43674635d2075f8f44fd57093b3ebdafa3d1f755
[fw/openocd] / src / target / cortex_a8.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   This program is free software; you can redistribute it and/or modify  *
15  *   it under the terms of the GNU General Public License as published by  *
16  *   the Free Software Foundation; either version 2 of the License, or     *
17  *   (at your option) any later version.                                   *
18  *                                                                         *
19  *   This program is distributed in the hope that it will be useful,       *
20  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
21  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
22  *   GNU General Public License for more details.                          *
23  *                                                                         *
24  *   You should have received a copy of the GNU General Public License     *
25  *   along with this program; if not, write to the                         *
26  *   Free Software Foundation, Inc.,                                       *
27  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
28  *                                                                         *
29  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
30  *                                                                         *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "cortex_a8.h"
37 #include "armv7a.h"
38 #include "armv4_5.h"
39
40 #include "target_request.h"
41 #include "target_type.h"
42
43 /* cli handling */
44 int cortex_a8_register_commands(struct command_context_s *cmd_ctx);
45
46 /* forward declarations */
47 int cortex_a8_target_create(struct target_s *target, Jim_Interp *interp);
48 int cortex_a8_init_target(struct command_context_s *cmd_ctx,
49                 struct target_s *target);
50 int cortex_a8_examine(struct target_s *target);
51 int cortex_a8_poll(target_t *target);
52 int cortex_a8_halt(target_t *target);
53 int cortex_a8_resume(struct target_s *target, int current, uint32_t address,
54                 int handle_breakpoints, int debug_execution);
55 int cortex_a8_step(struct target_s *target, int current, uint32_t address,
56                 int handle_breakpoints);
57 int cortex_a8_debug_entry(target_t *target);
58 int cortex_a8_restore_context(target_t *target);
59 int cortex_a8_bulk_write_memory(target_t *target, uint32_t address,
60                 uint32_t count, uint8_t *buffer);
61 int cortex_a8_set_breakpoint(struct target_s *target,
62                 breakpoint_t *breakpoint, uint8_t matchmode);
63 int cortex_a8_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint);
64 int cortex_a8_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint);
65 int cortex_a8_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoint);
66 int cortex_a8_dap_read_coreregister_u32(target_t *target,
67                 uint32_t *value, int regnum);
68 int cortex_a8_dap_write_coreregister_u32(target_t *target,
69                 uint32_t value, int regnum);
70
71 target_type_t cortexa8_target =
72 {
73         .name = "cortex_a8",
74
75         .poll = cortex_a8_poll,
76         .arch_state = armv7a_arch_state,
77
78         .target_request_data = NULL,
79
80         .halt = cortex_a8_halt,
81         .resume = cortex_a8_resume,
82         .step = cortex_a8_step,
83
84         .assert_reset = NULL,
85         .deassert_reset = NULL,
86         .soft_reset_halt = NULL,
87
88         .get_gdb_reg_list = armv4_5_get_gdb_reg_list,
89
90         .read_memory = cortex_a8_read_memory,
91         .write_memory = cortex_a8_write_memory,
92         .bulk_write_memory = cortex_a8_bulk_write_memory,
93         .checksum_memory = arm7_9_checksum_memory,
94         .blank_check_memory = arm7_9_blank_check_memory,
95
96         .run_algorithm = armv4_5_run_algorithm,
97
98         .add_breakpoint = cortex_a8_add_breakpoint,
99         .remove_breakpoint = cortex_a8_remove_breakpoint,
100         .add_watchpoint = NULL,
101         .remove_watchpoint = NULL,
102
103         .register_commands = cortex_a8_register_commands,
104         .target_create = cortex_a8_target_create,
105         .init_target = cortex_a8_init_target,
106         .examine = cortex_a8_examine,
107         .quit = NULL
108 };
109
110 /*
111  * FIXME do topology discovery using the ROM; don't
112  * assume this is an OMAP3.
113  */
114 #define swjdp_memoryap 0
115 #define swjdp_debugap 1
116 #define OMAP3530_DEBUG_BASE 0x54011000
117
118 /*
119  * Cortex-A8 Basic debug access, very low level assumes state is saved
120  */
121 int cortex_a8_init_debug_access(target_t *target)
122 {
123 #if 0
124 # Unlocking the debug registers for modification
125 mww 0x54011FB0 0xC5ACCE55 4
126
127 # Clear Sticky Power Down status Bit to enable access to
128 # the registers in the Core Power Domain
129 mdw 0x54011314
130 # Check that it is cleared
131 mdw 0x54011314
132 # Now we can read Core Debug Registers at offset 0x080
133 mdw 0x54011080 4
134 # We can also read RAM.
135 mdw 0x80000000 32
136
137 mdw 0x5401d030
138 mdw 0x54011FB8
139
140 # Set DBGEN line for hardware debug (OMAP35xx)
141 mww 0x5401d030 0x00002000
142
143 #Check AUTHSTATUS
144 mdw 0x54011FB8
145
146 # Instr enable
147 mww 0x54011088 0x2000
148 mdw 0x54011080 4
149 #endif
150         return ERROR_OK;
151 }
152
153 int cortex_a8_exec_opcode(target_t *target, uint32_t opcode)
154 {
155         uint32_t dscr;
156         int retval;
157         /* get pointers to arch-specific information */
158         armv4_5_common_t *armv4_5 = target->arch_info;
159         armv7a_common_t *armv7a = armv4_5->arch_info;
160         swjdp_common_t *swjdp = &armv7a->swjdp_info;
161
162         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
163         do
164         {
165                 retval = mem_ap_read_atomic_u32(swjdp,
166                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
167                 if (retval != ERROR_OK)
168                         return retval;
169                 }
170         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
171
172         mem_ap_write_u32(swjdp, armv7a->debug_base + CPUDBG_ITR, opcode);
173
174         do
175         {
176                 retval = mem_ap_read_atomic_u32(swjdp,
177                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
178                 if (retval != ERROR_OK)
179                         return retval;
180                 }
181         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
182
183         return retval;
