common *armv7a = target_to_armv7a(target);
728         struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common;
729         struct breakpoint *breakpoint = NULL;
730         struct breakpoint stepbreakpoint;
731
732         int timeout = 100;
733
734         if (target->state != TARGET_HALTED)
735         {
736                 LOG_WARNING("target not halted");
737                 return ERROR_TARGET_NOT_HALTED;
738         }
739
740         /* current = 1: continue on current pc, otherwise continue at <address> */
741         if (!current)
742         {
743                 buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
744                                         armv4_5->core_mode, ARM_PC).value,
745                                 0, 32, address);
746         }
747         else
748         {
749                 address = buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
750                                         armv4_5->core_mode, ARM_PC).value,
751                                 0, 32);
752         }
753
754         /* The front-end may request us not to handle breakpoints.
755          * But since Cortex-A8 uses breakpoint for single step,
756          * we MUST handle breakpoints.
757          */
758         handle_breakpoints = 1;
759         if (handle_breakpoints) {
760                 breakpoint = breakpoint_find(target,
761                                 buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
762                                         armv4_5->core_mode, 15).value,
763                         0, 32));
764                 if (breakpoint)
765                         cortex_a8_unset_breakpoint(target, breakpoint);
766         }
767
768         /* Setup single step breakpoint */
769         stepbreakpoint.address = address;
770         stepbreakpoint.length = (armv7a->core_state == ARMV7A_STATE_THUMB) ? 2 : 4;
771         stepbreakpoint.type = BKPT_HARD;
772         stepbreakpoint.set = 0;
773
774         /* Break on IVA mismatch */
775         cortex_a8_set_breakpoint(target, &stepbreakpoint, 0x04);
776
777         target->debug_reason = DBG_REASON_SINGLESTEP;
778
779         cortex_a8_resume(target, 1, address, 0, 0);
780
781         while (target->state != TARGET_HALTED)
782         {
783                 cortex_a8_poll(target);
784                 if (--timeout == 0)
785                 {
786                         LOG_WARNING("timeout waiting for target halt");
787                         break;
788                 }
789         }
790
791         cortex_a8_unset_breakpoint(target, &stepbreakpoint);
792         if (timeout > 0) target->debug_reason = DBG_REASON_BREAKPOINT;
793
794         if (breakpoint)
795                 cortex_a8_set_breakpoint(target, breakpoint, 0);
796
797         if (target->state != TARGET_HALTED)
798                 LOG_DEBUG("target stepped");
799
800         return ERROR_OK;
801 }
802
803 static int cortex_a8_restore_context(struct target *target)
804 {
805         int i;
806         uint32_t value;
807         struct armv7a_common *armv7a = target_to_armv7a(target);
808         struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common;
809
810         LOG_DEBUG(" ");
811
812         if (armv7a->pre_restore_context)
813                 armv7a->pre_restore_context(target);
814
815         for (i = 15; i >= 0; i--)
816         {
817                 if (ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
818                                         armv4_5->core_mode, i).dirty)
819                 {
820                         value = buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
821                                                 armv4_5->core_mode, i).value,
822                                         0, 32);
823                         /* TODO Check return values */
824                         cortex_a8_dap_write_coreregister_u32(target, value, i);
825                 }
826         }
827
828         if (armv7a->post_restore_context)
829                 armv7a->post_restore_context(target);
830
831         return ERROR_OK;
832 }
833
834
835 #if 0
836 /*
837  * Cortex-A8 Core register functions
838  */
839 static int cortex_a8_load_core_reg_u32(struct target *target, int num,
840                 armv4_5_mode_t mode, uint32_t * value)
841 {
842         int retval;
843         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
844
845         if ((num <= ARM_CPSR))
846         {
847                 /* read a normal core register */
848                 retval = cortex_a8_dap_read_coreregister_u32(target, value, num);
849
850                 if (retval != ERROR_OK)
851                 {
852                         LOG_ERROR("JTAG failure %i", retval);
853                         return ERROR_JTAG_DEVICE_ERROR;
854                 }
855                 LOG_DEBUG("load from core reg %i value 0x%" PRIx32, num, *value);
856         }
857         else
858         {
859                 return ERROR_INVALID_ARGUMENTS;
860         }
861
862         /* Register other than r0 - r14 uses r0 for access */
863         if (num > 14)
864                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
865                                 armv4_5->core_mode, 0).dirty =
866                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
867                                 armv4_5->core_mode, 0).valid;
868         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
869                                 armv4_5->core_mode, 15).dirty =
870                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
871                                 armv4_5->core_mode, 15).valid;
872
873         return ERROR_OK;
874 }
875
