Replace byte-access to memory with faster word-access
[fw/openocd] / src / target / cortex_a.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   Copyright (C) 2010 Ã˜yvind Harboe                                      *
15  *   oyvind.harboe@zylin.com                                               *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  *                                                                         *
32  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
33  *   Cortex-A9(tm) TRM, ARM DDI 0407F                                      *
34  *                                                                         *
35  ***************************************************************************/
36 #ifdef HAVE_CONFIG_H
37 #include "config.h"
38 #endif
39
40 #include "breakpoints.h"
41 #include "cortex_a.h"
42 #include "register.h"
43 #include "target_request.h"
44 #include "target_type.h"
45 #include "arm_opcodes.h"
46 #include <helper/time_support.h>
47
48 static int cortex_a8_poll(struct target *target);
49 static int cortex_a8_debug_entry(struct target *target);
50 static int cortex_a8_restore_context(struct target *target, bool bpwp);
51 static int cortex_a8_set_breakpoint(struct target *target,
52                 struct breakpoint *breakpoint, uint8_t matchmode);
53 static int cortex_a8_unset_breakpoint(struct target *target,
54                 struct breakpoint *breakpoint);
55 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
56                 uint32_t *value, int regnum);
57 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
58                 uint32_t value, int regnum);
59 static int cortex_a8_mmu(struct target *target, int *enabled);
60 static int cortex_a8_virt2phys(struct target *target,
61                 uint32_t virt, uint32_t *phys);
62 static int cortex_a8_disable_mmu_caches(struct target *target, int mmu,
63                 int d_u_cache, int i_cache);
64 static int cortex_a8_enable_mmu_caches(struct target *target, int mmu,
65                 int d_u_cache, int i_cache);
66 static int cortex_a8_get_ttb(struct target *target, uint32_t *result);
67
68
69 /*
70  * FIXME do topology discovery using the ROM; don't
71  * assume this is an OMAP3.   Also, allow for multiple ARMv7-A
72  * cores, with different AP numbering ... don't use a #define
73  * for these numbers, use per-core armv7a state.
74  */
75 #define swjdp_memoryap 0
76 #define swjdp_debugap 1
77
78 /*
79  * Cortex-A8 Basic debug access, very low level assumes state is saved
80  */
81 static int cortex_a8_init_debug_access(struct target *target)
82 {
83         struct armv7a_common *armv7a = target_to_armv7a(target);
84         struct adiv5_dap *swjdp = armv7a->armv4_5_common.dap;
85         int retval;
86         uint32_t dummy;
87
88         LOG_DEBUG(" ");
89
90         /* Unlocking the debug registers for modification */
91         /* The debugport might be uninitialised so try twice */
92         retval = mem_ap_sel_write_atomic_u32(swjdp, swjdp_debugap,
93                         armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
94         if (retval != ERROR_OK)
95         {
96                 /* try again */
97                 retval = mem_ap_sel_write_atomic_u32(swjdp, swjdp_debugap,
98                                 armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
99                 if (retval == ERROR_OK)
100                 {
101                         LOG_USER("Locking debug access failed on first, but succeeded on second try.");
102                 }
103         }
104         if (retval != ERROR_OK)
105                 return retval;
106         /* Clear Sticky Power Down status Bit in PRSR to enable access to
107            the registers in the Core Power Domain */
108         retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
109                                 armv7a->debug_base + CPUDBG_PRSR, &dummy);
110         if (retval != ERROR_OK)
111                 return retval;
112
113         /* Enabling of instruction execution in debug mode is done in debug_entry code */
114
115         /* Resync breakpoint registers */
116
117         /* Since this is likely called from init or reset, update target state information*/
118         return cortex_a8_poll(target);
119 }
120
121 /* To reduce needless round-trips, pass in a pointer to the current
122  * DSCR value.  Initialize it to zero if you just need to know the
123  * value on return from this function; or DSCR_INSTR_COMP if you
124  * happen to know that no instruction is pending.
125  */
126 static int cortex_a8_exec_opcode(struct target *target,
127                 uint32_t opcode, uint32_t *dscr_p)
128 {
129         uint32_t dscr;
130         int retval;
131         struct armv7a_common *armv7a = target_to_armv7a(target);
132         struct adiv5_dap *swjdp = armv7a->armv4_5_common.dap;
133
134         dscr = dscr_p ? *dscr_p : 0;
135
136         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
137
138         /* Wait for InstrCompl bit to be set */
139         long long then = timeval_ms();
140         while ((dscr & DSCR_INSTR_COMP) == 0)
141         {
142                 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
143                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
144                 if (retval != ERROR_OK)
145                 {
146                         LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
147                         return retval;
148                 }
149                 if (timeval_ms() > then + 1000)
150                 {
151                         LOG_ERROR("Timeout waiting for cortex_a8_exec_opcode");
152                         return ERROR_FAIL;
153                 }
154         }
155
156         retval = mem_ap_sel_write_u32(swjdp, swjdp_debugap,
157                                 armv7a->debug_base + CPUDBG_ITR, opcode);
158         if (retval != ERROR_OK)
159                 return retval;
160
161         then = timeval_ms();
162         do
163         {
164                 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
165                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
166                 if (retval != ERROR_OK)
167                 {
168                         LOG_ERROR("Could not read DSCR register");
169                         return retval;
170                 }
171                 if (timeval_ms() > then + 1000)
172                 {
173                         LOG_ERROR("Timeout waiting for cortex_a8_exec_opcode");
174                         return ERROR_FAIL;
175                 }
176         }
177         while ((dscr & DSCR_INSTR_COMP) == 0); /* Wait for InstrCompl bit to be set */
178
179         if (dscr_p)
180                 *dscr_p = dscr;
181
182         return retval;
183 }
184
185 /**************************************************************************
186 Read core register with very few exec_opcode, fast but needs work_area.
187 This can cause problems with MMU active.
188 **************************************************************************/
189 static int cortex_a8_read_regs_through_mem(struct target *target, uint32_t address,
190                 uint32_t * regfile)
191 {
192         int retval = ERROR_OK;
193         struct armv7a_common *armv7a = target_to_armv7a(target);
194         struct adiv5_dap *swjdp = armv7a->armv4_5_common.dap;
195
196         retval = cortex_a8_dap_read_coreregister_u32(target, regfile, 0);
197         if (retval != ERROR_OK)
198                 return retval;
199         retval = cortex_a8_dap_write_coreregister_u32(target, address, 0);
200         if (retval != ERROR_OK)
201                 return retval;
202         retval = cortex_a8_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0), NULL);
203         if (retval != ERROR_OK)
204                 return retval;
205
206         retval = mem_ap_sel_read_buf_u32(swjdp, swjdp_memoryap,
207                         (uint8_t *)(&regfile[1]), 4*15, address);
208
209         return retval;
210 }
211
212 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
213                 uint32_t *value, int regnum)
214 {
215         int retval = ERROR_OK;
216         uint8_t reg = regnum&0xFF;
217         uint32_t dscr = 0;
218         struct armv7a_common *armv7a = target_to_armv7a(target);
219         struct adiv5_dap *swjdp = armv7a->armv4_5_common.dap;
220
221         if (reg > 17)
222                 return retval;
223
224         if (reg < 15)
225         {
226                 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0"  0xEE00nE15 */
227                 retval = cortex_a8_exec_opcode(target,
228                                 ARMV4_5_MCR(14, 0, reg, 0, 5, 0),
229                                 &dscr);
230                 if (retval != ERROR_OK)
231                         return retval;
232         }
233         else if (reg == 15)
234         {
235                 /* "MOV r0, r15"; then move r0 to DCCTX */
236                 retval = cortex_a8_exec_opcode(target, 0xE1A0000F, &dscr);
237                 if (retval != ERROR_OK)
238                         return retval;
239                 retval = cortex_a8_exec_opcode(target,
240                                 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
241                                 &dscr);
242                 if (retval != ERROR_OK)
243                         return retval;
244         }
245         else
246         {
247                 /* "MRS r0, CPSR" or "MRS r0, SPSR"
248                  * then move r0 to DCCTX
249                  */
250                 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRS(0, reg & 1), &dscr);
251                 if (retval != ERROR_OK)
252                         return retval;
253                 retval = cortex_a8_exec_opcode(target,
254                                 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
255                                 &dscr);
256                 if (retval != ERROR_OK)
257                         return retval;
258         }
259
260         /* Wait for DTRRXfull then read DTRRTX */
261         long long then = timeval_ms();
262         while ((dscr & DSCR_DTR_TX_FULL) == 0)
263         {
264                 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
265                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
266                 if (retval != ERROR_OK)
267                         return retval;
268                 if (timeval_ms() > then + 1000)
269                 {
270                         LOG_ERROR("Timeout waiting for cortex_a8_exec_opcode");
271                         return ERROR_FAIL;
272                 }
273         }
274
275         retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
276                         armv7a->debug_base + CPUDBG_DTRTX, value);
277         LOG_DEBUG("read DCC 0x%08" PRIx32, *value);
278
279         return retval;
280 }
281
282 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
283                 uint32_t value, int regnum)
284 {
285         int retval = ERROR_OK;
286         uint8_t Rd = regnum&0xFF;
287         uint32_t dscr;
288         struct armv7a_common *armv7a = target_to_armv7a(target);
289         struct adiv5_dap *swjdp = armv7a->armv4_5_common.dap;
290
291         LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
292
293         /* Check that DCCRX is not full */
294         retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
295                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
296         if (retval != ERROR_OK)
297                 return retval;
298         if (dscr & DSCR_DTR_RX_FULL)
299         {
300                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
301                 /* Clear DCCRX with MRC(p14, 0, Rd, c0, c5, 0), opcode  0xEE100E15 */
302                 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
303                                 &dscr);
304                 if (retval != ERROR_OK)
305                         return retval;
306         }
307
308         if (Rd > 17)
309                 return retval;
310
311         /* Write DTRRX ... sets DSCR.DTRRXfull but exec_opcode() won't care */
312         LOG_DEBUG("write DCC 0x%08" PRIx32, value);
313         retval = mem_ap_sel_write_u32(swjdp, swjdp_debugap,
314                         armv7a->debug_base + CPUDBG_DTRRX, value);
315         if (retval != ERROR_OK)
316                 return retval;
317
318         if (Rd < 15)
319         {
320                 /* DCCRX to Rn, "MRC p14, 0, Rn, c0, c5, 0", 0xEE10nE15 */
321                 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0),
322                                 &dscr);
323         
324                 if (retval != ERROR_OK)
325                         return retval;
326         }
327         else if (Rd == 15)
328         {
329                 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
330                  * then "mov r15, r0"
331                  */
332                 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
333                                 &dscr);
334                 if (retval != ERROR_OK)
335                         return retval;
336                 retval = cortex_a8_exec_opcode(target, 0xE1A0F000, &dscr);
337                 if (retval != ERROR_OK)
338                         return retval;
339         }
340         else
341         {
342                 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
343                  * then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
344                  */
345                 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
346                                 &dscr);
347                 if (retval != ERROR_OK)
348                         return retval;
349                 retval = cortex_a8_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, Rd & 1),
350                                 &dscr);
351                 if (retval != ERROR_OK)
352                         return retval;
353
354                 /* "Prefetch flush" after modifying execution status in CPSR */
355                 if (Rd == 16)
356                 {
357                         retval = cortex_a8_exec_opcode(target,
358                                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
359                                         &dscr);
360                         if (retval != ERROR_OK)
361                                 return retval;
362                 }
363         }
364
365         return retval;
366 }
367
368 /* Write to memory mapped registers directly with no cache or mmu handling */
369 static int cortex_a8_dap_write_memap_register_u32(struct target *target, uint32_t address, uint32_t value)
370 {
371         int retval;
372         struct armv7a_common *armv7a = target_to_armv7a(target);
373         struct adiv5_dap *swjdp = armv7a->armv4_5_common.dap;
374
375         retval = mem_ap_sel_write_atomic_u32(swjdp, swjdp_debugap, address, value);
376
377         return retval;
378 }
379
380 /*
381  * Cortex-A8 implementation of Debug Programmer's Model
382  *
383  * NOTE the invariant:  these routines return with DSCR_INSTR_COMP set,
384  * so there's no need to poll for it before executing an instruction.
