helper/command: change prototype of command_print/command_print_sameline
[fw/openocd] / src / target / cortex_a.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   Copyright (C) 2010 Ã˜yvind Harboe                                      *
15  *   oyvind.harboe@zylin.com                                               *
16  *                                                                         *
17  *   Copyright (C) ST-Ericsson SA 2011                                     *
18  *   michel.jaouen@stericsson.com : smp minimum support                    *
19  *                                                                         *
20  *   Copyright (C) Broadcom 2012                                           *
21  *   ehunter@broadcom.com : Cortex-R4 support                              *
22  *                                                                         *
23  *   Copyright (C) 2013 Kamal Dasu                                         *
24  *   kdasu.kdev@gmail.com                                                  *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
38  *                                                                         *
39  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
40  *   Cortex-A9(tm) TRM, ARM DDI 0407F                                      *
41  *   Cortex-A4(tm) TRM, ARM DDI 0363E                                      *
42  *   Cortex-A15(tm)TRM, ARM DDI 0438C                                      *
43  *                                                                         *
44  ***************************************************************************/
45
46 #ifdef HAVE_CONFIG_H
47 #include "config.h"
48 #endif
49
50 #include "breakpoints.h"
51 #include "cortex_a.h"
52 #include "register.h"
53 #include "armv7a_mmu.h"
54 #include "target_request.h"
55 #include "target_type.h"
56 #include "arm_opcodes.h"
57 #include "arm_semihosting.h"
58 #include "transport/transport.h"
59 #include "smp.h"
60 #include <helper/time_support.h>
61
62 static int cortex_a_poll(struct target *target);
63 static int cortex_a_debug_entry(struct target *target);
64 static int cortex_a_restore_context(struct target *target, bool bpwp);
65 static int cortex_a_set_breakpoint(struct target *target,
66         struct breakpoint *breakpoint, uint8_t matchmode);
67 static int cortex_a_set_context_breakpoint(struct target *target,
68         struct breakpoint *breakpoint, uint8_t matchmode);
69 static int cortex_a_set_hybrid_breakpoint(struct target *target,
70         struct breakpoint *breakpoint);
71 static int cortex_a_unset_breakpoint(struct target *target,
72         struct breakpoint *breakpoint);
73 static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
74         uint32_t value, uint32_t *dscr);
75 static int cortex_a_mmu(struct target *target, int *enabled);
76 static int cortex_a_mmu_modify(struct target *target, int enable);
77 static int cortex_a_virt2phys(struct target *target,
78         target_addr_t virt, target_addr_t *phys);
79 static int cortex_a_read_cpu_memory(struct target *target,
80         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
81
82
83 /*  restore cp15_control_reg at resume */
84 static int cortex_a_restore_cp15_control_reg(struct target *target)
85 {
86         int retval = ERROR_OK;
87         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
88         struct armv7a_common *armv7a = target_to_armv7a(target);
89
90         if (cortex_a->cp15_control_reg != cortex_a->cp15_control_reg_curr) {
91                 cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
92                 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg); */
93                 retval = armv7a->arm.mcr(target, 15,
94                                 0, 0,   /* op1, op2 */
95                                 1, 0,   /* CRn, CRm */
96                                 cortex_a->cp15_control_reg);
97         }
98         return retval;
99 }
100
101 /*
102  * Set up ARM core for memory access.
103  * If !phys_access, switch to SVC mode and make sure MMU is on
104  * If phys_access, switch off mmu
105  */
106 static int cortex_a_prep_memaccess(struct target *target, int phys_access)
107 {
108         struct armv7a_common *armv7a = target_to_armv7a(target);
109         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
110         int mmu_enabled = 0;
111
112         if (phys_access == 0) {
113                 arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
114                 cortex_a_mmu(target, &mmu_enabled);
115                 if (mmu_enabled)
116                         cortex_a_mmu_modify(target, 1);
117                 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
118                         /* overwrite DACR to all-manager */
119                         armv7a->arm.mcr(target, 15,
120                                         0, 0, 3, 0,
121                                         0xFFFFFFFF);
122                 }
123         } else {
124                 cortex_a_mmu(target, &mmu_enabled);
125                 if (mmu_enabled)
126                         cortex_a_mmu_modify(target, 0);
127         }
128         return ERROR_OK;
129 }
130
131 /*
132  * Restore ARM core after memory access.
