6ef585cc7090c30c26f80eb4454ad9e9ae7e1d8d
[fw/openocd] / src / target / cortex_a8.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   This program is free software; you can redistribute it and/or modify  *
15  *   it under the terms of the GNU General Public License as published by  *
16  *   the Free Software Foundation; either version 2 of the License, or     *
17  *   (at your option) any later version.                                   *
18  *                                                                         *
19  *   This program is distributed in the hope that it will be useful,       *
20  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
21  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
22  *   GNU General Public License for more details.                          *
23  *                                                                         *
24  *   You should have received a copy of the GNU General Public License     *
25  *   along with this program; if not, write to the                         *
26  *   Free Software Foundation, Inc.,                                       *
27  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
28  *                                                                         *
29  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
30  *                                                                         *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "cortex_a8.h"
37 #include "armv7a.h"
38 #include "armv4_5.h"
39
40 #include "target_request.h"
41 #include "target_type.h"
42
43 /* cli handling */
44 int cortex_a8_register_commands(struct command_context_s *cmd_ctx);
45
46 /* forward declarations */
47 int cortex_a8_target_create(struct target_s *target, Jim_Interp *interp);
48 int cortex_a8_init_target(struct command_context_s *cmd_ctx,
49                 struct target_s *target);
50 int cortex_a8_examine(struct target_s *target);
51 int cortex_a8_poll(target_t *target);
52 int cortex_a8_halt(target_t *target);
53 int cortex_a8_resume(struct target_s *target, int current, uint32_t address,
54                 int handle_breakpoints, int debug_execution);
55 int cortex_a8_step(struct target_s *target, int current, uint32_t address,
56                 int handle_breakpoints);
57 int cortex_a8_debug_entry(target_t *target);
58 int cortex_a8_restore_context(target_t *target);
59 int cortex_a8_bulk_write_memory(target_t *target, uint32_t address,
60                 uint32_t count, uint8_t *buffer);
61 int cortex_a8_set_breakpoint(struct target_s *target,
62                 breakpoint_t *breakpoint, uint8_t matchmode);
63 int cortex_a8_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint);
64 int cortex_a8_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint);
65 int cortex_a8_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoint);
66 int cortex_a8_dap_read_coreregister_u32(target_t *target,
67                 uint32_t *value, int regnum);
68 int cortex_a8_dap_write_coreregister_u32(target_t *target,
69                 uint32_t value, int regnum);
70
71 target_type_t cortexa8_target =
72 {
73         .name = "cortex_a8",
74
75         .poll = cortex_a8_poll,
76         .arch_state = armv7a_arch_state,
77
78         .target_request_data = NULL,
79
80         .halt = cortex_a8_halt,
81         .resume = cortex_a8_resume,
82         .step = cortex_a8_step,
83
84         .assert_reset = NULL,
85         .deassert_reset = NULL,
86         .soft_reset_halt = NULL,
87
88 //      .get_gdb_reg_list = armv4_5_get_gdb_reg_list,
89         .get_gdb_reg_list = armv4_5_get_gdb_reg_list,
90
91         .read_memory = cortex_a8_read_memory,
92         .write_memory = cortex_a8_write_memory,
93         .bulk_write_memory = cortex_a8_bulk_write_memory,
94         .checksum_memory = arm7_9_checksum_memory,
95         .blank_check_memory = arm7_9_blank_check_memory,
96
97         .run_algorithm = armv4_5_run_algorithm,
98
99         .add_breakpoint = cortex_a8_add_breakpoint,
100         .remove_breakpoint = cortex_a8_remove_breakpoint,
101         .add_watchpoint = NULL,
102         .remove_watchpoint = NULL,
103
104         .register_commands = cortex_a8_register_commands,
105         .target_create = cortex_a8_target_create,
106         .init_target = cortex_a8_init_target,
107         .examine = cortex_a8_examine,
108         .quit = NULL
109 };
110
111 /*
112  * FIXME do topology discovery using the ROM; don't
113  * assume this is an OMAP3.
114  */
115 #define swjdp_memoryap 0
116 #define swjdp_debugap 1
117 #define OMAP3530_DEBUG_BASE 0x54011000
118
119 /*
120  * Cortex-A8 Basic debug access, very low level assumes state is saved
121  */
122 int cortex_a8_init_debug_access(target_t *target)
123 {
124 #if 0
125 # Unlocking the debug registers for modification
126 mww 0x54011FB0 0xC5ACCE55 4
127
128 # Clear Sticky Power Down status Bit to enable access to
129 # the registers in the Core Power Domain
130 mdw 0x54011314
131 # Check that it is cleared
132 mdw 0x54011314
133 # Now we can read Core Debug Registers at offset 0x080
134 mdw 0x54011080 4
135 # We can also read RAM.
136 mdw 0x80000000 32
137
138 mdw 0x5401d030
139 mdw 0x54011FB8
140
141 # Set DBGEN line for hardware debug (OMAP35xx)
142 mww 0x5401d030 0x00002000
143
144 #Check AUTHSTATUS
145 mdw 0x54011FB8
146
147 # Instr enable
148 mww 0x54011088 0x2000
149 mdw 0x54011080 4
150 #endif
151         return ERROR_OK;
152 }
153
154 int cortex_a8_exec_opcode(target_t *target, uint32_t opcode)
155 {
156         uint32_t dscr;
157         int retvalue;
158         /* get pointers to arch-specific information */
159         armv4_5_common_t *armv4_5 = target->arch_info;
160         armv7a_common_t *armv7a = armv4_5->arch_info;
161         swjdp_common_t *swjdp = &armv7a->swjdp_info;
162
163         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
164         do
165         {
166                 retvalue = mem_ap_read_atomic_u32(swjdp,
167                                 OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
168         }
169         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
170
171         mem_ap_write_u32(swjdp, OMAP3530_DEBUG_BASE + CPUDBG_ITR, opcode);
172
173         do
174         {
175                 retvalue = mem_ap_read_atomic_u32(swjdp,
176                                 OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
177         }
178         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
179
180         return retvalue;