385  *
386  * NOTE that in several of these cases the "stall" mode might be useful.
387  * It'd let us queue a few operations together... prepare/finish might
388  * be the places to enable/disable that mode.
389  */
390
391 static inline struct cortex_a8_common *dpm_to_a8(struct arm_dpm *dpm)
392 {
393         return container_of(dpm, struct cortex_a8_common, armv7a_common.dpm);
394 }
395
396 static int cortex_a8_write_dcc(struct cortex_a8_common *a8, uint32_t data)
397 {
398         LOG_DEBUG("write DCC 0x%08" PRIx32, data);
399         return mem_ap_sel_write_u32(a8->armv7a_common.armv4_5_common.dap,
400                         swjdp_debugap,a8->armv7a_common.debug_base + CPUDBG_DTRRX, data);
401 }
402
403 static int cortex_a8_read_dcc(struct cortex_a8_common *a8, uint32_t *data,
404                 uint32_t *dscr_p)
405 {
406         struct adiv5_dap *swjdp = a8->armv7a_common.armv4_5_common.dap;
407         uint32_t dscr = DSCR_INSTR_COMP;
408         int retval;
409
410         if (dscr_p)
411                 dscr = *dscr_p;
412
413         /* Wait for DTRRXfull */
414         long long then = timeval_ms();
415         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
416                 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
417                                 a8->armv7a_common.debug_base + CPUDBG_DSCR,
418                                 &dscr);
419                 if (retval != ERROR_OK)
420                         return retval;
421                 if (timeval_ms() > then + 1000)
422                 {
423                         LOG_ERROR("Timeout waiting for read dcc");
424                         return ERROR_FAIL;
425                 }
426         }
427
428         retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
429                         a8->armv7a_common.debug_base + CPUDBG_DTRTX, data);
430         if (retval != ERROR_OK)
431                 return retval;
432         //LOG_DEBUG("read DCC 0x%08" PRIx32, *data);
433
434         if (dscr_p)
435                 *dscr_p = dscr;
436
437         return retval;
438 }
439
440 static int cortex_a8_dpm_prepare(struct arm_dpm *dpm)
441 {
442         struct cortex_a8_common *a8 = dpm_to_a8(dpm);
443         struct adiv5_dap *swjdp = a8->armv7a_common.armv4_5_common.dap;
444         uint32_t dscr;
445         int retval;
446
447         /* set up invariant:  INSTR_COMP is set after ever DPM operation */
448         long long then = timeval_ms();
449         for (;;)
450         {
451                 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
452                                 a8->armv7a_common.debug_base + CPUDBG_DSCR,
453                                 &dscr);
454                 if (retval != ERROR_OK)
455                         return retval;
456                 if ((dscr & DSCR_INSTR_COMP) != 0)
457                         break;
458                 if (timeval_ms() > then + 1000)
459                 {
460                         LOG_ERROR("Timeout waiting for dpm prepare");
461                         return ERROR_FAIL;
462                 }
463         }
464
465         /* this "should never happen" ... */
466         if (dscr & DSCR_DTR_RX_FULL) {
467                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
468                 /* Clear DCCRX */
469                 retval = cortex_a8_exec_opcode(
470                                 a8->armv7a_common.armv4_5_common.target,
471                                 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
472                                 &dscr);
473                 if (retval != ERROR_OK)
474                         return retval;
475         }
476
477         return retval;
478 }
479
480 static int cortex_a8_dpm_finish(struct arm_dpm *dpm)
481 {
482         /* REVISIT what could be done here? */
483         return ERROR_OK;
484 }
485
486 static int cortex_a8_instr_write_data_dcc(struct arm_dpm *dpm,
487                 uint32_t opcode, uint32_t data)
488 {
489         struct cortex_a8_common *a8 = dpm_to_a8(dpm);
490         int retval;
491         uint32_t dscr = DSCR_INSTR_COMP;
492
493         retval = cortex_a8_write_dcc(a8, data);
494         if (retval != ERROR_OK)
495                 return retval;
496
497         return cortex_a8_exec_opcode(
498                         a8->armv7a_common.armv4_5_common.target,
499                         opcode,
500                         &dscr);
501 }
502
503 static int cortex_a8_instr_write_data_r0(struct arm_dpm *dpm,
504                 uint32_t opcode, uint32_t data)
505 {
506         struct cortex_a8_common *a8 = dpm_to_a8(dpm);
507         uint32_t dscr = DSCR_INSTR_COMP;
508         int retval;
509
510         retval = cortex_a8_write_dcc(a8, data);
511         if (retval != ERROR_OK)
512                 return retval;
513
514         /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
515         retval = cortex_a8_exec_opcode(
516                         a8->armv7a_common.armv4_5_common.target,
517                         ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
518                         &dscr);
519         if (retval != ERROR_OK)
520                 return retval;
521
522         /* then the opcode, taking data from R0 */
523         retval = cortex_a8_exec_opcode(
524                         a8->armv7a_common.armv4_5_common.target,
525                         opcode,
526                         &dscr);
527
528         return retval;
529 }
530
531 static int cortex_a8_instr_cpsr_sync(struct arm_dpm *dpm)
532 {
533         struct target *target = dpm->arm->target;
534         uint32_t dscr = DSCR_INSTR_COMP;
535
536         /* "Prefetch flush" after modifying execution status in CPSR */
537         return cortex_a8_exec_opcode(target,
538                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
539                         &dscr);
540 }
541
542 static int cortex_a8_instr_read_data_dcc(struct arm_dpm *dpm,
543                 uint32_t opcode, uint32_t *data)
544 {
545         struct cortex_a8_common *a8 = dpm_to_a8(dpm);
546         int retval;
547         uint32_t dscr = DSCR_INSTR_COMP;
548
549         /* the opcode, writing data to DCC */
550         retval = cortex_a8_exec_opcode(
551                         a8->armv7a_common.armv4_5_common.target,
552                         opcode,
553                         &dscr);
554         if (retval != ERROR_OK)
555                 return retval;
556
557         return cortex_a8_read_dcc(a8, data, &dscr);
558 }
559
560
561 static int cortex_a8_instr_read_data_r0(struct arm_dpm *dpm,
562                 uint32_t opcode, uint32_t *data)
563 {
564         struct cortex_a8_common *a8 = dpm_to_a8(dpm);
565         uint32_t dscr = DSCR_INSTR_COMP;
566         int retval;
567
568         /* the opcode, writing data to R0 */
569         retval = cortex_a8_exec_opcode(
570                         a8->armv7a_common.armv4_5_common.target,
571                         opcode,
572                         &dscr);
573         if (retval != ERROR_OK)
574                 return retval;
575
576         /* write R0 to DCC */
577         retval = cortex_a8_exec_opcode(
578                         a8->armv7a_common.armv4_5_common.target,
579                         ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
580                         &dscr);
581         if (retval != ERROR_OK)
582                 return retval;
583
584         return cortex_a8_read_dcc(a8, data, &dscr);
585 }
586
587 static int cortex_a8_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
588                 uint32_t addr, uint32_t control)
589 {
590         struct cortex_a8_common *a8 = dpm_to_a8(dpm);
591         uint32_t vr = a8->armv7a_common.debug_base;
592         uint32_t cr = a8->armv7a_common.debug_base;
593         int retval;
594
595         switch (index_t) {
596         case 0 ... 15:          /* breakpoints */
597                 vr += CPUDBG_BVR_BASE;
598                 cr += CPUDBG_BCR_BASE;
599                 break;
600         case 16 ... 31:         /* watchpoints */
601                 vr += CPUDBG_WVR_BASE;
602                 cr += CPUDBG_WCR_BASE;
603                 index_t -= 16;
604                 break;
605         default:
606                 return ERROR_FAIL;
607         }
608         vr += 4 * index_t;
609         cr += 4 * index_t;
610
611         LOG_DEBUG("A8: bpwp enable, vr %08x cr %08x",
612                         (unsigned) vr, (unsigned) cr);
613
614         retval = cortex_a8_dap_write_memap_register_u32(dpm->arm->target,
615                         vr, addr);
616         if (retval != ERROR_OK)
617                 return retval;
618         retval = cortex_a8_dap_write_memap_register_u32(dpm->arm->target,
619                         cr, control);
620         return retval;
621 }
622
623 static int cortex_a8_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
624 {
625         struct cortex_a8_common *a8 = dpm_to_a8(dpm);
626         uint32_t cr;
627
628         switch (index_t) {
629         case 0 ... 15:
630                 cr = a8->armv7a_common.debug_base + CPUDBG_BCR_BASE;
631                 break;
632         case 16 ... 31:
633                 cr = a8->armv7a_common.debug_base + CPUDBG_WCR_BASE;
634                 index_t -= 16;
635                 break;
636         default:
637                 return ERROR_FAIL;
638         }
639         cr += 4 * index_t;
640
641         LOG_DEBUG("A8: bpwp disable, cr %08x", (unsigned) cr);