133  * If !phys_access, switch to previous mode
134  * If phys_access, restore MMU setting
135  */
136 static int cortex_a_post_memaccess(struct target *target, int phys_access)
137 {
138         struct armv7a_common *armv7a = target_to_armv7a(target);
139         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
140
141         if (phys_access == 0) {
142                 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
143                         /* restore */
144                         armv7a->arm.mcr(target, 15,
145                                         0, 0, 3, 0,
146                                         cortex_a->cp15_dacr_reg);
147                 }
148                 arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
149         } else {
150                 int mmu_enabled = 0;
151                 cortex_a_mmu(target, &mmu_enabled);
152                 if (mmu_enabled)
153                         cortex_a_mmu_modify(target, 1);
154         }
155         return ERROR_OK;
156 }
157
158
159 /*  modify cp15_control_reg in order to enable or disable mmu for :
160  *  - virt2phys address conversion
161  *  - read or write memory in phys or virt address */
162 static int cortex_a_mmu_modify(struct target *target, int enable)
163 {
164         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
165         struct armv7a_common *armv7a = target_to_armv7a(target);
166         int retval = ERROR_OK;
167         int need_write = 0;
168
169         if (enable) {
170                 /*  if mmu enabled at target stop and mmu not enable */
171                 if (!(cortex_a->cp15_control_reg & 0x1U)) {
172                         LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
173                         return ERROR_FAIL;
174                 }
175                 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0) {
176                         cortex_a->cp15_control_reg_curr |= 0x1U;
177                         need_write = 1;
178                 }
179         } else {
180                 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0x1U) {
181                         cortex_a->cp15_control_reg_curr &= ~0x1U;
182                         need_write = 1;
183                 }
184         }
185
186         if (need_write) {
187                 LOG_DEBUG("%s, writing cp15 ctrl: %" PRIx32,
188                         enable ? "enable mmu" : "disable mmu",
189                         cortex_a->cp15_control_reg_curr);
190
191                 retval = armv7a->arm.mcr(target, 15,
192                                 0, 0,   /* op1, op2 */
193                                 1, 0,   /* CRn, CRm */
194                                 cortex_a->cp15_control_reg_curr);
195         }
196         return retval;
197 }
198
199 /*
200  * Cortex-A Basic debug access, very low level assumes state is saved
201  */
202 static int cortex_a_init_debug_access(struct target *target)
203 {
204         struct armv7a_common *armv7a = target_to_armv7a(target);
205         uint32_t dscr;
206         int retval;
207
208         /* lock memory-mapped access to debug registers to prevent
209          * software interference */
210         retval = mem_ap_write_u32(armv7a->debug_ap,
211                         armv7a->debug_base + CPUDBG_LOCKACCESS, 0);
212         if (retval != ERROR_OK)
213                 return retval;
214
215         /* Disable cacheline fills and force cache write-through in debug state */
216         retval = mem_ap_write_u32(armv7a->debug_ap,
217                         armv7a->debug_base + CPUDBG_DSCCR, 0);
218         if (retval != ERROR_OK)
219                 return retval;
220
221         /* Disable TLB lookup and refill/eviction in debug state */
222         retval = mem_ap_write_u32(armv7a->debug_ap,
223                         armv7a->debug_base + CPUDBG_DSMCR, 0);
224         if (retval != ERROR_OK)
225                 return retval;
226
227         retval = dap_run(armv7a->debug_ap->dap);
228         if (retval != ERROR_OK)
229                 return retval;
230
231         /* Enabling of instruction execution in debug mode is done in debug_entry code */
232
233         /* Resync breakpoint registers */
234
235         /* Enable halt for breakpoint, watchpoint and vector catch */
236         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
237                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
238         if (retval != ERROR_OK)
239                 return retval;
240         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
241                         armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
242         if (retval != ERROR_OK)
243                 return retval;
244
245         /* Since this is likely called from init or reset, update target state information*/
246         return cortex_a_poll(target);
247 }
248
249 static int cortex_a_wait_instrcmpl(struct target *target, uint32_t *dscr, bool force)
250 {
251         /* Waits until InstrCmpl_l becomes 1, indicating instruction is done.