181 }
182
183 /**************************************************************************
184 Read core register with very few exec_opcode, fast but needs work_area.
185 This can cause problems with MMU active.
186 **************************************************************************/
187 int cortex_a8_read_regs_through_mem(target_t *target, uint32_t address,
188                 uint32_t * regfile)
189 {
190         int retval = ERROR_OK;
191         /* get pointers to arch-specific information */
192         armv4_5_common_t *armv4_5 = target->arch_info;
193         armv7a_common_t *armv7a = armv4_5->arch_info;
194         swjdp_common_t *swjdp = &armv7a->swjdp_info;
195
196         cortex_a8_dap_read_coreregister_u32(target, regfile, 0);
197         cortex_a8_dap_write_coreregister_u32(target, address, 0);
198         cortex_a8_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0));
199         dap_ap_select(swjdp, swjdp_memoryap);
200         mem_ap_read_buf_u32(swjdp, (uint8_t *)(&regfile[1]), 4*15, address);
201         dap_ap_select(swjdp, swjdp_debugap);
202
203         return retval;
204 }
205
206 int cortex_a8_read_cp(target_t *target, uint32_t *value, uint8_t CP,
207                 uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
208 {
209         int retval;
210         /* get pointers to arch-specific information */
211         armv4_5_common_t *armv4_5 = target->arch_info;
212         armv7a_common_t *armv7a = armv4_5->arch_info;
213         swjdp_common_t *swjdp = &armv7a->swjdp_info;
214
215         cortex_a8_exec_opcode(target, ARMV4_5_MRC(CP, op1, 0, CRn, CRm, op2));
216         /* Move R0 to DTRTX */
217         cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
218
219         /* Read DCCTX */
220         retval = mem_ap_read_atomic_u32(swjdp,
221                         OMAP3530_DEBUG_BASE + CPUDBG_DTRTX, value);
222
223         return retval;
224 }
225
226 int cortex_a8_write_cp(target_t *target, uint32_t value,
227         uint8_t CP, uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
228 /* TODO Fix this */
229 {
230         int retval;
231         /* get pointers to arch-specific information */
232         armv4_5_common_t *armv4_5 = target->arch_info;
233         armv7a_common_t *armv7a = armv4_5->arch_info;
234         swjdp_common_t *swjdp = &armv7a->swjdp_info;
235
236         retval = mem_ap_write_u32(swjdp,
237                         OMAP3530_DEBUG_BASE + CPUDBG_DTRRX, value);
238         /* Move DTRRX to r0 */
239         cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
240
241         cortex_a8_exec_opcode(target, ARMV4_5_MCR(CP, 0, 0, 0, 5, 0));
242         return retval;
243 }
244
245 int cortex_a8_read_cp15(target_t *target, uint32_t op1, uint32_t op2,
246                 uint32_t CRn, uint32_t CRm, uint32_t *value)
247 {
248         return cortex_a8_read_cp(target, value, 15, op1, CRn, CRm, op2);
249 }
250
251 int cortex_a8_write_cp15(target_t *target, uint32_t op1, uint32_t op2,
252                 uint32_t CRn, uint32_t CRm, uint32_t value)
253 {
254         return cortex_a8_write_cp(target, value, 15, op1, CRn, CRm, op2);
255 }
256
257 int cortex_a8_dap_read_coreregister_u32(target_t *target,
258                 uint32_t *value, int regnum)
259 {
260         int retval = ERROR_OK;
261         uint8_t reg = regnum&0xFF;
262         uint32_t dscr;
263
264         /* get pointers to arch-specific information */
265         armv4_5_common_t *armv4_5 = target->arch_info;
266         armv7a_common_t *armv7a = armv4_5->arch_info;
267         swjdp_common_t *swjdp = &armv7a->swjdp_info;
268
269         if (reg > 16)
270                 return retval;
271
272         if (reg < 15)
273         {
274                 /* Rn to DCCTX, MCR p14, 0, Rd, c0, c5, 0,  0xEE000E15 */
275                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, reg, 0, 5, 0));
276         }
277         else if (reg == 15)
278         {
279                 cortex_a8_exec_opcode(target, 0xE1A0000F);
280                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
281         }
282         else if (reg == 16)
283         {
284                 cortex_a8_exec_opcode(target, ARMV4_5_MRS(0, 0));
285                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
286         }
287
288         /* Read DTRRTX */
289         do
290         {
291                 retval = mem_ap_read_atomic_u32(swjdp,
292                                 OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
293         }
294         while ((dscr & (1 << DSCR_DTR_TX_FULL)) == 0); /* Wait for DTRRXfull */
295
296         retval = mem_ap_read_atomic_u32(swjdp,
297                         OMAP3530_DEBUG_BASE + CPUDBG_DTRTX, value);
298
299         return retval;
300 }
301
302 int cortex_a8_dap_write_coreregister_u32(target_t *target, uint32_t value, int regnum)
303 {
304         int retval = ERROR_OK;
305         uint8_t Rd = regnum&0xFF;
306
307         /* get pointers to arch-specific information */
308         armv4_5_common_t *armv4_5 = target->arch_info;
309         armv7a_common_t *armv7a = armv4_5->arch_info;
310         swjdp_common_t *swjdp = &armv7a->swjdp_info;
311
312         if (Rd > 16)
313                 return retval;
314
315         /* Write to DCCRX */
316         retval = mem_ap_write_u32(swjdp,
317                         OMAP3530_DEBUG_BASE + CPUDBG_DTRRX, value);
318
319         if (Rd < 15)
320         {
321                 /* DCCRX to Rd, MCR p14, 0, Rd, c0, c5, 0,  0xEE000E15 */
322                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0));
323         }
324         else if (Rd == 15)
325         {
326                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
327                 cortex_a8_exec_opcode(target, 0xE1A0F000);
328         }
329         else if (Rd == 16)
330         {
331                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
332                 cortex_a8_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, 0));
333                 /* Execute a PrefetchFlush instruction through the ITR. */
334                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(15, 0, 0, 7, 5, 4));
335         }
336
337         return retval;
338 }
339
340 /*
341  * Cortex-A8 Run control
342  */
343
344 int cortex_a8_poll(target_t *target)
345 {
346         int retval = ERROR_OK;
347         uint32_t dscr;
348         /* get pointers to arch-specific information */
349         armv4_5_common_t *armv4_5 = target->arch_info;
350         armv7a_common_t *armv7a = armv4_5->arch_info;
351         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
352         swjdp_common_t *swjdp = &armv7a->swjdp_info;
353
354
355         enum target_state prev_target_state = target->state;
356
357         uint8_t saved_apsel = dap_ap_get_select(swjdp);
358         dap_ap_select(swjdp, swjdp_debugap);
359         retval = mem_ap_read_atomic_u32(swjdp,
360                         OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
361         if (retval != ERROR_OK)
362         {
363                 dap_ap_select(swjdp, saved_apsel);
364                 return retval;
365         }
366         cortex_a8->cpudbg_dscr = dscr;
367
368         if ((dscr & 0x3) == 0x3)
369         {
370                 if (prev_target_state != TARGET_HALTED)
371                 {
372                         /* We have a halting debug event */
373                         LOG_DEBUG("Target halted");
374                         target->state = TARGET_HALTED;
375                         if ((prev_target_state == TARGET_RUNNING)
376                                         || (prev_target_state == TARGET_RESET))
377                         {
378                                 retval = cortex_a8_debug_entry(target);
379                                 if (retval != ERROR_OK)
380                                         return retval;
381
382                                 target_call_event_callbacks(target,
383                                                 TARGET_EVENT_HALTED);
384                         }
385                         if (prev_target_state == TARGET_DEBUG_RUNNING)
386                         {
387                                 LOG_DEBUG(" ");
388
389                                 retval = cortex_a8_debug_entry(target);
390                                 if (retval != ERROR_OK)
391                                         return retval;
392
393                                 target_call_event_callbacks(target,
394                                                 TARGET_EVENT_DEBUG_HALTED);
395                         }
396                 }
397         }
398         else if ((dscr & 0x3) == 0x2)
399         {
400                 target->state = TARGET_RUNNING;
401         }
402         else
403         {
404                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
405                 target->state = TARGET_UNKNOWN;
406         }
407
408         dap_ap_select(swjdp, saved_apsel);
409
410         return retval;
411 }
412
413 int cortex_a8_halt(target_t *target)
414 {
415         int retval = ERROR_OK;
416         uint32_t dscr;
417
418         /* get pointers to arch-specific information */
419         armv4_5_common_t *armv4_5 = target->arch_info;
420         armv7a_common_t *armv7a = armv4_5->arch_info;
421         swjdp_common_t *swjdp = &armv7a->swjdp_info;
422
423         uint8_t saved_apsel = dap_ap_get_select(swjdp);
424         dap_ap_select(swjdp, swjdp_debugap);
425
426         /*
427          * Tell the core to be halted by writing DRCR with 0x1
428          * and then wait for the core to be halted.
