0d00b3aa783d58c0c5aba567643766e77ae7601d
[fw/openocd] / src / target / cortex_a8.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   This program is free software; you can redistribute it and/or modify  *
15  *   it under the terms of the GNU General Public License as published by  *
16  *   the Free Software Foundation; either version 2 of the License, or     *
17  *   (at your option) any later version.                                   *
18  *                                                                         *
19  *   This program is distributed in the hope that it will be useful,       *
20  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
21  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
22  *   GNU General Public License for more details.                          *
23  *                                                                         *
24  *   You should have received a copy of the GNU General Public License     *
25  *   along with this program; if not, write to the                         *
26  *   Free Software Foundation, Inc.,                                       *
27  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
28  *                                                                         *
29  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
30  *                                                                         *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "cortex_a8.h"
37 #include "armv7a.h"
38 #include "armv4_5.h"
39
40 #include "target_request.h"
41 #include "target_type.h"
42
43 static int cortex_a8_poll(struct target *target);
44 static int cortex_a8_debug_entry(struct target *target);
45 static int cortex_a8_restore_context(struct target *target);
46 static int cortex_a8_set_breakpoint(struct target *target,
47                 struct breakpoint *breakpoint, uint8_t matchmode);
48 static int cortex_a8_unset_breakpoint(struct target *target,
49                 struct breakpoint *breakpoint);
50 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
51                 uint32_t *value, int regnum);
52 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
53                 uint32_t value, int regnum);
54 /*
55  * FIXME do topology discovery using the ROM; don't
56  * assume this is an OMAP3.
57  */
58 #define swjdp_memoryap 0
59 #define swjdp_debugap 1
60 #define OMAP3530_DEBUG_BASE 0x54011000
61
62 /*
63  * Cortex-A8 Basic debug access, very low level assumes state is saved
64  */
65 static int cortex_a8_init_debug_access(struct target *target)
66 {
67         struct armv7a_common *armv7a = target_to_armv7a(target);
68         struct swjdp_common *swjdp = &armv7a->swjdp_info;
69
70         int retval;
71         uint32_t dummy;
72
73         LOG_DEBUG(" ");
74
75         /* Unlocking the debug registers for modification */
76         /* The debugport might be uninitialised so try twice */
77         retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
78         if (retval != ERROR_OK)
79                 mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
80         /* Clear Sticky Power Down status Bit in PRSR to enable access to
81            the registers in the Core Power Domain */
82         retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_PRSR, &dummy);
83         /* Enabling of instruction execution in debug mode is done in debug_entry code */
84
85         /* Resync breakpoint registers */
86
87         /* Since this is likley called from init or reset, update targtet state information*/
88         cortex_a8_poll(target);
89
90         return retval;
91 }
92
93 int cortex_a8_exec_opcode(struct target *target, uint32_t opcode)
94 {
95         uint32_t dscr;
96         int retval;
97         struct armv7a_common *armv7a = target_to_armv7a(target);
98         struct swjdp_common *swjdp = &armv7a->swjdp_info;
99
100         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
101         do
102         {
103                 retval = mem_ap_read_atomic_u32(swjdp,
104                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
105                 if (retval != ERROR_OK)
106                 {
107                         LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
108                         return retval;
109                 }
110         }
111         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
112
113         mem_ap_write_u32(swjdp, armv7a->debug_base + CPUDBG_ITR, opcode);
114
115         do
116         {
117                 retval = mem_ap_read_atomic_u32(swjdp,
118                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
119                 if (retval != ERROR_OK)
120                 {
121                         LOG_ERROR("Could not read DSCR register");
122                         return retval;
123                 }
124         }
125         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
126
127         return retval;
128 }
129
130 /**************************************************************************
131 Read core register with very few exec_opcode, fast but needs work_area.
132 This can cause problems with MMU active.
133 **************************************************************************/
134 static int cortex_a8_read_regs_through_mem(struct target *target, uint32_t address,
135                 uint32_t * regfile)
136 {
137         int retval = ERROR_OK;
138         struct armv7a_common *armv7a = target_to_armv7a(target);
139         struct swjdp_common *swjdp = &armv7a->swjdp_info;
140
141         cortex_a8_dap_read_coreregister_u32(target, regfile, 0);
142         cortex_a8_dap_write_coreregister_u32(target, address, 0);
143         cortex_a8_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0));
144         dap_ap_select(swjdp, swjdp_memoryap);
145         mem_ap_read_buf_u32(swjdp, (uint8_t *)(&regfile[1]), 4*15, address);
146         dap_ap_select(swjdp, swjdp_debugap);
147
148         return retval;
149 }
150
151 static int cortex_a8_read_cp(struct target *target, uint32_t *value, uint8_t CP,
152                 uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
153 {
154         int retval;
155         struct armv7a_common *armv7a = target_to_armv7a(target);
156         struct swjdp_common *swjdp = &armv7a->swjdp_info;
157
158         cortex_a8_exec_opcode(target, ARMV4_5_MRC(CP, op1, 0, CRn, CRm, op2));
159         /* Move R0 to DTRTX */
160         cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
161
162         /* Read DCCTX */
163         retval = mem_ap_read_atomic_u32(swjdp,
164                         armv7a->debug_base + CPUDBG_DTRTX, value);
165
166         return retval;
167 }
168
169 static int cortex_a8_write_cp(struct target *target, uint32_t value,
170         uint8_t CP, uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
171 {
172         int retval;
173         uint32_t dscr;
174         struct armv7a_common *armv7a = target_to_armv7a(target);
175         struct swjdp_common *swjdp = &armv7a->swjdp_info;
176
177         LOG_DEBUG("CP%i, CRn %i, value 0x%08" PRIx32, CP, CRn, value);
178
179         /* Check that DCCRX is not full */
180         retval = mem_ap_read_atomic_u32(swjdp,
181                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
182         if (dscr & (1 << DSCR_DTR_RX_FULL))
183         {
184                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
185                 /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode  0xEE000E15 */
186                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
187         }
188
189         retval = mem_ap_write_u32(swjdp,
190                         armv7a->debug_base + CPUDBG_DTRRX, value);
191         /* Move DTRRX to r0 */
192         cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
193
194         cortex_a8_exec_opcode(target, ARMV4_5_MCR(CP, op1, 0, CRn, CRm, op2));
195         return retval;
196 }
197
198 static int cortex_a8_read_cp15(struct target *target, uint32_t op1, uint32_t op2,
199                 uint32_t CRn, uint32_t CRm, uint32_t *value)
200 {