642
643         /* clear control register */
644         return cortex_a8_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
645 }
646
647 static int cortex_a8_dpm_setup(struct cortex_a8_common *a8, uint32_t didr)
648 {
649         struct arm_dpm *dpm = &a8->armv7a_common.dpm;
650         int retval;
651
652         dpm->arm = &a8->armv7a_common.armv4_5_common;
653         dpm->didr = didr;
654
655         dpm->prepare = cortex_a8_dpm_prepare;
656         dpm->finish = cortex_a8_dpm_finish;
657
658         dpm->instr_write_data_dcc = cortex_a8_instr_write_data_dcc;
659         dpm->instr_write_data_r0 = cortex_a8_instr_write_data_r0;
660         dpm->instr_cpsr_sync = cortex_a8_instr_cpsr_sync;
661
662         dpm->instr_read_data_dcc = cortex_a8_instr_read_data_dcc;
663         dpm->instr_read_data_r0 = cortex_a8_instr_read_data_r0;
664
665         dpm->bpwp_enable = cortex_a8_bpwp_enable;
666         dpm->bpwp_disable = cortex_a8_bpwp_disable;
667
668         retval = arm_dpm_setup(dpm);
669         if (retval == ERROR_OK)
670                 retval = arm_dpm_initialize(dpm);
671
672         return retval;
673 }
674
675
676 /*
677  * Cortex-A8 Run control
678  */
679
680 static int cortex_a8_poll(struct target *target)
681 {
682         int retval = ERROR_OK;
683         uint32_t dscr;
684         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
685         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
686         struct adiv5_dap *swjdp = armv7a->armv4_5_common.dap;
687         enum target_state prev_target_state = target->state;
688
689         retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
690                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
691         if (retval != ERROR_OK)
692         {
693                 return retval;
694         }
695         cortex_a8->cpudbg_dscr = dscr;
696
697         if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED))
698         {
699                 if (prev_target_state != TARGET_HALTED)
700                 {
701                         /* We have a halting debug event */
702                         LOG_DEBUG("Target halted");
703                         target->state = TARGET_HALTED;
704                         if ((prev_target_state == TARGET_RUNNING)
705                                         || (prev_target_state == TARGET_RESET))
706                         {
707                                 retval = cortex_a8_debug_entry(target);
708                                 if (retval != ERROR_OK)
709                                         return retval;
710
711                                 target_call_event_callbacks(target,
712                                                 TARGET_EVENT_HALTED);
713                         }
714                         if (prev_target_state == TARGET_DEBUG_RUNNING)
715                         {
716                                 LOG_DEBUG(" ");
717
718                                 retval = cortex_a8_debug_entry(target);
719                                 if (retval != ERROR_OK)
720                                         return retval;
721
722                                 target_call_event_callbacks(target,
723                                                 TARGET_EVENT_DEBUG_HALTED);
724                         }
725                 }
726         }
727         else if (DSCR_RUN_MODE(dscr) == DSCR_CORE_RESTARTED)
728         {
729                 target->state = TARGET_RUNNING;
730         }
731         else
732         {
733                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
734                 target->state = TARGET_UNKNOWN;
735         }
736
737         return retval;
738 }
739
740 static int cortex_a8_halt(struct target *target)
741 {
742         int retval = ERROR_OK;
743         uint32_t dscr;
744         struct armv7a_common *armv7a = target_to_armv7a(target);
745         struct adiv5_dap *swjdp = armv7a->armv4_5_common.dap;
746
747         /*
748          * Tell the core to be halted by writing DRCR with 0x1
749          * and then wait for the core to be halted.
750          */
751         retval = mem_ap_sel_write_atomic_u32(swjdp, swjdp_debugap,
752                         armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
753         if (retval != ERROR_OK)
754                 return retval;
755
756         /*
757          * enter halting debug mode
758          */
759         retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
760                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
761         if (retval != ERROR_OK)
762                 return retval;
763
764         retval = mem_ap_sel_write_atomic_u32(swjdp, swjdp_debugap,
765                 armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
766         if (retval != ERROR_OK)
767                 return retval;
768
769         long long then = timeval_ms();
770         for (;;)
771         {
772                 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
773                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
774                 if (retval != ERROR_OK)
775                         return retval;
776                 if ((dscr & DSCR_CORE_HALTED) != 0)
777                 {
778                         break;
779                 }
780                 if (timeval_ms() > then + 1000)
781                 {
782                         LOG_ERROR("Timeout waiting for halt");
783                         return ERROR_FAIL;
784                 }
785         }
786
787         target->debug_reason = DBG_REASON_DBGRQ;
788
789         return ERROR_OK;
790 }
791
792 static int cortex_a8_resume(struct target *target, int current,
793                 uint32_t address, int handle_breakpoints, int debug_execution)
794 {
795         struct armv7a_common *armv7a = target_to_armv7a(target);
796         struct arm *armv4_5 = &armv7a->armv4_5_common;
797         struct adiv5_dap *swjdp = armv7a->armv4_5_common.dap;
798         int retval;
799
800 //      struct breakpoint *breakpoint = NULL;
801         uint32_t resume_pc, dscr;
802
803         if (!debug_execution)
804                 target_free_all_working_areas(target);
805
806 #if 0
807         if (debug_execution)
808         {
809                 /* Disable interrupts */
810                 /* We disable interrupts in the PRIMASK register instead of
811                  * masking with C_MASKINTS,
812                  * This is probably the same issue as Cortex-M3 Errata 377493:
813                  * C_MASKINTS in parallel with disabled interrupts can cause
814                  * local faults to not be taken. */
815                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
816                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
817                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
818
819                 /* Make sure we are in Thumb mode */
820                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
821                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
822                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
823                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
824         }
825 #endif
826
827         /* current = 1: continue on current pc, otherwise continue at <address> */
828         resume_pc = buf_get_u32(armv4_5->pc->value, 0, 32);
829         if (!current)
830                 resume_pc = address;
831
832         /* Make sure that the Armv7 gdb thumb fixups does not
833          * kill the return address
834          */
835         switch (armv4_5->core_state)
836         {
837         case ARM_STATE_ARM:
838                 resume_pc &= 0xFFFFFFFC;
839                 break;
840         case ARM_STATE_THUMB:
841         case ARM_STATE_THUMB_EE:
842                 /* When the return address is loaded into PC
843                  * bit 0 must be 1 to stay in Thumb state
844                  */
845                 resume_pc |= 0x1;
846                 break;
847         case ARM_STATE_JAZELLE:
848                 LOG_ERROR("How do I resume into Jazelle state??");
849                 return ERROR_FAIL;
850         }
851         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
852         buf_set_u32(armv4_5->pc->value, 0, 32, resume_pc);
853         armv4_5->pc->dirty = 1;
854         armv4_5->pc->valid = 1;
855
856         retval = cortex_a8_restore_context(target, handle_breakpoints);
857         if (retval != ERROR_OK)
858                 return retval;
859
860 #if 0
861         /* the front-end may request us not to handle breakpoints */
862         if (handle_breakpoints)
863         {
864                 /* Single step past breakpoint at current address */
865                 if ((breakpoint = breakpoint_find(target, resume_pc)))
866                 {
867                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
868                         cortex_m3_unset_breakpoint(target, breakpoint);
869                         cortex_m3_single_step_core(target);
870                         cortex_m3_set_breakpoint(target, breakpoint);
871                 }
872         }
873
874 #endif
875
876         /*
877          * Restart core and wait for it to be started.  Clear ITRen and sticky
878          * exception flags: see ARMv7 ARM, C5.9.
879          *
880          * REVISIT: for single stepping, we probably want to
881          * disable IRQs by default, with optional override...