429          */
430         retval = mem_ap_write_atomic_u32(swjdp,
431                         OMAP3530_DEBUG_BASE + CPUDBG_DRCR, 0x1);
432
433         /*
434          * enter halting debug mode
435          */
436         mem_ap_read_atomic_u32(swjdp, OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
437         retval = mem_ap_write_atomic_u32(swjdp,
438                 OMAP3530_DEBUG_BASE + CPUDBG_DSCR, dscr | (1 << DSCR_HALT_DBG_MODE));
439
440         if (retval != ERROR_OK)
441                 goto out;
442
443         do {
444                 mem_ap_read_atomic_u32(swjdp,
445                         OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
446         } while ((dscr & (1 << DSCR_CORE_HALTED)) == 0);
447
448         target->debug_reason = DBG_REASON_DBGRQ;
449
450 out:
451         dap_ap_select(swjdp, saved_apsel);
452         return retval;
453 }
454
455 int cortex_a8_resume(struct target_s *target, int current,
456                 uint32_t address, int handle_breakpoints, int debug_execution)
457 {
458         /* get pointers to arch-specific information */
459         armv4_5_common_t *armv4_5 = target->arch_info;
460         armv7a_common_t *armv7a = armv4_5->arch_info;
461         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
462         swjdp_common_t *swjdp = &armv7a->swjdp_info;
463
464 //      breakpoint_t *breakpoint = NULL;
465         uint32_t resume_pc, dscr;
466
467         uint8_t saved_apsel = dap_ap_get_select(swjdp);
468         dap_ap_select(swjdp, swjdp_debugap);
469
470         if (!debug_execution)
471         {
472                 target_free_all_working_areas(target);
473 //              cortex_m3_enable_breakpoints(target);
474 //              cortex_m3_enable_watchpoints(target);
475         }
476
477 #if 0
478         if (debug_execution)
479         {
480                 /* Disable interrupts */
481                 /* We disable interrupts in the PRIMASK register instead of
482                  * masking with C_MASKINTS,
483                  * This is probably the same issue as Cortex-M3 Errata 377493:
484                  * C_MASKINTS in parallel with disabled interrupts can cause
485                  * local faults to not be taken. */
486                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
487                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
488                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
489
490                 /* Make sure we are in Thumb mode */
491                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
492                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
493                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
494                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
495         }
496 #endif
497
498         /* current = 1: continue on current pc, otherwise continue at <address> */
499         resume_pc = buf_get_u32(
500                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
501                                 armv4_5->core_mode, 15).value,
502                         0, 32);
503         if (!current)
504                 resume_pc = address;
505
506         /* Make sure that the Armv7 gdb thumb fixups does not
507          * kill the return address
508          */
509         if (!(cortex_a8->cpudbg_dscr & (1 << 5)))
510         {
511                 resume_pc &= 0xFFFFFFFC;
512         }
513         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
514         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
515                                 armv4_5->core_mode, 15).value,
516                         0, 32, resume_pc);
517         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
518                         armv4_5->core_mode, 15).dirty = 1;
519         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
520                         armv4_5->core_mode, 15).valid = 1;
521
522         cortex_a8_restore_context(target);
523 //      arm7_9_restore_context(target); TODO Context is currently NOT Properly restored
524 #if 0
525         /* the front-end may request us not to handle breakpoints */
526         if (handle_breakpoints)
527         {
528                 /* Single step past breakpoint at current address */
529                 if ((breakpoint = breakpoint_find(target, resume_pc)))
530                 {
531                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
532                         cortex_m3_unset_breakpoint(target, breakpoint);
533                         cortex_m3_single_step_core(target);
534                         cortex_m3_set_breakpoint(target, breakpoint);
535                 }
536         }
537
538 #endif
539         /* Restart core and wait for it to be started */
540         mem_ap_write_atomic_u32(swjdp, OMAP3530_DEBUG_BASE + CPUDBG_DRCR, 0x2);
541
542         do {
543                 mem_ap_read_atomic_u32(swjdp,
544                         OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
545         } while ((dscr & (1 << DSCR_CORE_RESTARTED)) == 0);
546
547         target->debug_reason = DBG_REASON_NOTHALTED;
548         target->state = TARGET_RUNNING;
549
550         /* registers are now invalid */
551         armv4_5_invalidate_core_regs(target);
552
553         if (!debug_execution)
554         {
555                 target->state = TARGET_RUNNING;
556                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
557                 LOG_DEBUG("target resumed at 0x%" PRIx32, resume_pc);
558         }
559         else
560         {
561                 target->state = TARGET_DEBUG_RUNNING;
562                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
563                 LOG_DEBUG("target debug resumed at 0x%" PRIx32, resume_pc);
564         }
565
566         dap_ap_select(swjdp, saved_apsel);
567
568         return ERROR_OK;
569 }
570
571 int cortex_a8_debug_entry(target_t *target)
572 {
573         int i;
574         uint32_t regfile[16], pc, cpsr, dscr;
575         int retval = ERROR_OK;
576         working_area_t *regfile_working_area = NULL;
577
578         /* get pointers to arch-specific information */
579         armv4_5_common_t *armv4_5 = target->arch_info;
580         armv7a_common_t *armv7a = armv4_5->arch_info;
581         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
582         swjdp_common_t *swjdp = &armv7a->swjdp_info;
583
584         if (armv7a->pre_debug_entry)
585                 armv7a->pre_debug_entry(target);
586
587         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a8->cpudbg_dscr);
588
589         /* Enable the ITR execution once we are in debug mode */
590         mem_ap_read_atomic_u32(swjdp,
591                                 OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
592         dscr |= (1 << DSCR_EXT_INT_EN);
593         retval = mem_ap_write_atomic_u32(swjdp,
594                         OMAP3530_DEBUG_BASE + CPUDBG_DSCR, dscr);
595
596
597         /* Examine debug reason */
598         switch ((cortex_a8->cpudbg_dscr >> 2)&0xF)
599         {
600                 case 0:
601                 case 4:
602                         target->debug_reason = DBG_REASON_DBGRQ;
603                         break;
604                 case 1:
605                 case 3:
606                         target->debug_reason = DBG_REASON_BREAKPOINT;
607                         break;
608                 case 10:
609                         target->debug_reason = DBG_REASON_WATCHPOINT;
610                         break;
611                 default:
612                         target->debug_reason = DBG_REASON_UNDEFINED;
613                         break;
614         }
615
616         /* Examine target state and mode */
617         if (cortex_a8->fast_reg_read)
618                 target_alloc_working_area(target, 64, &regfile_working_area);
619
620         /* First load register acessible through core debug port*/
621         if (!regfile_working_area)
622         {
623                 for (i = 0; i <= 15; i++)
624                         cortex_a8_dap_read_coreregister_u32(target,
625                                         &regfile[i], i);
626         }
627         else
628         {
629                 dap_ap_select(swjdp, swjdp_memoryap);
630                 cortex_a8_read_regs_through_mem(target,
631                                 regfile_working_area->address, regfile);
632                 dap_ap_select(swjdp, swjdp_memoryap);
633                 target_free_working_area(target, regfile_working_area);
634         }
635
636         cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16);
637         pc = regfile[15];
638         dap_ap_select(swjdp, swjdp_debugap);
639         LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
640
641         armv4_5->core_mode = cpsr & 0x3F;
642
643         for (i = 0; i <= ARM_PC; i++)
644         {
645                 buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
646                                         armv4_5->core_mode, i).value,
647                                 0, 32, regfile[i]);
648                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
649                                 armv4_5->core_mode, i).valid = 1;
650                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
651                                 armv4_5->core_mode, i).dirty = 0;
652         }
653         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
654                                 armv4_5->core_mode, 16).value,
655                         0, 32, cpsr);
656         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).valid = 1;
657         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).dirty = 0;
658
659         /* Fixup PC Resume Address */
660         /* TODO Her we should use arch->core_state */
661         if (cortex_a8->cpudbg_dscr & (1 << 5))
662         {
663                 // T bit set for Thumb or ThumbEE state
664                 regfile[ARM_PC] -= 4;
665         }
666         else
667         {
668                 // ARM state
669                 regfile[ARM_PC] -= 8;
670         }
671         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
672                                 armv4_5->core_mode, ARM_PC).value,
673                         0, 32, regfile[ARM_PC]);
674
675         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0)
676                 .dirty = ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
677                                 armv4_5->core_mode, 0).valid;
678         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15)
679                 .dirty = ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
680                                 armv4_5->core_mode, 15).valid;
681
682 #if 0
683 /* TODO, Move this */
684         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
685         cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
686         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
687
688         cortex_a8_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
689         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
690
691         cortex_a8_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
692         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
693 #endif
694
695         /* Are we in an exception handler */
696 //      armv4_5->exception_number = 0;
697         if (armv7a->post_debug_entry)
698                 armv7a->post_debug_entry(target);
699
700
701
702         return retval;
703
704 }
705
706 void cortex_a8_post_debug_entry(target_t *target)
707 {
708         /* get pointers to arch-specific information */
709         armv4_5_common_t *armv4_5 = target->arch_info;
710         armv7a_common_t *armv7a = armv4_5->arch_info;
711         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
712
713 //      cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
714         /* examine cp15 control reg */
715         armv7a->read_cp15(target, 0, 0, 1, 0, &cortex_a8->cp15_control_reg);
716         jtag_execute_queue();
717         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
718
719         if (armv7a->armv4_5_mmu.armv4_5_cache.ctype == -1)
720         {
721                 uint32_t cache_type_reg;
722                 /* identify caches */
723                 armv7a->read_cp15(target, 0, 1, 0, 0, &cache_type_reg);
724                 jtag_execute_queue();
725                 /* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A8 */
726                 armv4_5_identify_cache(cache_type_reg,
727                                 &armv7a->armv4_5_mmu.armv4_5_cache);
728         }
729
730         armv7a->armv4_5_mmu.mmu_enabled =
731                         (cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0;
732         armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
733                         (cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0;
734         armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
735                         (cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0;
736
737
738 }
739
740 int cortex_a8_step(struct target_s *target, int current, uint32_t address,
741                 int handle_breakpoints)
742 {
743         /* get pointers to arch-specific information */
744         armv4_5_common_t *armv4_5 = target->arch_info;
745         armv7a_common_t *armv7a = armv4_5->arch_info;
746         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
747         breakpoint_t *breakpoint = NULL;
748         breakpoint_t stepbreakpoint;
749
750         int timeout = 100;
751
752         if (target->state != TARGET_HALTED)
753         {
754                 LOG_WARNING("target not halted");
755                 return ERROR_TARGET_NOT_HALTED;
756         }
757
758         /* current = 1: continue on current pc, otherwise continue at <address> */
759         if (!current)
760         {
761                 buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
762                                         armv4_5->core_mode, ARM_PC).value,
763                                 0, 32, address);
764         }
765         else
766         {
767                 address = buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
768                                         armv4_5->core_mode, ARM_PC).value,
769                                 0, 32);
770         }
771
772         /* The front-end may request us not to handle breakpoints.
773          * But since Cortex-A8 uses breakpoint for single step,
774          * we MUST handle breakpoints.