201         return cortex_a8_read_cp(target, value, 15, op1, CRn, CRm, op2);
202 }
203
204 static int cortex_a8_write_cp15(struct target *target, uint32_t op1, uint32_t op2,
205                 uint32_t CRn, uint32_t CRm, uint32_t value)
206 {
207         return cortex_a8_write_cp(target, value, 15, op1, CRn, CRm, op2);
208 }
209
210 static int cortex_a8_mrc(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value)
211 {
212         if (cpnum!=15)
213         {
214                 LOG_ERROR("Only cp15 is supported");
215                 return ERROR_FAIL;
216         }
217         return cortex_a8_read_cp15(target, op1, op2, CRn, CRm, value);
218 }
219
220 static int cortex_a8_mcr(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value)
221 {
222         if (cpnum!=15)
223         {
224                 LOG_ERROR("Only cp15 is supported");
225                 return ERROR_FAIL;
226         }
227         return cortex_a8_write_cp15(target, op1, op2, CRn, CRm, value);
228 }
229
230
231
232 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
233                 uint32_t *value, int regnum)
234 {
235         int retval = ERROR_OK;
236         uint8_t reg = regnum&0xFF;
237         uint32_t dscr;
238         struct armv7a_common *armv7a = target_to_armv7a(target);
239         struct swjdp_common *swjdp = &armv7a->swjdp_info;
240
241         if (reg > 16)
242                 return retval;
243
244         if (reg < 15)
245         {
246                 /* Rn to DCCTX, MCR p14, 0, Rd, c0, c5, 0,  0xEE000E15 */
247                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, reg, 0, 5, 0));
248         }
249         else if (reg == 15)
250         {
251                 cortex_a8_exec_opcode(target, 0xE1A0000F);
252                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
253         }
254         else if (reg == 16)
255         {
256                 cortex_a8_exec_opcode(target, ARMV4_5_MRS(0, 0));
257                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
258         }
259
260         /* Read DTRRTX */
261         do
262         {
263                 retval = mem_ap_read_atomic_u32(swjdp,
264                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
265         }
266         while ((dscr & (1 << DSCR_DTR_TX_FULL)) == 0); /* Wait for DTRRXfull */
267
268         retval = mem_ap_read_atomic_u32(swjdp,
269                         armv7a->debug_base + CPUDBG_DTRTX, value);
270
271         return retval;
272 }
273
274 static int cortex_a8_dap_write_coreregister_u32(struct target *target, uint32_t value, int regnum)
275 {
276         int retval = ERROR_OK;
277         uint8_t Rd = regnum&0xFF;
278         uint32_t dscr;
279         struct armv7a_common *armv7a = target_to_armv7a(target);
280         struct swjdp_common *swjdp = &armv7a->swjdp_info;
281
282         LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
283
284         /* Check that DCCRX is not full */
285         retval = mem_ap_read_atomic_u32(swjdp,
286                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
287         if (dscr & (1 << DSCR_DTR_RX_FULL))
288         {
289                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
290                 /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode  0xEE000E15 */
291                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
292         }
293
294         if (Rd > 16)
295                 return retval;
296
297         /* Write to DCCRX */
298         retval = mem_ap_write_u32(swjdp,
299                         armv7a->debug_base + CPUDBG_DTRRX, value);
300
301         if (Rd < 15)
302         {
303                 /* DCCRX to Rd, MCR p14, 0, Rd, c0, c5, 0,  0xEE000E15 */
304                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0));
305         }
306         else if (Rd == 15)
307         {
308                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
309                 cortex_a8_exec_opcode(target, 0xE1A0F000);
310         }
311         else if (Rd == 16)
312         {
313                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
314                 cortex_a8_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, 0));
315                 /* Execute a PrefetchFlush instruction through the ITR. */
316                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(15, 0, 0, 7, 5, 4));
317         }
318
319         return retval;
320 }
321
322 /* Write to memory mapped registers directly with no cache or mmu handling */
323 static int cortex_a8_dap_write_memap_register_u32(struct target *target, uint32_t address, uint32_t value)
324 {
325         int retval;
326         struct armv7a_common *armv7a = target_to_armv7a(target);
327         struct swjdp_common *swjdp = &armv7a->swjdp_info;
328
329         retval = mem_ap_write_atomic_u32(swjdp, address, value);
330
331         return retval;
332 }
333
334 /*
335  * Cortex-A8 Run control
336  */
337
338 static int cortex_a8_poll(struct target *target)
339 {
340         int retval = ERROR_OK;
341         uint32_t dscr;
342         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
343         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
344         struct swjdp_common *swjdp = &armv7a->swjdp_info;
345         enum target_state prev_target_state = target->state;
346         uint8_t saved_apsel = dap_ap_get_select(swjdp);
347
348         dap_ap_select(swjdp, swjdp_debugap);
349         retval = mem_ap_read_atomic_u32(swjdp,
350                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
351         if (retval != ERROR_OK)
352         {
353                 dap_ap_select(swjdp, saved_apsel);
354                 return retval;
355         }
356         cortex_a8->cpudbg_dscr = dscr;
357
358         if ((dscr & 0x3) == 0x3)
359         {
360                 if (prev_target_state != TARGET_HALTED)
361                 {
362                         /* We have a halting debug event */
363                         LOG_DEBUG("Target halted");
364                         target->state = TARGET_HALTED;
365                         if ((prev_target_state == TARGET_RUNNING)
366                                         || (prev_target_state == TARGET_RESET))
367                         {
368                                 retval = cortex_a8_debug_entry(target);
369                                 if (retval != ERROR_OK)
370                                         return retval;
371
372                                 target_call_event_callbacks(target,
373                                                 TARGET_EVENT_HALTED);
374                         }
375                         if (prev_target_state == TARGET_DEBUG_RUNNING)
376                         {
377                                 LOG_DEBUG(" ");
378
379                                 retval = cortex_a8_debug_entry(target);
380                                 if (retval != ERROR_OK)
381                                         return retval;
382
383                                 target_call_event_callbacks(target,
384                                                 TARGET_EVENT_DEBUG_HALTED);
385                         }
386                 }
387         }
388         else if ((dscr & 0x3) == 0x2)
389         {
390                 target->state = TARGET_RUNNING;
391         }
392         else
393         {
394                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
395                 target->state = TARGET_UNKNOWN;
396         }
397
398         dap_ap_select(swjdp, saved_apsel);
399
400         return retval;
401 }
402
403 static int cortex_a8_halt(struct target *target)
404 {
405         int retval = ERROR_OK;
406         uint32_t dscr;
407         struct armv7a_common *armv7a = target_to_armv7a(target);
408         struct swjdp_common *swjdp = &armv7a->swjdp_info;
409         uint8_t saved_apsel = dap_ap_get_select(swjdp);
410         dap_ap_select(swjdp, swjdp_debugap);
411
412         /*
413          * Tell the core to be halted by writing DRCR with 0x1
414          * and then wait for the core to be halted.