252          * Writes final value of DSCR into *dscr. Pass force to force always
253          * reading DSCR at least once. */
254         struct armv7a_common *armv7a = target_to_armv7a(target);
255         int retval;
256
257         if (force) {
258                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
259                                 armv7a->debug_base + CPUDBG_DSCR, dscr);
260                 if (retval != ERROR_OK) {
261                         LOG_ERROR("Could not read DSCR register");
262                         return retval;
263                 }
264         }
265
266         retval = cortex_a_wait_dscr_bits(target, DSCR_INSTR_COMP, DSCR_INSTR_COMP, dscr);
267         if (retval != ERROR_OK)
268                 LOG_ERROR("Error waiting for InstrCompl=1");
269         return retval;
270 }
271
272 /* To reduce needless round-trips, pass in a pointer to the current
273  * DSCR value.  Initialize it to zero if you just need to know the
274  * value on return from this function; or DSCR_INSTR_COMP if you
275  * happen to know that no instruction is pending.
276  */
277 static int cortex_a_exec_opcode(struct target *target,
278         uint32_t opcode, uint32_t *dscr_p)
279 {
280         uint32_t dscr;
281         int retval;
282         struct armv7a_common *armv7a = target_to_armv7a(target);
283
284         dscr = dscr_p ? *dscr_p : 0;
285
286         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
287
288         /* Wait for InstrCompl bit to be set */
289         retval = cortex_a_wait_instrcmpl(target, dscr_p, false);
290         if (retval != ERROR_OK)
291                 return retval;
292
293         retval = mem_ap_write_u32(armv7a->debug_ap,
294                         armv7a->debug_base + CPUDBG_ITR, opcode);
295         if (retval != ERROR_OK)
296                 return retval;
297
298         /* Wait for InstrCompl bit to be set */
299         retval = cortex_a_wait_instrcmpl(target, &dscr, true);
300         if (retval != ERROR_OK) {
301                 LOG_ERROR("Error waiting for cortex_a_exec_opcode");
302                 return retval;
303         }
304
305         if (dscr_p)
306                 *dscr_p = dscr;
307
308         return retval;
309 }
310
311 /* Write to memory mapped registers directly with no cache or mmu handling */
312 static int cortex_a_dap_write_memap_register_u32(struct target *target,
313         uint32_t address,
314         uint32_t value)
315 {
316         int retval;
317         struct armv7a_common *armv7a = target_to_armv7a(target);
318
319         retval = mem_ap_write_atomic_u32(armv7a->debug_ap, address, value);
320
321         return retval;
322 }
323
324 /*
325  * Cortex-A implementation of Debug Programmer's Model
326  *
327  * NOTE the invariant:  these routines return with DSCR_INSTR_COMP set,
328  * so there's no need to poll for it before executing an instruction.
329  *
330  * NOTE that in several of these cases the "stall" mode might be useful.
331  * It'd let us queue a few operations together... prepare/finish might
332  * be the places to enable/disable that mode.