882          */
883
884         retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
885                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
886         if (retval != ERROR_OK)
887                 return retval;
888
889         if ((dscr & DSCR_INSTR_COMP) == 0)
890                 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
891
892         retval = mem_ap_sel_write_atomic_u32(swjdp, swjdp_debugap,
893                 armv7a->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
894         if (retval != ERROR_OK)
895                 return retval;
896
897         retval = mem_ap_sel_write_atomic_u32(swjdp, swjdp_debugap,
898                         armv7a->debug_base + CPUDBG_DRCR, DRCR_RESTART | DRCR_CLEAR_EXCEPTIONS);
899         if (retval != ERROR_OK)
900                 return retval;
901
902         long long then = timeval_ms();
903         for (;;)
904         {
905                 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
906                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
907                 if (retval != ERROR_OK)
908                         return retval;
909                 if ((dscr & DSCR_CORE_RESTARTED) != 0)
910                         break;
911                 if (timeval_ms() > then + 1000)
912                 {
913                         LOG_ERROR("Timeout waiting for resume");
914                         return ERROR_FAIL;
915                 }
916         }
917
918         target->debug_reason = DBG_REASON_NOTHALTED;
919         target->state = TARGET_RUNNING;
920
921         /* registers are now invalid */
922         register_cache_invalidate(armv4_5->core_cache);
923
924         if (!debug_execution)
925         {
926                 target->state = TARGET_RUNNING;
927                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
928                 LOG_DEBUG("target resumed at 0x%" PRIx32, resume_pc);
929         }
930         else
931         {
932                 target->state = TARGET_DEBUG_RUNNING;
933                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
934                 LOG_DEBUG("target debug resumed at 0x%" PRIx32, resume_pc);
935         }
936
937         return ERROR_OK;
938 }
939
940 static int cortex_a8_debug_entry(struct target *target)
941 {
942         int i;
943         uint32_t regfile[16], cpsr, dscr;
944         int retval = ERROR_OK;
945         struct working_area *regfile_working_area = NULL;
946         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
947         struct armv7a_common *armv7a = target_to_armv7a(target);
948         struct arm *armv4_5 = &armv7a->armv4_5_common;
949         struct adiv5_dap *swjdp = armv7a->armv4_5_common.dap;
950         struct reg *reg;
951
952         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a8->cpudbg_dscr);
953
954         /* REVISIT surely we should not re-read DSCR !! */
955         retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
956                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
957         if (retval != ERROR_OK)
958                 return retval;
959
960         /* REVISIT see A8 TRM 12.11.4 steps 2..3 -- make sure that any
961          * imprecise data aborts get discarded by issuing a Data
962          * Synchronization Barrier:  ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
963          */
964
965         /* Enable the ITR execution once we are in debug mode */
966         dscr |= DSCR_ITR_EN;
967         retval = mem_ap_sel_write_atomic_u32(swjdp, swjdp_debugap,
968                         armv7a->debug_base + CPUDBG_DSCR, dscr);
969         if (retval != ERROR_OK)
970                 return retval;
971
972         /* Examine debug reason */
973         arm_dpm_report_dscr(&armv7a->dpm, cortex_a8->cpudbg_dscr);
974
975         /* save address of instruction that triggered the watchpoint? */
976         if (target->debug_reason == DBG_REASON_WATCHPOINT) {
977                 uint32_t wfar;
978
979                 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
980                                 armv7a->debug_base + CPUDBG_WFAR,
981                                 &wfar);
982                 if (retval != ERROR_OK)
983                         return retval;
984                 arm_dpm_report_wfar(&armv7a->dpm, wfar);
985         }
986
987         /* REVISIT fast_reg_read is never set ... */
988
989         /* Examine target state and mode */
990         if (cortex_a8->fast_reg_read)
991                 target_alloc_working_area(target, 64, &regfile_working_area);
992
993         /* First load register acessible through core debug port*/
994         if (!regfile_working_area)
995         {
996                 retval = arm_dpm_read_current_registers(&armv7a->dpm);
997         }
998         else
999         {
1000                 retval = cortex_a8_read_regs_through_mem(target,
1001                                 regfile_working_area->address, regfile);
1002
1003                 target_free_working_area(target, regfile_working_area);
1004                 if (retval != ERROR_OK)
1005                 {
1006                         return retval;
1007                 }
1008
1009                 /* read Current PSR */
1010                 retval = cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16);
1011                 if (retval != ERROR_OK)
1012                         return retval;
1013
1014                 LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
1015
1016                 arm_set_cpsr(armv4_5, cpsr);
1017
1018                 /* update cache */
1019                 for (i = 0; i <= ARM_PC; i++)
1020                 {
1021                         reg = arm_reg_current(armv4_5, i);
1022
1023                         buf_set_u32(reg->value, 0, 32, regfile[i]);
1024                         reg->valid = 1;
1025                         reg->dirty = 0;
1026                 }
1027
1028                 /* Fixup PC Resume Address */
1029                 if (cpsr & (1 << 5))
1030                 {
1031                         // T bit set for Thumb or ThumbEE state
1032                         regfile[ARM_PC] -= 4;
1033                 }
1034                 else
1035                 {
1036                         // ARM state
1037                         regfile[ARM_PC] -= 8;
1038                 }
1039
1040                 reg = armv4_5->pc;
1041                 buf_set_u32(reg->value, 0, 32, regfile[ARM_PC]);
1042                 reg->dirty = reg->valid;
1043         }
1044
1045 #if 0
1046 /* TODO, Move this */
1047         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
1048         cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
1049         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
1050
1051         cortex_a8_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
1052         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
1053
1054         cortex_a8_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
1055         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
1056 #endif
1057
1058         /* Are we in an exception handler */
1059 //      armv4_5->exception_number = 0;
1060         if (armv7a->post_debug_entry)
1061         {
1062                 retval = armv7a->post_debug_entry(target);
1063                 if (retval != ERROR_OK)
1064                         return retval;
1065         }
1066
1067         return retval;
1068 }
1069
1070 static int cortex_a8_post_debug_entry(struct target *target)
1071 {
1072         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1073         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1074         int retval;
1075
1076         /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1077         retval = armv7a->armv4_5_common.mrc(target, 15,
1078                         0, 0,   /* op1, op2 */
1079                         1, 0,   /* CRn, CRm */
1080                         &cortex_a8->cp15_control_reg);
1081         if (retval != ERROR_OK)
1082                 return retval;
1083         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
1084
1085         if (armv7a->armv4_5_mmu.armv4_5_cache.ctype == -1)
1086         {
1087                 uint32_t cache_type_reg;
1088
1089                 /* MRC p15,0,<Rt>,c0,c0,1 ; Read CP15 Cache Type Register */
1090                 retval = armv7a->armv4_5_common.mrc(target, 15,
1091                                 0, 1,   /* op1, op2 */
1092                                 0, 0,   /* CRn, CRm */
1093                                 &cache_type_reg);
1094                 if (retval != ERROR_OK)
1095                         return retval;
1096                 LOG_DEBUG("cp15 cache type: %8.8x", (unsigned) cache_type_reg);
1097
1098                 /* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A8 */
1099                 armv4_5_identify_cache(cache_type_reg,
1100                                 &armv7a->armv4_5_mmu.armv4_5_cache);
1101         }
1102
1103         armv7a->armv4_5_mmu.mmu_enabled =
1104                         (cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0;
1105         armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
1106                         (cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0;
1107         armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
1108                         (cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0;
1109
1110         return ERROR_OK;
1111 }
1112
1113 static int cortex_a8_step(struct target *target, int current, uint32_t address,
1114                 int handle_breakpoints)
1115 {
1116         struct armv7a_common *armv7a = target_to_armv7a(target);
1117         struct arm *armv4_5 = &armv7a->armv4_5_common;
1118         struct breakpoint *breakpoint = NULL;
1119         struct breakpoint stepbreakpoint;
1120         struct reg *r;
1121         int retval;
1122
1123         if (target->state != TARGET_HALTED)
1124         {
1125                 LOG_WARNING("target not halted");
1126                 return ERROR_TARGET_NOT_HALTED;
1127         }
1128
1129         /* current = 1: continue on current pc, otherwise continue at <address> */
1130         r = armv4_5->pc;
1131         if (!current)
1132         {
1133                 buf_set_u32(r->value, 0, 32, address);
1134         }
1135         else
1136         {
1137                 address = buf_get_u32(r->value, 0, 32);
1138         }
1139
1140         /* The front-end may request us not to handle breakpoints.
1141          * But since Cortex-A8 uses breakpoint for single step,
1142          * we MUST handle breakpoints.