876 static int cortex_a8_store_core_reg_u32(struct target *target, int num,
877                 armv4_5_mode_t mode, uint32_t value)
878 {
879         int retval;
880 //      uint32_t reg;
881         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
882
883 #ifdef ARMV7_GDB_HACKS
884         /* If the LR register is being modified, make sure it will put us
885          * in "thumb" mode, or an INVSTATE exception will occur. This is a
886          * hack to deal with the fact that gdb will sometimes "forge"
887          * return addresses, and doesn't set the LSB correctly (i.e., when
888          * printing expressions containing function calls, it sets LR=0.) */
889
890         if (num == 14)
891                 value |= 0x01;
892 #endif
893
894         if ((num <= ARM_CPSR))
895         {
896                 retval = cortex_a8_dap_write_coreregister_u32(target, value, num);
897                 if (retval != ERROR_OK)
898                 {
899                         LOG_ERROR("JTAG failure %i", retval);
900                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
901                                         armv4_5->core_mode, num).dirty =
902                                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
903                                         armv4_5->core_mode, num).valid;
904                         return ERROR_JTAG_DEVICE_ERROR;
905                 }
906                 LOG_DEBUG("write core reg %i value 0x%" PRIx32, num, value);
907         }
908         else
909         {
910                 return ERROR_INVALID_ARGUMENTS;
911         }
912
913         return ERROR_OK;
914 }
915 #endif
916
917
918 static int cortex_a8_read_core_reg(struct target *target, int num,
919                 enum armv4_5_mode mode)
920 {
921         uint32_t value;
922         int retval;
923         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
924
925         cortex_a8_dap_read_coreregister_u32(target, &value, num);
926
927         if ((retval = jtag_execute_queue()) != ERROR_OK)
928         {
929                 return retval;
930         }
931
932         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
933         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
934         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
935                         mode, num).value, 0, 32, value);
936
937         return ERROR_OK;
938 }
939
940 int cortex_a8_write_core_reg(struct target *target, int num,
941                 enum armv4_5_mode mode, uint32_t value)
942 {
943         int retval;
944         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
945
946         cortex_a8_dap_write_coreregister_u32(target, value, num);
947         if ((retval = jtag_execute_queue()) != ERROR_OK)
948         {
949                 return retval;
950         }
951
952         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
953         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
954
955         return ERROR_OK;
956 }
957
958
959 /*
960  * Cortex-A8 Breakpoint and watchpoint fuctions
961  */
962
963 /* Setup hardware Breakpoint Register Pair */
964 static int cortex_a8_set_breakpoint(struct target *target,
965                 struct breakpoint *breakpoint, uint8_t matchmode)
966 {
967         int retval;
968         int brp_i=0;
969         uint32_t control;
970         uint8_t byte_addr_select = 0x0F;
971         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
972         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
973         struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
974
975         if (breakpoint->set)
976         {
977                 LOG_WARNING("breakpoint already set");
978                 return ERROR_OK;
979         }
980
981         if (breakpoint->type == BKPT_HARD)
982         {
983                 while (brp_list[brp_i].used && (brp_i < cortex_a8->brp_num))
984                         brp_i++ ;
985                 if (brp_i >= cortex_a8->brp_num)
986                 {
987                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
988                         exit(-1);
989                 }
990                 breakpoint->set = brp_i + 1;
991                 if (breakpoint->length == 2)
992                 {
993                         byte_addr_select = (3 << (breakpoint->address & 0x02));
994                 }
995                 control = ((matchmode & 0x7) << 20)
996                                 | (byte_addr_select << 5)
997                                 | (3 << 1) | 1;
998                 brp_list[brp_i].used = 1;
999                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1000                 brp_list[brp_i].control = control;
1001                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1002                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1003                                 brp_list[brp_i].value);
1004                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1005                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1006                                 brp_list[brp_i].control);
1007                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1008                                 brp_list[brp_i].control,
1009                                 brp_list[brp_i].value);
1010         }
1011         else if (breakpoint->type == BKPT_SOFT)
1012         {
1013                 uint8_t code[4];
1014                 if (breakpoint->length == 2)
1015                 {
1016                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1017                 }
1018                 else
1019                 {