184 }
185
186 /**************************************************************************
187 Read core register with very few exec_opcode, fast but needs work_area.
188 This can cause problems with MMU active.
189 **************************************************************************/
190 int cortex_a8_read_regs_through_mem(target_t *target, uint32_t address,
191                 uint32_t * regfile)
192 {
193         int retval = ERROR_OK;
194         /* get pointers to arch-specific information */
195         armv4_5_common_t *armv4_5 = target->arch_info;
196         armv7a_common_t *armv7a = armv4_5->arch_info;
197         swjdp_common_t *swjdp = &armv7a->swjdp_info;
198
199         cortex_a8_dap_read_coreregister_u32(target, regfile, 0);
200         cortex_a8_dap_write_coreregister_u32(target, address, 0);
201         cortex_a8_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0));
202         dap_ap_select(swjdp, swjdp_memoryap);
203         mem_ap_read_buf_u32(swjdp, (uint8_t *)(&regfile[1]), 4*15, address);
204         dap_ap_select(swjdp, swjdp_debugap);
205
206         return retval;
207 }
208
209 int cortex_a8_read_cp(target_t *target, uint32_t *value, uint8_t CP,
210                 uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
211 {
212         int retval;
213         /* get pointers to arch-specific information */
214         armv4_5_common_t *armv4_5 = target->arch_info;
215         armv7a_common_t *armv7a = armv4_5->arch_info;
216         swjdp_common_t *swjdp = &armv7a->swjdp_info;
217
218         cortex_a8_exec_opcode(target, ARMV4_5_MRC(CP, op1, 0, CRn, CRm, op2));
219         /* Move R0 to DTRTX */
220         cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
221
222         /* Read DCCTX */
223         retval = mem_ap_read_atomic_u32(swjdp,
224                         armv7a->debug_base + CPUDBG_DTRTX, value);
225
226         return retval;
227 }
228
229 int cortex_a8_write_cp(target_t *target, uint32_t value,
230         uint8_t CP, uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
231 {
232         int retval;
233         /* get pointers to arch-specific information */
234         armv4_5_common_t *armv4_5 = target->arch_info;
235         armv7a_common_t *armv7a = armv4_5->arch_info;
236         swjdp_common_t *swjdp = &armv7a->swjdp_info;
237
238         retval = mem_ap_write_u32(swjdp,
239                         armv7a->debug_base + CPUDBG_DTRRX, value);
240         /* Move DTRRX to r0 */
241         cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
242
243         cortex_a8_exec_opcode(target, ARMV4_5_MCR(CP, op1, 0, CRn, CRm, op2));
244         return retval;
245 }
246
247 int cortex_a8_read_cp15(target_t *target, uint32_t op1, uint32_t op2,
248                 uint32_t CRn, uint32_t CRm, uint32_t *value)
249 {
250         return cortex_a8_read_cp(target, value, 15, op1, CRn, CRm, op2);
251 }
252
253 int cortex_a8_write_cp15(target_t *target, uint32_t op1, uint32_t op2,
254                 uint32_t CRn, uint32_t CRm, uint32_t value)
255 {
256         return cortex_a8_write_cp(target, value, 15, op1, CRn, CRm, op2);
257 }
258
259 int cortex_a8_dap_read_coreregister_u32(target_t *target,
260                 uint32_t *value, int regnum)
261 {
262         int retval = ERROR_OK;
263         uint8_t reg = regnum&0xFF;
264         uint32_t dscr;
265
266         /* get pointers to arch-specific information */
267         armv4_5_common_t *armv4_5 = target->arch_info;
268         armv7a_common_t *armv7a = armv4_5->arch_info;
269         swjdp_common_t *swjdp = &armv7a->swjdp_info;
270
271         if (reg > 16)
272                 return retval;
273
274         if (reg < 15)
275         {
276                 /* Rn to DCCTX, MCR p14, 0, Rd, c0, c5, 0,  0xEE000E15 */
277                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, reg, 0, 5, 0));
278         }
279         else if (reg == 15)
280         {
281                 cortex_a8_exec_opcode(target, 0xE1A0000F);
282                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
283         }
284         else if (reg == 16)
285         {
286                 cortex_a8_exec_opcode(target, ARMV4_5_MRS(0, 0));
287                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
288         }
289
290         /* Read DTRRTX */
291         do
292         {
293                 retval = mem_ap_read_atomic_u32(swjdp,
294                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
295         }
296         while ((dscr & (1 << DSCR_DTR_TX_FULL)) == 0); /* Wait for DTRRXfull */
297
298         retval = mem_ap_read_atomic_u32(swjdp,
299                         armv7a->debug_base + CPUDBG_DTRTX, value);
300
301         return retval;
302 }
303
304 int cortex_a8_dap_write_coreregister_u32(target_t *target, uint32_t value, int regnum)
305 {
306         int retval = ERROR_OK;
307         uint8_t Rd = regnum&0xFF;
308
309         /* get pointers to arch-specific information */
310         armv4_5_common_t *armv4_5 = target->arch_info;
311         armv7a_common_t *armv7a = armv4_5->arch_info;
312         swjdp_common_t *swjdp = &armv7a->swjdp_info;
313
314         if (Rd > 16)
315                 return retval;
316
317         /* Write to DCCRX */
318         retval = mem_ap_write_u32(swjdp,
319                         armv7a->debug_base + CPUDBG_DTRRX, value);
320
321         if (Rd < 15)
322         {
323                 /* DCCRX to Rd, MCR p14, 0, Rd, c0, c5, 0,  0xEE000E15 */
324                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0));
325         }
326         else if (Rd == 15)
327         {
328                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
329                 cortex_a8_exec_opcode(target, 0xE1A0F000);
330         }
331         else if (Rd == 16)
332         {
333                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
334                 cortex_a8_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, 0));
335                 /* Execute a PrefetchFlush instruction through the ITR. */
336                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(15, 0, 0, 7, 5, 4));
337         }
338
339         return retval;
340 }
341
342 /*
343  * Cortex-A8 Run control
344  */
345
346 int cortex_a8_poll(target_t *target)
347 {
348         int retval = ERROR_OK;
349         uint32_t dscr;
350         /* get pointers to arch-specific information */
351         armv4_5_common_t *armv4_5 = target->arch_info;
352         armv7a_common_t *armv7a = armv4_5->arch_info;
353         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
354         swjdp_common_t *swjdp = &armv7a->swjdp_info;
355
356
357         enum target_state prev_target_state = target->state;
358
359         uint8_t saved_apsel = dap_ap_get_select(swjdp);
360         dap_ap_select(swjdp, swjdp_debugap);
361         retval = mem_ap_read_atomic_u32(swjdp,
362                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
363         if (retval != ERROR_OK)
364         {
365                 dap_ap_select(swjdp, saved_apsel);
366                 return retval;
367         }
368         cortex_a8->cpudbg_dscr = dscr;
369
370         if ((dscr & 0x3) == 0x3)
371         {
372                 if (prev_target_state != TARGET_HALTED)
373                 {
374                         /* We have a halting debug event */
375                         LOG_DEBUG("Target halted");
376                         target->state = TARGET_HALTED;
377                         if ((prev_target_state == TARGET_RUNNING)
378                                         || (prev_target_state == TARGET_RESET))
379                         {
380                                 retval = cortex_a8_debug_entry(target);
381                                 if (retval != ERROR_OK)
382                                         return retval;
383
384                                 target_call_event_callbacks(target,
385                                                 TARGET_EVENT_HALTED);
386                         }
387                         if (prev_target_state == TARGET_DEBUG_RUNNING)
388                         {
389                                 LOG_DEBUG(" ");
390
391                                 retval = cortex_a8_debug_entry(target);
392                                 if (retval != ERROR_OK)
393                                         return retval;
394
395                                 target_call_event_callbacks(target,
396                                                 TARGET_EVENT_DEBUG_HALTED);
397                         }
398                 }
399         }
400         else if ((dscr & 0x3) == 0x2)
401         {
402                 target->state = TARGET_RUNNING;
403         }
404         else
405         {
406                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
407                 target->state = TARGET_UNKNOWN;
408         }
409
410         dap_ap_select(swjdp, saved_apsel);
411
412         return retval;
413 }
414
415 int cortex_a8_halt(target_t *target)
416 {
417         int retval = ERROR_OK;
418         uint32_t dscr;
419
420         /* get pointers to arch-specific information */
421         armv4_5_common_t *armv4_5 = target->arch_info;
422         armv7a_common_t *armv7a = armv4_5->arch_info;
423         swjdp_common_t *swjdp = &armv7a->swjdp_info;
424
425         uint8_t saved_apsel = dap_ap_get_select(swjdp);
426         dap_ap_select(swjdp, swjdp_debugap);
427
428         /*
429          * Tell the core to be halted by writing DRCR with 0x1
430          * and then wait for the core to be halted.