1143          */
1144         handle_breakpoints = 1;
1145         if (handle_breakpoints) {
1146                 breakpoint = breakpoint_find(target, address);
1147                 if (breakpoint)
1148                         cortex_a8_unset_breakpoint(target, breakpoint);
1149         }
1150
1151         /* Setup single step breakpoint */
1152         stepbreakpoint.address = address;
1153         stepbreakpoint.length = (armv4_5->core_state == ARM_STATE_THUMB)
1154                         ? 2 : 4;
1155         stepbreakpoint.type = BKPT_HARD;
1156         stepbreakpoint.set = 0;
1157
1158         /* Break on IVA mismatch */
1159         cortex_a8_set_breakpoint(target, &stepbreakpoint, 0x04);
1160
1161         target->debug_reason = DBG_REASON_SINGLESTEP;
1162
1163         retval = cortex_a8_resume(target, 1, address, 0, 0);
1164         if (retval != ERROR_OK)
1165                 return retval;
1166
1167         long long then = timeval_ms();
1168         while (target->state != TARGET_HALTED)
1169         {
1170                 retval = cortex_a8_poll(target);
1171                 if (retval != ERROR_OK)
1172                         return retval;
1173                 if (timeval_ms() > then + 1000)
1174                 {
1175                         LOG_ERROR("timeout waiting for target halt");
1176                         return ERROR_FAIL;
1177                 }
1178         }
1179
1180         cortex_a8_unset_breakpoint(target, &stepbreakpoint);
1181
1182         target->debug_reason = DBG_REASON_BREAKPOINT;
1183
1184         if (breakpoint)
1185                 cortex_a8_set_breakpoint(target, breakpoint, 0);
1186
1187         if (target->state != TARGET_HALTED)
1188                 LOG_DEBUG("target stepped");
1189
1190         return ERROR_OK;
1191 }
1192
1193 static int cortex_a8_restore_context(struct target *target, bool bpwp)
1194 {
1195         struct armv7a_common *armv7a = target_to_armv7a(target);
1196
1197         LOG_DEBUG(" ");
1198
1199         if (armv7a->pre_restore_context)
1200                 armv7a->pre_restore_context(target);
1201
1202         return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1203 }
1204
1205
1206 /*
1207  * Cortex-A8 Breakpoint and watchpoint functions
1208  */
1209
1210 /* Setup hardware Breakpoint Register Pair */
1211 static int cortex_a8_set_breakpoint(struct target *target,
1212                 struct breakpoint *breakpoint, uint8_t matchmode)
1213 {
1214         int retval;
1215         int brp_i=0;
1216         uint32_t control;
1217         uint8_t byte_addr_select = 0x0F;
1218         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1219         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1220         struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1221
1222         if (breakpoint->set)
1223         {
1224                 LOG_WARNING("breakpoint already set");
1225                 return ERROR_OK;
1226         }
1227
1228         if (breakpoint->type == BKPT_HARD)
1229         {
1230                 while (brp_list[brp_i].used && (brp_i < cortex_a8->brp_num))
1231                         brp_i++ ;
1232                 if (brp_i >= cortex_a8->brp_num)
1233                 {
1234                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1235                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1236                 }
1237                 breakpoint->set = brp_i + 1;
1238                 if (breakpoint->length == 2)
1239                 {
1240                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1241                 }
1242                 control = ((matchmode & 0x7) << 20)
1243                                 | (byte_addr_select << 5)
1244                                 | (3 << 1) | 1;
1245                 brp_list[brp_i].used = 1;
1246                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1247                 brp_list[brp_i].control = control;
1248                 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1249                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1250                                 brp_list[brp_i].value);
1251                 if (retval != ERROR_OK)
1252                         return retval;
1253                 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1254                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1255                                 brp_list[brp_i].control);
1256                 if (retval != ERROR_OK)
1257                         return retval;
1258                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1259                                 brp_list[brp_i].control,
1260                                 brp_list[brp_i].value);
1261         }
1262         else if (breakpoint->type == BKPT_SOFT)
1263         {
1264                 uint8_t code[4];
1265                 if (breakpoint->length == 2)
1266                 {
1267                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1268                 }
1269                 else
1270                 {
1271                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1272                 }
1273                 retval = target->type->read_memory(target,
1274                                 breakpoint->address & 0xFFFFFFFE,
1275                                 breakpoint->length, 1,
1276                                 breakpoint->orig_instr);
1277                 if (retval != ERROR_OK)
1278                         return retval;
1279                 retval = target->type->write_memory(target,
1280                                 breakpoint->address & 0xFFFFFFFE,
1281                                 breakpoint->length, 1, code);
1282                 if (retval != ERROR_OK)
1283                         return retval;
1284                 breakpoint->set = 0x11; /* Any nice value but 0 */
1285         }
1286
1287         return ERROR_OK;
1288 }
1289
1290 static int cortex_a8_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1291 {
1292         int retval;
1293         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1294         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1295         struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1296
1297         if (!breakpoint->set)
1298         {
1299                 LOG_WARNING("breakpoint not set");
1300                 return ERROR_OK;
1301         }
1302
1303         if (breakpoint->type == BKPT_HARD)
1304         {
1305                 int brp_i = breakpoint->set - 1;
1306                 if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num))
1307                 {
1308                         LOG_DEBUG("Invalid BRP number in breakpoint");
1309                         return ERROR_OK;
1310                 }
1311                 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1312                                 brp_list[brp_i].control, brp_list[brp_i].value);
1313                 brp_list[brp_i].used = 0;
1314                 brp_list[brp_i].value = 0;
1315                 brp_list[brp_i].control = 0;
1316                 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1317                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1318                                 brp_list[brp_i].control);
1319                 if (retval != ERROR_OK)
1320                         return retval;
1321                 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1322                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1323                                 brp_list[brp_i].value);
1324                 if (retval != ERROR_OK)
1325                         return retval;
1326         }
1327         else
1328         {
1329                 /* restore original instruction (kept in target endianness) */
1330                 if (breakpoint->length == 4)
1331                 {
1332                         retval = target->type->write_memory(target,
1333                                         breakpoint->address & 0xFFFFFFFE,
1334                                         4, 1, breakpoint->orig_instr);
1335                         if (retval != ERROR_OK)
1336                                 return retval;
1337                 }
1338                 else
1339                 {
1340                         retval = target->type->write_memory(target,
1341                                         breakpoint->address & 0xFFFFFFFE,
1342                                         2, 1, breakpoint->orig_instr);
1343                         if (retval != ERROR_OK)
1344                                 return retval;
1345                 }
1346         }
1347         breakpoint->set = 0;
1348
1349         return ERROR_OK;
1350 }
1351
1352 static int cortex_a8_add_breakpoint(struct target *target,
1353                 struct breakpoint *breakpoint)
1354 {
1355         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1356
1357         if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1))
1358         {
1359                 LOG_INFO("no hardware breakpoint available");
1360                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1361         }
1362
1363         if (breakpoint->type == BKPT_HARD)
1364                 cortex_a8->brp_num_available--;
1365
1366         return cortex_a8_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1367 }
1368
1369 static int cortex_a8_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1370 {
1371         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1372
1373 #if 0
1374 /* It is perfectly possible to remove breakpoints while the target is running */
1375         if (target->state != TARGET_HALTED)
1376         {
1377                 LOG_WARNING("target not halted");
1378                 return ERROR_TARGET_NOT_HALTED;
1379         }
1380 #endif
1381
1382         if (breakpoint->set)
1383         {
1384                 cortex_a8_unset_breakpoint(target, breakpoint);
1385                 if (breakpoint->type == BKPT_HARD)
1386                         cortex_a8->brp_num_available++ ;
1387         }
1388
1389
1390         return ERROR_OK;
1391 }
1392
1393
1394
1395 /*
1396  * Cortex-A8 Reset functions
1397  */
1398
1399 static int cortex_a8_assert_reset(struct target *target)
1400 {
1401         struct armv7a_common *armv7a = target_to_armv7a(target);
1402
1403         LOG_DEBUG(" ");
1404
1405         /* FIXME when halt is requested, make it work somehow... */
1406
1407         /* Issue some kind of warm reset. */
1408         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
1409                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1410         } else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1411                 /* REVISIT handle "pulls" cases, if there's
1412                  * hardware that needs them to work.
1413                  */
1414                 jtag_add_reset(0, 1);
1415         } else {
1416                 LOG_ERROR("%s: how to reset?", target_name(target));
1417                 return ERROR_FAIL;
1418         }
1419
1420         /* registers are now invalid */
1421         register_cache_invalidate(armv7a->armv4_5_common.core_cache);
1422
1423         target->state = TARGET_RESET;
1424
1425         return ERROR_OK;
1426 }
1427
1428 static int cortex_a8_deassert_reset(struct target *target)
1429 {
1430         int retval;
1431
1432         LOG_DEBUG(" ");
1433
1434         /* be certain SRST is off */
1435         jtag_add_reset(0, 0);
1436
1437         retval = cortex_a8_poll(target);
1438         if (retval != ERROR_OK)
1439                 return retval;
1440
1441         if (target->reset_halt) {
1442                 if (target->state != TARGET_HALTED) {
1443                         LOG_WARNING("%s: ran after reset and before halt ...",
1444                                         target_name(target));
1445                         if ((retval = target_halt(target)) != ERROR_OK)
1446                                 return retval;
1447                 }
1448         }
1449
1450         return ERROR_OK;
1451 }
1452
1453
1454 static int cortex_a8_write_apb_ab_memory(struct target *target,
1455                 uint32_t address, uint32_t size,
1456                 uint32_t count, const uint8_t *buffer)
1457 {
1458
1459         /* write memory through APB-AP */
1460
1461         int retval = ERROR_INVALID_ARGUMENTS;
1462         struct armv7a_common *armv7a = target_to_armv7a(target);
1463         struct arm *armv4_5 = &armv7a->armv4_5_common;
1464         int total_bytes = count * size;
1465         int start_byte, nbytes_to_write, i;
1466         struct reg *reg;
1467         union _data {
1468                 uint8_t uc_a[4];
1469                 uint32_t ui;
1470         } data;
1471
1472         if (target->state != TARGET_HALTED)
1473         {
1474                 LOG_WARNING("target not halted");
1475                 return ERROR_TARGET_NOT_HALTED;
1476         }
1477
1478         reg = arm_reg_current(armv4_5, 0);
1479         reg->dirty = 1;
1480         reg = arm_reg_current(armv4_5, 1);
1481         reg->dirty = 1;
1482
1483         retval = cortex_a8_dap_write_coreregister_u32(target, address & 0xFFFFFFFC, 0);
1484         if (retval != ERROR_OK)
1485                 return retval;
1486
1487         start_byte = address & 0x3;
1488
1489         while (total_bytes > 0) {
1490
1491                 nbytes_to_write = 4 - start_byte;
1492                 if (total_bytes < nbytes_to_write)
1493                         nbytes_to_write = total_bytes; 
1494                         
1495                 if ( nbytes_to_write != 4 ) {
1496                 
1497                         /* execute instruction LDR r1, [r0] */
1498                         retval = cortex_a8_exec_opcode(target,  ARMV4_5_LDR(1, 0), NULL);
1499                         if (retval != ERROR_OK)
1500                                 return retval;
1501
1502                         retval = cortex_a8_dap_read_coreregister_u32(target, &data.ui, 1);
1503                         if (retval != ERROR_OK)
1504                                 return retval;
1505                 }
1506         
1507                 for (i = 0; i < nbytes_to_write; ++i)
1508                         data.uc_a[i + start_byte] = *buffer++;
1509
1510                 retval = cortex_a8_dap_write_coreregister_u32(target, data.ui, 1);
1511                 if (retval != ERROR_OK)
1512                         return retval;
1513
1514                 /* execute instruction STRW r1, [r0], 1 (0xe4801004) */
1515                 retval = cortex_a8_exec_opcode(target, ARMV4_5_STRW_IP(1, 0) , NULL);
1516                 if (retval != ERROR_OK)
1517                                 return retval;
1518
1519                 total_bytes -= nbytes_to_write;
1520                 start_byte = 0;
1521         }
1522
1523         return retval;
1524 }
1525
1526
1527 static int cortex_a8_read_apb_ab_memory(struct target *target,
1528                 uint32_t address, uint32_t size,
1529                 uint32_t count, uint8_t *buffer)
1530 {
1531
1532         /* read memory through APB-AP */
1533
1534         int retval = ERROR_INVALID_ARGUMENTS;
1535         struct armv7a_common *armv7a = target_to_armv7a(target);
1536         struct arm *armv4_5 = &armv7a->armv4_5_common;
1537         int total_bytes = count * size;
1538         int start_byte, nbytes_to_read, i;
1539         struct reg *reg;
1540         union _data {
1541                 uint8_t uc_a[4];
1542                 uint32_t ui;
1543         } data;
1544
1545         if (target->state != TARGET_HALTED)
1546         {
1547                 LOG_WARNING("target not halted");
1548                 return ERROR_TARGET_NOT_HALTED;
1549         }
1550
1551         reg = arm_reg_current(armv4_5, 0);
1552         reg->dirty = 1;
1553         reg = arm_reg_current(armv4_5, 1);
1554         reg->dirty = 1;
1555
1556         retval = cortex_a8_dap_write_coreregister_u32(target, address & 0xFFFFFFFC, 0);
1557         if (retval != ERROR_OK)
1558                 return retval;
1559
1560         start_byte = address & 0x3;
1561
1562         while (total_bytes > 0) {
1563
1564                 /* execute instruction LDRW r1, [r0], 4 (0xe4901004)  */
1565                 retval = cortex_a8_exec_opcode(target,  ARMV4_5_LDRW_IP(1, 0), NULL);
1566                 if (retval != ERROR_OK)
1567                         return retval;
1568
1569                 retval = cortex_a8_dap_read_coreregister_u32(target, &data.ui, 1);
1570                 if (retval != ERROR_OK)
1571                         return retval;
1572
1573                 nbytes_to_read = 4 - start_byte;
1574                 if (total_bytes < nbytes_to_read)
1575                         nbytes_to_read = total_bytes; 
1576         
1577                 for (i = 0; i < nbytes_to_read; ++i)
1578                         *buffer++ = data.uc_a[i + start_byte];
1579                         
1580                 total_bytes -= nbytes_to_read;
1581                 start_byte = 0;
1582         }
1583
1584         return retval;
1585 }
1586
1587
1588
1589 /*
1590  * Cortex-A8 Memory access
1591  *
1592  * This is same Cortex M3 but we must also use the correct
1593  * ap number for every access.