775          */
776         handle_breakpoints = 1;
777         if (handle_breakpoints) {
778                 breakpoint = breakpoint_find(target,
779                                 buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
780                                         armv4_5->core_mode, 15).value,
781                         0, 32));
782                 if (breakpoint)
783                         cortex_a8_unset_breakpoint(target, breakpoint);
784         }
785
786         /* Setup single step breakpoint */
787         stepbreakpoint.address = address;
788         stepbreakpoint.length = (cortex_a8->cpudbg_dscr & (1 << 5)) ? 2 : 4;
789         stepbreakpoint.type = BKPT_HARD;
790         stepbreakpoint.set = 0;
791
792         /* Break on IVA mismatch */
793         cortex_a8_set_breakpoint(target, &stepbreakpoint, 0x04);
794
795         target->debug_reason = DBG_REASON_SINGLESTEP;
796
797         cortex_a8_resume(target, 1, address, 0, 0);
798
799         while (target->state != TARGET_HALTED)
800         {
801                 cortex_a8_poll(target);
802                 if (--timeout == 0)
803                 {
804                         LOG_WARNING("timeout waiting for target halt");
805                         break;
806                 }
807         }
808
809         cortex_a8_unset_breakpoint(target, &stepbreakpoint);
810         if (timeout > 0) target->debug_reason = DBG_REASON_BREAKPOINT;
811
812         if (breakpoint)
813                 cortex_a8_set_breakpoint(target, breakpoint, 0);
814
815         if (target->state != TARGET_HALTED)
816                 LOG_DEBUG("target stepped");
817
818         return ERROR_OK;
819 }
820
821 int cortex_a8_restore_context(target_t *target)
822 {
823         int i;
824         uint32_t value;
825
826         /* get pointers to arch-specific information */
827         armv4_5_common_t *armv4_5 = target->arch_info;
828         armv7a_common_t *armv7a = armv4_5->arch_info;
829
830         LOG_DEBUG(" ");
831
832         if (armv7a->pre_restore_context)
833                 armv7a->pre_restore_context(target);
834
835         for (i = 15; i >= 0; i--)
836         {
837                 if (ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
838                                         armv4_5->core_mode, i).dirty)
839                 {
840                         value = buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
841                                                 armv4_5->core_mode, i).value,
842                                         0, 32);
843                         /* TODO Check return values */
844                         cortex_a8_dap_write_coreregister_u32(target, value, i);
845                 }
846         }
847
848         if (armv7a->post_restore_context)
849                 armv7a->post_restore_context(target);
850
851         return ERROR_OK;
852 }
853
854
855 /*
856  * Cortex-A8 Core register functions
857  */
858
859 int cortex_a8_load_core_reg_u32(struct target_s *target, int num,
860                 armv4_5_mode_t mode, uint32_t * value)
861 {
862         int retval;
863         /* get pointers to arch-specific information */
864         armv4_5_common_t *armv4_5 = target->arch_info;
865
866         if ((num <= ARM_CPSR))
867         {
868                 /* read a normal core register */
869                 retval = cortex_a8_dap_read_coreregister_u32(target, value, num);
870
871                 if (retval != ERROR_OK)
872                 {
873                         LOG_ERROR("JTAG failure %i", retval);
874                         return ERROR_JTAG_DEVICE_ERROR;
875                 }
876                 LOG_DEBUG("load from core reg %i value 0x%" PRIx32, num, *value);
877         }
878         else
879         {
880                 return ERROR_INVALID_ARGUMENTS;
881         }
882
883         /* Register other than r0 - r14 uses r0 for access */
884         if (num > 14)
885                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
886                                 armv4_5->core_mode, 0).dirty =
887                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
888                                 armv4_5->core_mode, 0).valid;
889         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
890                                 armv4_5->core_mode, 15).dirty =
891                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
892                                 armv4_5->core_mode, 15).valid;
893
894         return ERROR_OK;
895 }
896
897 int cortex_a8_store_core_reg_u32(struct target_s *target, int num,
898                 armv4_5_mode_t mode, uint32_t value)
899 {
900         int retval;
901 //      uint32_t reg;
902
903         /* get pointers to arch-specific information */
904         armv4_5_common_t *armv4_5 = target->arch_info;
905
906 #ifdef ARMV7_GDB_HACKS
907         /* If the LR register is being modified, make sure it will put us
908          * in "thumb" mode, or an INVSTATE exception will occur. This is a
909          * hack to deal with the fact that gdb will sometimes "forge"
910          * return addresses, and doesn't set the LSB correctly (i.e., when
911          * printing expressions containing function calls, it sets LR=0.) */
912
913         if (num == 14)
914                 value |= 0x01;
915 #endif
916
917         if ((num <= ARM_CPSR))
918         {
919                 retval = cortex_a8_dap_write_coreregister_u32(target, value, num);
920                 if (retval != ERROR_OK)
921                 {
922                         LOG_ERROR("JTAG failure %i", retval);
923                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
924                                         armv4_5->core_mode, num).dirty =
925                                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
926                                         armv4_5->core_mode, num).valid;
927                         return ERROR_JTAG_DEVICE_ERROR;
928                 }
929                 LOG_DEBUG("write core reg %i value 0x%" PRIx32, num, value);
930         }
931         else
932         {
933                 return ERROR_INVALID_ARGUMENTS;
934         }
935
936         return ERROR_OK;
937 }
938
939
940 int cortex_a8_read_core_reg(struct target_s *target, int num,
941                 enum armv4_5_mode mode)
942 {
943         uint32_t value;
944         int retval;
945         armv4_5_common_t *armv4_5 = target->arch_info;
946         cortex_a8_dap_read_coreregister_u32(target, &value, num);
947
948         if ((retval = jtag_execute_queue()) != ERROR_OK)
949         {
950                 return retval;
951         }
952
953         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
954         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
955         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
956                         mode, num).value, 0, 32, value);
957
958         return ERROR_OK;
959 }
960
961 int cortex_a8_write_core_reg(struct target_s *target, int num,
962                 enum armv4_5_mode mode, uint32_t value)
963 {
964         int retval;
965         armv4_5_common_t *armv4_5 = target->arch_info;
966
967         cortex_a8_dap_write_coreregister_u32(target, value, num);
968         if ((retval = jtag_execute_queue()) != ERROR_OK)
969         {
970                 return retval;
971         }
972
973         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
974         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
975
976         return ERROR_OK;
977 }
978
979
980 /*
981  * Cortex-A8 Breakpoint and watchpoint fuctions
982  */
983
984 /* Setup hardware Breakpoint Register Pair */
985 int cortex_a8_set_breakpoint(struct target_s *target,
986                 breakpoint_t *breakpoint, uint8_t matchmode)
987 {
988         int retval;
989         int brp_i=0;
990         uint32_t control;
991         uint8_t byte_addr_select = 0x0F;