1020                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1021                 }
1022                 retval = target->type->read_memory(target,
1023                                 breakpoint->address & 0xFFFFFFFE,
1024                                 breakpoint->length, 1,
1025                                 breakpoint->orig_instr);
1026                 if (retval != ERROR_OK)
1027                         return retval;
1028                 retval = target->type->write_memory(target,
1029                                 breakpoint->address & 0xFFFFFFFE,
1030                                 breakpoint->length, 1, code);
1031                 if (retval != ERROR_OK)
1032                         return retval;
1033                 breakpoint->set = 0x11; /* Any nice value but 0 */
1034         }
1035
1036         return ERROR_OK;
1037 }
1038
1039 static int cortex_a8_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1040 {
1041         int retval;
1042         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1043         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1044         struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1045
1046         if (!breakpoint->set)
1047         {
1048                 LOG_WARNING("breakpoint not set");
1049                 return ERROR_OK;
1050         }
1051
1052         if (breakpoint->type == BKPT_HARD)
1053         {
1054                 int brp_i = breakpoint->set - 1;
1055                 if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num))
1056                 {
1057                         LOG_DEBUG("Invalid BRP number in breakpoint");
1058                         return ERROR_OK;
1059                 }
1060                 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1061                                 brp_list[brp_i].control, brp_list[brp_i].value);
1062                 brp_list[brp_i].used = 0;
1063                 brp_list[brp_i].value = 0;
1064                 brp_list[brp_i].control = 0;
1065                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1066                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1067                                 brp_list[brp_i].control);
1068                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1069                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1070                                 brp_list[brp_i].value);
1071         }
1072         else
1073         {
1074                 /* restore original instruction (kept in target endianness) */
1075                 if (breakpoint->length == 4)
1076                 {
1077                         retval = target->type->write_memory(target,
1078                                         breakpoint->address & 0xFFFFFFFE,
1079                                         4, 1, breakpoint->orig_instr);
1080                         if (retval != ERROR_OK)
1081                                 return retval;
1082                 }
1083                 else
1084                 {
1085                         retval = target->type->write_memory(target,
1086                                         breakpoint->address & 0xFFFFFFFE,
1087                                         2, 1, breakpoint->orig_instr);
1088                         if (retval != ERROR_OK)
1089                                 return retval;
1090                 }
1091         }
1092         breakpoint->set = 0;
1093
1094         return ERROR_OK;
1095 }
1096
1097 int cortex_a8_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1098 {
1099         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1100
1101         if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1))
1102         {
1103                 LOG_INFO("no hardware breakpoint available");
1104                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1105         }
1106
1107         if (breakpoint->type == BKPT_HARD)
1108                 cortex_a8->brp_num_available--;
1109         cortex_a8_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1110
1111         return ERROR_OK;
1112 }
1113
1114 static int cortex_a8_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1115 {
1116         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1117
1118 #if 0
1119 /* It is perfectly possible to remove brakpoints while the taget is running */
1120         if (target->state != TARGET_HALTED)
1121         {
1122                 LOG_WARNING("target not halted");
1123                 return ERROR_TARGET_NOT_HALTED;
1124         }
1125 #endif
1126
1127         if (breakpoint->set)
1128         {
1129                 cortex_a8_unset_breakpoint(target, breakpoint);
1130                 if (breakpoint->type == BKPT_HARD)
1131                         cortex_a8->brp_num_available++ ;
1132         }
1133
1134
1135         return ERROR_OK;
1136 }
1137
1138
1139
1140 /*
1141  * Cortex-A8 Reset fuctions
1142  */
1143
1144 static int cortex_a8_assert_reset(struct target *target)
1145 {
1146
1147         LOG_DEBUG(" ");
1148
1149         /* registers are now invalid */
1150         armv4_5_invalidate_core_regs(target);
1151
1152         target->state = TARGET_RESET;
1153
1154         return ERROR_OK;
1155 }
1156
1157 static int cortex_a8_deassert_reset(struct target *target)
1158 {
1159
1160         LOG_DEBUG(" ");
1161
1162         if (target->reset_halt)
1163         {
1164                 int retval;
1165                 if ((retval = target_halt(target)) != ERROR_OK)
1166                         return retval;
1167         }
1168
1169         return ERROR_OK;
1170 }
1171
1172 /*
1173  * Cortex-A8 Memory access
1174  *
1175  * This is same Cortex M3 but we must also use the correct
1176  * ap number for every access.