415          */
416         retval = mem_ap_write_atomic_u32(swjdp,
417                         armv7a->debug_base + CPUDBG_DRCR, 0x1);
418
419         /*
420          * enter halting debug mode
421          */
422         mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DSCR, &dscr);
423         retval = mem_ap_write_atomic_u32(swjdp,
424                 armv7a->debug_base + CPUDBG_DSCR, dscr | (1 << DSCR_HALT_DBG_MODE));
425
426         if (retval != ERROR_OK)
427                 goto out;
428
429         do {
430                 mem_ap_read_atomic_u32(swjdp,
431                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
432         } while ((dscr & (1 << DSCR_CORE_HALTED)) == 0);
433
434         target->debug_reason = DBG_REASON_DBGRQ;
435
436 out:
437         dap_ap_select(swjdp, saved_apsel);
438         return retval;
439 }
440
441 static int cortex_a8_resume(struct target *target, int current,
442                 uint32_t address, int handle_breakpoints, int debug_execution)
443 {
444         struct armv7a_common *armv7a = target_to_armv7a(target);
445         struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common;
446         struct swjdp_common *swjdp = &armv7a->swjdp_info;
447
448 //      struct breakpoint *breakpoint = NULL;
449         uint32_t resume_pc, dscr;
450
451         uint8_t saved_apsel = dap_ap_get_select(swjdp);
452         dap_ap_select(swjdp, swjdp_debugap);
453
454         if (!debug_execution)
455         {
456                 target_free_all_working_areas(target);
457 //              cortex_m3_enable_breakpoints(target);
458 //              cortex_m3_enable_watchpoints(target);
459         }
460
461 #if 0
462         if (debug_execution)
463         {
464                 /* Disable interrupts */
465                 /* We disable interrupts in the PRIMASK register instead of
466                  * masking with C_MASKINTS,
467                  * This is probably the same issue as Cortex-M3 Errata 377493:
468                  * C_MASKINTS in parallel with disabled interrupts can cause
469                  * local faults to not be taken. */
470                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
471                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
472                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
473
474                 /* Make sure we are in Thumb mode */
475                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
476                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
477                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
478                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
479         }
480 #endif
481
482         /* current = 1: continue on current pc, otherwise continue at <address> */
483         resume_pc = buf_get_u32(
484                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
485                                 armv4_5->core_mode, 15).value,
486                         0, 32);
487         if (!current)
488                 resume_pc = address;
489
490         /* Make sure that the Armv7 gdb thumb fixups does not
491          * kill the return address
492          */
493         if (armv7a->core_state == ARMV7A_STATE_ARM)
494         {
495                 resume_pc &= 0xFFFFFFFC;
496         }
497         /* When the return address is loaded into PC
498          * bit 0 must be 1 to stay in Thumb state
499          */
500         if (armv7a->core_state == ARMV7A_STATE_THUMB)
501         {
502                 resume_pc |= 0x1;
503         }
504         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
505         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
506                                 armv4_5->core_mode, 15).value,
507                         0, 32, resume_pc);
508         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
509                         armv4_5->core_mode, 15).dirty = 1;
510         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
511                         armv4_5->core_mode, 15).valid = 1;
512
513         cortex_a8_restore_context(target);
514 //      arm7_9_restore_context(target); TODO Context is currently NOT Properly restored
515 #if 0
516         /* the front-end may request us not to handle breakpoints */
517         if (handle_breakpoints)
518         {
519                 /* Single step past breakpoint at current address */
520                 if ((breakpoint = breakpoint_find(target, resume_pc)))
521                 {
522                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
523                         cortex_m3_unset_breakpoint(target, breakpoint);
524                         cortex_m3_single_step_core(target);
525                         cortex_m3_set_breakpoint(target, breakpoint);
526                 }
527         }
528
529 #endif
530         /* Restart core and wait for it to be started */
531         mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DRCR, 0x2);
532
533         do {
534                 mem_ap_read_atomic_u32(swjdp,
535                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
536         } while ((dscr & (1 << DSCR_CORE_RESTARTED)) == 0);
537
538         target->debug_reason = DBG_REASON_NOTHALTED;
539         target->state = TARGET_RUNNING;
540
541         /* registers are now invalid */
542         armv4_5_invalidate_core_regs(target);
543
544         if (!debug_execution)
545         {
546                 target->state = TARGET_RUNNING;
547                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
548                 LOG_DEBUG("target resumed at 0x%" PRIx32, resume_pc);
549         }
550         else
551         {
552                 target->state = TARGET_DEBUG_RUNNING;
553                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
554                 LOG_DEBUG("target debug resumed at 0x%" PRIx32, resume_pc);
555         }
556
557         dap_ap_select(swjdp, saved_apsel);
558
559         return ERROR_OK;
560 }
561
562 static int cortex_a8_debug_entry(struct target *target)
563 {
564         int i;
565         uint32_t regfile[16], pc, cpsr, dscr;
566         int retval = ERROR_OK;
567         struct working_area *regfile_working_area = NULL;
568         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
569         struct armv7a_common *armv7a = target_to_armv7a(target);
570         struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common;
571         struct swjdp_common *swjdp = &armv7a->swjdp_info;
572
573         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a8->cpudbg_dscr);
574
575         /* Enable the ITR execution once we are in debug mode */
576         mem_ap_read_atomic_u32(swjdp,
577                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
578         dscr |= (1 << DSCR_EXT_INT_EN);
579         retval = mem_ap_write_atomic_u32(swjdp,
580                         armv7a->debug_base + CPUDBG_DSCR, dscr);
581
582         /* Examine debug reason */
583         switch ((cortex_a8->cpudbg_dscr >> 2)&0xF)
584         {
585                 case 0:
586                 case 4:
587                         target->debug_reason = DBG_REASON_DBGRQ;
588                         break;
589                 case 1:
590                 case 3:
591                         target->debug_reason = DBG_REASON_BREAKPOINT;
592                         break;
593                 case 10:
594                         target->debug_reason = DBG_REASON_WATCHPOINT;
595                         break;
596                 default:
597                         target->debug_reason = DBG_REASON_UNDEFINED;
598                         break;
599         }
600
601         /* Examine target state and mode */
602         if (cortex_a8->fast_reg_read)
603                 target_alloc_working_area(target, 64, &regfile_working_area);
604
