Cortex-A8: better context restore
[fw/openocd] / src / target / cortex_a8.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   This program is free software; you can redistribute it and/or modify  *
15  *   it under the terms of the GNU General Public License as published by  *
16  *   the Free Software Foundation; either version 2 of the License, or     *
17  *   (at your option) any later version.                                   *
18  *                                                                         *
19  *   This program is distributed in the hope that it will be useful,       *
20  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
21  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
22  *   GNU General Public License for more details.                          *
23  *                                                                         *
24  *   You should have received a copy of the GNU General Public License     *
25  *   along with this program; if not, write to the                         *
26  *   Free Software Foundation, Inc.,                                       *
27  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
28  *                                                                         *
29  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
30  *                                                                         *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "breakpoints.h"
37 #include "cortex_a8.h"
38 #include "register.h"
39 #include "target_request.h"
40 #include "target_type.h"
41
42 static int cortex_a8_poll(struct target *target);
43 static int cortex_a8_debug_entry(struct target *target);
44 static int cortex_a8_restore_context(struct target *target);
45 static int cortex_a8_set_breakpoint(struct target *target,
46                 struct breakpoint *breakpoint, uint8_t matchmode);
47 static int cortex_a8_unset_breakpoint(struct target *target,
48                 struct breakpoint *breakpoint);
49 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
50                 uint32_t *value, int regnum);
51 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
52                 uint32_t value, int regnum);
53 /*
54  * FIXME do topology discovery using the ROM; don't
55  * assume this is an OMAP3.
56  */
57 #define swjdp_memoryap 0
58 #define swjdp_debugap 1
59 #define OMAP3530_DEBUG_BASE 0x54011000
60
61 /*
62  * Cortex-A8 Basic debug access, very low level assumes state is saved
63  */
64 static int cortex_a8_init_debug_access(struct target *target)
65 {
66         struct armv7a_common *armv7a = target_to_armv7a(target);
67         struct swjdp_common *swjdp = &armv7a->swjdp_info;
68
69         int retval;
70         uint32_t dummy;
71
72         LOG_DEBUG(" ");
73
74         /* Unlocking the debug registers for modification */
75         /* The debugport might be uninitialised so try twice */
76         retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
77         if (retval != ERROR_OK)
78                 mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
79         /* Clear Sticky Power Down status Bit in PRSR to enable access to
80            the registers in the Core Power Domain */
81         retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_PRSR, &dummy);
82         /* Enabling of instruction execution in debug mode is done in debug_entry code */
83
84         /* Resync breakpoint registers */
85
86         /* Since this is likley called from init or reset, update targtet state information*/
87         cortex_a8_poll(target);
88
89         return retval;
90 }
91
92 int cortex_a8_exec_opcode(struct target *target, uint32_t opcode)
93 {
94         uint32_t dscr;
95         int retval;
96         struct armv7a_common *armv7a = target_to_armv7a(target);
97         struct swjdp_common *swjdp = &armv7a->swjdp_info;
98
99         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
100         do
101         {
102                 retval = mem_ap_read_atomic_u32(swjdp,
103                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
104                 if (retval != ERROR_OK)
105                 {
106                         LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
107                         return retval;
108                 }
109         }
110         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
111
112         mem_ap_write_u32(swjdp, armv7a->debug_base + CPUDBG_ITR, opcode);
113
114         do
115         {
116                 retval = mem_ap_read_atomic_u32(swjdp,
117                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
118                 if (retval != ERROR_OK)
119                 {
120                         LOG_ERROR("Could not read DSCR register");
121                         return retval;
122                 }
123         }
124         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
125
126         return retval;
127 }
128
129 /**************************************************************************
130 Read core register with very few exec_opcode, fast but needs work_area.
131 This can cause problems with MMU active.
132 **************************************************************************/
133 static int cortex_a8_read_regs_through_mem(struct target *target, uint32_t address,
134                 uint32_t * regfile)
135 {
136         int retval = ERROR_OK;
137         struct armv7a_common *armv7a = target_to_armv7a(target);
138         struct swjdp_common *swjdp = &armv7a->swjdp_info;
139
140         cortex_a8_dap_read_coreregister_u32(target, regfile, 0);
141         cortex_a8_dap_write_coreregister_u32(target, address, 0);
142         cortex_a8_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0));
143         dap_ap_select(swjdp, swjdp_memoryap);
144         mem_ap_read_buf_u32(swjdp, (uint8_t *)(&regfile[1]), 4*15, address);
145         dap_ap_select(swjdp, swjdp_debugap);
146
147         return retval;
148 }
149
150 static int cortex_a8_read_cp(struct target *target, uint32_t *value, uint8_t CP,
151                 uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
152 {
153         int retval;
154         struct armv7a_common *armv7a = target_to_armv7a(target);
155         struct swjdp_common *swjdp = &armv7a->swjdp_info;
156
157         cortex_a8_exec_opcode(target, ARMV4_5_MRC(CP, op1, 0, CRn, CRm, op2));
158         /* Move R0 to DTRTX */
159         cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
160
161         /* Read DCCTX */
162         retval = mem_ap_read_atomic_u32(swjdp,
163                         armv7a->debug_base + CPUDBG_DTRTX, value);
164
165         return retval;
166 }
167
168 static int cortex_a8_write_cp(struct target *target, uint32_t value,
169         uint8_t CP, uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
170 {
171         int retval;
172         uint32_t dscr;
173         struct armv7a_common *armv7a = target_to_armv7a(target);
174         struct swjdp_common *swjdp = &armv7a->swjdp_info;
175
176         LOG_DEBUG("CP%i, CRn %i, value 0x%08" PRIx32, CP, CRn, value);
177
178         /* Check that DCCRX is not full */
179         retval = mem_ap_read_atomic_u32(swjdp,
180                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
181         if (dscr & (1 << DSCR_DTR_RX_FULL))
182         {
183                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
184                 /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode  0xEE000E15 */
185                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
186         }
187
188         retval = mem_ap_write_u32(swjdp,
189                         armv7a->debug_base + CPUDBG_DTRRX, value);
190         /* Move DTRRX to r0 */
191         cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
192
193         cortex_a8_exec_opcode(target, ARMV4_5_MCR(CP, op1, 0, CRn, CRm, op2));
194         return retval;
195 }
196
197 static int cortex_a8_read_cp15(struct target *target, uint32_t op1, uint32_t op2,
198                 uint32_t CRn, uint32_t CRm, uint32_t *value)
199 {
200         return cortex_a8_read_cp(target, value, 15, op1, CRn, CRm, op2);
201 }
202
203 static int cortex_a8_write_cp15(struct target *target, uint32_t op1, uint32_t op2,
204                 uint32_t CRn, uint32_t CRm, uint32_t value)
205 {
206         return cortex_a8_write_cp(target, value, 15, op1, CRn, CRm, op2);
207 }
208