333  */
334
335 static inline struct cortex_a_common *dpm_to_a(struct arm_dpm *dpm)
336 {
337         return container_of(dpm, struct cortex_a_common, armv7a_common.dpm);
338 }
339
340 static int cortex_a_write_dcc(struct cortex_a_common *a, uint32_t data)
341 {
342         LOG_DEBUG("write DCC 0x%08" PRIx32, data);
343         return mem_ap_write_u32(a->armv7a_common.debug_ap,
344                         a->armv7a_common.debug_base + CPUDBG_DTRRX, data);
345 }
346
347 static int cortex_a_read_dcc(struct cortex_a_common *a, uint32_t *data,
348         uint32_t *dscr_p)
349 {
350         uint32_t dscr = DSCR_INSTR_COMP;
351         int retval;
352
353         if (dscr_p)
354                 dscr = *dscr_p;
355
356         /* Wait for DTRRXfull */
357         retval = cortex_a_wait_dscr_bits(a->armv7a_common.arm.target,
358                         DSCR_DTR_TX_FULL, DSCR_DTR_TX_FULL, &dscr);
359         if (retval != ERROR_OK) {
360                 LOG_ERROR("Error waiting for read dcc");
361                 return retval;
362         }
363
364         retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
365                         a->armv7a_common.debug_base + CPUDBG_DTRTX, data);
366         if (retval != ERROR_OK)
367                 return retval;
368         /* LOG_DEBUG("read DCC 0x%08" PRIx32, *data); */
369
370         if (dscr_p)
371                 *dscr_p = dscr;
372
373         return retval;
374 }
375
376 static int cortex_a_dpm_prepare(struct arm_dpm *dpm)
377 {
378         struct cortex_a_common *a = dpm_to_a(dpm);
379         uint32_t dscr;
380         int retval;
381
382         /* set up invariant:  INSTR_COMP is set after ever DPM operation */
383         retval = cortex_a_wait_instrcmpl(dpm->arm->target, &dscr, true);
384         if (retval != ERROR_OK) {
385                 LOG_ERROR("Error waiting for dpm prepare");
386                 return retval;
387         }
388
389         /* this "should never happen" ... */
390         if (dscr & DSCR_DTR_RX_FULL) {
391                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
392                 /* Clear DCCRX */
393                 retval = cortex_a_exec_opcode(
394                                 a->armv7a_common.arm.target,
395                                 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
396                                 &dscr);
397                 if (retval != ERROR_OK)
398                         return retval;
399         }
400
401         return retval;
402 }
403
404 static int cortex_a_dpm_finish(struct arm_dpm *dpm)
405 {
406         /* REVISIT what could be done here? */
407         return ERROR_OK;
408 }
409
410 static int cortex_a_instr_write_data_dcc(struct arm_dpm *dpm,
411         uint32_t opcode, uint32_t data)
412 {
413         struct cortex_a_common *a = dpm_to_a(dpm);
414         int retval;
415         uint32_t dscr = DSCR_INSTR_COMP;
416
417         retval = cortex_a_write_dcc(a, data);
418         if (retval != ERROR_OK)
419                 return retval;
420
421         return cortex_a_exec_opcode(
422                         a->armv7a_common.arm.target,
423                         opcode,
424                         &dscr);
425 }
426
427 static int cortex_a_instr_write_data_r0(struct arm_dpm *dpm,
428         uint32_t opcode, uint32_t data)
429 {
430         struct cortex_a_common *a = dpm_to_a(dpm);
431         uint32_t dscr = DSCR_INSTR_COMP;
432         int retval;
433
434         retval = cortex_a_write_dcc(a, data);
435         if (retval != ERROR_OK)
436                 return retval;
437
438         /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
439         retval = cortex_a_exec_opcode(
440                         a->armv7a_common.arm.target,
441                         ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
442                         &dscr);
443         if (retval != ERROR_OK)
444                 return retval;
445
446         /* then the opcode, taking data from R0 */
447         retval = cortex_a_exec_opcode(
448                         a->armv7a_common.arm.target,
449                         opcode,
450                         &dscr);
451
452         return retval;
453 }
454
455 static int cortex_a_instr_cpsr_sync(struct arm_dpm *dpm)
456 {
457         struct target *target = dpm->arm->target;
458         uint32_t dscr = DSCR_INSTR_COMP;
459
460         /* "Prefetch flush" after modifying execution status in CPSR */
461         return cortex_a_exec_opcode(target,
462                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
463                         &dscr);
464 }
465
466 static int cortex_a_instr_read_data_dcc(struct arm_dpm *dpm,
467         uint32_t opcode, uint32_t *data)
468 {
469         struct cortex_a_common *a = dpm_to_a(dpm);
470         int retval;
471         uint32_t dscr = DSCR_INSTR_COMP;
472
473         /* the opcode, writing data to DCC */
474         retval = cortex_a_exec_opcode(
475                         a->armv7a_common.arm.target,
476                         opcode,