605         /* First load register acessible through core debug port*/
606         if (!regfile_working_area)
607         {
608                 for (i = 0; i <= 15; i++)
609                         cortex_a8_dap_read_coreregister_u32(target,
610                                         &regfile[i], i);
611         }
612         else
613         {
614                 dap_ap_select(swjdp, swjdp_memoryap);
615                 cortex_a8_read_regs_through_mem(target,
616                                 regfile_working_area->address, regfile);
617                 dap_ap_select(swjdp, swjdp_memoryap);
618                 target_free_working_area(target, regfile_working_area);
619         }
620
621         cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16);
622         pc = regfile[15];
623         dap_ap_select(swjdp, swjdp_debugap);
624         LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
625
626         armv4_5->core_mode = cpsr & 0x1F;
627         armv7a->core_state = (cpsr & 0x20)?ARMV7A_STATE_THUMB:ARMV7A_STATE_ARM;
628
629         for (i = 0; i <= ARM_PC; i++)
630         {
631                 buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
632                                         armv4_5->core_mode, i).value,
633                                 0, 32, regfile[i]);
634                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
635                                 armv4_5->core_mode, i).valid = 1;
636                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
637                                 armv4_5->core_mode, i).dirty = 0;
638         }
639         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
640                                 armv4_5->core_mode, 16).value,
641                         0, 32, cpsr);
642         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).valid = 1;
643         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).dirty = 0;
644
645         /* Fixup PC Resume Address */
646         if (armv7a->core_state == ARMV7A_STATE_THUMB)
647         {
648                 // T bit set for Thumb or ThumbEE state
649                 regfile[ARM_PC] -= 4;
650         }
651         else
652         {
653                 // ARM state
654                 regfile[ARM_PC] -= 8;
655         }
656         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
657                                 armv4_5->core_mode, ARM_PC).value,
658                         0, 32, regfile[ARM_PC]);
659
660         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0)
661                 .dirty = ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
662                                 armv4_5->core_mode, 0).valid;
663         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15)
664                 .dirty = ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
665                                 armv4_5->core_mode, 15).valid;
666
667 #if 0
668 /* TODO, Move this */
669         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
670         cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
671         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
672
673         cortex_a8_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
674         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
675
676         cortex_a8_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
677         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
678 #endif
679
680         /* Are we in an exception handler */
681 //      armv4_5->exception_number = 0;
682         if (armv7a->post_debug_entry)
683                 armv7a->post_debug_entry(target);
684
685
686
687         return retval;
688
689 }
690
691 static void cortex_a8_post_debug_entry(struct target *target)
692 {
693         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
694         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
695
696 //      cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
697         /* examine cp15 control reg */
698         armv7a->read_cp15(target, 0, 0, 1, 0, &cortex_a8->cp15_control_reg);
699         jtag_execute_queue();
700         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
701
702         if (armv7a->armv4_5_mmu.armv4_5_cache.ctype == -1)
703         {
704                 uint32_t cache_type_reg;
705                 /* identify caches */
706                 armv7a->read_cp15(target, 0, 1, 0, 0, &cache_type_reg);
707                 jtag_execute_queue();
708                 /* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A8 */
709                 armv4_5_identify_cache(cache_type_reg,
710                                 &armv7a->armv4_5_mmu.armv4_5_cache);
711         }
712
713         armv7a->armv4_5_mmu.mmu_enabled =
714                         (cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0;
715         armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
716                         (cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0;
717         armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
718                         (cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0;
719
720
721 }
722
723 static int cortex_a8_step(struct target *target, int current, uint32_t address,
724                 int handle_breakpoints)
725 {
726         struct armv7a_common *armv7a = target_to_armv7a(target);
727         struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common;
728         struct breakpoint *breakpoint = NULL;
729         struct breakpoint stepbreakpoint;
730
731         int timeout = 100;
732
733         if (target->state != TARGET_HALTED)
734         {
735                 LOG_WARNING("target not halted");
736                 return ERROR_TARGET_NOT_HALTED;
737         }
738
739         /* current = 1: continue on current pc, otherwise continue at <address> */
740         if (!current)
741         {
742                 buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
743                                         armv4_5->core_mode, ARM_PC).value,
744                                 0, 32, address);
745         }
746         else
747         {
748                 address = buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
749                                         armv4_5->core_mode, ARM_PC).value,
750                                 0, 32);
751         }
752
753         /* The front-end may request us not to handle breakpoints.
754          * But since Cortex-A8 uses breakpoint for single step,
755          * we MUST handle breakpoints.
756          */
757         handle_breakpoints = 1;
758         if (handle_breakpoints) {
759                 breakpoint = breakpoint_find(target,
760                                 buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
761                                         armv4_5->core_mode, 15).value,
762                         0, 32));
763                 if (breakpoint)
764                         cortex_a8_unset_breakpoint(target, breakpoint);
765         }
766
767         /* Setup single step breakpoint */
768         stepbreakpoint.address = address;
769         stepbreakpoint.length = (armv7a->core_state == ARMV7A_STATE_THUMB) ? 2 : 4;
770         stepbreakpoint.type = BKPT_HARD;
771         stepbreakpoint.set = 0;
772
773         /* Break on IVA mismatch */
774         cortex_a8_set_breakpoint(target, &stepbreakpoint, 0x04);
775
776         target->debug_reason = DBG_REASON_SINGLESTEP;
777
778         cortex_a8_resume(target, 1, address, 0, 0);
779
780         while (target->state != TARGET_HALTED)
781         {
782                 cortex_a8_poll(target);
783                 if (--timeout == 0)
784                 {
785                         LOG_WARNING("timeout waiting for target halt");
786                         break;
787                 }
788         }
789