431          */
432         retval = mem_ap_write_atomic_u32(swjdp,
433                         armv7a->debug_base + CPUDBG_DRCR, 0x1);
434
435         /*
436          * enter halting debug mode
437          */
438         mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DSCR, &dscr);
439         retval = mem_ap_write_atomic_u32(swjdp,
440                 armv7a->debug_base + CPUDBG_DSCR, dscr | (1 << DSCR_HALT_DBG_MODE));
441
442         if (retval != ERROR_OK)
443                 goto out;
444
445         do {
446                 mem_ap_read_atomic_u32(swjdp,
447                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
448         } while ((dscr & (1 << DSCR_CORE_HALTED)) == 0);
449
450         target->debug_reason = DBG_REASON_DBGRQ;
451
452 out:
453         dap_ap_select(swjdp, saved_apsel);
454         return retval;
455 }
456
457 int cortex_a8_resume(struct target_s *target, int current,
458                 uint32_t address, int handle_breakpoints, int debug_execution)
459 {
460         /* get pointers to arch-specific information */
461         armv4_5_common_t *armv4_5 = target->arch_info;
462         armv7a_common_t *armv7a = armv4_5->arch_info;
463         swjdp_common_t *swjdp = &armv7a->swjdp_info;
464
465 //      breakpoint_t *breakpoint = NULL;
466         uint32_t resume_pc, dscr;
467
468         uint8_t saved_apsel = dap_ap_get_select(swjdp);
469         dap_ap_select(swjdp, swjdp_debugap);
470
471         if (!debug_execution)
472         {
473                 target_free_all_working_areas(target);
474 //              cortex_m3_enable_breakpoints(target);
475 //              cortex_m3_enable_watchpoints(target);
476         }
477
478 #if 0
479         if (debug_execution)
480         {
481                 /* Disable interrupts */
482                 /* We disable interrupts in the PRIMASK register instead of
483                  * masking with C_MASKINTS,
484                  * This is probably the same issue as Cortex-M3 Errata 377493:
485                  * C_MASKINTS in parallel with disabled interrupts can cause
486                  * local faults to not be taken. */
487                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
488                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
489                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
490
491                 /* Make sure we are in Thumb mode */
492                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
493                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
494                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
495                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
496         }
497 #endif
498
499         /* current = 1: continue on current pc, otherwise continue at <address> */
500         resume_pc = buf_get_u32(
501                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
502                                 armv4_5->core_mode, 15).value,
503                         0, 32);
504         if (!current)
505                 resume_pc = address;
506
507         /* Make sure that the Armv7 gdb thumb fixups does not
508          * kill the return address
509          */
510         if (armv7a->core_state == ARMV7A_STATE_ARM)
511         {
512                 resume_pc &= 0xFFFFFFFC;
513         }
514         /* When the return address is loaded into PC
515          * bit 0 must be 1 to stay in Thumb state
516          */
517         if (armv7a->core_state == ARMV7A_STATE_THUMB)
518         {
519                 resume_pc |= 0x1;
520         }
521         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
522         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
523                                 armv4_5->core_mode, 15).value,
524                         0, 32, resume_pc);
525         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
526                         armv4_5->core_mode, 15).dirty = 1;
527         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
528                         armv4_5->core_mode, 15).valid = 1;
529
530         cortex_a8_restore_context(target);
531 //      arm7_9_restore_context(target); TODO Context is currently NOT Properly restored
532 #if 0
533         /* the front-end may request us not to handle breakpoints */
534         if (handle_breakpoints)
535         {
536                 /* Single step past breakpoint at current address */
537                 if ((breakpoint = breakpoint_find(target, resume_pc)))
538                 {
539                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
540                         cortex_m3_unset_breakpoint(target, breakpoint);
541                         cortex_m3_single_step_core(target);
542                         cortex_m3_set_breakpoint(target, breakpoint);
543                 }
544         }
545
546 #endif
547         /* Restart core and wait for it to be started */
548         mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DRCR, 0x2);
549
550         do {
551                 mem_ap_read_atomic_u32(swjdp,
552                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
553         } while ((dscr & (1 << DSCR_CORE_RESTARTED)) == 0);
554
555         target->debug_reason = DBG_REASON_NOTHALTED;
556         target->state = TARGET_RUNNING;
557
558         /* registers are now invalid */
559         armv4_5_invalidate_core_regs(target);
560
561         if (!debug_execution)
562         {
563                 target->state = TARGET_RUNNING;
564                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
565                 LOG_DEBUG("target resumed at 0x%" PRIx32, resume_pc);
566         }
567         else
568         {
569                 target->state = TARGET_DEBUG_RUNNING;
570                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
571                 LOG_DEBUG("target debug resumed at 0x%" PRIx32, resume_pc);
572         }
573
574         dap_ap_select(swjdp, saved_apsel);
575
576         return ERROR_OK;
577 }
578
579 int cortex_a8_debug_entry(target_t *target)
580 {
581         int i;
582         uint32_t regfile[16], pc, cpsr, dscr;
583         int retval = ERROR_OK;
584         working_area_t *regfile_working_area = NULL;
585
586         /* get pointers to arch-specific information */
587         armv4_5_common_t *armv4_5 = target->arch_info;
588         armv7a_common_t *armv7a = armv4_5->arch_info;
589         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
590         swjdp_common_t *swjdp = &armv7a->swjdp_info;
591
592         if (armv7a->pre_debug_entry)
593                 armv7a->pre_debug_entry(target);
594
595         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a8->cpudbg_dscr);
596
597         /* Enable the ITR execution once we are in debug mode */
598         mem_ap_read_atomic_u32(swjdp,
599                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
600         dscr |= (1 << DSCR_EXT_INT_EN);
601         retval = mem_ap_write_atomic_u32(swjdp,
602                         armv7a->debug_base + CPUDBG_DSCR, dscr);
603
604         /* Examine debug reason */
605         switch ((cortex_a8->cpudbg_dscr >> 2)&0xF)
606         {
607                 case 0:
608                 case 4:
609                         target->debug_reason = DBG_REASON_DBGRQ;