1594  */
1595
1596 static int cortex_a8_read_phys_memory(struct target *target,
1597                 uint32_t address, uint32_t size,
1598                 uint32_t count, uint8_t *buffer)
1599 {
1600         struct armv7a_common *armv7a = target_to_armv7a(target);
1601         struct adiv5_dap *swjdp = armv7a->armv4_5_common.dap;
1602         int retval = ERROR_INVALID_ARGUMENTS;
1603         uint8_t apsel = swjdp->apsel;
1604         LOG_DEBUG("Reading memory at real address 0x%x; size %d; count %d",
1605                         address, size, count);
1606
1607         if (count && buffer) {
1608
1609                 if ( apsel == swjdp_memoryap ) {
1610
1611                         /* read memory through AHB-AP */
1612
1613                         switch (size) {
1614                         case 4:
1615                                 retval = mem_ap_sel_read_buf_u32(swjdp, swjdp_memoryap,
1616                                                 buffer, 4 * count, address);
1617                                 break;
1618                         case 2:
1619                                 retval = mem_ap_sel_read_buf_u16(swjdp, swjdp_memoryap,
1620                                                 buffer, 2 * count, address);
1621                                 break;
1622                         case 1:
1623                                 retval = mem_ap_sel_read_buf_u8(swjdp, swjdp_memoryap,
1624                                                 buffer, count, address);
1625                                 break;
1626                         }
1627
1628                 } else {
1629
1630                         /* read memory through APB-AP */
1631                         int enabled = 0;
1632
1633                         retval = cortex_a8_mmu(target, &enabled);
1634                         if (retval != ERROR_OK)
1635                                 return retval;
1636
1637                         if (enabled)
1638                         {
1639                                 LOG_WARNING("Reading physical memory through \
1640                                                 APB with MMU enabled is not yet implemented");
1641                                 return ERROR_TARGET_FAILURE;
1642                         }
1643                         retval =  cortex_a8_read_apb_ab_memory(target, address, size, count, buffer);
1644                 }
1645         }
1646         return retval;
1647 }
1648
1649 static int cortex_a8_read_memory(struct target *target, uint32_t address,
1650                 uint32_t size, uint32_t count, uint8_t *buffer)
1651 {
1652         int enabled = 0;
1653         uint32_t virt, phys;
1654         int retval;
1655         struct armv7a_common *armv7a = target_to_armv7a(target);
1656         struct adiv5_dap *swjdp = armv7a->armv4_5_common.dap;
1657         uint8_t apsel = swjdp->apsel;
1658
1659         /* cortex_a8 handles unaligned memory access */
1660         LOG_DEBUG("Reading memory at address 0x%x; size %d; count %d", address,
1661                         size, count);
1662         if (apsel == swjdp_memoryap) {
1663                 retval = cortex_a8_mmu(target, &enabled);
1664                 if (retval != ERROR_OK)
1665                         return retval;
1666
1667                 if(enabled)
1668                 {
1669                         virt = address;
1670                         retval = cortex_a8_virt2phys(target, virt, &phys);
1671                         if (retval != ERROR_OK)
1672                                 return retval;
1673
1674                         LOG_DEBUG("Reading at virtual address. Translating v:0x%x to r:0x%x",
1675                                         virt, phys);
1676                         address = phys;
1677                 }
1678                 retval = cortex_a8_read_phys_memory(target, address, size, count, buffer);
1679         } else {
1680                 retval = cortex_a8_read_apb_ab_memory(target, address, size, count, buffer);
1681         }
1682         return retval;
1683 }
1684
1685 static int cortex_a8_write_phys_memory(struct target *target,
1686                 uint32_t address, uint32_t size,
1687                 uint32_t count, const uint8_t *buffer)
1688 {
1689         struct armv7a_common *armv7a = target_to_armv7a(target);
1690         struct adiv5_dap *swjdp = armv7a->armv4_5_common.dap;
1691         int retval = ERROR_INVALID_ARGUMENTS;
1692         uint8_t apsel = swjdp->apsel;
1693
1694         LOG_DEBUG("Writing memory to real address 0x%x; size %d; count %d", address,
1695                         size, count);
1696
1697         if (count && buffer) {
1698
1699                 if ( apsel == swjdp_memoryap ) {
1700
1701                         /* write memory through AHB-AP */
1702
1703                         switch (size) {
1704                                 case 4:
1705                                         retval = mem_ap_sel_write_buf_u32(swjdp, swjdp_memoryap,
1706                                                         buffer, 4 * count, address);
1707                                         break;
1708                                 case 2:
1709                                         retval = mem_ap_sel_write_buf_u16(swjdp, swjdp_memoryap,
1710                                                         buffer, 2 * count, address);
1711                                         break;
1712                                 case 1:
1713                                         retval = mem_ap_sel_write_buf_u8(swjdp, swjdp_memoryap,
1714                                                         buffer, count, address);
1715                                         break;
1716                         }
1717
1718                 } else {
1719
1720                         /* write memory through APB-AP */
1721                         int enabled = 0;
1722
1723                         retval = cortex_a8_mmu(target, &enabled);
1724                         if (retval != ERROR_OK)
1725                                 return retval;
1726
1727                         if (enabled)
1728                         {
1729                                 LOG_WARNING("Writing physical memory through APB with MMU" \
1730                                                 "enabled is not yet implemented");
1731                                 return ERROR_TARGET_FAILURE;
1732                         }
1733                         return cortex_a8_write_apb_ab_memory(target, address, size, count, buffer);
1734                 }
1735         }
1736
1737
1738         /* REVISIT this op is generic ARMv7-A/R stuff */
1739         if (retval == ERROR_OK && target->state == TARGET_HALTED)
1740         {
1741                 struct arm_dpm *dpm = armv7a->armv4_5_common.dpm;
1742
1743                 retval = dpm->prepare(dpm);
1744                 if (retval != ERROR_OK)
1745                         return retval;
1746
1747                 /* The Cache handling will NOT work with MMU active, the
1748                  * wrong addresses will be invalidated!
1749                  *
1750                  * For both ICache and DCache, walk all cache lines in the
1751                  * address range. Cortex-A8 has fixed 64 byte line length.
1752                  *
1753                  * REVISIT per ARMv7, these may trigger watchpoints ...