790         cortex_a8_unset_breakpoint(target, &stepbreakpoint);
791         if (timeout > 0) target->debug_reason = DBG_REASON_BREAKPOINT;
792
793         if (breakpoint)
794                 cortex_a8_set_breakpoint(target, breakpoint, 0);
795
796         if (target->state != TARGET_HALTED)
797                 LOG_DEBUG("target stepped");
798
799         return ERROR_OK;
800 }
801
802 static int cortex_a8_restore_context(struct target *target)
803 {
804         int i;
805         uint32_t value;
806         struct armv7a_common *armv7a = target_to_armv7a(target);
807         struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common;
808
809         LOG_DEBUG(" ");
810
811         if (armv7a->pre_restore_context)
812                 armv7a->pre_restore_context(target);
813
814         for (i = 15; i >= 0; i--)
815         {
816                 if (ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
817                                         armv4_5->core_mode, i).dirty)
818                 {
819                         value = buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
820                                                 armv4_5->core_mode, i).value,
821                                         0, 32);
822                         /* TODO Check return values */
823                         cortex_a8_dap_write_coreregister_u32(target, value, i);
824                 }
825         }
826
827         if (armv7a->post_restore_context)
828                 armv7a->post_restore_context(target);
829
830         return ERROR_OK;
831 }
832
833
834 #if 0
835 /*
836  * Cortex-A8 Core register functions
837  */
838 static int cortex_a8_load_core_reg_u32(struct target *target, int num,
839                 armv4_5_mode_t mode, uint32_t * value)
840 {
841         int retval;
842         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
843
844         if ((num <= ARM_CPSR))
845         {
846                 /* read a normal core register */
847                 retval = cortex_a8_dap_read_coreregister_u32(target, value, num);
848
849                 if (retval != ERROR_OK)
850                 {
851                         LOG_ERROR("JTAG failure %i", retval);
852                         return ERROR_JTAG_DEVICE_ERROR;
853                 }
854                 LOG_DEBUG("load from core reg %i value 0x%" PRIx32, num, *value);
855         }
856         else
857         {
858                 return ERROR_INVALID_ARGUMENTS;
859         }
860
861         /* Register other than r0 - r14 uses r0 for access */
862         if (num > 14)
863                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
864                                 armv4_5->core_mode, 0).dirty =
865                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
866                                 armv4_5->core_mode, 0).valid;
867         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
868                                 armv4_5->core_mode, 15).dirty =
869                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
870                                 armv4_5->core_mode, 15).valid;
871
872         return ERROR_OK;
873 }
874
875 static int cortex_a8_store_core_reg_u32(struct target *target, int num,
876                 armv4_5_mode_t mode, uint32_t value)
877 {
878         int retval;
879 //      uint32_t reg;
880         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
881
882 #ifdef ARMV7_GDB_HACKS
883         /* If the LR register is being modified, make sure it will put us
884          * in "thumb" mode, or an INVSTATE exception will occur. This is a
885          * hack to deal with the fact that gdb will sometimes "forge"
886          * return addresses, and doesn't set the LSB correctly (i.e., when
887          * printing expressions containing function calls, it sets LR=0.) */
888
889         if (num == 14)
890                 value |= 0x01;
891 #endif
892
893         if ((num <= ARM_CPSR))
894         {
895                 retval = cortex_a8_dap_write_coreregister_u32(target, value, num);
896                 if (retval != ERROR_OK)
897                 {
898                         LOG_ERROR("JTAG failure %i", retval);
899                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
900                                         armv4_5->core_mode, num).dirty =
901                                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
902                                         armv4_5->core_mode, num).valid;
903                         return ERROR_JTAG_DEVICE_ERROR;
904                 }
905                 LOG_DEBUG("write core reg %i value 0x%" PRIx32, num, value);
906         }
907         else
908         {
909                 return ERROR_INVALID_ARGUMENTS;
910         }
911
912         return ERROR_OK;
913 }
914 #endif
915
916
917 static int cortex_a8_read_core_reg(struct target *target, int num,
918                 enum armv4_5_mode mode)
919 {
920         uint32_t value;
921         int retval;
922         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
923
924         cortex_a8_dap_read_coreregister_u32(target, &value, num);
925
926         if ((retval = jtag_execute_queue()) != ERROR_OK)
927         {
928                 return retval;
929         }
930
931         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
932         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
933         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
934                         mode, num).value, 0, 32, value);
935
936         return ERROR_OK;
937 }
938
939 int cortex_a8_write_core_reg(struct target *target, int num,
940                 enum armv4_5_mode mode, uint32_t value)
941 {
942         int retval;
943         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
944
945         cortex_a8_dap_write_coreregister_u32(target, value, num);
946         if ((retval = jtag_execute_queue()) != ERROR_OK)
947         {
948                 return retval;
949         }
950
951         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
952         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
953
954         return ERROR_OK;
955 }
956
957
958 /*
959  * Cortex-A8 Breakpoint and watchpoint fuctions
960  */
961
962 /* Setup hardware Breakpoint Register Pair */
963 static int cortex_a8_set_breakpoint(struct target *target,
964                 struct breakpoint *breakpoint, uint8_t matchmode)
965 {
966         int retval;
967         int brp_i=0;
968         uint32_t control;
969         uint8_t byte_addr_select = 0x0F;
970         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
971         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
972         struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
973
974         if (breakpoint->set)
975         {
976                 LOG_WARNING("breakpoint already set");
977                 return ERROR_OK;
978         }
979
980         if (breakpoint->type == BKPT_HARD)
981         {
982                 while (brp_list[brp_i].used && (brp_i < cortex_a8->brp_num))
983                         brp_i++ ;
984                 if (brp_i >= cortex_a8->brp_num)
985                 {
986                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
987                         exit(-1);
988                 }
989                 breakpoint->set = brp_i + 1;
990                 if (breakpoint->length == 2)
991                 {
992                         byte_addr_select = (3 << (breakpoint->address & 0x02));
993                 }
994                 control = ((matchmode & 0x7) << 20)
995                                 | (byte_addr_select << 5)
996                                 | (3 << 1) | 1;
997                 brp_list[brp_i].used = 1;
998                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
999                 brp_list[brp_i].control = control;