477                         &dscr);
478         if (retval != ERROR_OK)
479                 return retval;
480
481         return cortex_a_read_dcc(a, data, &dscr);
482 }
483
484
485 static int cortex_a_instr_read_data_r0(struct arm_dpm *dpm,
486         uint32_t opcode, uint32_t *data)
487 {
488         struct cortex_a_common *a = dpm_to_a(dpm);
489         uint32_t dscr = DSCR_INSTR_COMP;
490         int retval;
491
492         /* the opcode, writing data to R0 */
493         retval = cortex_a_exec_opcode(
494                         a->armv7a_common.arm.target,
495                         opcode,
496                         &dscr);
497         if (retval != ERROR_OK)
498                 return retval;
499
500         /* write R0 to DCC */
501         retval = cortex_a_exec_opcode(
502                         a->armv7a_common.arm.target,
503                         ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
504                         &dscr);
505         if (retval != ERROR_OK)
506                 return retval;
507
508         return cortex_a_read_dcc(a, data, &dscr);
509 }
510
511 static int cortex_a_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
512         uint32_t addr, uint32_t control)
513 {
514         struct cortex_a_common *a = dpm_to_a(dpm);
515         uint32_t vr = a->armv7a_common.debug_base;
516         uint32_t cr = a->armv7a_common.debug_base;
517         int retval;
518
519         switch (index_t) {
520                 case 0 ... 15:  /* breakpoints */
521                         vr += CPUDBG_BVR_BASE;
522                         cr += CPUDBG_BCR_BASE;
523                         break;
524                 case 16 ... 31: /* watchpoints */
525                         vr += CPUDBG_WVR_BASE;
526                         cr += CPUDBG_WCR_BASE;
527                         index_t -= 16;
528                         break;
529                 default:
530                         return ERROR_FAIL;
531         }
532         vr += 4 * index_t;
533         cr += 4 * index_t;
534
535         LOG_DEBUG("A: bpwp enable, vr %08x cr %08x",
536                 (unsigned) vr, (unsigned) cr);
537
538         retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
539                         vr, addr);
540         if (retval != ERROR_OK)
541                 return retval;
542         retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
543                         cr, control);
544         return retval;
545 }
546
547 static int cortex_a_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
548 {
549         struct cortex_a_common *a = dpm_to_a(dpm);
550         uint32_t cr;
551
552         switch (index_t) {
553                 case 0 ... 15:
554                         cr = a->armv7a_common.debug_base + CPUDBG_BCR_BASE;
555                         break;
556                 case 16 ... 31:
557                         cr = a->armv7a_common.debug_base + CPUDBG_WCR_BASE;
558                         index_t -= 16;
559                         break;
560                 default:
561                         return ERROR_FAIL;
562         }
563         cr += 4 * index_t;
564
565         LOG_DEBUG("A: bpwp disable, cr %08x", (unsigned) cr);
566
567         /* clear control register */
568         return cortex_a_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
569 }
570
571 static int cortex_a_dpm_setup(struct cortex_a_common *a, uint32_t didr)
572 {
573         struct arm_dpm *dpm = &a->armv7a_common.dpm;
574         int retval;
575
576         dpm->arm = &a->armv7a_common.arm;
577         dpm->didr = didr;
578
579         dpm->prepare = cortex_a_dpm_prepare;
580         dpm->finish = cortex_a_dpm_finish;
581
582         dpm->instr_write_data_dcc = cortex_a_instr_write_data_dcc;
583         dpm->instr_write_data_r0 = cortex_a_instr_write_data_r0;
584         dpm->instr_cpsr_sync = cortex_a_instr_cpsr_sync;
585
586         dpm->instr_read_data_dcc = cortex_a_instr_read_data_dcc;
587         dpm->instr_read_data_r0 = cortex_a_instr_read_data_r0;
588
589         dpm->bpwp_enable = cortex_a_bpwp_enable;
590         dpm->bpwp_disable = cortex_a_bpwp_disable;
591
592         retval = arm_dpm_setup(dpm);
593         if (retval == ERROR_OK)
594                 retval = arm_dpm_initialize(dpm);
595
596         return retval;
597 }
598 static struct target *get_cortex_a(struct target *target, int32_t coreid)
599 {
600         struct target_list *head;
601         struct target *curr;
602
603         head = target->head;
604         while (head != (struct target_list *)NULL) {
605                 curr = head->target;
606                 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
607                         return curr;
608                 head = head->next;
609         }
610         return target;
611 }
612 static int cortex_a_halt(struct target *target);
613
614 static int cortex_a_halt_smp(struct target *target)
615 {
616         int retval = 0;
617         struct target_list *head;
618         struct target *curr;
619         head = target->head;