1754                  */
1755
1756                 /* invalidate I-Cache */
1757                 if (armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
1758                 {
1759                         /* ICIMVAU - Invalidate Cache single entry
1760                          * with MVA to PoU
1761                          *      MCR p15, 0, r0, c7, c5, 1
1762                          */
1763                         for (uint32_t cacheline = address;
1764                                         cacheline < address + size * count;
1765                                         cacheline += 64) {
1766                                 retval = dpm->instr_write_data_r0(dpm,
1767                                                 ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
1768                                                 cacheline);
1769                                 if (retval != ERROR_OK)
1770                                         return retval;
1771                         }
1772                 }
1773
1774                 /* invalidate D-Cache */
1775                 if (armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
1776                 {
1777                         /* DCIMVAC - Invalidate data Cache line
1778                          * with MVA to PoC
1779                          *      MCR p15, 0, r0, c7, c6, 1
1780                          */
1781                         for (uint32_t cacheline = address;
1782                                         cacheline < address + size * count;
1783                                         cacheline += 64) {
1784                                 retval = dpm->instr_write_data_r0(dpm,
1785                                                 ARMV4_5_MCR(15, 0, 0, 7, 6, 1),
1786                                                 cacheline);
1787                                 if (retval != ERROR_OK)
1788                                         return retval;
1789                         }
1790                 }
1791
1792                 /* (void) */ dpm->finish(dpm);
1793         }
1794
1795         return retval;
1796 }
1797
1798 static int cortex_a8_write_memory(struct target *target, uint32_t address,
1799                 uint32_t size, uint32_t count, const uint8_t *buffer)
1800 {
1801         int enabled = 0;
1802         uint32_t virt, phys;
1803         int retval;
1804         struct armv7a_common *armv7a = target_to_armv7a(target);
1805         struct adiv5_dap *swjdp = armv7a->armv4_5_common.dap;
1806         uint8_t apsel = swjdp->apsel;
1807         /* cortex_a8 handles unaligned memory access */
1808         LOG_DEBUG("Reading memory at address 0x%x; size %d; count %d", address,
1809                         size, count);
1810         if (apsel == swjdp_memoryap) {
1811
1812                 LOG_DEBUG("Writing memory to address 0x%x; size %d; count %d", address, size, count);
1813                 retval = cortex_a8_mmu(target, &enabled);
1814                 if (retval != ERROR_OK)
1815                         return retval;
1816
1817                 if(enabled)
1818                 {
1819                         virt = address;
1820                         retval = cortex_a8_virt2phys(target, virt, &phys);
1821                         if (retval != ERROR_OK)
1822                                 return retval;
1823                         LOG_DEBUG("Writing to virtual address. Translating v:0x%x to r:0x%x", virt, phys);
1824                         address = phys;
1825                 }
1826
1827                 retval = cortex_a8_write_phys_memory(target, address, size, 
1828                                 count, buffer);
1829         }
1830         else {
1831                 retval = cortex_a8_write_apb_ab_memory(target, address, size, count, buffer);
1832         }
1833     return retval;
1834 }
1835
1836 static int cortex_a8_bulk_write_memory(struct target *target, uint32_t address,
1837                 uint32_t count, const uint8_t *buffer)
1838 {
1839         return cortex_a8_write_memory(target, address, 4, count, buffer);
1840 }
1841
1842
1843 static int cortex_a8_handle_target_request(void *priv)
1844 {
1845         struct target *target = priv;
1846         struct armv7a_common *armv7a = target_to_armv7a(target);
1847         struct adiv5_dap *swjdp = armv7a->armv4_5_common.dap;
1848         int retval;
1849
1850         if (!target_was_examined(target))
1851                 return ERROR_OK;
1852         if (!target->dbg_msg_enabled)
1853                 return ERROR_OK;
1854
1855         if (target->state == TARGET_RUNNING)
1856         {
1857                 uint32_t request;
1858                 uint32_t dscr;
1859                 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
1860                                         armv7a->debug_base      + CPUDBG_DSCR, &dscr);
1861
1862                 /* check if we have data */
1863                 while ((dscr & DSCR_DTR_TX_FULL) && (retval==ERROR_OK))
1864                 {
1865                         retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
1866                                         armv7a->debug_base+ CPUDBG_DTRTX, &request);
1867                         if (retval == ERROR_OK)
1868                         {
1869                                 target_request(target, request);
1870                                 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
1871                                                 armv7a->debug_base+ CPUDBG_DSCR, &dscr);
1872                         }
1873                 }
1874         }
1875
1876         return ERROR_OK;
1877 }
1878
1879 /*
1880  * Cortex-A8 target information and configuration
1881  */
1882
1883 static int cortex_a8_examine_first(struct target *target)
1884 {
1885         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1886         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1887         struct adiv5_dap *swjdp = armv7a->armv4_5_common.dap;
1888         int i;
1889         int retval = ERROR_OK;
1890         uint32_t didr, ctypr, ttypr, cpuid;
1891
1892         /* We do one extra read to ensure DAP is configured,
1893          * we call ahbap_debugport_init(swjdp) instead
1894          */
1895         retval = ahbap_debugport_init(swjdp);
1896         if (retval != ERROR_OK)
1897                 return retval;
1898
1899         if (!target->dbgbase_set)
1900         {
1901                 uint32_t dbgbase;
1902                 /* Get ROM Table base */
1903                 uint32_t apid;
1904                 retval = dap_get_debugbase(swjdp, 1, &dbgbase, &apid);
1905                 if (retval != ERROR_OK)
1906                         return retval;
1907                 /* Lookup 0x15 -- Processor DAP */
1908                 retval = dap_lookup_cs_component(swjdp, 1, dbgbase, 0x15,
1909                                 &armv7a->debug_base);
1910                 if (retval != ERROR_OK)
1911                         return retval;
1912         }
1913     else
1914         {
1915                 armv7a->debug_base = target->dbgbase;
1916         }
1917
1918         retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
1919                         armv7a->debug_base + CPUDBG_CPUID, &cpuid);
1920         if (retval != ERROR_OK)
1921                 return retval;
1922
1923         if ((retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
1924                         armv7a->debug_base + CPUDBG_CPUID, &cpuid)) != ERROR_OK)
1925         {
1926                 LOG_DEBUG("Examine %s failed", "CPUID");
1927                 return retval;
1928         }
1929
1930         if ((retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
1931                         armv7a->debug_base + CPUDBG_CTYPR, &ctypr)) != ERROR_OK)
1932         {
1933                 LOG_DEBUG("Examine %s failed", "CTYPR");
1934                 return retval;
1935         }
1936
1937         if ((retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
1938                         armv7a->debug_base + CPUDBG_TTYPR, &ttypr)) != ERROR_OK)
1939         {
1940                 LOG_DEBUG("Examine %s failed", "TTYPR");
1941                 return retval;
1942         }
1943
1944         if ((retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
1945                         armv7a->debug_base + CPUDBG_DIDR, &didr)) != ERROR_OK)
1946         {
1947                 LOG_DEBUG("Examine %s failed", "DIDR");
1948                 return retval;
1949         }
1950
1951         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1952         LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
1953         LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
1954         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
1955
1956         armv7a->armv4_5_common.core_type = ARM_MODE_MON;
1957         retval = cortex_a8_dpm_setup(cortex_a8, didr);
1958         if (retval != ERROR_OK)
1959                 return retval;
1960
1961         /* Setup Breakpoint Register Pairs */
1962         cortex_a8->brp_num = ((didr >> 24) & 0x0F) + 1;
1963         cortex_a8->brp_num_context = ((didr >> 20) & 0x0F) + 1;
1964         cortex_a8->brp_num_available = cortex_a8->brp_num;
1965         cortex_a8->brp_list = calloc(cortex_a8->brp_num, sizeof(struct cortex_a8_brp));
1966 //      cortex_a8->brb_enabled = ????;
1967         for (i = 0; i < cortex_a8->brp_num; i++)
1968         {
1969                 cortex_a8->brp_list[i].used = 0;
1970                 if (i < (cortex_a8->brp_num-cortex_a8->brp_num_context))
1971                         cortex_a8->brp_list[i].type = BRP_NORMAL;
1972                 else
1973                         cortex_a8->brp_list[i].type = BRP_CONTEXT;
1974                 cortex_a8->brp_list[i].value = 0;
1975                 cortex_a8->brp_list[i].control = 0;
1976                 cortex_a8->brp_list[i].BRPn = i;
1977         }
1978
1979         LOG_DEBUG("Configured %i hw breakpoints", cortex_a8->brp_num);
1980
1981         target_set_examined(target);
1982         return ERROR_OK;
1983 }
1984
1985 static int cortex_a8_examine(struct target *target)
1986 {
1987         int retval = ERROR_OK;
1988
1989         /* don't re-probe hardware after each reset */
1990         if (!target_was_examined(target))
1991                 retval = cortex_a8_examine_first(target);
1992
1993         /* Configure core debug access */
1994         if (retval == ERROR_OK)
1995                 retval = cortex_a8_init_debug_access(target);
1996
1997         return retval;
1998 }
1999
2000 /*
2001  *      Cortex-A8 target creation and initialization
2002  */
2003
2004 static int cortex_a8_init_target(struct command_context *cmd_ctx,
2005                 struct target *target)
2006 {
2007         /* examine_first() does a bunch of this */
2008         return ERROR_OK;
2009 }
2010
2011 static int cortex_a8_init_arch_info(struct target *target,
2012                 struct cortex_a8_common *cortex_a8, struct jtag_tap *tap)
2013 {
2014         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
2015         struct arm *armv4_5 = &armv7a->armv4_5_common;
2016         struct adiv5_dap *dap = &armv7a->dap;
2017
2018         armv7a->armv4_5_common.dap = dap;
2019
2020         /* Setup struct cortex_a8_common */
2021         cortex_a8->common_magic = CORTEX_A8_COMMON_MAGIC;
2022         /*  tap has no dap initialized */
2023         if (!tap->dap)
2024         {
2025         armv7a->armv4_5_common.dap = dap;
2026         /* Setup struct cortex_a8_common */
2027         armv4_5->arch_info = armv7a;
2028
2029         /* prepare JTAG information for the new target */
2030         cortex_a8->jtag_info.tap = tap;
2031         cortex_a8->jtag_info.scann_size = 4;
2032
2033         /* Leave (only) generic DAP stuff for debugport_init() */