209 static int cortex_a8_mrc(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value)
210 {
211         if (cpnum!=15)
212         {
213                 LOG_ERROR("Only cp15 is supported");
214                 return ERROR_FAIL;
215         }
216         return cortex_a8_read_cp15(target, op1, op2, CRn, CRm, value);
217 }
218
219 static int cortex_a8_mcr(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value)
220 {
221         if (cpnum!=15)
222         {
223                 LOG_ERROR("Only cp15 is supported");
224                 return ERROR_FAIL;
225         }
226         return cortex_a8_write_cp15(target, op1, op2, CRn, CRm, value);
227 }
228
229
230
231 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
232                 uint32_t *value, int regnum)
233 {
234         int retval = ERROR_OK;
235         uint8_t reg = regnum&0xFF;
236         uint32_t dscr;
237         struct armv7a_common *armv7a = target_to_armv7a(target);
238         struct swjdp_common *swjdp = &armv7a->swjdp_info;
239
240         if (reg > 17)
241                 return retval;
242
243         if (reg < 15)
244         {
245                 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0"  0xEE00nE15 */
246                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, reg, 0, 5, 0));
247         }
248         else if (reg == 15)
249         {
250                 /* "MOV r0, r15"; then move r0 to DCCTX */
251                 cortex_a8_exec_opcode(target, 0xE1A0000F);
252                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
253         }
254         else
255         {
256                 /* "MRS r0, CPSR" or "MRS r0, SPSR"
257                  * then move r0 to DCCTX
258                  */
259                 cortex_a8_exec_opcode(target, ARMV4_5_MRS(0, reg & 1));
260                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
261         }
262
263         /* Read DTRRTX */
264         do
265         {
266                 retval = mem_ap_read_atomic_u32(swjdp,
267                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
268         }
269         while ((dscr & (1 << DSCR_DTR_TX_FULL)) == 0); /* Wait for DTRRXfull */
270
271         retval = mem_ap_read_atomic_u32(swjdp,
272                         armv7a->debug_base + CPUDBG_DTRTX, value);
273         LOG_DEBUG("read DCC 0x%08" PRIx32, *value);
274
275         return retval;
276 }
277
278 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
279                 uint32_t value, int regnum)
280 {
281         int retval = ERROR_OK;
282         uint8_t Rd = regnum&0xFF;
283         uint32_t dscr;
284         struct armv7a_common *armv7a = target_to_armv7a(target);
285         struct swjdp_common *swjdp = &armv7a->swjdp_info;
286
287         LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
288
289         /* Check that DCCRX is not full */
290         retval = mem_ap_read_atomic_u32(swjdp,
291                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
292         if (dscr & (1 << DSCR_DTR_RX_FULL))
293         {
294                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
295                 /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode  0xEE000E15 */
296                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
297         }
298
299         if (Rd > 17)
300                 return retval;
301
302         /* Write to DCCRX */
303         LOG_DEBUG("write DCC 0x%08" PRIx32, value);
304         retval = mem_ap_write_u32(swjdp,
305                         armv7a->debug_base + CPUDBG_DTRRX, value);
306
307         if (Rd < 15)
308         {
309                 /* DCCRX to Rn, "MCR p14, 0, Rn, c0, c5, 0", 0xEE00nE15 */
310                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0));
311         }
312         else if (Rd == 15)
313         {
314                 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15
315                  * then "mov r15, r0"
316                  */
317                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
318                 cortex_a8_exec_opcode(target, 0xE1A0F000);
319         }
320         else
321         {
322                 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15
323                  * then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
324                  */
325                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
326                 cortex_a8_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, Rd & 1));
327
328                 /* "Prefetch flush" after modifying execution status in CPSR */
329                 if (Rd == 16)
330                         cortex_a8_exec_opcode(target,
331                                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4));
332         }
333
334         return retval;
335 }
336
337 /* Write to memory mapped registers directly with no cache or mmu handling */
338 static int cortex_a8_dap_write_memap_register_u32(struct target *target, uint32_t address, uint32_t value)
339 {
340         int retval;
341         struct armv7a_common *armv7a = target_to_armv7a(target);
342         struct swjdp_common *swjdp = &armv7a->swjdp_info;
343
344         retval = mem_ap_write_atomic_u32(swjdp, address, value);
345
346         return retval;
347 }
348
349 /*
350  * Cortex-A8 Run control
351  */
352
353 static int cortex_a8_poll(struct target *target)
354 {
355         int retval = ERROR_OK;
356         uint32_t dscr;
357         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
358         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
359         struct swjdp_common *swjdp = &armv7a->swjdp_info;
360         enum target_state prev_target_state = target->state;
361         uint8_t saved_apsel = dap_ap_get_select(swjdp);
362
363         dap_ap_select(swjdp, swjdp_debugap);
364         retval = mem_ap_read_atomic_u32(swjdp,
365                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
366         if (retval != ERROR_OK)
367         {
368                 dap_ap_select(swjdp, saved_apsel);
369                 return retval;
370         }
371         cortex_a8->cpudbg_dscr = dscr;
372
373         if ((dscr & 0x3) == 0x3)
374         {
375                 if (prev_target_state != TARGET_HALTED)
376                 {
377                         /* We have a halting debug event */
378                         LOG_DEBUG("Target halted");
379                         target->state = TARGET_HALTED;
380                         if ((prev_target_state == TARGET_RUNNING)
381                                         || (prev_target_state == TARGET_RESET))
382                         {
383                                 retval = cortex_a8_debug_entry(target);
384                                 if (retval != ERROR_OK)
385                                         return retval;
386
387                                 target_call_event_callbacks(target,
388                                                 TARGET_EVENT_HALTED);
389                         }
390                         if (prev_target_state == TARGET_DEBUG_RUNNING)
391                         {
392                                 LOG_DEBUG(" ");
393
394                                 retval = cortex_a8_debug_entry(target);
395                                 if (retval != ERROR_OK)
396                                         return retval;
397
398                                 target_call_event_callbacks(target,
399                                                 TARGET_EVENT_DEBUG_HALTED);
400                         }
401                 }
402         }
403         else if ((dscr & 0x3) == 0x2)
404         {
405                 target->state = TARGET_RUNNING;
406         }
407         else
408         {
409                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
410                 target->state = TARGET_UNKNOWN;
411         }
412
413         dap_ap_select(swjdp, saved_apsel);
414
415         return retval;
416 }
417
418 static int cortex_a8_halt(struct target *target)
419 {
420         int retval = ERROR_OK;
421         uint32_t dscr;
422         struct armv7a_common *armv7a = target_to_armv7a(target);
423         struct swjdp_common *swjdp = &armv7a->swjdp_info;
424         uint8_t saved_apsel = dap_ap_get_select(swjdp);
425         dap_ap_select(swjdp, swjdp_debugap);
426
427         /*
428          * Tell the core to be halted by writing DRCR with 0x1
429          * and then wait for the core to be halted.