620         while (head != (struct target_list *)NULL) {
621                 curr = head->target;
622                 if ((curr != target) && (curr->state != TARGET_HALTED)
623                         && target_was_examined(curr))
624                         retval += cortex_a_halt(curr);
625                 head = head->next;
626         }
627         return retval;
628 }
629
630 static int update_halt_gdb(struct target *target)
631 {
632         struct target *gdb_target = NULL;
633         struct target_list *head;
634         struct target *curr;
635         int retval = 0;
636
637         if (target->gdb_service && target->gdb_service->core[0] == -1) {
638                 target->gdb_service->target = target;
639                 target->gdb_service->core[0] = target->coreid;
640                 retval += cortex_a_halt_smp(target);
641         }
642
643         if (target->gdb_service)
644                 gdb_target = target->gdb_service->target;
645
646         foreach_smp_target(head, target->head) {
647                 curr = head->target;
648                 /* skip calling context */
649                 if (curr == target)
650                         continue;
651                 if (!target_was_examined(curr))
652                         continue;
653                 /* skip targets that were already halted */
654                 if (curr->state == TARGET_HALTED)
655                         continue;
656                 /* Skip gdb_target; it alerts GDB so has to be polled as last one */
657                 if (curr == gdb_target)
658                         continue;
659
660                 /* avoid recursion in cortex_a_poll() */
661                 curr->smp = 0;
662                 cortex_a_poll(curr);
663                 curr->smp = 1;
664         }
665
666         /* after all targets were updated, poll the gdb serving target */
667         if (gdb_target != NULL && gdb_target != target)
668                 cortex_a_poll(gdb_target);
669         return retval;
670 }
671
672 /*
673  * Cortex-A Run control
674  */
675
676 static int cortex_a_poll(struct target *target)
677 {
678         int retval = ERROR_OK;
679         uint32_t dscr;
680         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
681         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
682         enum target_state prev_target_state = target->state;
683         /*  toggle to another core is done by gdb as follow */
684         /*  maint packet J core_id */
685         /*  continue */
686         /*  the next polling trigger an halt event sent to gdb */
687         if ((target->state == TARGET_HALTED) && (target->smp) &&
688                 (target->gdb_service) &&
689                 (target->gdb_service->target == NULL)) {
690                 target->gdb_service->target =
691                         get_cortex_a(target, target->gdb_service->core[1]);
692                 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
693                 return retval;
694         }
695         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
696                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
697         if (retval != ERROR_OK)
698                 return retval;
699         cortex_a->cpudbg_dscr = dscr;
700
701         if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED)) {
702                 if (prev_target_state != TARGET_HALTED) {
703                         /* We have a halting debug event */
704                         LOG_DEBUG("Target halted");
705                         target->state = TARGET_HALTED;
706
707                         retval = cortex_a_debug_entry(target);
708                         if (retval != ERROR_OK)
709                                 return retval;
710
711                         if (target->smp) {
712                                 retval = update_halt_gdb(target);
713                                 if (retval != ERROR_OK)
714                                         return retval;
715                         }
716
717                         if (prev_target_state == TARGET_DEBUG_RUNNING) {
718                                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
719                         } else { /* prev_target_state is RUNNING, UNKNOWN or RESET */
720                                 if (arm_semihosting(target, &retval) != 0)
721                                         return retval;
722
723                                 target_call_event_callbacks(target,
724                                         TARGET_EVENT_HALTED);
725                         }
726                 }
727         } else
728                 target->state = TARGET_RUNNING;
729
730         return retval;
731 }
732
733 static int cortex_a_halt(struct target *target)
734 {
735         int retval;
736         uint32_t dscr;
737         struct armv7a_common *armv7a = target_to_armv7a(target);
738
739         /*
740          * Tell the core to be halted by writing DRCR with 0x1
741          * and then wait for the core to be halted.