1177  */
1178
1179 static int cortex_a8_read_memory(struct target *target, uint32_t address,
1180                 uint32_t size, uint32_t count, uint8_t *buffer)
1181 {
1182         struct armv7a_common *armv7a = target_to_armv7a(target);
1183         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1184
1185         int retval = ERROR_OK;
1186
1187         /* sanitize arguments */
1188         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
1189                 return ERROR_INVALID_ARGUMENTS;
1190
1191         /* cortex_a8 handles unaligned memory access */
1192
1193 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1194
1195         switch (size)
1196         {
1197                 case 4:
1198                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1199                         break;
1200                 case 2:
1201                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1202                         break;
1203                 case 1:
1204                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1205                         break;
1206                 default:
1207                         LOG_ERROR("BUG: we shouldn't get here");
1208                         exit(-1);
1209         }
1210
1211         return retval;
1212 }
1213
1214 int cortex_a8_write_memory(struct target *target, uint32_t address,
1215                 uint32_t size, uint32_t count, uint8_t *buffer)
1216 {
1217         struct armv7a_common *armv7a = target_to_armv7a(target);
1218         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1219
1220         int retval;
1221
1222         /* sanitize arguments */
1223         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
1224                 return ERROR_INVALID_ARGUMENTS;
1225
1226 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1227
1228         switch (size)
1229         {
1230                 case 4:
1231                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1232                         break;
1233                 case 2:
1234                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1235                         break;
1236                 case 1:
1237                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1238                         break;
1239                 default:
1240                         LOG_ERROR("BUG: we shouldn't get here");
1241                         exit(-1);
1242         }
1243
1244         if (target->state == TARGET_HALTED)
1245         {
1246                 /* The Cache handling will NOT work with MMU active, the wrong addresses will be invalidated */
1247                 /* invalidate I-Cache */
1248                 if (armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
1249                 {
1250                         /* Invalidate ICache single entry with MVA, repeat this for all cache
1251                            lines in the address range, Cortex-A8 has fixed 64 byte line length */
1252                         /* Invalidate Cache single entry with MVA to PoU */
1253                         for (uint32_t cacheline=address; cacheline<address+size*count; cacheline+=64)
1254                                 armv7a->write_cp15(target, 0, 1, 7, 5, cacheline); /* I-Cache to PoU */
1255                 }
1256                 /* invalidate D-Cache */
1257                 if (armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
1258                 {
1259                         /* Invalidate Cache single entry with MVA to PoC */
1260                         for (uint32_t cacheline=address; cacheline<address+size*count; cacheline+=64)
1261                                 armv7a->write_cp15(target, 0, 1, 7, 6, cacheline); /* U/D cache to PoC */
1262                 }
1263         }
1264
1265         return retval;
1266 }
1267
1268 static int cortex_a8_bulk_write_memory(struct target *target, uint32_t address,
1269                 uint32_t count, uint8_t *buffer)
1270 {
1271         return cortex_a8_write_memory(target, address, 4, count, buffer);
1272 }
1273
1274
1275 static int cortex_a8_dcc_read(struct swjdp_common *swjdp, uint8_t *value, uint8_t *ctrl)
1276 {
1277 #if 0
1278         u16 dcrdr;
1279