1000                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1001                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1002                                 brp_list[brp_i].value);
1003                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1004                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1005                                 brp_list[brp_i].control);
1006                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1007                                 brp_list[brp_i].control,
1008                                 brp_list[brp_i].value);
1009         }
1010         else if (breakpoint->type == BKPT_SOFT)
1011         {
1012                 uint8_t code[4];
1013                 if (breakpoint->length == 2)
1014                 {
1015                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1016                 }
1017                 else
1018                 {
1019                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1020                 }
1021                 retval = target->type->read_memory(target,
1022                                 breakpoint->address & 0xFFFFFFFE,
1023                                 breakpoint->length, 1,
1024                                 breakpoint->orig_instr);
1025                 if (retval != ERROR_OK)
1026                         return retval;
1027                 retval = target->type->write_memory(target,
1028                                 breakpoint->address & 0xFFFFFFFE,
1029                                 breakpoint->length, 1, code);
1030                 if (retval != ERROR_OK)
1031                         return retval;
1032                 breakpoint->set = 0x11; /* Any nice value but 0 */
1033         }
1034
1035         return ERROR_OK;
1036 }
1037
1038 static int cortex_a8_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1039 {
1040         int retval;
1041         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1042         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1043         struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1044
1045         if (!breakpoint->set)
1046         {
1047                 LOG_WARNING("breakpoint not set");
1048                 return ERROR_OK;
1049         }
1050
1051         if (breakpoint->type == BKPT_HARD)
1052         {
1053                 int brp_i = breakpoint->set - 1;
1054                 if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num))
1055                 {
1056                         LOG_DEBUG("Invalid BRP number in breakpoint");
1057                         return ERROR_OK;
1058                 }
1059                 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1060                                 brp_list[brp_i].control, brp_list[brp_i].value);
1061                 brp_list[brp_i].used = 0;
1062                 brp_list[brp_i].value = 0;
1063                 brp_list[brp_i].control = 0;
1064                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1065                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1066                                 brp_list[brp_i].control);
1067                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1068                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1069                                 brp_list[brp_i].value);
1070         }
1071         else
1072         {
1073                 /* restore original instruction (kept in target endianness) */
1074                 if (breakpoint->length == 4)
1075                 {
1076                         retval = target->type->write_memory(target,
1077                                         breakpoint->address & 0xFFFFFFFE,
1078                                         4, 1, breakpoint->orig_instr);
1079                         if (retval != ERROR_OK)
1080                                 return retval;
1081                 }
1082                 else
1083                 {
1084                         retval = target->type->write_memory(target,
1085                                         breakpoint->address & 0xFFFFFFFE,
1086                                         2, 1, breakpoint->orig_instr);
1087                         if (retval != ERROR_OK)
1088                                 return retval;
1089                 }
1090         }
1091         breakpoint->set = 0;
1092
1093         return ERROR_OK;
1094 }
1095
1096 int cortex_a8_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1097 {
1098         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1099
1100         if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1))
1101         {
1102                 LOG_INFO("no hardware breakpoint available");
1103                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1104         }
1105
1106         if (breakpoint->type == BKPT_HARD)
1107                 cortex_a8->brp_num_available--;
1108         cortex_a8_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1109
1110         return ERROR_OK;
1111 }
1112
1113 static int cortex_a8_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1114 {
1115         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1116
1117 #if 0
1118 /* It is perfectly possible to remove brakpoints while the taget is running */
1119         if (target->state != TARGET_HALTED)
1120         {
1121                 LOG_WARNING("target not halted");
1122                 return ERROR_TARGET_NOT_HALTED;
1123         }
1124 #endif
1125
1126         if (breakpoint->set)
1127         {
1128                 cortex_a8_unset_breakpoint(target, breakpoint);
1129                 if (breakpoint->type == BKPT_HARD)
1130                         cortex_a8->brp_num_available++ ;
1131         }
1132
1133
1134         return ERROR_OK;
1135 }
1136
1137
1138
1139 /*
1140  * Cortex-A8 Reset fuctions
1141  */
1142
1143 static int cortex_a8_assert_reset(struct target *target)
1144 {
1145
1146         LOG_DEBUG(" ");
1147
1148         /* registers are now invalid */
1149         armv4_5_invalidate_core_regs(target);
1150
1151         target->state = TARGET_RESET;
1152
1153         return ERROR_OK;
1154 }
1155
1156 static int cortex_a8_deassert_reset(struct target *target)
1157 {
1158
1159         LOG_DEBUG(" ");
1160
1161         if (target->reset_halt)
1162         {
1163                 int retval;
1164                 if ((retval = target_halt(target)) != ERROR_OK)
1165                         return retval;
1166         }
1167
1168         return ERROR_OK;
1169 }
1170
1171 /*
1172  * Cortex-A8 Memory access
1173  *
1174  * This is same Cortex M3 but we must also use the correct
1175  * ap number for every access.
1176  */
1177
1178 static int cortex_a8_read_memory(struct target *target, uint32_t address,
1179                 uint32_t size, uint32_t count, uint8_t *buffer)
1180 {
1181         struct armv7a_common *armv7a = target_to_armv7a(target);
1182         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1183
1184         int retval = ERROR_OK;
1185
1186         /* sanitize arguments */
1187         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
1188                 return ERROR_INVALID_ARGUMENTS;
1189
1190         /* cortex_a8 handles unaligned memory access */
1191
1192 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1193
1194         switch (size)
1195         {
1196                 case 4:
1197                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1198                         break;
1199                 case 2:
1200                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1201                         break;
1202                 case 1:
1203                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1204                         break;
1205                 default:
1206                         LOG_ERROR("BUG: we shouldn't get here");
1207                         exit(-1);