430          */
431         retval = mem_ap_write_atomic_u32(swjdp,
432                         armv7a->debug_base + CPUDBG_DRCR, 0x1);
433
434         /*
435          * enter halting debug mode
436          */
437         mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DSCR, &dscr);
438         retval = mem_ap_write_atomic_u32(swjdp,
439                 armv7a->debug_base + CPUDBG_DSCR, dscr | (1 << DSCR_HALT_DBG_MODE));
440
441         if (retval != ERROR_OK)
442                 goto out;
443
444         do {
445                 mem_ap_read_atomic_u32(swjdp,
446                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
447         } while ((dscr & (1 << DSCR_CORE_HALTED)) == 0);
448
449         target->debug_reason = DBG_REASON_DBGRQ;
450
451 out:
452         dap_ap_select(swjdp, saved_apsel);
453         return retval;
454 }
455
456 static int cortex_a8_resume(struct target *target, int current,
457                 uint32_t address, int handle_breakpoints, int debug_execution)
458 {
459         struct armv7a_common *armv7a = target_to_armv7a(target);
460         struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common;
461         struct swjdp_common *swjdp = &armv7a->swjdp_info;
462
463 //      struct breakpoint *breakpoint = NULL;
464         uint32_t resume_pc, dscr;
465
466         uint8_t saved_apsel = dap_ap_get_select(swjdp);
467         dap_ap_select(swjdp, swjdp_debugap);
468
469         if (!debug_execution)
470         {
471                 target_free_all_working_areas(target);
472 //              cortex_m3_enable_breakpoints(target);
473 //              cortex_m3_enable_watchpoints(target);
474         }
475
476 #if 0
477         if (debug_execution)
478         {
479                 /* Disable interrupts */
480                 /* We disable interrupts in the PRIMASK register instead of
481                  * masking with C_MASKINTS,
482                  * This is probably the same issue as Cortex-M3 Errata 377493:
483                  * C_MASKINTS in parallel with disabled interrupts can cause
484                  * local faults to not be taken. */
485                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
486                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
487                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
488
489                 /* Make sure we are in Thumb mode */
490                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
491                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
492                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
493                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
494         }
495 #endif
496
497         /* current = 1: continue on current pc, otherwise continue at <address> */
498         resume_pc = buf_get_u32(
499                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
500                                 armv4_5->core_mode, 15).value,
501                         0, 32);
502         if (!current)
503                 resume_pc = address;
504
505         /* Make sure that the Armv7 gdb thumb fixups does not
506          * kill the return address
507          */
508         switch (armv4_5->core_state)
509         {
510         case ARMV4_5_STATE_ARM:
511                 resume_pc &= 0xFFFFFFFC;
512                 break;
513         case ARMV4_5_STATE_THUMB:
514         case ARM_STATE_THUMB_EE:
515                 /* When the return address is loaded into PC
516                  * bit 0 must be 1 to stay in Thumb state
517                  */
518                 resume_pc |= 0x1;
519                 break;
520         case ARMV4_5_STATE_JAZELLE:
521                 LOG_ERROR("How do I resume into Jazelle state??");
522                 return ERROR_FAIL;
523         }
524         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
525         buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
526                                 armv4_5->core_mode, 15).value,
527                         0, 32, resume_pc);
528         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
529                         armv4_5->core_mode, 15).dirty = 1;
530         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
531                         armv4_5->core_mode, 15).valid = 1;
532
533         cortex_a8_restore_context(target);
534
535 #if 0
536         /* the front-end may request us not to handle breakpoints */
537         if (handle_breakpoints)
538         {
539                 /* Single step past breakpoint at current address */
540                 if ((breakpoint = breakpoint_find(target, resume_pc)))
541                 {
542                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
543                         cortex_m3_unset_breakpoint(target, breakpoint);
544                         cortex_m3_single_step_core(target);
545                         cortex_m3_set_breakpoint(target, breakpoint);
546                 }
547         }
548
549 #endif
550         /* Restart core and wait for it to be started */
551         mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DRCR, 0x2);
552
553         do {
554                 mem_ap_read_atomic_u32(swjdp,
555                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
556         } while ((dscr & (1 << DSCR_CORE_RESTARTED)) == 0);
557
558         target->debug_reason = DBG_REASON_NOTHALTED;
559         target->state = TARGET_RUNNING;
560
561         /* registers are now invalid */
562         register_cache_invalidate(armv4_5->core_cache);
563
564         if (!debug_execution)
565         {
566                 target->state = TARGET_RUNNING;
567                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
568                 LOG_DEBUG("target resumed at 0x%" PRIx32, resume_pc);
569         }
570         else
571         {
572                 target->state = TARGET_DEBUG_RUNNING;
573                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
574                 LOG_DEBUG("target debug resumed at 0x%" PRIx32, resume_pc);
575         }
576
577         dap_ap_select(swjdp, saved_apsel);
578
579         return ERROR_OK;
580 }
581
582 static int cortex_a8_debug_entry(struct target *target)
583 {
584         int i;
585         uint32_t regfile[16], pc, cpsr, dscr;
586         int retval = ERROR_OK;
587         struct working_area *regfile_working_area = NULL;
588         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
589         struct armv7a_common *armv7a = target_to_armv7a(target);
590         struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common;
591         struct swjdp_common *swjdp = &armv7a->swjdp_info;
592         struct reg *reg;
593
594         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a8->cpudbg_dscr);
595
596         /* Enable the ITR execution once we are in debug mode */
597         mem_ap_read_atomic_u32(swjdp,
598                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
599         dscr |= (1 << DSCR_EXT_INT_EN);
600         retval = mem_ap_write_atomic_u32(swjdp,
601                         armv7a->debug_base + CPUDBG_DSCR, dscr);
602
603         /* Examine debug reason */
604         switch ((cortex_a8->cpudbg_dscr >> 2)&0xF)
605         {
606                 case 0:
607                 case 4:
608                         target->debug_reason = DBG_REASON_DBGRQ;
609                         break;
610                 case 1:
611                 case 3:
612                         target->debug_reason = DBG_REASON_BREAKPOINT;
613                         break;
614                 case 10:
615                         target->debug_reason = DBG_REASON_WATCHPOINT;
616                         break;
617                 default:
618                         target->debug_reason = DBG_REASON_UNDEFINED;
619                         break;
620         }
621
622         /* Examine target state and mode */
623         if (cortex_a8->fast_reg_read)
624                 target_alloc_working_area(target, 64, &regfile_working_area);
625
626         /* First load register acessible through core debug port*/
627         if (!regfile_working_area)
628         {
629                 /* FIXME we don't actually need all these registers;
630                  * reading them slows us down.  Just R0, PC, CPSR...
631                  */
632                 for (i = 0; i <= 15; i++)
633                         cortex_a8_dap_read_coreregister_u32(target,
634                                         &regfile[i], i);
635         }
636         else
637         {
638                 dap_ap_select(swjdp, swjdp_memoryap);
639                 cortex_a8_read_regs_through_mem(target,
640                                 regfile_working_area->address, regfile);
641                 dap_ap_select(swjdp, swjdp_memoryap);
642                 target_free_working_area(target, regfile_working_area);
643         }
644
645         /* read Current PSR */
646         cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16);
647         pc = regfile[15];
648         dap_ap_select(swjdp, swjdp_debugap);
649         LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
650
651         armv4_5->core_mode = cpsr & 0x1F;
652
653         i = (cpsr >> 5) & 1;    /* T */
654         i |= (cpsr >> 23) & 1;  /* J << 1 */
655         switch (i) {
656         case 0: /* J = 0, T = 0 */
657                 armv4_5->core_state = ARMV4_5_STATE_ARM;
658                 break;
659         case 1: /* J = 0, T = 1 */
660                 armv4_5->core_state = ARMV4_5_STATE_THUMB;
661                 break;
662         case 2: /* J = 1, T = 0 */
663                 LOG_WARNING("Jazelle state -- not handled");
664                 armv4_5->core_state = ARMV4_5_STATE_JAZELLE;
665                 break;
666         case 3: /* J = 1, T = 1 */
667                 /* ThumbEE is very much like Thumb, but some of the
668                  * instructions are different.  Single stepping and
669                  * breakpoints need updating...