992
993
994         /* get pointers to arch-specific information */
995         armv4_5_common_t *armv4_5 = target->arch_info;
996         armv7a_common_t *armv7a = armv4_5->arch_info;
997         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
998         cortex_a8_brp_t * brp_list = cortex_a8->brp_list;
999
1000         if (breakpoint->set)
1001         {
1002                 LOG_WARNING("breakpoint already set");
1003                 return ERROR_OK;
1004         }
1005
1006         if (breakpoint->type == BKPT_HARD)
1007         {
1008                 while (brp_list[brp_i].used && (brp_i < cortex_a8->brp_num))
1009                         brp_i++ ;
1010                 if (brp_i >= cortex_a8->brp_num)
1011                 {
1012                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1013                         exit(-1);
1014                 }
1015                 breakpoint->set = brp_i + 1;
1016                 if (breakpoint->length == 2)
1017                 {
1018                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1019                 }
1020                 control = ((matchmode & 0x7) << 20)
1021                                 | (byte_addr_select << 5)
1022                                 | (3 << 1) | 1;
1023                 brp_list[brp_i].used = 1;
1024                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1025                 brp_list[brp_i].control = control;
1026                 target_write_u32(target, OMAP3530_DEBUG_BASE
1027                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1028                                 brp_list[brp_i].value);
1029                 target_write_u32(target, OMAP3530_DEBUG_BASE
1030                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1031                                 brp_list[brp_i].control);
1032                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1033                                 brp_list[brp_i].control,
1034                                 brp_list[brp_i].value);
1035         }
1036         else if (breakpoint->type == BKPT_SOFT)
1037         {
1038                 uint8_t code[4];
1039                 if (breakpoint->length == 2)
1040                 {
1041                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1042                 }
1043                 else
1044                 {
1045                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1046                 }
1047                 retval = target->type->read_memory(target,
1048                                 breakpoint->address & 0xFFFFFFFE,
1049                                 breakpoint->length, 1,
1050                                 breakpoint->orig_instr);
1051                 if (retval != ERROR_OK)
1052                         return retval;
1053                 retval = target->type->write_memory(target,
1054                                 breakpoint->address & 0xFFFFFFFE,
1055                                 breakpoint->length, 1, code);
1056                 if (retval != ERROR_OK)
1057                         return retval;
1058                 breakpoint->set = 0x11; /* Any nice value but 0 */
1059         }
1060
1061         return ERROR_OK;
1062 }
1063
1064 int cortex_a8_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
1065 {
1066         int retval;
1067         /* get pointers to arch-specific information */
1068         armv4_5_common_t *armv4_5 = target->arch_info;
1069         armv7a_common_t *armv7a = armv4_5->arch_info;
1070         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1071         cortex_a8_brp_t * brp_list = cortex_a8->brp_list;
1072
1073         if (!breakpoint->set)
1074         {
1075                 LOG_WARNING("breakpoint not set");
1076                 return ERROR_OK;
1077         }
1078
1079         if (breakpoint->type == BKPT_HARD)
1080         {
1081                 int brp_i = breakpoint->set - 1;
1082                 if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num))
1083                 {
1084                         LOG_DEBUG("Invalid BRP number in breakpoint");
1085                         return ERROR_OK;
1086                 }
1087                 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1088                                 brp_list[brp_i].control, brp_list[brp_i].value);
1089                 brp_list[brp_i].used = 0;
1090                 brp_list[brp_i].value = 0;
1091                 brp_list[brp_i].control = 0;
1092                 target_write_u32(target, OMAP3530_DEBUG_BASE
1093                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1094                                 brp_list[brp_i].control);
1095                 target_write_u32(target, OMAP3530_DEBUG_BASE
1096                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1097                                 brp_list[brp_i].value);
1098         }
1099         else
1100         {
1101                 /* restore original instruction (kept in target endianness) */
1102                 if (breakpoint->length == 4)
1103                 {
1104                         retval = target->type->write_memory(target,
1105                                         breakpoint->address & 0xFFFFFFFE,
1106                                         4, 1, breakpoint->orig_instr);
1107                         if (retval != ERROR_OK)
1108                                 return retval;
1109                 }
1110                 else
1111                 {
1112                         retval = target->type->write_memory(target,
1113                                         breakpoint->address & 0xFFFFFFFE,
1114                                         2, 1, breakpoint->orig_instr);
1115                         if (retval != ERROR_OK)
1116                                 return retval;
1117                 }
1118         }
1119         breakpoint->set = 0;
1120
1121         return ERROR_OK;
1122 }
1123
1124 int cortex_a8_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
1125 {
1126         /* get pointers to arch-specific information */
1127         armv4_5_common_t *armv4_5 = target->arch_info;
1128         armv7a_common_t *armv7a = armv4_5->arch_info;
1129         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1130
1131         if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1))
1132         {
1133                 LOG_INFO("no hardware breakpoint available");
1134                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1135         }
1136
1137         if (breakpoint->type == BKPT_HARD)
1138                 cortex_a8->brp_num_available--;
1139         cortex_a8_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1140
1141         return ERROR_OK;
1142 }
1143
1144 int cortex_a8_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
1145 {
1146         /* get pointers to arch-specific information */
1147         armv4_5_common_t *armv4_5 = target->arch_info;
1148         armv7a_common_t *armv7a = armv4_5->arch_info;
1149         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1150
1151 #if 0
1152 /* It is perfectly possible to remove brakpoints while the taget is running */
1153         if (target->state != TARGET_HALTED)
1154         {
1155                 LOG_WARNING("target not halted");
1156                 return ERROR_TARGET_NOT_HALTED;
1157         }
1158 #endif
1159
1160         if (breakpoint->set)
1161         {
1162                 cortex_a8_unset_breakpoint(target, breakpoint);
1163                 if (breakpoint->type == BKPT_HARD)
1164                         cortex_a8->brp_num_available++ ;
1165         }
1166
1167
1168         return ERROR_OK;
1169 }
1170
1171
1172
1173 /*
1174  * Cortex-A8 Reset fuctions
1175  */
1176
1177
1178 /*
1179  * Cortex-A8 Memory access
1180  *
1181  * This is same Cortex M3 but we must also use the correct
1182  * ap number for every access.