2034         dap->jtag_info = &cortex_a8->jtag_info;
2035         dap->memaccess_tck = 80;
2036
2037         /* Number of bits for tar autoincrement, impl. dep. at least 10 */
2038         dap->tar_autoincr_block = (1 << 10);
2039         dap->memaccess_tck = 80;
2040         tap->dap = dap;
2041     }
2042         else
2043         armv7a->armv4_5_common.dap = tap->dap;
2044
2045         cortex_a8->fast_reg_read = 0;
2046
2047         /* Set default value */
2048         cortex_a8->current_address_mode = ARM_MODE_ANY;
2049
2050         /* register arch-specific functions */
2051         armv7a->examine_debug_reason = NULL;
2052
2053         armv7a->post_debug_entry = cortex_a8_post_debug_entry;
2054
2055         armv7a->pre_restore_context = NULL;
2056         armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1;
2057         armv7a->armv4_5_mmu.get_ttb = cortex_a8_get_ttb;
2058         armv7a->armv4_5_mmu.read_memory = cortex_a8_read_phys_memory;
2059         armv7a->armv4_5_mmu.write_memory = cortex_a8_write_phys_memory;
2060         armv7a->armv4_5_mmu.disable_mmu_caches = cortex_a8_disable_mmu_caches;
2061         armv7a->armv4_5_mmu.enable_mmu_caches = cortex_a8_enable_mmu_caches;
2062         armv7a->armv4_5_mmu.has_tiny_pages = 1;
2063         armv7a->armv4_5_mmu.mmu_enabled = 0;
2064
2065
2066 //      arm7_9->handle_target_request = cortex_a8_handle_target_request;
2067
2068         /* REVISIT v7a setup should be in a v7a-specific routine */
2069         arm_init_arch_info(target, armv4_5);
2070         armv7a->common_magic = ARMV7_COMMON_MAGIC;
2071
2072         target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target);
2073
2074         return ERROR_OK;
2075 }
2076
2077 static int cortex_a8_target_create(struct target *target, Jim_Interp *interp)
2078 {
2079         struct cortex_a8_common *cortex_a8 = calloc(1, sizeof(struct cortex_a8_common));
2080
2081         return cortex_a8_init_arch_info(target, cortex_a8, target->tap);
2082 }
2083
2084 static int cortex_a8_get_ttb(struct target *target, uint32_t *result)
2085 {
2086         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
2087     struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
2088     uint32_t ttb = 0, retval = ERROR_OK;
2089
2090     /* current_address_mode is set inside cortex_a8_virt2phys()
2091        where we can determine if address belongs to user or kernel */
2092     if(cortex_a8->current_address_mode == ARM_MODE_SVC)
2093     {
2094         /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
2095         retval = armv7a->armv4_5_common.mrc(target, 15,
2096                     0, 1,   /* op1, op2 */
2097                     2, 0,   /* CRn, CRm */
2098                     &ttb);
2099                 if (retval != ERROR_OK)
2100                         return retval;
2101     }
2102     else if(cortex_a8->current_address_mode == ARM_MODE_USR)
2103     {
2104         /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
2105         retval = armv7a->armv4_5_common.mrc(target, 15,
2106                     0, 0,   /* op1, op2 */
2107                     2, 0,   /* CRn, CRm */
2108                     &ttb);
2109                 if (retval != ERROR_OK)
2110                         return retval;
2111     }
2112     /* we don't know whose address is: user or kernel
2113        we assume that if we are in kernel mode then
2114        address belongs to kernel else if in user mode
2115        - to user */
2116     else if(armv7a->armv4_5_common.core_mode == ARM_MODE_SVC)
2117     {
2118         /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
2119         retval = armv7a->armv4_5_common.mrc(target, 15,
2120                     0, 1,   /* op1, op2 */
2121                     2, 0,   /* CRn, CRm */
2122                     &ttb);
2123                 if (retval != ERROR_OK)
2124                         return retval;
2125     }
2126     else if(armv7a->armv4_5_common.core_mode == ARM_MODE_USR)
2127     {
2128         /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
2129         retval = armv7a->armv4_5_common.mrc(target, 15,
2130                     0, 0,   /* op1, op2 */
2131                     2, 0,   /* CRn, CRm */
2132                     &ttb);
2133                 if (retval != ERROR_OK)
2134                         return retval;
2135     }
2136     /* finally we don't know whose ttb to use: user or kernel */
2137     else
2138         LOG_ERROR("Don't know how to get ttb for current mode!!!");
2139
2140     ttb &= 0xffffc000;
2141
2142     *result = ttb;
2143
2144     return ERROR_OK;
2145 }
2146
2147 static int cortex_a8_disable_mmu_caches(struct target *target, int mmu,
2148                 int d_u_cache, int i_cache)
2149 {
2150     struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
2151     struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
2152     uint32_t cp15_control;
2153     int retval;
2154
2155     /* read cp15 control register */
2156     retval = armv7a->armv4_5_common.mrc(target, 15,
2157                     0, 0,   /* op1, op2 */
2158                     1, 0,   /* CRn, CRm */
2159                     &cp15_control);
2160     if (retval != ERROR_OK)
2161         return retval;
2162
2163
2164     if (mmu)
2165             cp15_control &= ~0x1U;
2166
2167     if (d_u_cache)
2168             cp15_control &= ~0x4U;
2169
2170     if (i_cache)
2171             cp15_control &= ~0x1000U;
2172
2173     retval = armv7a->armv4_5_common.mcr(target, 15,
2174                     0, 0,   /* op1, op2 */
2175                     1, 0,   /* CRn, CRm */
2176                     cp15_control);
2177         return retval;
2178 }
2179
2180 static int cortex_a8_enable_mmu_caches(struct target *target, int mmu,
2181                 int d_u_cache, int i_cache)
2182 {
2183     struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
2184     struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
2185     uint32_t cp15_control;
2186     int retval;
2187
2188     /* read cp15 control register */
2189     retval = armv7a->armv4_5_common.mrc(target, 15,
2190                     0, 0,   /* op1, op2 */
2191                     1, 0,   /* CRn, CRm */
2192                     &cp15_control);
2193     if (retval != ERROR_OK)
2194         return retval;
2195
2196     if (mmu)
2197             cp15_control |= 0x1U;
2198
2199     if (d_u_cache)
2200             cp15_control |= 0x4U;
2201
2202     if (i_cache)
2203             cp15_control |= 0x1000U;
2204
2205     retval = armv7a->armv4_5_common.mcr(target, 15,
2206                     0, 0,   /* op1, op2 */
2207                     1, 0,   /* CRn, CRm */
2208                     cp15_control);
2209         return retval;
2210 }
2211
2212
2213 static int cortex_a8_mmu(struct target *target, int *enabled)
2214 {
2215         if (target->state != TARGET_HALTED) {
2216                 LOG_ERROR("%s: target not halted", __func__);
2217                 return ERROR_TARGET_INVALID;
2218         }
2219
2220         *enabled = target_to_cortex_a8(target)->armv7a_common.armv4_5_mmu.mmu_enabled;
2221         return ERROR_OK;
2222 }
2223
2224 static int cortex_a8_virt2phys(struct target *target,
2225                 uint32_t virt, uint32_t *phys)
2226 {
2227         uint32_t cb;
2228         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
2229         // struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
2230         struct armv7a_common *armv7a = target_to_armv7a(target);
2231
2232     /* We assume that virtual address is separated
2233        between user and kernel in Linux style:
2234        0x00000000-0xbfffffff - User space
2235        0xc0000000-0xffffffff - Kernel space */
2236     if( virt < 0xc0000000 ) /* Linux user space */
2237         cortex_a8->current_address_mode = ARM_MODE_USR;
2238     else /* Linux kernel */
2239         cortex_a8->current_address_mode = ARM_MODE_SVC;
2240         uint32_t ret;
2241         int retval = armv4_5_mmu_translate_va(target,
2242                         &armv7a->armv4_5_mmu, virt, &cb, &ret);
2243         if (retval != ERROR_OK)
2244                 return retval;
2245     /* Reset the flag. We don't want someone else to use it by error */
2246     cortex_a8->current_address_mode = ARM_MODE_ANY;
2247
2248         *phys = ret;
2249         return ERROR_OK;
2250 }
2251
2252 COMMAND_HANDLER(cortex_a8_handle_cache_info_command)
2253 {
2254         struct target *target = get_current_target(CMD_CTX);
2255         struct armv7a_common *armv7a = target_to_armv7a(target);
2256
2257         return armv4_5_handle_cache_info_command(CMD_CTX,
2258                         &armv7a->armv4_5_mmu.armv4_5_cache);
2259 }
2260
2261
2262 COMMAND_HANDLER(cortex_a8_handle_dbginit_command)
2263 {
2264         struct target *target = get_current_target(CMD_CTX);
2265         if (!target_was_examined(target))
2266         {
2267                 LOG_ERROR("target not examined yet");
2268                 return ERROR_FAIL;
2269         }
2270
2271         return cortex_a8_init_debug_access(target);
2272 }
2273
2274 static const struct command_registration cortex_a8_exec_command_handlers[] = {
2275         {
2276                 .name = "cache_info",
2277                 .handler = cortex_a8_handle_cache_info_command,
2278                 .mode = COMMAND_EXEC,
2279                 .help = "display information about target caches",
2280         },
2281         {
2282                 .name = "dbginit",
2283                 .handler = cortex_a8_handle_dbginit_command,
2284                 .mode = COMMAND_EXEC,
2285                 .help = "Initialize core debug",
2286         },
2287         COMMAND_REGISTRATION_DONE
2288 };
2289 static const struct command_registration cortex_a8_command_handlers[] = {
2290         {
2291                 .chain = arm_command_handlers,
2292         },
2293         {
2294                 .chain = armv7a_command_handlers,
2295         },
2296         {
2297                 .name = "cortex_a8",
2298                 .mode = COMMAND_ANY,
2299                 .help = "Cortex-A8 command group",
2300                 .chain = cortex_a8_exec_command_handlers,
2301         },
2302         COMMAND_REGISTRATION_DONE
2303 };
2304
2305 struct target_type cortexa8_target = {
2306         .name = "cortex_a8",
2307
2308         .poll = cortex_a8_poll,
2309         .arch_state = armv7a_arch_state,
2310
2311         .target_request_data = NULL,
2312
2313         .halt = cortex_a8_halt,
2314         .resume = cortex_a8_resume,
2315         .step = cortex_a8_step,
2316
2317         .assert_reset = cortex_a8_assert_reset,
2318         .deassert_reset = cortex_a8_deassert_reset,
2319         .soft_reset_halt = NULL,
2320
2321         /* REVISIT allow exporting VFP3 registers ... */
2322         .get_gdb_reg_list = arm_get_gdb_reg_list,
2323
2324         .read_memory = cortex_a8_read_memory,
2325         .write_memory = cortex_a8_write_memory,
2326         .bulk_write_memory = cortex_a8_bulk_write_memory,
2327
2328         .checksum_memory = arm_checksum_memory,
2329         .blank_check_memory = arm_blank_check_memory,
2330
2331         .run_algorithm = armv4_5_run_algorithm,
2332
2333         .add_breakpoint = cortex_a8_add_breakpoint,
2334         .remove_breakpoint = cortex_a8_remove_breakpoint,
2335         .add_watchpoint = NULL,
2336         .remove_watchpoint = NULL,
2337
2338         .commands = cortex_a8_command_handlers,
2339         .target_create = cortex_a8_target_create,
2340         .init_target = cortex_a8_init_target,
2341         .examine = cortex_a8_examine,
2342
2343         .read_phys_memory = cortex_a8_read_phys_memory,
2344         .write_phys_memory = cortex_a8_write_phys_memory,
2345         .mmu = cortex_a8_mmu,
2346         .virt2phys = cortex_a8_virt2phys,
2347
2348 };