670                  */
671                 LOG_WARNING("ThumbEE -- incomplete support");
672                 armv4_5->core_state = ARM_STATE_THUMB_EE;
673                 break;
674         }
675
676         /* update cache */
677         reg = armv4_5->core_cache->reg_list + ARMV4_5_CPSR;
678         buf_set_u32(reg->value, 0, 32, cpsr);
679         reg->valid = 1;
680         reg->dirty = 0;
681
682         for (i = 0; i <= ARM_PC; i++)
683         {
684                 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
685                                         armv4_5->core_mode, i);
686
687                 buf_set_u32(reg->value, 0, 32, regfile[i]);
688                 reg->valid = 1;
689                 reg->dirty = 0;
690         }
691
692         /* Fixup PC Resume Address */
693         if (cpsr & (1 << 5))
694         {
695                 // T bit set for Thumb or ThumbEE state
696                 regfile[ARM_PC] -= 4;
697         }
698         else
699         {
700                 // ARM state
701                 regfile[ARM_PC] -= 8;
702         }
703         buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
704                                 armv4_5->core_mode, ARM_PC).value,
705                         0, 32, regfile[ARM_PC]);
706
707         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0)
708                 .dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
709                                 armv4_5->core_mode, 0).valid;
710         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15)
711                 .dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
712                                 armv4_5->core_mode, 15).valid;
713
714 #if 0
715 /* TODO, Move this */
716         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
717         cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
718         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
719
720         cortex_a8_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
721         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
722
723         cortex_a8_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
724         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
725 #endif
726
727         /* Are we in an exception handler */
728 //      armv4_5->exception_number = 0;
729         if (armv7a->post_debug_entry)
730                 armv7a->post_debug_entry(target);
731
732
733
734         return retval;
735
736 }
737
738 static void cortex_a8_post_debug_entry(struct target *target)
739 {
740         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
741         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
742
743 //      cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
744         /* examine cp15 control reg */
745         armv7a->read_cp15(target, 0, 0, 1, 0, &cortex_a8->cp15_control_reg);
746         jtag_execute_queue();
747         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
748
749         if (armv7a->armv4_5_mmu.armv4_5_cache.ctype == -1)
750         {
751                 uint32_t cache_type_reg;
752                 /* identify caches */
753                 armv7a->read_cp15(target, 0, 1, 0, 0, &cache_type_reg);
754                 jtag_execute_queue();
755                 /* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A8 */
756                 armv4_5_identify_cache(cache_type_reg,
757                                 &armv7a->armv4_5_mmu.armv4_5_cache);
758         }
759
760         armv7a->armv4_5_mmu.mmu_enabled =
761                         (cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0;
762         armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
763                         (cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0;
764         armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
765                         (cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0;
766
767
768 }
769
770 static int cortex_a8_step(struct target *target, int current, uint32_t address,
771                 int handle_breakpoints)
772 {
773         struct armv7a_common *armv7a = target_to_armv7a(target);
774         struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common;
775         struct breakpoint *breakpoint = NULL;
776         struct breakpoint stepbreakpoint;
777
778         int timeout = 100;
779
780         if (target->state != TARGET_HALTED)
781         {
782                 LOG_WARNING("target not halted");
783                 return ERROR_TARGET_NOT_HALTED;
784         }
785
786         /* current = 1: continue on current pc, otherwise continue at <address> */
787         if (!current)
788         {
789                 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
790                                         armv4_5->core_mode, ARM_PC).value,
791                                 0, 32, address);
792         }
793         else
794         {
795                 address = buf_get_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
796                                         armv4_5->core_mode, ARM_PC).value,
797                                 0, 32);
798         }
799
800         /* The front-end may request us not to handle breakpoints.
801          * But since Cortex-A8 uses breakpoint for single step,
802          * we MUST handle breakpoints.
803          */
804         handle_breakpoints = 1;
805         if (handle_breakpoints) {
806                 breakpoint = breakpoint_find(target,
807                                 buf_get_u32(ARMV4_5_CORE_REG_MODE(
808                                         armv4_5->core_cache,
809                                         armv4_5->core_mode, 15).value,
810                         0, 32));
811                 if (breakpoint)
812                         cortex_a8_unset_breakpoint(target, breakpoint);
813         }
814
815         /* Setup single step breakpoint */
816         stepbreakpoint.address = address;
817         stepbreakpoint.length = (armv4_5->core_state == ARMV4_5_STATE_THUMB)
818                         ? 2 : 4;
819         stepbreakpoint.type = BKPT_HARD;
820         stepbreakpoint.set = 0;
821
822         /* Break on IVA mismatch */
823         cortex_a8_set_breakpoint(target, &stepbreakpoint, 0x04);
824
825         target->debug_reason = DBG_REASON_SINGLESTEP;
826
827         cortex_a8_resume(target, 1, address, 0, 0);
828
829         while (target->state != TARGET_HALTED)
830         {
831                 cortex_a8_poll(target);
832                 if (--timeout == 0)
833                 {
834                         LOG_WARNING("timeout waiting for target halt");
835                         break;
836                 }
837         }
838
839         cortex_a8_unset_breakpoint(target, &stepbreakpoint);
840         if (timeout > 0) target->debug_reason = DBG_REASON_BREAKPOINT;
841
842         if (breakpoint)
843                 cortex_a8_set_breakpoint(target, breakpoint, 0);
844
845         if (target->state != TARGET_HALTED)
846                 LOG_DEBUG("target stepped");
847
848         return ERROR_OK;
849 }
850
851 static int cortex_a8_restore_context(struct target *target)
852 {
853         uint32_t value;
854         struct armv7a_common *armv7a = target_to_armv7a(target);
855         struct reg_cache *cache = armv7a->armv4_5_common.core_cache;
856         unsigned max = cache->num_regs;
857         struct reg *r;
858         bool flushed, flush_cpsr = false;
859
860         LOG_DEBUG(" ");
861
862         if (armv7a->pre_restore_context)
863                 armv7a->pre_restore_context(target);
864
865         /* Flush all dirty registers from the cache, one mode at a time so
866          * that we write CPSR as little as possible.  Save CPSR and R0 for
867          * last; they're used to change modes and write other registers.
868          *
869          * REVISIT be smarter:  save eventual mode for last loop, don't
870          * need to write CPSR an extra time.
871          */
872         do {
873                 enum armv4_5_mode mode = ARMV4_5_MODE_ANY;
874                 unsigned i;
875
876                 flushed = false;
877
878                 /* write dirty non-{R0,CPSR} registers sharing the same mode */
879                 for (i = max - 1, r = cache->reg_list + 1; i > 0; i--, r++) {
880                         struct armv4_5_core_reg *reg;
881
882                         if (!r->dirty || i == ARMV4_5_CPSR)
883                                 continue;
884                         reg = r->arch_info;
885
886                         /* TODO Check return values */
887
888                         /* Pick a mode and update CPSR; else ignore this
889                          * register if it's for a different mode than what
890                          * we're handling on this pass.
891                          *
892                          * REVISIT don't distinguish SYS and USR modes.
893                          *
894                          * FIXME if we restore from FIQ mode, R8..R12 will
895                          * get wrongly flushed onto FIQ shadows...