1183  */
1184
1185 int cortex_a8_read_memory(struct target_s *target, uint32_t address,
1186                 uint32_t size, uint32_t count, uint8_t *buffer)
1187 {
1188         /* get pointers to arch-specific information */
1189         armv4_5_common_t *armv4_5 = target->arch_info;
1190         armv7a_common_t *armv7a = armv4_5->arch_info;
1191         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1192
1193         int retval = ERROR_OK;
1194
1195         /* sanitize arguments */
1196         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
1197                 return ERROR_INVALID_ARGUMENTS;
1198
1199         /* cortex_a8 handles unaligned memory access */
1200
1201 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1202
1203         switch (size)
1204         {
1205                 case 4:
1206                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1207                         break;
1208                 case 2:
1209                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1210                         break;
1211                 case 1:
1212                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1213                         break;
1214                 default:
1215                         LOG_ERROR("BUG: we shouldn't get here");
1216                         exit(-1);
1217         }
1218
1219         return retval;
1220 }
1221
1222 int cortex_a8_write_memory(struct target_s *target, uint32_t address,
1223                 uint32_t size, uint32_t count, uint8_t *buffer)
1224 {
1225         /* get pointers to arch-specific information */
1226         armv4_5_common_t *armv4_5 = target->arch_info;
1227         armv7a_common_t *armv7a = armv4_5->arch_info;
1228         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1229
1230         int retval;
1231
1232         /* sanitize arguments */
1233         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
1234                 return ERROR_INVALID_ARGUMENTS;
1235
1236 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1237
1238         switch (size)
1239         {
1240                 case 4:
1241                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1242                         break;
1243                 case 2:
1244                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1245                         break;
1246                 case 1:
1247                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1248                         break;
1249                 default:
1250                         LOG_ERROR("BUG: we shouldn't get here");
1251                         exit(-1);
1252         }
1253
1254         return retval;
1255 }
1256
1257 int cortex_a8_bulk_write_memory(target_t *target, uint32_t address,
1258                 uint32_t count, uint8_t *buffer)
1259 {
1260         return cortex_a8_write_memory(target, address, 4, count, buffer);
1261 }
1262
1263
1264 int cortex_a8_dcc_read(swjdp_common_t *swjdp, uint8_t *value, uint8_t *ctrl)
1265 {
1266 #if 0
1267         u16 dcrdr;
1268
1269         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1270         *ctrl = (uint8_t)dcrdr;
1271         *value = (uint8_t)(dcrdr >> 8);
1272
1273         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1274
1275         /* write ack back to software dcc register
1276          * signify we have read data */
1277         if (dcrdr & (1 << 0))
1278         {
1279                 dcrdr = 0;
1280                 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1281         }
1282 #endif
1283         return ERROR_OK;
1284 }
1285
1286
1287 int cortex_a8_handle_target_request(void *priv)
1288 {
1289         target_t *target = priv;
1290         if (!target->type->examined)
1291                 return ERROR_OK;
1292         armv4_5_common_t *armv4_5 = target->arch_info;
1293         armv7a_common_t *armv7a = armv4_5->arch_info;
1294         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1295
1296
1297         if (!target->dbg_msg_enabled)
1298                 return ERROR_OK;
1299
1300         if (target->state == TARGET_RUNNING)
1301         {
1302                 uint8_t data = 0;
1303                 uint8_t ctrl = 0;
1304
1305                 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1306
1307                 /* check if we have data */
1308                 if (ctrl & (1 << 0))
1309                 {
1310                         uint32_t request;
1311
1312                         /* we assume target is quick enough */
1313                         request = data;
1314                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1315                         request |= (data << 8);
1316                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1317                         request |= (data << 16);
1318                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1319                         request |= (data << 24);
1320                         target_request(target, request);
1321                 }
1322         }
1323
1324         return ERROR_OK;
1325 }
1326
1327 /*
1328  * Cortex-A8 target information and configuration
1329  */
1330
1331 int cortex_a8_examine(struct target_s *target)
1332 {
1333         /* get pointers to arch-specific information */
1334         armv4_5_common_t *armv4_5 = target->arch_info;
1335         armv7a_common_t *armv7a = armv4_5->arch_info;
1336         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1337         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1338
1339
1340         int i;
1341         int retval = ERROR_OK;
1342         uint32_t didr, ctypr, ttypr, cpuid;
1343
1344         LOG_DEBUG("TODO");
1345
1346         /* We do one extra read to ensure DAP is configured,
1347          * we call ahbap_debugport_init(swjdp) instead
1348          */
1349         ahbap_debugport_init(swjdp);
1350         mem_ap_read_atomic_u32(swjdp, OMAP3530_DEBUG_BASE + CPUDBG_CPUID, &cpuid);
1351         if ((retval = mem_ap_read_atomic_u32(swjdp,
1352                         OMAP3530_DEBUG_BASE + CPUDBG_CPUID, &cpuid)) != ERROR_OK)
1353         {
1354                 LOG_DEBUG("Examine failed");
1355                 return retval;
1356         }
1357
1358         if ((retval = mem_ap_read_atomic_u32(swjdp,
1359                         OMAP3530_DEBUG_BASE + CPUDBG_CTYPR, &ctypr)) != ERROR_OK)
1360         {
1361                 LOG_DEBUG("Examine failed");
1362                 return retval;
1363         }
1364
1365         if ((retval = mem_ap_read_atomic_u32(swjdp,
1366                         OMAP3530_DEBUG_BASE + CPUDBG_TTYPR, &ttypr)) != ERROR_OK)
1367         {
1368                 LOG_DEBUG("Examine failed");
1369                 return retval;
1370         }
1371
1372         if ((retval = mem_ap_read_atomic_u32(swjdp,
1373                         OMAP3530_DEBUG_BASE + CPUDBG_DIDR, &didr)) != ERROR_OK)
1374         {
1375                 LOG_DEBUG("Examine failed");
1376                 return retval;
1377         }
1378
1379         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1380         LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