1280         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1281         *ctrl = (uint8_t)dcrdr;
1282         *value = (uint8_t)(dcrdr >> 8);
1283
1284         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1285
1286         /* write ack back to software dcc register
1287          * signify we have read data */
1288         if (dcrdr & (1 << 0))
1289         {
1290                 dcrdr = 0;
1291                 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1292         }
1293 #endif
1294         return ERROR_OK;
1295 }
1296
1297
1298 static int cortex_a8_handle_target_request(void *priv)
1299 {
1300         struct target *target = priv;
1301         struct armv7a_common *armv7a = target_to_armv7a(target);
1302         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1303
1304         if (!target_was_examined(target))
1305                 return ERROR_OK;
1306         if (!target->dbg_msg_enabled)
1307                 return ERROR_OK;
1308
1309         if (target->state == TARGET_RUNNING)
1310         {
1311                 uint8_t data = 0;
1312                 uint8_t ctrl = 0;
1313
1314                 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1315
1316                 /* check if we have data */
1317                 if (ctrl & (1 << 0))
1318                 {
1319                         uint32_t request;
1320
1321                         /* we assume target is quick enough */
1322                         request = data;
1323                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1324                         request |= (data << 8);
1325                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1326                         request |= (data << 16);
1327                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1328                         request |= (data << 24);
1329                         target_request(target, request);
1330                 }
1331         }
1332
1333         return ERROR_OK;
1334 }
1335
1336 /*
1337  * Cortex-A8 target information and configuration
1338  */
1339
1340 static int cortex_a8_examine(struct target *target)
1341 {
1342         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1343         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1344         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1345         int i;
1346         int retval = ERROR_OK;
1347         uint32_t didr, ctypr, ttypr, cpuid;
1348
1349         LOG_DEBUG("TODO");
1350
1351         /* Here we shall insert a proper ROM Table scan */
1352         armv7a->debug_base = OMAP3530_DEBUG_BASE;
1353
1354         /* We do one extra read to ensure DAP is configured,
1355          * we call ahbap_debugport_init(swjdp) instead
1356          */
1357         ahbap_debugport_init(swjdp);
1358         mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_CPUID, &cpuid);
1359         if ((retval = mem_ap_read_atomic_u32(swjdp,
1360                         armv7a->debug_base + CPUDBG_CPUID, &cpuid)) != ERROR_OK)
1361         {
1362                 LOG_DEBUG("Examine failed");
1363                 return retval;
1364         }
1365
1366         if ((retval = mem_ap_read_atomic_u32(swjdp,
1367                         armv7a->debug_base + CPUDBG_CTYPR, &ctypr)) != ERROR_OK)
1368         {
1369                 LOG_DEBUG("Examine failed");
1370                 return retval;
1371         }
1372
1373         if ((retval = mem_ap_read_atomic_u32(swjdp,
1374                         armv7a->debug_base + CPUDBG_TTYPR, &ttypr)) != ERROR_OK)
1375         {
1376                 LOG_DEBUG("Examine failed");
1377                 return retval;
1378         }
1379
1380         if ((retval = mem_ap_read_atomic_u32(swjdp,
1381                         armv7a->debug_base + CPUDBG_DIDR, &didr)) != ERROR_OK)
1382         {
1383                 LOG_DEBUG("Examine failed");
1384                 return retval;
1385         }
1386
1387         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1388         LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
1389         LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
1390         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
1391
1392         /* Setup Breakpoint Register Pairs */