896                          */
897                         if (mode == ARMV4_5_MODE_ANY) {
898                                 mode = reg->mode;
899                                 if (mode != ARMV4_5_MODE_ANY) {
900                                         cortex_a8_dap_write_coreregister_u32(
901                                                         target, mode, 16);
902                                         flush_cpsr = true;
903                                 }
904                         } else if (mode != reg->mode)
905                                 continue;
906
907                         /* Write this register */
908                         value = buf_get_u32(r->value, 0, 32);
909                         cortex_a8_dap_write_coreregister_u32(target, value,
910                                         (reg->num == 16) ? 17 : reg->num);
911                         r->dirty = false;
912                         flushed = true;
913                 }
914
915         } while (flushed);
916
917         /* now flush CPSR if needed ... */
918         r = cache->reg_list + ARMV4_5_CPSR;
919         if (flush_cpsr || r->dirty) {
920                 value = buf_get_u32(r->value, 0, 32);
921                 cortex_a8_dap_write_coreregister_u32(target, value, 16);
922                 r->dirty = false;
923         }
924
925         /* ... and R0 always (it was dirtied when we saved context) */
926         r = cache->reg_list + 0;
927         value = buf_get_u32(r->value, 0, 32);
928         cortex_a8_dap_write_coreregister_u32(target, value, 0);
929         r->dirty = false;
930
931         if (armv7a->post_restore_context)
932                 armv7a->post_restore_context(target);
933
934         return ERROR_OK;
935 }
936
937
938 #if 0
939 /*
940  * Cortex-A8 Core register functions
941  */
942 static int cortex_a8_load_core_reg_u32(struct target *target, int num,
943                 armv4_5_mode_t mode, uint32_t * value)
944 {
945         int retval;
946         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
947
948         if ((num <= ARM_CPSR))
949         {
950                 /* read a normal core register */
951                 retval = cortex_a8_dap_read_coreregister_u32(target, value, num);
952
953                 if (retval != ERROR_OK)
954                 {
955                         LOG_ERROR("JTAG failure %i", retval);
956                         return ERROR_JTAG_DEVICE_ERROR;
957                 }
958                 LOG_DEBUG("load from core reg %i value 0x%" PRIx32, num, *value);
959         }
960         else
961         {
962                 return ERROR_INVALID_ARGUMENTS;
963         }
964
965         /* Register other than r0 - r14 uses r0 for access */
966         if (num > 14)
967                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
968                                 armv4_5->core_mode, 0).dirty =
969                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
970                                 armv4_5->core_mode, 0).valid;
971         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
972                                 armv4_5->core_mode, 15).dirty =
973                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
974                                 armv4_5->core_mode, 15).valid;
975
976         return ERROR_OK;
977 }
978
979 static int cortex_a8_store_core_reg_u32(struct target *target, int num,
980                 armv4_5_mode_t mode, uint32_t value)
981 {
982         int retval;
983 //      uint32_t reg;
984         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
985
986 #ifdef ARMV7_GDB_HACKS
987         /* If the LR register is being modified, make sure it will put us
988          * in "thumb" mode, or an INVSTATE exception will occur. This is a
989          * hack to deal with the fact that gdb will sometimes "forge"
990          * return addresses, and doesn't set the LSB correctly (i.e., when
991          * printing expressions containing function calls, it sets LR=0.) */
992
993         if (num == 14)
994                 value |= 0x01;
995 #endif
996
997         if ((num <= ARM_CPSR))
998         {
999                 retval = cortex_a8_dap_write_coreregister_u32(target, value, num);
1000                 if (retval != ERROR_OK)
1001                 {
1002                         LOG_ERROR("JTAG failure %i", retval);
1003                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
1004                                         armv4_5->core_mode, num).dirty =
1005                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
1006                                         armv4_5->core_mode, num).valid;
1007                         return ERROR_JTAG_DEVICE_ERROR;
1008                 }
1009                 LOG_DEBUG("write core reg %i value 0x%" PRIx32, num, value);
1010         }
1011         else
1012         {
1013                 return ERROR_INVALID_ARGUMENTS;
1014         }
1015
1016         return ERROR_OK;
1017 }
1018 #endif
1019
1020
1021 static int cortex_a8_write_core_reg(struct target *target, int num,
1022                 enum armv4_5_mode mode, uint32_t value);
1023
1024 static int cortex_a8_read_core_reg(struct target *target, int num,
1025                 enum armv4_5_mode mode)
1026 {
1027         uint32_t value;
1028         int retval;
1029         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
1030         struct reg_cache *cache = armv4_5->core_cache;
1031         uint32_t cpsr = 0;
1032         unsigned cookie = num;
1033
1034         /* avoid some needless mode changes
1035          * FIXME move some of these to shared ARM code...
1036          */
1037         if (mode != armv4_5->core_mode) {
1038                 if ((armv4_5->core_mode == ARMV4_5_MODE_SYS)
1039                                 && (mode == ARMV4_5_MODE_USR))
1040                         mode = ARMV4_5_MODE_ANY;
1041                 else if ((mode != ARMV4_5_MODE_FIQ) && (num <= 12))
1042                         mode = ARMV4_5_MODE_ANY;
1043
1044                 if (mode != ARMV4_5_MODE_ANY) {
1045                         cpsr = buf_get_u32(cache ->reg_list[ARMV4_5_CPSR]
1046                                         .value, 0, 32);
1047                         cortex_a8_write_core_reg(target, 16,
1048                                         ARMV4_5_MODE_ANY, mode);
1049                 }
1050         }
1051
1052         if (num == 16) {
1053                 switch (mode) {
1054                 case ARMV4_5_MODE_USR:
1055                 case ARMV4_5_MODE_SYS:
1056                 case ARMV4_5_MODE_ANY:
1057                         /* CPSR */
1058                         break;
1059                 default:
1060                         /* SPSR */
1061                         cookie++;
1062                         break;
1063                 }
1064         }
1065
1066         cortex_a8_dap_read_coreregister_u32(target, &value, cookie);
1067         retval = jtag_execute_queue();
1068         if (retval == ERROR_OK) {
1069                 struct reg *r = &ARMV4_5_CORE_REG_MODE(cache, mode, num);
1070
1071                 r->valid = 1;
1072                 r->dirty = 0;
1073                 buf_set_u32(r->value, 0, 32, value);
1074         }
1075
1076         if (cpsr)
1077                 cortex_a8_write_core_reg(target, 16, ARMV4_5_MODE_ANY, cpsr);
1078         return retval;
1079 }
1080
1081 static int cortex_a8_write_core_reg(struct target *target, int num,
1082                 enum armv4_5_mode mode, uint32_t value)
1083 {
1084         int retval;
1085         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
1086         struct reg_cache *cache = armv4_5->core_cache;
1087         uint32_t cpsr = 0;
1088         unsigned cookie = num;
1089
1090         /* avoid some needless mode changes
1091          * FIXME move some of these to shared ARM code...