610                         break;
611                 case 1:
612                 case 3:
613                         target->debug_reason = DBG_REASON_BREAKPOINT;
614                         break;
615                 case 10:
616                         target->debug_reason = DBG_REASON_WATCHPOINT;
617                         break;
618                 default:
619                         target->debug_reason = DBG_REASON_UNDEFINED;
620                         break;
621         }
622
623         /* Examine target state and mode */
624         if (cortex_a8->fast_reg_read)
625                 target_alloc_working_area(target, 64, &regfile_working_area);
626
627         /* First load register acessible through core debug port*/
628         if (!regfile_working_area)
629         {
630                 for (i = 0; i <= 15; i++)
631                         cortex_a8_dap_read_coreregister_u32(target,
632                                         &regfile[i], i);
633         }
634         else
635         {
636                 dap_ap_select(swjdp, swjdp_memoryap);
637                 cortex_a8_read_regs_through_mem(target,
638                                 regfile_working_area->address, regfile);
639                 dap_ap_select(swjdp, swjdp_memoryap);
640                 target_free_working_area(target, regfile_working_area);
641         }
642
643         cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16);
644         pc = regfile[15];
645         dap_ap_select(swjdp, swjdp_debugap);
646         LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
647
648         armv4_5->core_mode = cpsr & 0x1F;
649         armv7a->core_state = (cpsr & 0x20)?ARMV7A_STATE_THUMB:ARMV7A_STATE_ARM;
650
651         for (i = 0; i <= ARM_PC; i++)
652         {
653                 buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
654                                         armv4_5->core_mode, i).value,
655                                 0, 32, regfile[i]);
656                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
657                                 armv4_5->core_mode, i).valid = 1;
658                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
659                                 armv4_5->core_mode, i).dirty = 0;
660         }
661         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
662                                 armv4_5->core_mode, 16).value,
663                         0, 32, cpsr);
664         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).valid = 1;
665         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).dirty = 0;
666
667         /* Fixup PC Resume Address */
668         if (armv7a->core_state == ARMV7A_STATE_THUMB)
669         {
670                 // T bit set for Thumb or ThumbEE state
671                 regfile[ARM_PC] -= 4;
672         }
673         else
674         {
675                 // ARM state
676                 regfile[ARM_PC] -= 8;
677         }
678         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
679                                 armv4_5->core_mode, ARM_PC).value,
680                         0, 32, regfile[ARM_PC]);
681
682         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0)
683                 .dirty = ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
684                                 armv4_5->core_mode, 0).valid;
685         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15)
686                 .dirty = ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
687                                 armv4_5->core_mode, 15).valid;
688
689 #if 0
690 /* TODO, Move this */
691         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
692         cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
693         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
694
695         cortex_a8_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
696         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
697
698         cortex_a8_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
699         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
700 #endif
701
702         /* Are we in an exception handler */
703 //      armv4_5->exception_number = 0;
704         if (armv7a->post_debug_entry)
705                 armv7a->post_debug_entry(target);
706
707
708
709         return retval;
710
711 }
712
713 void cortex_a8_post_debug_entry(target_t *target)
714 {
715         /* get pointers to arch-specific information */
716         armv4_5_common_t *armv4_5 = target->arch_info;
717         armv7a_common_t *armv7a = armv4_5->arch_info;
718         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
719
720 //      cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
721         /* examine cp15 control reg */
722         armv7a->read_cp15(target, 0, 0, 1, 0, &cortex_a8->cp15_control_reg);
723         jtag_execute_queue();
724         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
725
726         if (armv7a->armv4_5_mmu.armv4_5_cache.ctype == -1)
727         {
728                 uint32_t cache_type_reg;
729                 /* identify caches */
730                 armv7a->read_cp15(target, 0, 1, 0, 0, &cache_type_reg);
731                 jtag_execute_queue();
732                 /* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A8 */
733                 armv4_5_identify_cache(cache_type_reg,
734                                 &armv7a->armv4_5_mmu.armv4_5_cache);
735         }
736
737         armv7a->armv4_5_mmu.mmu_enabled =
738                         (cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0;
739         armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
740                         (cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0;
741         armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
742                         (cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0;
743
744
745 }
746
747 int cortex_a8_step(struct target_s *target, int current, uint32_t address,
748                 int handle_breakpoints)
749 {
750         /* get pointers to arch-specific information */
751         armv4_5_common_t *armv4_5 = target->arch_info;
752         armv7a_common_t *armv7a = armv4_5->arch_info;
753         breakpoint_t *breakpoint = NULL;
754         breakpoint_t stepbreakpoint;
755
756         int timeout = 100;
757
758         if (target->state != TARGET_HALTED)
759         {
760                 LOG_WARNING("target not halted");
761                 return ERROR_TARGET_NOT_HALTED;
762         }
763
764         /* current = 1: continue on current pc, otherwise continue at <address> */
765         if (!current)
766         {
767                 buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
768                                         armv4_5->core_mode, ARM_PC).value,
769                                 0, 32, address);
770         }
771         else
772         {
773                 address = buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
774                                         armv4_5->core_mode, ARM_PC).value,
775                                 0, 32);
776         }
777
778         /* The front-end may request us not to handle breakpoints.
779          * But since Cortex-A8 uses breakpoint for single step,
780          * we MUST handle breakpoints.