1393         cortex_a8->brp_num = ((didr >> 24) & 0x0F) + 1;
1394         cortex_a8->brp_num_context = ((didr >> 20) & 0x0F) + 1;
1395         cortex_a8->brp_num_available = cortex_a8->brp_num;
1396         cortex_a8->brp_list = calloc(cortex_a8->brp_num, sizeof(struct cortex_a8_brp));
1397 //      cortex_a8->brb_enabled = ????;
1398         for (i = 0; i < cortex_a8->brp_num; i++)
1399         {
1400                 cortex_a8->brp_list[i].used = 0;
1401                 if (i < (cortex_a8->brp_num-cortex_a8->brp_num_context))
1402                         cortex_a8->brp_list[i].type = BRP_NORMAL;
1403                 else
1404                         cortex_a8->brp_list[i].type = BRP_CONTEXT;
1405                 cortex_a8->brp_list[i].value = 0;
1406                 cortex_a8->brp_list[i].control = 0;
1407                 cortex_a8->brp_list[i].BRPn = i;
1408         }
1409
1410         /* Setup Watchpoint Register Pairs */
1411         cortex_a8->wrp_num = ((didr >> 28) & 0x0F) + 1;
1412         cortex_a8->wrp_num_available = cortex_a8->wrp_num;
1413         cortex_a8->wrp_list = calloc(cortex_a8->wrp_num, sizeof(struct cortex_a8_wrp));
1414         for (i = 0; i < cortex_a8->wrp_num; i++)
1415         {
1416                 cortex_a8->wrp_list[i].used = 0;
1417                 cortex_a8->wrp_list[i].type = 0;
1418                 cortex_a8->wrp_list[i].value = 0;
1419                 cortex_a8->wrp_list[i].control = 0;
1420                 cortex_a8->wrp_list[i].WRPn = i;
1421         }
1422         LOG_DEBUG("Configured %i hw breakpoint pairs and %i hw watchpoint pairs",
1423                         cortex_a8->brp_num , cortex_a8->wrp_num);
1424
1425         /* Configure core debug access */
1426         cortex_a8_init_debug_access(target);
1427
1428         target_set_examined(target);
1429
1430         return retval;
1431 }
1432
1433 /*
1434  *      Cortex-A8 target creation and initialization
1435  */
1436
1437 static void cortex_a8_build_reg_cache(struct target *target)
1438 {
1439         struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
1440         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
1441
1442         (*cache_p) = armv4_5_build_reg_cache(target, armv4_5);
1443         armv4_5->core_cache = (*cache_p);
1444 }
1445
1446
1447 static int cortex_a8_init_target(struct command_context *cmd_ctx,
1448                 struct target *target)
1449 {
1450         cortex_a8_build_reg_cache(target);
1451         return ERROR_OK;
1452 }
1453
1454 int cortex_a8_init_arch_info(struct target *target,
1455                 struct cortex_a8_common *cortex_a8, struct jtag_tap *tap)
1456 {
1457         struct arm *armv4_5;
1458         struct armv7a_common *armv7a;
1459
1460         armv7a = &cortex_a8->armv7a_common;
1461         armv4_5 = &armv7a->armv4_5_common;
1462         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1463
1464         /* Setup struct cortex_a8_common */
1465         cortex_a8->common_magic = CORTEX_A8_COMMON_MAGIC;
1466         armv4_5->arch_info = armv7a;
1467
1468         armv4_5_init_arch_info(target, armv4_5);
1469
1470         /* prepare JTAG information for the new target */
1471         cortex_a8->jtag_info.tap = tap;
1472         cortex_a8->jtag_info.scann_size = 4;
1473 LOG_DEBUG(" ");
1474         swjdp->dp_select_value = -1;
1475         swjdp->ap_csw_value = -1;
1476         swjdp->ap_tar_value = -1;
1477         swjdp->jtag_info = &cortex_a8->jtag_info;
1478         swjdp->memaccess_tck = 80;
1479
1480         /* Number of bits for tar autoincrement, impl. dep. at least 10 */
1481         swjdp->tar_autoincr_block = (1 << 10);
1482
1483         cortex_a8->fast_reg_read = 0;
1484
1485
1486         /* register arch-specific functions */
1487         armv7a->examine_debug_reason = NULL;
1488
1489         armv7a->post_debug_entry = cortex_a8_post_debug_entry;
1490
1491         armv7a->pre_restore_context = NULL;
1492         armv7a->post_restore_context = NULL;
1493         armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1;
1494 //      armv7a->armv4_5_mmu.get_ttb = armv7a_get_ttb;
1495         armv7a->armv4_5_mmu.read_memory = cortex_a8_read_memory;
1496         armv7a->armv4_5_mmu.write_memory = cortex_a8_write_memory;