1092          */
1093         if (mode != armv4_5->core_mode) {
1094                 if ((armv4_5->core_mode == ARMV4_5_MODE_SYS)
1095                                 && (mode == ARMV4_5_MODE_USR))
1096                         mode = ARMV4_5_MODE_ANY;
1097                 else if ((mode != ARMV4_5_MODE_FIQ) && (num <= 12))
1098                         mode = ARMV4_5_MODE_ANY;
1099
1100                 if (mode != ARMV4_5_MODE_ANY) {
1101                         cpsr = buf_get_u32(cache ->reg_list[ARMV4_5_CPSR]
1102                                         .value, 0, 32);
1103                         cortex_a8_write_core_reg(target, 16,
1104                                         ARMV4_5_MODE_ANY, mode);
1105                 }
1106         }
1107
1108
1109         if (num == 16) {
1110                 switch (mode) {
1111                 case ARMV4_5_MODE_USR:
1112                 case ARMV4_5_MODE_SYS:
1113                 case ARMV4_5_MODE_ANY:
1114                         /* CPSR */
1115                         break;
1116                 default:
1117                         /* SPSR */
1118                         cookie++;
1119                         break;
1120                 }
1121         }
1122
1123         cortex_a8_dap_write_coreregister_u32(target, value, cookie);
1124         if ((retval = jtag_execute_queue()) == ERROR_OK) {
1125                 struct reg *r = &ARMV4_5_CORE_REG_MODE(cache, mode, num);
1126
1127                 buf_set_u32(r->value, 0, 32, value);
1128                 r->valid = 1;
1129                 r->dirty = 0;
1130         }
1131
1132         if (cpsr)
1133                 cortex_a8_write_core_reg(target, 16, ARMV4_5_MODE_ANY, cpsr);
1134         return retval;
1135 }
1136
1137
1138 /*
1139  * Cortex-A8 Breakpoint and watchpoint fuctions
1140  */
1141
1142 /* Setup hardware Breakpoint Register Pair */
1143 static int cortex_a8_set_breakpoint(struct target *target,
1144                 struct breakpoint *breakpoint, uint8_t matchmode)
1145 {
1146         int retval;
1147         int brp_i=0;
1148         uint32_t control;
1149         uint8_t byte_addr_select = 0x0F;
1150         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1151         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1152         struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1153
1154         if (breakpoint->set)
1155         {
1156                 LOG_WARNING("breakpoint already set");
1157                 return ERROR_OK;
1158         }
1159
1160         if (breakpoint->type == BKPT_HARD)
1161         {
1162                 while (brp_list[brp_i].used && (brp_i < cortex_a8->brp_num))
1163                         brp_i++ ;
1164                 if (brp_i >= cortex_a8->brp_num)
1165                 {
1166                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1167                         return ERROR_FAIL;
1168                 }
1169                 breakpoint->set = brp_i + 1;
1170                 if (breakpoint->length == 2)
1171                 {
1172                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1173                 }
1174                 control = ((matchmode & 0x7) << 20)
1175                                 | (byte_addr_select << 5)
1176                                 | (3 << 1) | 1;
1177                 brp_list[brp_i].used = 1;
1178                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1179                 brp_list[brp_i].control = control;
1180                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1181                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1182                                 brp_list[brp_i].value);
1183                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1184                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1185                                 brp_list[brp_i].control);
1186                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1187                                 brp_list[brp_i].control,
1188                                 brp_list[brp_i].value);
1189         }
1190         else if (breakpoint->type == BKPT_SOFT)
1191         {
1192                 uint8_t code[4];
1193                 if (breakpoint->length == 2)
1194                 {
1195                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1196                 }
1197                 else
1198                 {
1199                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1200                 }
1201                 retval = target->type->read_memory(target,
1202                                 breakpoint->address & 0xFFFFFFFE,
1203                                 breakpoint->length, 1,
1204                                 breakpoint->orig_instr);
1205                 if (retval != ERROR_OK)
1206                         return retval;
1207                 retval = target->type->write_memory(target,
1208                                 breakpoint->address & 0xFFFFFFFE,
1209                                 breakpoint->length, 1, code);
1210                 if (retval != ERROR_OK)
1211                         return retval;
1212                 breakpoint->set = 0x11; /* Any nice value but 0 */
1213         }
1214
1215         return ERROR_OK;
1216 }
1217
1218 static int cortex_a8_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1219 {
1220         int retval;
1221         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1222         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1223         struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1224
1225         if (!breakpoint->set)
1226         {
1227                 LOG_WARNING("breakpoint not set");
1228                 return ERROR_OK;
1229         }
1230
1231         if (breakpoint->type == BKPT_HARD)
1232         {
1233                 int brp_i = breakpoint->set - 1;
1234                 if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num))
1235                 {
1236                         LOG_DEBUG("Invalid BRP number in breakpoint");
1237                         return ERROR_OK;
1238                 }
1239                 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1240                                 brp_list[brp_i].control, brp_list[brp_i].value);
1241                 brp_list[brp_i].used = 0;
1242                 brp_list[brp_i].value = 0;
1243                 brp_list[brp_i].control = 0;
1244                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1245                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1246                                 brp_list[brp_i].control);
1247                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1248                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1249                                 brp_list[brp_i].value);
1250         }
1251         else
1252         {
1253                 /* restore original instruction (kept in target endianness) */
1254                 if (breakpoint->length == 4)
1255                 {
1256                         retval = target->type->write_memory(target,
1257                                         breakpoint->address & 0xFFFFFFFE,
1258                                         4, 1, breakpoint->orig_instr);
1259                         if (retval != ERROR_OK)
1260                                 return retval;
1261                 }
1262                 else
1263                 {
1264                         retval = target->type->write_memory(target,
1265                                         breakpoint->address & 0xFFFFFFFE,
1266                                         2, 1, breakpoint->orig_instr);
1267                         if (retval != ERROR_OK)
1268                                 return retval;
1269                 }
1270         }
1271         breakpoint->set = 0;
1272
1273         return ERROR_OK;
1274 }
1275
1276 int cortex_a8_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1277 {
1278         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1279
1280         if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1))
1281         {
1282                 LOG_INFO("no hardware breakpoint available");
1283                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1284         }
1285
1286         if (breakpoint->type == BKPT_HARD)
1287                 cortex_a8->brp_num_available--;
1288         cortex_a8_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1289
1290         return ERROR_OK;
1291 }
1292
1293 static int cortex_a8_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1294 {
1295         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1296
1297 #if 0
1298 /* It is perfectly possible to remove brakpoints while the taget is running */
1299         if (target->state != TARGET_HALTED)
1300         {
1301                 LOG_WARNING("target not halted");
1302                 return ERROR_TARGET_NOT_HALTED;
1303         }
1304 #endif
1305
1306         if (breakpoint->set)
1307         {
1308                 cortex_a8_unset_breakpoint(target, breakpoint);
1309                 if (breakpoint->type == BKPT_HARD)
1310                         cortex_a8->brp_num_available++ ;
1311         }
1312
1313
1314         return ERROR_OK;
1315 }
1316
1317
1318
1319 /*
1320  * Cortex-A8 Reset fuctions
1321  */
1322
1323 static int cortex_a8_assert_reset(struct target *target)
1324 {
1325         struct armv7a_common *armv7a = target_to_armv7a(target);
1326
1327         LOG_DEBUG(" ");
1328
1329         /* registers are now invalid */
1330         register_cache_invalidate(armv7a->armv4_5_common.core_cache);
1331
1332         target->state = TARGET_RESET;
1333
1334         return ERROR_OK;
1335 }
1336
1337 static int cortex_a8_deassert_reset(struct target *target)
1338 {
1339
1340         LOG_DEBUG(" ");
1341
1342         if (target->reset_halt)
1343         {
1344                 int retval;
1345                 if ((retval = target_halt(target)) != ERROR_OK)
1346                         return retval;
1347         }
1348
1349         return ERROR_OK;
1350 }
1351
1352 /*
1353  * Cortex-A8 Memory access
1354  *
1355  * This is same Cortex M3 but we must also use the correct
1356  * ap number for every access.