781          */
782         handle_breakpoints = 1;
783         if (handle_breakpoints) {
784                 breakpoint = breakpoint_find(target,
785                                 buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
786                                         armv4_5->core_mode, 15).value,
787                         0, 32));
788                 if (breakpoint)
789                         cortex_a8_unset_breakpoint(target, breakpoint);
790         }
791
792         /* Setup single step breakpoint */
793         stepbreakpoint.address = address;
794         stepbreakpoint.length = (armv7a->core_state == ARMV7A_STATE_THUMB) ? 2 : 4;
795         stepbreakpoint.type = BKPT_HARD;
796         stepbreakpoint.set = 0;
797
798         /* Break on IVA mismatch */
799         cortex_a8_set_breakpoint(target, &stepbreakpoint, 0x04);
800
801         target->debug_reason = DBG_REASON_SINGLESTEP;
802
803         cortex_a8_resume(target, 1, address, 0, 0);
804
805         while (target->state != TARGET_HALTED)
806         {
807                 cortex_a8_poll(target);
808                 if (--timeout == 0)
809                 {
810                         LOG_WARNING("timeout waiting for target halt");
811                         break;
812                 }
813         }
814
815         cortex_a8_unset_breakpoint(target, &stepbreakpoint);
816         if (timeout > 0) target->debug_reason = DBG_REASON_BREAKPOINT;
817
818         if (breakpoint)
819                 cortex_a8_set_breakpoint(target, breakpoint, 0);
820
821         if (target->state != TARGET_HALTED)
822                 LOG_DEBUG("target stepped");
823
824         return ERROR_OK;
825 }
826
827 int cortex_a8_restore_context(target_t *target)
828 {
829         int i;
830         uint32_t value;
831
832         /* get pointers to arch-specific information */
833         armv4_5_common_t *armv4_5 = target->arch_info;
834         armv7a_common_t *armv7a = armv4_5->arch_info;
835
836         LOG_DEBUG(" ");
837
838         if (armv7a->pre_restore_context)
839                 armv7a->pre_restore_context(target);
840
841         for (i = 15; i >= 0; i--)
842         {
843                 if (ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
844                                         armv4_5->core_mode, i).dirty)
845                 {
846                         value = buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
847                                                 armv4_5->core_mode, i).value,
848                                         0, 32);
849                         /* TODO Check return values */
850                         cortex_a8_dap_write_coreregister_u32(target, value, i);
851                 }
852         }
853
854         if (armv7a->post_restore_context)
855                 armv7a->post_restore_context(target);
856
857         return ERROR_OK;
858 }
859
860
861 /*
862  * Cortex-A8 Core register functions
863  */
864
865 int cortex_a8_load_core_reg_u32(struct target_s *target, int num,
866                 armv4_5_mode_t mode, uint32_t * value)
867 {
868         int retval;
869         /* get pointers to arch-specific information */
870         armv4_5_common_t *armv4_5 = target->arch_info;
871
872         if ((num <= ARM_CPSR))
873         {
874                 /* read a normal core register */
875                 retval = cortex_a8_dap_read_coreregister_u32(target, value, num);
876
877                 if (retval != ERROR_OK)
878                 {
879                         LOG_ERROR("JTAG failure %i", retval);
880                         return ERROR_JTAG_DEVICE_ERROR;
881                 }
882                 LOG_DEBUG("load from core reg %i value 0x%" PRIx32, num, *value);
883         }
884         else
885         {
886                 return ERROR_INVALID_ARGUMENTS;
887         }
888
889         /* Register other than r0 - r14 uses r0 for access */
890         if (num > 14)
891                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
892                                 armv4_5->core_mode, 0).dirty =
893                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
894                                 armv4_5->core_mode, 0).valid;
895         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
896                                 armv4_5->core_mode, 15).dirty =
897                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
898                                 armv4_5->core_mode, 15).valid;
899
900         return ERROR_OK;
901 }
902
903 int cortex_a8_store_core_reg_u32(struct target_s *target, int num,
904                 armv4_5_mode_t mode, uint32_t value)
905 {
906         int retval;
907 //      uint32_t reg;
908
909         /* get pointers to arch-specific information */
910         armv4_5_common_t *armv4_5 = target->arch_info;
911
912 #ifdef ARMV7_GDB_HACKS
913         /* If the LR register is being modified, make sure it will put us
914          * in "thumb" mode, or an INVSTATE exception will occur. This is a
915          * hack to deal with the fact that gdb will sometimes "forge"
916          * return addresses, and doesn't set the LSB correctly (i.e., when
917          * printing expressions containing function calls, it sets LR=0.) */
918
919         if (num == 14)
920                 value |= 0x01;
921 #endif
922
923         if ((num <= ARM_CPSR))
924         {
925                 retval = cortex_a8_dap_write_coreregister_u32(target, value, num);
926                 if (retval != ERROR_OK)
927                 {
928                         LOG_ERROR("JTAG failure %i", retval);
929                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
930                                         armv4_5->core_mode, num).dirty =
931                                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
932                                         armv4_5->core_mode, num).valid;
933                         return ERROR_JTAG_DEVICE_ERROR;
934                 }
935                 LOG_DEBUG("write core reg %i value 0x%" PRIx32, num, value);
936         }
937         else
938         {
939                 return ERROR_INVALID_ARGUMENTS;
940         }
941
942         return ERROR_OK;
943 }
944
945
946 int cortex_a8_read_core_reg(struct target_s *target, int num,
947                 enum armv4_5_mode mode)
948 {
949         uint32_t value;
950         int retval;
951         armv4_5_common_t *armv4_5 = target->arch_info;
952         cortex_a8_dap_read_coreregister_u32(target, &value, num);
953
954         if ((retval = jtag_execute_queue()) != ERROR_OK)
955         {
956                 return retval;
957         }
958
959         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
960         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
961         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
962                         mode, num).value, 0, 32, value);
963
964         return ERROR_OK;
965 }
966
967 int cortex_a8_write_core_reg(struct target_s *target, int num,
968                 enum armv4_5_mode mode, uint32_t value)
969 {
970         int retval;
971         armv4_5_common_t *armv4_5 = target->arch_info;
972
973         cortex_a8_dap_write_coreregister_u32(target, value, num);
974         if ((retval = jtag_execute_queue()) != ERROR_OK)
975         {
976                 return retval;
977         }
978
979         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
980         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
981
982         return ERROR_OK;
983 }
984
985
986 /*
987  * Cortex-A8 Breakpoint and watchpoint fuctions
988  */
989
990 /* Setup hardware Breakpoint Register Pair */
991 int cortex_a8_set_breakpoint(struct target_s *target,
992                 breakpoint_t *breakpoint, uint8_t matchmode)
993 {
994         int retval;
995         int brp_i=0;
996         uint32_t control;
997         uint8_t byte_addr_select = 0x0F;