1208         }
1209
1210         return retval;
1211 }
1212
1213 int cortex_a8_write_memory(struct target *target, uint32_t address,
1214                 uint32_t size, uint32_t count, uint8_t *buffer)
1215 {
1216         struct armv7a_common *armv7a = target_to_armv7a(target);
1217         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1218
1219         int retval;
1220
1221         /* sanitize arguments */
1222         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
1223                 return ERROR_INVALID_ARGUMENTS;
1224
1225 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1226
1227         switch (size)
1228         {
1229                 case 4:
1230                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1231                         break;
1232                 case 2:
1233                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1234                         break;
1235                 case 1:
1236                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1237                         break;
1238                 default:
1239                         LOG_ERROR("BUG: we shouldn't get here");
1240                         exit(-1);
1241         }
1242
1243         if (target->state == TARGET_HALTED)
1244         {
1245                 /* The Cache handling will NOT work with MMU active, the wrong addresses will be invalidated */
1246                 /* invalidate I-Cache */
1247                 if (armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
1248                 {
1249                         /* Invalidate ICache single entry with MVA, repeat this for all cache
1250                            lines in the address range, Cortex-A8 has fixed 64 byte line length */
1251                         /* Invalidate Cache single entry with MVA to PoU */
1252                         for (uint32_t cacheline=address; cacheline<address+size*count; cacheline+=64)
1253                                 armv7a->write_cp15(target, 0, 1, 7, 5, cacheline); /* I-Cache to PoU */
1254                 }
1255                 /* invalidate D-Cache */
1256                 if (armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
1257                 {
1258                         /* Invalidate Cache single entry with MVA to PoC */
1259                         for (uint32_t cacheline=address; cacheline<address+size*count; cacheline+=64)
1260                                 armv7a->write_cp15(target, 0, 1, 7, 6, cacheline); /* U/D cache to PoC */
1261                 }
1262         }
1263
1264         return retval;
1265 }
1266
1267 static int cortex_a8_bulk_write_memory(struct target *target, uint32_t address,
1268                 uint32_t count, uint8_t *buffer)
1269 {
1270         return cortex_a8_write_memory(target, address, 4, count, buffer);
1271 }
1272
1273
1274 static int cortex_a8_dcc_read(struct swjdp_common *swjdp, uint8_t *value, uint8_t *ctrl)
1275 {
1276 #if 0
1277         u16 dcrdr;
1278
1279         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1280         *ctrl = (uint8_t)dcrdr;
1281         *value = (uint8_t)(dcrdr >> 8);
1282
1283         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1284
1285         /* write ack back to software dcc register
1286          * signify we have read data */
1287         if (dcrdr & (1 << 0))
1288         {
1289                 dcrdr = 0;
1290                 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1291         }
1292 #endif
1293         return ERROR_OK;
1294 }
1295
1296
1297 static int cortex_a8_handle_target_request(void *priv)
1298 {
1299         struct target *target = priv;
1300         struct armv7a_common *armv7a = target_to_armv7a(target);
1301         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1302
1303         if (!target_was_examined(target))
1304                 return ERROR_OK;
1305         if (!target->dbg_msg_enabled)
1306                 return ERROR_OK;
1307
1308         if (target->state == TARGET_RUNNING)
1309         {
1310                 uint8_t data = 0;
1311                 uint8_t ctrl = 0;
1312
1313                 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1314
1315                 /* check if we have data */
1316                 if (ctrl & (1 << 0))
1317                 {
1318                         uint32_t request;
1319
1320                         /* we assume target is quick enough */
1321                         request = data;
1322                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1323                         request |= (data << 8);
1324                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1325                         request |= (data << 16);
1326                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1327                         request |= (data << 24);
1328                         target_request(target, request);
1329                 }
1330         }
1331
1332         return ERROR_OK;
1333 }
1334
1335 /*
1336  * Cortex-A8 target information and configuration
1337  */
1338
1339 static int cortex_a8_examine(struct target *target)
1340 {
1341         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1342         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1343         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1344         int i;
1345         int retval = ERROR_OK;
1346         uint32_t didr, ctypr, ttypr, cpuid;
1347
1348         LOG_DEBUG("TODO");
1349
1350         /* Here we shall insert a proper ROM Table scan */
1351         armv7a->debug_base = OMAP3530_DEBUG_BASE;
1352
1353         /* We do one extra read to ensure DAP is configured,
1354          * we call ahbap_debugport_init(swjdp) instead
1355          */
1356         ahbap_debugport_init(swjdp);
1357         mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_CPUID, &cpuid);
1358         if ((retval = mem_ap_read_atomic_u32(swjdp,
1359                         armv7a->debug_base + CPUDBG_CPUID, &cpuid)) != ERROR_OK)
1360         {
1361                 LOG_DEBUG("Examine failed");
1362                 return retval;
1363         }
1364
1365         if ((retval = mem_ap_read_atomic_u32(swjdp,
1366                         armv7a->debug_base + CPUDBG_CTYPR, &ctypr)) != ERROR_OK)
1367         {
1368                 LOG_DEBUG("Examine failed");
1369                 return retval;
1370         }
1371
1372         if ((retval = mem_ap_read_atomic_u32(swjdp,
1373                         armv7a->debug_base + CPUDBG_TTYPR, &ttypr)) != ERROR_OK)
1374         {
1375                 LOG_DEBUG("Examine failed");
1376                 return retval;
1377         }
1378
1379         if ((retval = mem_ap_read_atomic_u32(swjdp,
1380                         armv7a->debug_base + CPUDBG_DIDR, &didr)) != ERROR_OK)
1381         {
1382                 LOG_DEBUG("Examine failed");
1383                 return retval;
1384         }
1385
1386         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1387         LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
1388         LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
1389         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
1390
1391         /* Setup Breakpoint Register Pairs */
1392         cortex_a8->brp_num = ((didr >> 24) & 0x0F) + 1;
1393         cortex_a8->brp_num_context = ((didr >> 20) & 0x0F) + 1;
1394         cortex_a8->brp_num_available = cortex_a8->brp_num;
1395         cortex_a8->brp_list = calloc(cortex_a8->brp_num, sizeof(struct cortex_a8_brp));
1396 //      cortex_a8->brb_enabled = ????;
1397         for (i = 0; i < cortex_a8->brp_num; i++)
1398         {
1399                 cortex_a8->brp_list[i].used = 0;
1400                 if (i < (cortex_a8->brp_num-cortex_a8->brp_num_context))
1401                         cortex_a8->brp_list[i].type = BRP_NORMAL;
1402                 else