742          */
743         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
744                         armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
745         if (retval != ERROR_OK)
746                 return retval;
747
748         dscr = 0; /* force read of dscr */
749         retval = cortex_a_wait_dscr_bits(target, DSCR_CORE_HALTED,
750                         DSCR_CORE_HALTED, &dscr);
751         if (retval != ERROR_OK) {
752                 LOG_ERROR("Error waiting for halt");
753                 return retval;
754         }
755
756         target->debug_reason = DBG_REASON_DBGRQ;
757
758         return ERROR_OK;
759 }
760
761 static int cortex_a_internal_restore(struct target *target, int current,
762         target_addr_t *address, int handle_breakpoints, int debug_execution)
763 {
764         struct armv7a_common *armv7a = target_to_armv7a(target);
765         struct arm *arm = &armv7a->arm;
766         int retval;
767         uint32_t resume_pc;
768
769         if (!debug_execution)
770                 target_free_all_working_areas(target);
771
772 #if 0
773         if (debug_execution) {
774                 /* Disable interrupts */
775                 /* We disable interrupts in the PRIMASK register instead of
776                  * masking with C_MASKINTS,
777                  * This is probably the same issue as Cortex-M3 Errata 377493:
778                  * C_MASKINTS in parallel with disabled interrupts can cause
779                  * local faults to not be taken. */
780                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
781                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = true;
782                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = true;
783
784                 /* Make sure we are in Thumb mode */
785                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
786                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0,
787                         32) | (1 << 24));
788                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = true;
789                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = true;
790         }
791 #endif
792
793         /* current = 1: continue on current pc, otherwise continue at <address> */
794         resume_pc = buf_get_u32(arm->pc->value, 0, 32);
795         if (!current)
796                 resume_pc = *address;
797         else
798                 *address = resume_pc;
799
800         /* Make sure that the Armv7 gdb thumb fixups does not
801          * kill the return address
802          */
803         switch (arm->core_state) {
804                 case ARM_STATE_ARM:
805                         resume_pc &= 0xFFFFFFFC;
806                         break;
807                 case ARM_STATE_THUMB:
808                 case ARM_STATE_THUMB_EE:
809                         /* When the return address is loaded into PC
810                          * bit 0 must be 1 to stay in Thumb state
811                          */
812                         resume_pc |= 0x1;
813                         break;
814                 case ARM_STATE_JAZELLE:
815                         LOG_ERROR("How do I resume into Jazelle state??");
816                         return ERROR_FAIL;
817                 case ARM_STATE_AARCH64:
818                         LOG_ERROR("Shoudn't be in AARCH64 state");
819                         return ERROR_FAIL;
820         }
821         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
822         buf_set_u32(arm->pc->value, 0, 32, resume_pc);
823         arm->pc->dirty = true;
824         arm->pc->valid = true;
825
826         /* restore dpm_mode at system halt */
827         arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
828         /* called it now before restoring context because it uses cpu
829          * register r0 for restoring cp15 control register */
830         retval = cortex_a_restore_cp15_control_reg(target);
831         if (retval != ERROR_OK)
832                 return retval;
833         retval = cortex_a_restore_context(target, handle_breakpoints);
834         if (retval != ERROR_OK)
835                 return retval;
836         target->debug_reason = DBG_REASON_NOTHALTED;
837         target->state = TARGET_RUNNING;
838
839         /* registers are now invalid */
840         register_cache_invalidate(arm->core_cache);
841
842 #if 0
843         /* the front-end may request us not to handle breakpoints */
844         if (handle_breakpoints) {
845                 /* Single step past breakpoint at current address */
846                 breakpoint = breakpoint_find(target, resume_pc);
847                 if (breakpoint) {
848                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
849                         cortex_m3_unset_breakpoint(target, breakpoint);
850                         cortex_m3_single_step_core(target);
851                         cortex_m3_set_breakpoint(target, breakpoint);
852                 }
853         }
854
855 #endif
856         return retval;
857 }
858
859 static int cortex_a_internal_restart(struct target *target)
860 {
861         struct armv7a_common *armv7a = target_to_armv7a(target);
862         struct arm *arm = &armv7a->arm;
863         int retval;
864         uint32_t dscr;
865         /*
866          * * Restart core and wait for it to be started.  Clear ITRen and sticky
867          * * exception flags: see ARMv7 ARM, C5.9.
868          *
869          * REVISIT: for single stepping, we probably want to
870          * disable IRQs by default, with optional override...