998
999
1000         /* get pointers to arch-specific information */
1001         armv4_5_common_t *armv4_5 = target->arch_info;
1002         armv7a_common_t *armv7a = armv4_5->arch_info;
1003         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1004         cortex_a8_brp_t * brp_list = cortex_a8->brp_list;
1005
1006         if (breakpoint->set)
1007         {
1008                 LOG_WARNING("breakpoint already set");
1009                 return ERROR_OK;
1010         }
1011
1012         if (breakpoint->type == BKPT_HARD)
1013         {
1014                 while (brp_list[brp_i].used && (brp_i < cortex_a8->brp_num))
1015                         brp_i++ ;
1016                 if (brp_i >= cortex_a8->brp_num)
1017                 {
1018                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1019                         exit(-1);
1020                 }
1021                 breakpoint->set = brp_i + 1;
1022                 if (breakpoint->length == 2)
1023                 {
1024                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1025                 }
1026                 control = ((matchmode & 0x7) << 20)
1027                                 | (byte_addr_select << 5)
1028                                 | (3 << 1) | 1;
1029                 brp_list[brp_i].used = 1;
1030                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1031                 brp_list[brp_i].control = control;
1032                 target_write_u32(target, armv7a->debug_base
1033                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1034                                 brp_list[brp_i].value);
1035                 target_write_u32(target, armv7a->debug_base
1036                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1037                                 brp_list[brp_i].control);
1038                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1039                                 brp_list[brp_i].control,
1040                                 brp_list[brp_i].value);
1041         }
1042         else if (breakpoint->type == BKPT_SOFT)
1043         {
1044                 uint8_t code[4];
1045                 if (breakpoint->length == 2)
1046                 {
1047                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1048                 }
1049                 else
1050                 {
1051                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1052                 }
1053                 retval = target->type->read_memory(target,
1054                                 breakpoint->address & 0xFFFFFFFE,
1055                                 breakpoint->length, 1,
1056                                 breakpoint->orig_instr);
1057                 if (retval != ERROR_OK)
1058                         return retval;
1059                 retval = target->type->write_memory(target,
1060                                 breakpoint->address & 0xFFFFFFFE,
1061                                 breakpoint->length, 1, code);
1062                 if (retval != ERROR_OK)
1063                         return retval;
1064                 breakpoint->set = 0x11; /* Any nice value but 0 */
1065         }
1066
1067         return ERROR_OK;
1068 }
1069
1070 int cortex_a8_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
1071 {
1072         int retval;
1073         /* get pointers to arch-specific information */
1074         armv4_5_common_t *armv4_5 = target->arch_info;
1075         armv7a_common_t *armv7a = armv4_5->arch_info;
1076         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1077         cortex_a8_brp_t * brp_list = cortex_a8->brp_list;
1078
1079         if (!breakpoint->set)
1080         {
1081                 LOG_WARNING("breakpoint not set");
1082                 return ERROR_OK;
1083         }
1084
1085         if (breakpoint->type == BKPT_HARD)
1086         {
1087                 int brp_i = breakpoint->set - 1;
1088                 if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num))
1089                 {
1090                         LOG_DEBUG("Invalid BRP number in breakpoint");
1091                         return ERROR_OK;
1092                 }
1093                 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1094                                 brp_list[brp_i].control, brp_list[brp_i].value);
1095                 brp_list[brp_i].used = 0;
1096                 brp_list[brp_i].value = 0;
1097                 brp_list[brp_i].control = 0;
1098                 target_write_u32(target, armv7a->debug_base
1099                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1100                                 brp_list[brp_i].control);
1101                 target_write_u32(target, armv7a->debug_base
1102                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1103                                 brp_list[brp_i].value);
1104         }
1105         else
1106         {
1107                 /* restore original instruction (kept in target endianness) */
1108                 if (breakpoint->length == 4)
1109                 {
1110                         retval = target->type->write_memory(target,
1111                                         breakpoint->address & 0xFFFFFFFE,
1112                                         4, 1, breakpoint->orig_instr);
1113                         if (retval != ERROR_OK)
1114                                 return retval;
1115                 }
1116                 else
1117                 {
1118                         retval = target->type->write_memory(target,
1119                                         breakpoint->address & 0xFFFFFFFE,
1120                                         2, 1, breakpoint->orig_instr);
1121                         if (retval != ERROR_OK)
1122                                 return retval;
1123                 }
1124         }
1125         breakpoint->set = 0;
1126
1127         return ERROR_OK;
1128 }
1129
1130 int cortex_a8_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
1131 {
1132         /* get pointers to arch-specific information */
1133         armv4_5_common_t *armv4_5 = target->arch_info;
1134         armv7a_common_t *armv7a = armv4_5->arch_info;
1135         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1136
1137         if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1))
1138         {
1139                 LOG_INFO("no hardware breakpoint available");
1140                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1141         }
1142
1143         if (breakpoint->type == BKPT_HARD)
1144                 cortex_a8->brp_num_available--;
1145         cortex_a8_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1146
1147         return ERROR_OK;
1148 }
1149
1150 int cortex_a8_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
1151 {
1152         /* get pointers to arch-specific information */
1153         armv4_5_common_t *armv4_5 = target->arch_info;
1154         armv7a_common_t *armv7a = armv4_5->arch_info;
1155         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1156
1157 #if 0
1158 /* It is perfectly possible to remove brakpoints while the taget is running */
1159         if (target->state != TARGET_HALTED)
1160         {
1161                 LOG_WARNING("target not halted");
1162                 return ERROR_TARGET_NOT_HALTED;
1163         }
1164 #endif
1165
1166         if (breakpoint->set)
1167         {
1168                 cortex_a8_unset_breakpoint(target, breakpoint);
1169                 if (breakpoint->type == BKPT_HARD)
1170                         cortex_a8->brp_num_available++ ;
1171         }
1172
1173
1174         return ERROR_OK;
1175 }
1176
1177
1178
1179 /*
1180  * Cortex-A8 Reset fuctions
1181  */
1182
1183
1184 /*
1185  * Cortex-A8 Memory access
1186  *
1187  * This is same Cortex M3 but we must also use the correct
1188  * ap number for every access.