1403                         cortex_a8->brp_list[i].type = BRP_CONTEXT;
1404                 cortex_a8->brp_list[i].value = 0;
1405                 cortex_a8->brp_list[i].control = 0;
1406                 cortex_a8->brp_list[i].BRPn = i;
1407         }
1408
1409         /* Setup Watchpoint Register Pairs */
1410         cortex_a8->wrp_num = ((didr >> 28) & 0x0F) + 1;
1411         cortex_a8->wrp_num_available = cortex_a8->wrp_num;
1412         cortex_a8->wrp_list = calloc(cortex_a8->wrp_num, sizeof(struct cortex_a8_wrp));
1413         for (i = 0; i < cortex_a8->wrp_num; i++)
1414         {
1415                 cortex_a8->wrp_list[i].used = 0;
1416                 cortex_a8->wrp_list[i].type = 0;
1417                 cortex_a8->wrp_list[i].value = 0;
1418                 cortex_a8->wrp_list[i].control = 0;
1419                 cortex_a8->wrp_list[i].WRPn = i;
1420         }
1421         LOG_DEBUG("Configured %i hw breakpoint pairs and %i hw watchpoint pairs",
1422                         cortex_a8->brp_num , cortex_a8->wrp_num);
1423
1424         /* Configure core debug access */
1425         cortex_a8_init_debug_access(target);
1426
1427         target_set_examined(target);
1428
1429         return retval;
1430 }
1431
1432 /*
1433  *      Cortex-A8 target creation and initialization
1434  */
1435
1436 static void cortex_a8_build_reg_cache(struct target *target)
1437 {
1438         struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
1439         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
1440
1441         (*cache_p) = armv4_5_build_reg_cache(target, armv4_5);
1442         armv4_5->core_cache = (*cache_p);
1443 }
1444
1445
1446 static int cortex_a8_init_target(struct command_context *cmd_ctx,
1447                 struct target *target)
1448 {
1449         cortex_a8_build_reg_cache(target);
1450         return ERROR_OK;
1451 }
1452
1453 int cortex_a8_init_arch_info(struct target *target,
1454                 struct cortex_a8_common *cortex_a8, struct jtag_tap *tap)
1455 {
1456         struct arm *armv4_5;
1457         struct armv7a_common *armv7a;
1458
1459         armv7a = &cortex_a8->armv7a_common;
1460         armv4_5 = &armv7a->armv4_5_common;
1461         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1462
1463         /* Setup struct cortex_a8_common */
1464         cortex_a8->common_magic = CORTEX_A8_COMMON_MAGIC;
1465         armv4_5->arch_info = armv7a;
1466
1467         armv4_5_init_arch_info(target, armv4_5);
1468
1469         /* prepare JTAG information for the new target */
1470         cortex_a8->jtag_info.tap = tap;
1471         cortex_a8->jtag_info.scann_size = 4;
1472 LOG_DEBUG(" ");
1473         swjdp->dp_select_value = -1;
1474         swjdp->ap_csw_value = -1;
1475         swjdp->ap_tar_value = -1;
1476         swjdp->jtag_info = &cortex_a8->jtag_info;
1477         swjdp->memaccess_tck = 80;
1478
1479         /* Number of bits for tar autoincrement, impl. dep. at least 10 */
1480         swjdp->tar_autoincr_block = (1 << 10);
1481
1482         cortex_a8->fast_reg_read = 0;
1483
1484
1485         /* register arch-specific functions */
1486         armv7a->examine_debug_reason = NULL;
1487
1488         armv7a->post_debug_entry = cortex_a8_post_debug_entry;
1489
1490         armv7a->pre_restore_context = NULL;
1491         armv7a->post_restore_context = NULL;
1492         armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1;
1493 //      armv7a->armv4_5_mmu.get_ttb = armv7a_get_ttb;
1494         armv7a->armv4_5_mmu.read_memory = cortex_a8_read_memory;
1495         armv7a->armv4_5_mmu.write_memory = cortex_a8_write_memory;
1496 //      armv7a->armv4_5_mmu.disable_mmu_caches = armv7a_disable_mmu_caches;
1497 //      armv7a->armv4_5_mmu.enable_mmu_caches = armv7a_enable_mmu_caches;
1498         armv7a->armv4_5_mmu.has_tiny_pages = 1;
1499         armv7a->armv4_5_mmu.mmu_enabled = 0;
1500         armv7a->read_cp15 = cortex_a8_read_cp15;
1501         armv7a->write_cp15 = cortex_a8_write_cp15;
1502
1503
1504 //      arm7_9->handle_target_request = cortex_a8_handle_target_request;
1505
1506         armv4_5->read_core_reg = cortex_a8_read_core_reg;
1507         armv4_5->write_core_reg = cortex_a8_write_core_reg;
1508 //      armv4_5->full_context = arm7_9_full_context;
1509
1510 //      armv4_5->load_core_reg_u32 = cortex_a8_load_core_reg_u32;
1511 //      armv4_5->store_core_reg_u32 = cortex_a8_store_core_reg_u32;
1512 //      armv4_5->read_core_reg = armv4_5_read_core_reg; /* this is default */
1513 //      armv4_5->write_core_reg = armv4_5_write_core_reg;
1514
1515         target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target);
1516
1517         return ERROR_OK;
1518 }
1519
1520 static int cortex_a8_target_create(struct target *target, Jim_Interp *interp)
1521 {
1522         struct cortex_a8_common *cortex_a8 = calloc(1, sizeof(struct cortex_a8_common));
1523
1524         cortex_a8_init_arch_info(target, cortex_a8, target->tap);
1525
1526         return ERROR_OK;
1527 }
1528
1529 COMMAND_HANDLER(cortex_a8_handle_cache_info_command)
1530 {
1531         struct target *target = get_current_target(cmd_ctx);
1532         struct armv7a_common *armv7a = target_to_armv7a(target);
1533
1534         return armv4_5_handle_cache_info_command(cmd_ctx,
1535                         &armv7a->armv4_5_mmu.armv4_5_cache);
1536 }
1537
1538
1539 COMMAND_HANDLER(cortex_a8_handle_dbginit_command)
1540 {
1541         struct target *target = get_current_target(cmd_ctx);
1542
1543         cortex_a8_init_debug_access(target);
1544
1545         return ERROR_OK;
1546 }
1547
1548
1549 static int cortex_a8_register_commands(struct command_context *cmd_ctx)
1550 {
1551         struct command *cortex_a8_cmd;
1552         int retval = ERROR_OK;
1553
1554         armv4_5_register_commands(cmd_ctx);
1555         armv7a_register_commands(cmd_ctx);
1556
1557         cortex_a8_cmd = register_command(cmd_ctx, NULL, "cortex_a8",
1558                         NULL, COMMAND_ANY,
1559                         "cortex_a8 specific commands");
1560
1561         register_command(cmd_ctx, cortex_a8_cmd, "cache_info",
1562                         cortex_a8_handle_cache_info_command, COMMAND_EXEC,
1563                         "display information about target caches");
1564
1565         register_command(cmd_ctx, cortex_a8_cmd, "dbginit",
1566                         cortex_a8_handle_dbginit_command, COMMAND_EXEC,
1567                         "Initialize core debug");
1568
1569         return retval;
1570 }
1571
1572 struct target_type cortexa8_target = {
1573         .name = "cortex_a8",
1574
1575         .poll = cortex_a8_poll,
1576         .arch_state = armv7a_arch_state,
1577
1578         .target_request_data = NULL,
1579
1580         .halt = cortex_a8_halt,
1581         .resume = cortex_a8_resume,
1582         .step = cortex_a8_step,
1583
1584         .assert_reset = cortex_a8_assert_reset,
1585         .deassert_reset = cortex_a8_deassert_reset,
1586         .soft_reset_halt = NULL,
1587
1588         .get_gdb_reg_list = armv4_5_get_gdb_reg_list,
1589
1590         .read_memory = cortex_a8_read_memory,
1591         .write_memory = cortex_a8_write_memory,
1592         .bulk_write_memory = cortex_a8_bulk_write_memory,
1593
1594         .checksum_memory = arm_checksum_memory,
1595         .blank_check_memory = arm_blank_check_memory,
1596
1597         .run_algorithm = armv4_5_run_algorithm,
1598
1599         .add_breakpoint = cortex_a8_add_breakpoint,
1600         .remove_breakpoint = cortex_a8_remove_breakpoint,
1601         .add_watchpoint = NULL,
1602         .remove_watchpoint = NULL,
1603
1604         .register_commands = cortex_a8_register_commands,
1605         .target_create = cortex_a8_target_create,
1606         .init_target = cortex_a8_init_target,
1607         .examine = cortex_a8_examine,
1608         .mrc = cortex_a8_mrc,
1609         .mcr = cortex_a8_mcr,
1610 };