1357  */
1358
1359 static int cortex_a8_read_memory(struct target *target, uint32_t address,
1360                 uint32_t size, uint32_t count, uint8_t *buffer)
1361 {
1362         struct armv7a_common *armv7a = target_to_armv7a(target);
1363         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1364         int retval = ERROR_INVALID_ARGUMENTS;
1365
1366         /* cortex_a8 handles unaligned memory access */
1367
1368 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1369
1370         if (count && buffer) {
1371                 switch (size) {
1372                 case 4:
1373                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1374                         break;
1375                 case 2:
1376                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1377                         break;
1378                 case 1:
1379                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1380                         break;
1381                 }
1382         }
1383
1384         return retval;
1385 }
1386
1387 int cortex_a8_write_memory(struct target *target, uint32_t address,
1388                 uint32_t size, uint32_t count, uint8_t *buffer)
1389 {
1390         struct armv7a_common *armv7a = target_to_armv7a(target);
1391         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1392         int retval = ERROR_INVALID_ARGUMENTS;
1393
1394 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1395
1396         if (count && buffer) {
1397                 switch (size) {
1398                 case 4:
1399                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1400                         break;
1401                 case 2:
1402                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1403                         break;
1404                 case 1:
1405                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1406                         break;
1407                 }
1408         }
1409
1410         if (retval == ERROR_OK && target->state == TARGET_HALTED)
1411         {
1412                 /* The Cache handling will NOT work with MMU active, the wrong addresses will be invalidated */
1413                 /* invalidate I-Cache */
1414                 if (armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
1415                 {
1416                         /* Invalidate ICache single entry with MVA, repeat this for all cache
1417                            lines in the address range, Cortex-A8 has fixed 64 byte line length */
1418                         /* Invalidate Cache single entry with MVA to PoU */
1419                         for (uint32_t cacheline=address; cacheline<address+size*count; cacheline+=64)
1420                                 armv7a->write_cp15(target, 0, 1, 7, 5, cacheline); /* I-Cache to PoU */
1421                 }
1422                 /* invalidate D-Cache */
1423                 if (armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
1424                 {
1425                         /* Invalidate Cache single entry with MVA to PoC */
1426                         for (uint32_t cacheline=address; cacheline<address+size*count; cacheline+=64)
1427                                 armv7a->write_cp15(target, 0, 1, 7, 6, cacheline); /* U/D cache to PoC */
1428                 }
1429         }
1430
1431         return retval;
1432 }
1433
1434 static int cortex_a8_bulk_write_memory(struct target *target, uint32_t address,
1435                 uint32_t count, uint8_t *buffer)
1436 {
1437         return cortex_a8_write_memory(target, address, 4, count, buffer);
1438 }
1439
1440
1441 static int cortex_a8_dcc_read(struct swjdp_common *swjdp, uint8_t *value, uint8_t *ctrl)
1442 {
1443 #if 0
1444         u16 dcrdr;
1445
1446         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1447         *ctrl = (uint8_t)dcrdr;
1448         *value = (uint8_t)(dcrdr >> 8);
1449
1450         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1451
1452         /* write ack back to software dcc register
1453          * signify we have read data */
1454         if (dcrdr & (1 << 0))
1455         {
1456                 dcrdr = 0;
1457                 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1458         }
1459 #endif
1460         return ERROR_OK;
1461 }
1462
1463
1464 static int cortex_a8_handle_target_request(void *priv)
1465 {
1466         struct target *target = priv;
1467         struct armv7a_common *armv7a = target_to_armv7a(target);
1468         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1469
1470         if (!target_was_examined(target))
1471                 return ERROR_OK;
1472         if (!target->dbg_msg_enabled)
1473                 return ERROR_OK;
1474
1475         if (target->state == TARGET_RUNNING)
1476         {
1477                 uint8_t data = 0;
1478                 uint8_t ctrl = 0;
1479
1480                 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1481
1482                 /* check if we have data */
1483                 if (ctrl & (1 << 0))
1484                 {
1485                         uint32_t request;
1486
1487                         /* we assume target is quick enough */
1488                         request = data;
1489                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1490                         request |= (data << 8);
1491                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1492                         request |= (data << 16);
1493                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1494                         request |= (data << 24);
1495                         target_request(target, request);
1496                 }
1497         }
1498
1499         return ERROR_OK;
1500 }
1501
1502 /*
1503  * Cortex-A8 target information and configuration
1504  */
1505
1506 static int cortex_a8_examine_first(struct target *target)
1507 {
1508         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1509         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1510         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1511         int i;
1512         int retval = ERROR_OK;
1513         uint32_t didr, ctypr, ttypr, cpuid;
1514
1515         LOG_DEBUG("TODO");
1516
1517         /* Here we shall insert a proper ROM Table scan */
1518         armv7a->debug_base = OMAP3530_DEBUG_BASE;
1519
1520         /* We do one extra read to ensure DAP is configured,
1521          * we call ahbap_debugport_init(swjdp) instead
1522          */
1523         ahbap_debugport_init(swjdp);
1524         mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_CPUID, &cpuid);
1525         if ((retval = mem_ap_read_atomic_u32(swjdp,
1526                         armv7a->debug_base + CPUDBG_CPUID, &cpuid)) != ERROR_OK)
1527         {
1528                 LOG_DEBUG("Examine failed");
1529                 return retval;
1530         }
1531
1532         if ((retval = mem_ap_read_atomic_u32(swjdp,
1533                         armv7a->debug_base + CPUDBG_CTYPR, &ctypr)) != ERROR_OK)
1534         {
1535                 LOG_DEBUG("Examine failed");
1536                 return retval;
1537         }
1538
1539         if ((retval = mem_ap_read_atomic_u32(swjdp,
1540                         armv7a->debug_base + CPUDBG_TTYPR, &ttypr)) != ERROR_OK)
1541         {
1542                 LOG_DEBUG("Examine failed");
1543                 return retval;
1544         }
1545
1546         if ((retval = mem_ap_read_atomic_u32(swjdp,
1547                         armv7a->debug_base + CPUDBG_DIDR, &didr)) != ERROR_OK)
1548         {
1549                 LOG_DEBUG("Examine failed");
1550                 return retval;
1551         }
1552
1553         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1554         LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
1555         LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
1556         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
1557
1558         /* Setup Breakpoint Register Pairs */
1559         cortex_a8->brp_num = ((didr >> 24) & 0x0F) + 1;
1560         cortex_a8->brp_num_context = ((didr >> 20) & 0x0F) + 1;
1561         cortex_a8->brp_num_available = cortex_a8->brp_num;
1562         cortex_a8->brp_list = calloc(cortex_a8->brp_num, sizeof(struct cortex_a8_brp));
1563 //      cortex_a8->brb_enabled = ????;