1381         LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
1382         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
1383
1384         /* Setup Breakpoint Register Pairs */
1385         cortex_a8->brp_num = ((didr >> 24) & 0x0F) + 1;
1386         cortex_a8->brp_num_context = ((didr >> 20) & 0x0F) + 1;
1387         cortex_a8->brp_num_available = cortex_a8->brp_num;
1388         cortex_a8->brp_list = calloc(cortex_a8->brp_num, sizeof(cortex_a8_brp_t));
1389 //      cortex_a8->brb_enabled = ????;
1390         for (i = 0; i < cortex_a8->brp_num; i++)
1391         {
1392                 cortex_a8->brp_list[i].used = 0;
1393                 if (i < (cortex_a8->brp_num-cortex_a8->brp_num_context))
1394                         cortex_a8->brp_list[i].type = BRP_NORMAL;
1395                 else
1396                         cortex_a8->brp_list[i].type = BRP_CONTEXT;
1397                 cortex_a8->brp_list[i].value = 0;
1398                 cortex_a8->brp_list[i].control = 0;
1399                 cortex_a8->brp_list[i].BRPn = i;
1400         }
1401
1402         /* Setup Watchpoint Register Pairs */
1403         cortex_a8->wrp_num = ((didr >> 28) & 0x0F) + 1;
1404         cortex_a8->wrp_num_available = cortex_a8->wrp_num;
1405         cortex_a8->wrp_list = calloc(cortex_a8->wrp_num, sizeof(cortex_a8_wrp_t));
1406         for (i = 0; i < cortex_a8->wrp_num; i++)
1407         {
1408                 cortex_a8->wrp_list[i].used = 0;
1409                 cortex_a8->wrp_list[i].type = 0;
1410                 cortex_a8->wrp_list[i].value = 0;
1411                 cortex_a8->wrp_list[i].control = 0;
1412                 cortex_a8->wrp_list[i].WRPn = i;
1413         }
1414         LOG_DEBUG("Configured %i hw breakpoint pairs and %i hw watchpoint pairs",
1415                         cortex_a8->brp_num , cortex_a8->wrp_num);
1416
1417         target->type->examined = 1;
1418
1419         return retval;
1420 }
1421
1422 /*
1423  *      Cortex-A8 target creation and initialization
1424  */
1425
1426 void cortex_a8_build_reg_cache(target_t *target)
1427 {
1428         reg_cache_t **cache_p = register_get_last_cache_p(&target->reg_cache);
1429         /* get pointers to arch-specific information */
1430         armv4_5_common_t *armv4_5 = target->arch_info;
1431
1432         (*cache_p) = armv4_5_build_reg_cache(target, armv4_5);
1433         armv4_5->core_cache = (*cache_p);
1434 }
1435
1436
1437 int cortex_a8_init_target(struct command_context_s *cmd_ctx,
1438                 struct target_s *target)
1439 {
1440         cortex_a8_build_reg_cache(target);
1441         return ERROR_OK;
1442 }
1443
1444 int cortex_a8_init_arch_info(target_t *target,
1445                 cortex_a8_common_t *cortex_a8, jtag_tap_t *tap)
1446 {
1447         armv4_5_common_t *armv4_5;
1448         armv7a_common_t *armv7a;
1449
1450         armv7a = &cortex_a8->armv7a_common;
1451         armv4_5 = &armv7a->armv4_5_common;
1452         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1453
1454         /* Setup cortex_a8_common_t */
1455         cortex_a8->common_magic = CORTEX_A8_COMMON_MAGIC;
1456         cortex_a8->arch_info = NULL;
1457         armv7a->arch_info = cortex_a8;
1458         armv4_5->arch_info = armv7a;
1459
1460         armv4_5_init_arch_info(target, armv4_5);
1461
1462         /* prepare JTAG information for the new target */
1463         cortex_a8->jtag_info.tap = tap;
1464         cortex_a8->jtag_info.scann_size = 4;
1465 LOG_DEBUG(" ");
1466         swjdp->dp_select_value = -1;
1467         swjdp->ap_csw_value = -1;
1468         swjdp->ap_tar_value = -1;
1469         swjdp->jtag_info = &cortex_a8->jtag_info;
1470         swjdp->memaccess_tck = 80;
1471
1472         /* Number of bits for tar autoincrement, impl. dep. at least 10 */
1473         swjdp->tar_autoincr_block = (1 << 10);
1474
1475         cortex_a8->fast_reg_read = 0;
1476
1477
1478         /* register arch-specific functions */
1479         armv7a->examine_debug_reason = NULL;
1480
1481         armv7a->pre_debug_entry = NULL;
1482         armv7a->post_debug_entry = cortex_a8_post_debug_entry;
1483
1484         armv7a->pre_restore_context = NULL;
1485         armv7a->post_restore_context = NULL;
1486         armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1;
1487 //      armv7a->armv4_5_mmu.get_ttb = armv7a_get_ttb;
1488         armv7a->armv4_5_mmu.read_memory = cortex_a8_read_memory;
1489         armv7a->armv4_5_mmu.write_memory = cortex_a8_write_memory;
1490 //      armv7a->armv4_5_mmu.disable_mmu_caches = armv7a_disable_mmu_caches;
1491 //      armv7a->armv4_5_mmu.enable_mmu_caches = armv7a_enable_mmu_caches;
1492         armv7a->armv4_5_mmu.has_tiny_pages = 1;
1493         armv7a->armv4_5_mmu.mmu_enabled = 0;
1494         armv7a->read_cp15 = cortex_a8_read_cp15;
1495         armv7a->write_cp15 = cortex_a8_write_cp15;
1496
1497
1498 //      arm7_9->handle_target_request = cortex_a8_handle_target_request;
1499
1500         armv4_5->read_core_reg = cortex_a8_read_core_reg;
1501         armv4_5->write_core_reg = cortex_a8_write_core_reg;
1502 //      armv4_5->full_context = arm7_9_full_context;
1503
1504 //      armv4_5->load_core_reg_u32 = cortex_a8_load_core_reg_u32;
1505 //      armv4_5->store_core_reg_u32 = cortex_a8_store_core_reg_u32;
1506 //      armv4_5->read_core_reg = armv4_5_read_core_reg; /* this is default */
1507 //      armv4_5->write_core_reg = armv4_5_write_core_reg;
1508
1509         target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target);
1510
1511         return ERROR_OK;
1512 }
1513
1514 int cortex_a8_target_create(struct target_s *target, Jim_Interp *interp)
1515 {
1516         cortex_a8_common_t *cortex_a8 = calloc(1, sizeof(cortex_a8_common_t));
1517
1518         cortex_a8_init_arch_info(target, cortex_a8, target->tap);
1519
1520         return ERROR_OK;
1521 }
1522
1523 static int cortex_a8_handle_cache_info_command(struct command_context_s *cmd_ctx,
1524                 char *cmd, char **args, int argc)
1525 {
1526         target_t *target = get_current_target(cmd_ctx);
1527         armv4_5_common_t *armv4_5 = target->arch_info;
1528         armv7a_common_t *armv7a = armv4_5->arch_info;
1529
1530         return armv4_5_handle_cache_info_command(cmd_ctx,
1531                         &armv7a->armv4_5_mmu.armv4_5_cache);
1532 }
1533
1534
1535 int cortex_a8_register_commands(struct command_context_s *cmd_ctx)
1536 {
1537         command_t *cortex_a8_cmd;
1538         int retval = ERROR_OK;
1539
1540         armv4_5_register_commands(cmd_ctx);
1541         armv7a_register_commands(cmd_ctx);
1542
1543         cortex_a8_cmd = register_command(cmd_ctx, NULL, "cortex_a8",
1544                         NULL, COMMAND_ANY,
1545                         "cortex_a8 specific commands");
1546
1547         register_command(cmd_ctx, cortex_a8_cmd, "cache_info",
1548                         cortex_a8_handle_cache_info_command, COMMAND_EXEC,
1549                         "display information about target caches");
1550
1551         return retval;
1552 }