1189  */
1190
1191 int cortex_a8_read_memory(struct target_s *target, uint32_t address,
1192                 uint32_t size, uint32_t count, uint8_t *buffer)
1193 {
1194         /* get pointers to arch-specific information */
1195         armv4_5_common_t *armv4_5 = target->arch_info;
1196         armv7a_common_t *armv7a = armv4_5->arch_info;
1197         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1198
1199         int retval = ERROR_OK;
1200
1201         /* sanitize arguments */
1202         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
1203                 return ERROR_INVALID_ARGUMENTS;
1204
1205         /* cortex_a8 handles unaligned memory access */
1206
1207 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1208
1209         switch (size)
1210         {
1211                 case 4:
1212                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1213                         break;
1214                 case 2:
1215                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1216                         break;
1217                 case 1:
1218                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1219                         break;
1220                 default:
1221                         LOG_ERROR("BUG: we shouldn't get here");
1222                         exit(-1);
1223         }
1224
1225         return retval;
1226 }
1227
1228 int cortex_a8_write_memory(struct target_s *target, uint32_t address,
1229                 uint32_t size, uint32_t count, uint8_t *buffer)
1230 {
1231         /* get pointers to arch-specific information */
1232         armv4_5_common_t *armv4_5 = target->arch_info;
1233         armv7a_common_t *armv7a = armv4_5->arch_info;
1234         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1235
1236         int retval;
1237
1238         /* sanitize arguments */
1239         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
1240                 return ERROR_INVALID_ARGUMENTS;
1241
1242 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1243
1244         switch (size)
1245         {
1246                 case 4:
1247                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1248                         break;
1249                 case 2:
1250                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1251                         break;
1252                 case 1:
1253                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1254                         break;
1255                 default:
1256                         LOG_ERROR("BUG: we shouldn't get here");
1257                         exit(-1);
1258         }
1259
1260         /* The Cache handling will NOT work with MMU active, the wrong addresses will be invalidated */
1261         /* invalidate I-Cache */
1262         if (armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
1263         {
1264                 /* Invalidate ICache single entry with MVA, repeat this for all cache
1265                    lines in the address range, Cortex-A8 has fixed 64 byte line length */
1266                 /* Invalidate Cache single entry with MVA to PoU */
1267                 for (uint32_t cacheline=address; cacheline<address+size*count; cacheline+=64)
1268                         armv7a->write_cp15(target, 0, 1, 7, 5, cacheline); /* I-Cache to PoU */
1269         }
1270         /* invalidate D-Cache */
1271         if (armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
1272         {
1273                 /* Invalidate Cache single entry with MVA to PoC */
1274                 for (uint32_t cacheline=address; cacheline<address+size*count; cacheline+=64)
1275                         armv7a->write_cp15(target, 0, 1, 7, 6, cacheline); /* U/D cache to PoC */
1276         }
1277
1278         return retval;
1279 }
1280
1281 int cortex_a8_bulk_write_memory(target_t *target, uint32_t address,
1282                 uint32_t count, uint8_t *buffer)
1283 {
1284         return cortex_a8_write_memory(target, address, 4, count, buffer);
1285 }
1286
1287
1288 int cortex_a8_dcc_read(swjdp_common_t *swjdp, uint8_t *value, uint8_t *ctrl)
1289 {
1290 #if 0
1291         u16 dcrdr;
1292
1293         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1294         *ctrl = (uint8_t)dcrdr;
1295         *value = (uint8_t)(dcrdr >> 8);
1296
1297         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1298
1299         /* write ack back to software dcc register
1300          * signify we have read data */
1301         if (dcrdr & (1 << 0))
1302         {
1303                 dcrdr = 0;
1304                 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1305         }
1306 #endif
1307         return ERROR_OK;
1308 }
1309
1310
1311 int cortex_a8_handle_target_request(void *priv)
1312 {
1313         target_t *target = priv;
1314         if (!target->type->examined)
1315                 return ERROR_OK;
1316         armv4_5_common_t *armv4_5 = target->arch_info;
1317         armv7a_common_t *armv7a = armv4_5->arch_info;
1318         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1319
1320
1321         if (!target->dbg_msg_enabled)
1322                 return ERROR_OK;
1323
1324         if (target->state == TARGET_RUNNING)
1325         {
1326                 uint8_t data = 0;
1327                 uint8_t ctrl = 0;
1328
1329                 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1330
1331                 /* check if we have data */
1332                 if (ctrl & (1 << 0))
1333                 {
1334                         uint32_t request;
1335
1336                         /* we assume target is quick enough */
1337                         request = data;
1338                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1339                         request |= (data << 8);
1340                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1341                         request |= (data << 16);
1342                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1343                         request |= (data << 24);
1344                         target_request(target, request);
1345                 }
1346         }
1347
1348         return ERROR_OK;
1349 }
1350
1351 /*
1352  * Cortex-A8 target information and configuration
1353  */
1354
1355 int cortex_a8_examine(struct target_s *target)
1356 {
1357         /* get pointers to arch-specific information */
1358         armv4_5_common_t *armv4_5 = target->arch_info;
1359         armv7a_common_t *armv7a = armv4_5->arch_info;
1360         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1361         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1362
1363
1364         int i;
1365         int retval = ERROR_OK;
1366         uint32_t didr, ctypr, ttypr, cpuid;
1367
1368         LOG_DEBUG("TODO");
1369         
1370         /* Here we shall insert a proper ROM Table scan */
1371         armv7a->debug_base = OMAP3530_DEBUG_BASE;
1372
1373         /* We do one extra read to ensure DAP is configured,
1374          * we call ahbap_debugport_init(swjdp) instead
1375          */
1376         ahbap_debugport_init(swjdp);
1377         mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_CPUID, &cpuid);
1378         if ((retval = mem_ap_read_atomic_u32(swjdp,
1379                         armv7a->debug_base + CPUDBG_CPUID, &cpuid)) != ERROR_OK)
1380         {
1381                 LOG_DEBUG("Examine failed");
1382                 return retval;
1383         }
1384
1385         if ((retval = mem_ap_read_atomic_u32(swjdp,
1386                         armv7a->debug_base + CPUDBG_CTYPR, &ctypr)) != ERROR_OK)
1387         {
1388                 LOG_DEBUG("Examine failed");
1389                 return retval;