1564         for (i = 0; i < cortex_a8->brp_num; i++)
1565         {
1566                 cortex_a8->brp_list[i].used = 0;
1567                 if (i < (cortex_a8->brp_num-cortex_a8->brp_num_context))
1568                         cortex_a8->brp_list[i].type = BRP_NORMAL;
1569                 else
1570                         cortex_a8->brp_list[i].type = BRP_CONTEXT;
1571                 cortex_a8->brp_list[i].value = 0;
1572                 cortex_a8->brp_list[i].control = 0;
1573                 cortex_a8->brp_list[i].BRPn = i;
1574         }
1575
1576         /* Setup Watchpoint Register Pairs */
1577         cortex_a8->wrp_num = ((didr >> 28) & 0x0F) + 1;
1578         cortex_a8->wrp_num_available = cortex_a8->wrp_num;
1579         cortex_a8->wrp_list = calloc(cortex_a8->wrp_num, sizeof(struct cortex_a8_wrp));
1580         for (i = 0; i < cortex_a8->wrp_num; i++)
1581         {
1582                 cortex_a8->wrp_list[i].used = 0;
1583                 cortex_a8->wrp_list[i].type = 0;
1584                 cortex_a8->wrp_list[i].value = 0;
1585                 cortex_a8->wrp_list[i].control = 0;
1586                 cortex_a8->wrp_list[i].WRPn = i;
1587         }
1588         LOG_DEBUG("Configured %i hw breakpoint pairs and %i hw watchpoint pairs",
1589                         cortex_a8->brp_num , cortex_a8->wrp_num);
1590
1591         target_set_examined(target);
1592         return ERROR_OK;
1593 }
1594
1595 static int cortex_a8_examine(struct target *target)
1596 {
1597         int retval = ERROR_OK;
1598
1599         /* don't re-probe hardware after each reset */
1600         if (!target_was_examined(target))
1601                 retval = cortex_a8_examine_first(target);
1602
1603         /* Configure core debug access */
1604         if (retval == ERROR_OK)
1605                 retval = cortex_a8_init_debug_access(target);
1606
1607         return retval;
1608 }
1609
1610 /*
1611  *      Cortex-A8 target creation and initialization
1612  */
1613
1614 static void cortex_a8_build_reg_cache(struct target *target)
1615 {
1616         struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
1617         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
1618
1619         armv4_5->core_type = ARM_MODE_MON;
1620
1621         (*cache_p) = armv4_5_build_reg_cache(target, armv4_5);
1622         armv4_5->core_cache = (*cache_p);
1623 }
1624
1625
1626 static int cortex_a8_init_target(struct command_context *cmd_ctx,
1627                 struct target *target)
1628 {
1629         cortex_a8_build_reg_cache(target);
1630         return ERROR_OK;
1631 }
1632
1633 int cortex_a8_init_arch_info(struct target *target,
1634                 struct cortex_a8_common *cortex_a8, struct jtag_tap *tap)
1635 {
1636         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1637         struct arm *armv4_5 = &armv7a->armv4_5_common;
1638         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1639
1640         /* Setup struct cortex_a8_common */
1641         cortex_a8->common_magic = CORTEX_A8_COMMON_MAGIC;
1642         armv4_5->arch_info = armv7a;
1643
1644         /* prepare JTAG information for the new target */
1645         cortex_a8->jtag_info.tap = tap;
1646         cortex_a8->jtag_info.scann_size = 4;
1647 LOG_DEBUG(" ");
1648         swjdp->dp_select_value = -1;
1649         swjdp->ap_csw_value = -1;
1650         swjdp->ap_tar_value = -1;
1651         swjdp->jtag_info = &cortex_a8->jtag_info;
1652         swjdp->memaccess_tck = 80;
1653
1654         /* Number of bits for tar autoincrement, impl. dep. at least 10 */
1655         swjdp->tar_autoincr_block = (1 << 10);
1656
1657         cortex_a8->fast_reg_read = 0;
1658
1659
1660         /* register arch-specific functions */
1661         armv7a->examine_debug_reason = NULL;
1662
1663         armv7a->post_debug_entry = cortex_a8_post_debug_entry;
1664
1665         armv7a->pre_restore_context = NULL;
1666         armv7a->post_restore_context = NULL;
1667         armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1;
1668 //      armv7a->armv4_5_mmu.get_ttb = armv7a_get_ttb;
1669         armv7a->armv4_5_mmu.read_memory = cortex_a8_read_memory;
1670         armv7a->armv4_5_mmu.write_memory = cortex_a8_write_memory;
1671 //      armv7a->armv4_5_mmu.disable_mmu_caches = armv7a_disable_mmu_caches;
1672 //      armv7a->armv4_5_mmu.enable_mmu_caches = armv7a_enable_mmu_caches;
1673         armv7a->armv4_5_mmu.has_tiny_pages = 1;
1674         armv7a->armv4_5_mmu.mmu_enabled = 0;
1675         armv7a->read_cp15 = cortex_a8_read_cp15;
1676         armv7a->write_cp15 = cortex_a8_write_cp15;
1677
1678
1679 //      arm7_9->handle_target_request = cortex_a8_handle_target_request;
1680
1681         armv4_5->read_core_reg = cortex_a8_read_core_reg;
1682         armv4_5->write_core_reg = cortex_a8_write_core_reg;
1683
1684         /* REVISIT v7a setup should be in a v7a-specific routine */
1685         armv4_5_init_arch_info(target, armv4_5);
1686         armv7a->common_magic = ARMV7_COMMON_MAGIC;
1687
1688         target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target);
1689
1690         return ERROR_OK;
1691 }
1692
1693 static int cortex_a8_target_create(struct target *target, Jim_Interp *interp)
1694 {
1695         struct cortex_a8_common *cortex_a8 = calloc(1, sizeof(struct cortex_a8_common));
1696
1697         cortex_a8_init_arch_info(target, cortex_a8, target->tap);
1698
1699         return ERROR_OK;
1700 }
1701
1702 COMMAND_HANDLER(cortex_a8_handle_cache_info_command)
1703 {
1704         struct target *target = get_current_target(CMD_CTX);
1705         struct armv7a_common *armv7a = target_to_armv7a(target);
1706
1707         return armv4_5_handle_cache_info_command(CMD_CTX,
1708                         &armv7a->armv4_5_mmu.armv4_5_cache);
1709 }
1710
1711
1712 COMMAND_HANDLER(cortex_a8_handle_dbginit_command)
1713 {
1714         struct target *target = get_current_target(CMD_CTX);
1715
1716         cortex_a8_init_debug_access(target);
1717
1718         return ERROR_OK;
1719 }
1720
1721
1722 static int cortex_a8_register_commands(struct command_context *cmd_ctx)
1723 {
1724         struct command *cortex_a8_cmd;
1725         int retval = ERROR_OK;
1726
1727         armv4_5_register_commands(cmd_ctx);
1728         armv7a_register_commands(cmd_ctx);
1729
1730         cortex_a8_cmd = register_command(cmd_ctx, NULL, "cortex_a8",
1731                         NULL, COMMAND_ANY,
1732                         "cortex_a8 specific commands");
1733
1734         register_command(cmd_ctx, cortex_a8_cmd, "cache_info",
1735                         cortex_a8_handle_cache_info_command, COMMAND_EXEC,
1736                         "display information about target caches");
1737
1738         register_command(cmd_ctx, cortex_a8_cmd, "dbginit",
1739                         cortex_a8_handle_dbginit_command, COMMAND_EXEC,
1740                         "Initialize core debug");
1741
1742         return retval;
1743 }
1744
1745 struct target_type cortexa8_target = {
1746         .name = "cortex_a8",
1747
1748         .poll = cortex_a8_poll,
1749         .arch_state = armv7a_arch_state,
1750
1751         .target_request_data = NULL,
1752
1753         .halt = cortex_a8_halt,
1754         .resume = cortex_a8_resume,
1755         .step = cortex_a8_step,
1756
1757         .assert_reset = cortex_a8_assert_reset,
1758         .deassert_reset = cortex_a8_deassert_reset,
1759         .soft_reset_halt = NULL,
1760
1761         .get_gdb_reg_list = armv4_5_get_gdb_reg_list,
1762
1763         .read_memory = cortex_a8_read_memory,
1764         .write_memory = cortex_a8_write_memory,
1765         .bulk_write_memory = cortex_a8_bulk_write_memory,
1766
1767         .checksum_memory = arm_checksum_memory,
1768         .blank_check_memory = arm_blank_check_memory,
1769
1770         .run_algorithm = armv4_5_run_algorithm,
1771
1772         .add_breakpoint = cortex_a8_add_breakpoint,
1773         .remove_breakpoint = cortex_a8_remove_breakpoint,
1774         .add_watchpoint = NULL,
1775         .remove_watchpoint = NULL,
1776
1777         .register_commands = cortex_a8_register_commands,
1778         .target_create = cortex_a8_target_create,
1779         .init_target = cortex_a8_init_target,
1780         .examine = cortex_a8_examine,
1781         .mrc = cortex_a8_mrc,
1782         .mcr = cortex_a8_mcr,
1783 };