1497 //      armv7a->armv4_5_mmu.disable_mmu_caches = armv7a_disable_mmu_caches;
1498 //      armv7a->armv4_5_mmu.enable_mmu_caches = armv7a_enable_mmu_caches;
1499         armv7a->armv4_5_mmu.has_tiny_pages = 1;
1500         armv7a->armv4_5_mmu.mmu_enabled = 0;
1501         armv7a->read_cp15 = cortex_a8_read_cp15;
1502         armv7a->write_cp15 = cortex_a8_write_cp15;
1503
1504
1505 //      arm7_9->handle_target_request = cortex_a8_handle_target_request;
1506
1507         armv4_5->read_core_reg = cortex_a8_read_core_reg;
1508         armv4_5->write_core_reg = cortex_a8_write_core_reg;
1509 //      armv4_5->full_context = arm7_9_full_context;
1510
1511 //      armv4_5->load_core_reg_u32 = cortex_a8_load_core_reg_u32;
1512 //      armv4_5->store_core_reg_u32 = cortex_a8_store_core_reg_u32;
1513 //      armv4_5->read_core_reg = armv4_5_read_core_reg; /* this is default */
1514 //      armv4_5->write_core_reg = armv4_5_write_core_reg;
1515
1516         target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target);
1517
1518         return ERROR_OK;
1519 }
1520
1521 static int cortex_a8_target_create(struct target *target, Jim_Interp *interp)
1522 {
1523         struct cortex_a8_common *cortex_a8 = calloc(1, sizeof(struct cortex_a8_common));
1524
1525         cortex_a8_init_arch_info(target, cortex_a8, target->tap);
1526
1527         return ERROR_OK;
1528 }
1529
1530 COMMAND_HANDLER(cortex_a8_handle_cache_info_command)
1531 {
1532         struct target *target = get_current_target(cmd_ctx);
1533         struct armv7a_common *armv7a = target_to_armv7a(target);
1534
1535         return armv4_5_handle_cache_info_command(cmd_ctx,
1536                         &armv7a->armv4_5_mmu.armv4_5_cache);
1537 }
1538
1539
1540 COMMAND_HANDLER(cortex_a8_handle_dbginit_command)
1541 {
1542         struct target *target = get_current_target(cmd_ctx);
1543
1544         cortex_a8_init_debug_access(target);
1545
1546         return ERROR_OK;
1547 }
1548
1549
1550 static int cortex_a8_register_commands(struct command_context *cmd_ctx)
1551 {
1552         struct command *cortex_a8_cmd;
1553         int retval = ERROR_OK;
1554
1555         armv4_5_register_commands(cmd_ctx);
1556         armv7a_register_commands(cmd_ctx);
1557
1558         cortex_a8_cmd = register_command(cmd_ctx, NULL, "cortex_a8",
1559                         NULL, COMMAND_ANY,
1560                         "cortex_a8 specific commands");
1561
1562         register_command(cmd_ctx, cortex_a8_cmd, "cache_info",
1563                         cortex_a8_handle_cache_info_command, COMMAND_EXEC,
1564                         "display information about target caches");
1565
1566         register_command(cmd_ctx, cortex_a8_cmd, "dbginit",
1567                         cortex_a8_handle_dbginit_command, COMMAND_EXEC,
1568                         "Initialize core debug");
1569
1570         return retval;
1571 }
1572
1573 struct target_type cortexa8_target = {
1574         .name = "cortex_a8",
1575
1576         .poll = cortex_a8_poll,
1577         .arch_state = armv7a_arch_state,
1578
1579         .target_request_data = NULL,
1580
1581         .halt = cortex_a8_halt,
1582         .resume = cortex_a8_resume,
1583         .step = cortex_a8_step,
1584
1585         .assert_reset = cortex_a8_assert_reset,
1586         .deassert_reset = cortex_a8_deassert_reset,
1587         .soft_reset_halt = NULL,
1588
1589         .get_gdb_reg_list = armv4_5_get_gdb_reg_list,
1590
1591         .read_memory = cortex_a8_read_memory,
1592         .write_memory = cortex_a8_write_memory,
1593         .bulk_write_memory = cortex_a8_bulk_write_memory,
1594
1595         .checksum_memory = arm_checksum_memory,
1596         .blank_check_memory = arm_blank_check_memory,
1597
1598         .run_algorithm = armv4_5_run_algorithm,
1599
1600         .add_breakpoint = cortex_a8_add_breakpoint,
1601         .remove_breakpoint = cortex_a8_remove_breakpoint,
1602         .add_watchpoint = NULL,
1603         .remove_watchpoint = NULL,
1604
1605         .register_commands = cortex_a8_register_commands,
1606         .target_create = cortex_a8_target_create,
1607         .init_target = cortex_a8_init_target,
1608         .examine = cortex_a8_examine,
1609         .mrc = cortex_a8_mrc,
1610         .mcr = cortex_a8_mcr,
1611 };