1390         }
1391
1392         if ((retval = mem_ap_read_atomic_u32(swjdp,
1393                         armv7a->debug_base + CPUDBG_TTYPR, &ttypr)) != ERROR_OK)
1394         {
1395                 LOG_DEBUG("Examine failed");
1396                 return retval;
1397         }
1398
1399         if ((retval = mem_ap_read_atomic_u32(swjdp,
1400                         armv7a->debug_base + CPUDBG_DIDR, &didr)) != ERROR_OK)
1401         {
1402                 LOG_DEBUG("Examine failed");
1403                 return retval;
1404         }
1405
1406         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1407         LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
1408         LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
1409         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
1410
1411         /* Setup Breakpoint Register Pairs */
1412         cortex_a8->brp_num = ((didr >> 24) & 0x0F) + 1;
1413         cortex_a8->brp_num_context = ((didr >> 20) & 0x0F) + 1;
1414         cortex_a8->brp_num_available = cortex_a8->brp_num;
1415         cortex_a8->brp_list = calloc(cortex_a8->brp_num, sizeof(cortex_a8_brp_t));
1416 //      cortex_a8->brb_enabled = ????;
1417         for (i = 0; i < cortex_a8->brp_num; i++)
1418         {
1419                 cortex_a8->brp_list[i].used = 0;
1420                 if (i < (cortex_a8->brp_num-cortex_a8->brp_num_context))
1421                         cortex_a8->brp_list[i].type = BRP_NORMAL;
1422                 else
1423                         cortex_a8->brp_list[i].type = BRP_CONTEXT;
1424                 cortex_a8->brp_list[i].value = 0;
1425                 cortex_a8->brp_list[i].control = 0;
1426                 cortex_a8->brp_list[i].BRPn = i;
1427         }
1428
1429         /* Setup Watchpoint Register Pairs */
1430         cortex_a8->wrp_num = ((didr >> 28) & 0x0F) + 1;
1431         cortex_a8->wrp_num_available = cortex_a8->wrp_num;
1432         cortex_a8->wrp_list = calloc(cortex_a8->wrp_num, sizeof(cortex_a8_wrp_t));
1433         for (i = 0; i < cortex_a8->wrp_num; i++)
1434         {
1435                 cortex_a8->wrp_list[i].used = 0;
1436                 cortex_a8->wrp_list[i].type = 0;
1437                 cortex_a8->wrp_list[i].value = 0;
1438                 cortex_a8->wrp_list[i].control = 0;
1439                 cortex_a8->wrp_list[i].WRPn = i;
1440         }
1441         LOG_DEBUG("Configured %i hw breakpoint pairs and %i hw watchpoint pairs",
1442                         cortex_a8->brp_num , cortex_a8->wrp_num);
1443
1444         target->type->examined = 1;
1445
1446         return retval;
1447 }
1448
1449 /*
1450  *      Cortex-A8 target creation and initialization
1451  */
1452
1453 void cortex_a8_build_reg_cache(target_t *target)
1454 {
1455         reg_cache_t **cache_p = register_get_last_cache_p(&target->reg_cache);
1456         /* get pointers to arch-specific information */
1457         armv4_5_common_t *armv4_5 = target->arch_info;
1458
1459         (*cache_p) = armv4_5_build_reg_cache(target, armv4_5);
1460         armv4_5->core_cache = (*cache_p);
1461 }
1462
1463
1464 int cortex_a8_init_target(struct command_context_s *cmd_ctx,
1465                 struct target_s *target)
1466 {
1467         cortex_a8_build_reg_cache(target);
1468         return ERROR_OK;
1469 }
1470
1471 int cortex_a8_init_arch_info(target_t *target,
1472                 cortex_a8_common_t *cortex_a8, jtag_tap_t *tap)
1473 {
1474         armv4_5_common_t *armv4_5;
1475         armv7a_common_t *armv7a;
1476
1477         armv7a = &cortex_a8->armv7a_common;
1478         armv4_5 = &armv7a->armv4_5_common;
1479         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1480
1481         /* Setup cortex_a8_common_t */
1482         cortex_a8->common_magic = CORTEX_A8_COMMON_MAGIC;
1483         cortex_a8->arch_info = NULL;
1484         armv7a->arch_info = cortex_a8;
1485         armv4_5->arch_info = armv7a;
1486
1487         armv4_5_init_arch_info(target, armv4_5);
1488
1489         /* prepare JTAG information for the new target */
1490         cortex_a8->jtag_info.tap = tap;
1491         cortex_a8->jtag_info.scann_size = 4;
1492 LOG_DEBUG(" ");
1493         swjdp->dp_select_value = -1;
1494         swjdp->ap_csw_value = -1;
1495         swjdp->ap_tar_value = -1;
1496         swjdp->jtag_info = &cortex_a8->jtag_info;
1497         swjdp->memaccess_tck = 80;
1498
1499         /* Number of bits for tar autoincrement, impl. dep. at least 10 */
1500         swjdp->tar_autoincr_block = (1 << 10);
1501
1502         cortex_a8->fast_reg_read = 0;
1503
1504
1505         /* register arch-specific functions */
1506         armv7a->examine_debug_reason = NULL;
1507
1508         armv7a->pre_debug_entry = NULL;
1509         armv7a->post_debug_entry = cortex_a8_post_debug_entry;
1510
1511         armv7a->pre_restore_context = NULL;
1512         armv7a->post_restore_context = NULL;
1513         armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1;
1514 //      armv7a->armv4_5_mmu.get_ttb = armv7a_get_ttb;
1515         armv7a->armv4_5_mmu.read_memory = cortex_a8_read_memory;
1516         armv7a->armv4_5_mmu.write_memory = cortex_a8_write_memory;
1517 //      armv7a->armv4_5_mmu.disable_mmu_caches = armv7a_disable_mmu_caches;
1518 //      armv7a->armv4_5_mmu.enable_mmu_caches = armv7a_enable_mmu_caches;
1519         armv7a->armv4_5_mmu.has_tiny_pages = 1;
1520         armv7a->armv4_5_mmu.mmu_enabled = 0;
1521         armv7a->read_cp15 = cortex_a8_read_cp15;
1522         armv7a->write_cp15 = cortex_a8_write_cp15;
1523
1524
1525 //      arm7_9->handle_target_request = cortex_a8_handle_target_request;
1526
1527         armv4_5->read_core_reg = cortex_a8_read_core_reg;
1528         armv4_5->write_core_reg = cortex_a8_write_core_reg;
1529 //      armv4_5->full_context = arm7_9_full_context;
1530
1531 //      armv4_5->load_core_reg_u32 = cortex_a8_load_core_reg_u32;
1532 //      armv4_5->store_core_reg_u32 = cortex_a8_store_core_reg_u32;
1533 //      armv4_5->read_core_reg = armv4_5_read_core_reg; /* this is default */
1534 //      armv4_5->write_core_reg = armv4_5_write_core_reg;
1535
1536         target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target);
1537
1538         return ERROR_OK;
1539 }
1540
1541 int cortex_a8_target_create(struct target_s *target, Jim_Interp *interp)
1542 {
1543         cortex_a8_common_t *cortex_a8 = calloc(1, sizeof(cortex_a8_common_t));
1544
1545         cortex_a8_init_arch_info(target, cortex_a8, target->tap);
1546
1547         return ERROR_OK;
1548 }
1549
1550 static int cortex_a8_handle_cache_info_command(struct command_context_s *cmd_ctx,
1551                 char *cmd, char **args, int argc)
1552 {
1553         target_t *target = get_current_target(cmd_ctx);
1554         armv4_5_common_t *armv4_5 = target->arch_info;
1555         armv7a_common_t *armv7a = armv4_5->arch_info;
1556
1557         return armv4_5_handle_cache_info_command(cmd_ctx,
1558                         &armv7a->armv4_5_mmu.armv4_5_cache);
1559 }
1560
1561
1562 int cortex_a8_register_commands(struct command_context_s *cmd_ctx)
1563 {
1564         command_t *cortex_a8_cmd;
1565         int retval = ERROR_OK;
1566
1567         armv4_5_register_commands(cmd_ctx);
1568         armv7a_register_commands(cmd_ctx);
1569
1570         cortex_a8_cmd = register_command(cmd_ctx, NULL, "cortex_a8",
1571                         NULL, COMMAND_ANY,
1572                         "cortex_a8 specific commands");
1573
1574         register_command(cmd_ctx, cortex_a8_cmd, "cache_info",
1575                         cortex_a8_handle_cache_info_command, COMMAND_EXEC,
1576                         "display information about target caches");
1577
1578         return retval;
1579 }