871          */
872
873         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
874                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
875         if (retval != ERROR_OK)
876                 return retval;
877
878         if ((dscr & DSCR_INSTR_COMP) == 0)
879                 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
880
881         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
882                         armv7a->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
883         if (retval != ERROR_OK)
884                 return retval;
885
886         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
887                         armv7a->debug_base + CPUDBG_DRCR, DRCR_RESTART |
888                         DRCR_CLEAR_EXCEPTIONS);
889         if (retval != ERROR_OK)
890                 return retval;
891
892         dscr = 0; /* force read of dscr */
893         retval = cortex_a_wait_dscr_bits(target, DSCR_CORE_RESTARTED,
894                         DSCR_CORE_RESTARTED, &dscr);
895         if (retval != ERROR_OK) {
896                 LOG_ERROR("Error waiting for resume");
897                 return retval;
898         }
899
900         target->debug_reason = DBG_REASON_NOTHALTED;
901         target->state = TARGET_RUNNING;
902
903         /* registers are now invalid */
904         register_cache_invalidate(arm->core_cache);
905
906         return ERROR_OK;
907 }
908
909 static int cortex_a_restore_smp(struct target *target, int handle_breakpoints)
910 {
911         int retval = 0;
912         struct target_list *head;
913         struct target *curr;
914         target_addr_t address;
915         head = target->head;
916         while (head != (struct target_list *)NULL) {
917                 curr = head->target;
918                 if ((curr != target) && (curr->state != TARGET_RUNNING)
919                         && target_was_examined(curr)) {
920                         /*  resume current address , not in step mode */
921                         retval += cortex_a_internal_restore(curr, 1, &address,
922                                         handle_breakpoints, 0);
923                         retval += cortex_a_internal_restart(curr);
924                 }
925                 head = head->next;
926
927         }
928         return retval;
929 }
930
931 static int cortex_a_resume(struct target *target, int current,
932         target_addr_t address, int handle_breakpoints, int debug_execution)
933 {
934         int retval = 0;
935         /* dummy resume for smp toggle in order to reduce gdb impact  */
936         if ((target->smp) && (target->gdb_service->core[1] != -1)) {
937                 /*   simulate a start and halt of target */
938                 target->gdb_service->target = NULL;
939                 target->gdb_service->core[0] = target->gdb_service->core[1];
940                 /*  fake resume at next poll we play the  target core[1], see poll*/
941                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
942                 return 0;
943         }
944         cortex_a_internal_restore(target, current, &address, handle_breakpoints, debug_execution);
945         if (target->smp) {
946                 target->gdb_service->core[0] = -1;
947                 retval = cortex_a_restore_smp(target, handle_breakpoints);
948                 if (retval != ERROR_OK)
949                         return retval;
950         }
951         cortex_a_internal_restart(target);
952
953         if (!debug_execution) {
954                 target->state = TARGET_RUNNING;
955                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
956                 LOG_DEBUG("target resumed at " TARGET_ADDR_FMT, address);
957         } else {
958                 target->state = TARGET_DEBUG_RUNNING;
959                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
960                 LOG_DEBUG("target debug resumed at " TARGET_ADDR_FMT, address);
961         }
962
963         return ERROR_OK;
964 }
965
966 static int cortex_a_debug_entry(struct target *target)
967 {
968         uint32_t dscr;
969         int retval = ERROR_OK;
970         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
971         struct armv7a_common *armv7a = target_to_armv7a(target);
972         struct arm *arm = &armv7a->arm;
973
974         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a->cpudbg_dscr);
975
976         /* REVISIT surely we should not re-read DSCR !! */
977         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
978                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
979         if (retval != ERROR_OK)
980                 return retval;
981
982         /* REVISIT see A TRM 12.11.4 steps 2..3 -- make sure that any
983          * imprecise data aborts get discarded by issuing a Data
984          * Synchronization Barrier:  ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
985          */
986
987         /* Enable the ITR execution once we are in debug mode */
988         dscr |= DSCR_ITR_EN;
989         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
990                         armv7a->debug_base + CPUDBG_DSCR, dscr);
991         if (retval != ERROR_OK)
992                 return retval;
993
994         /* Examine debug reason */
995         arm_dpm_report_dscr(&armv7a->dpm, cortex_a->cpudbg_dscr);
996
997         /* save address of instruction that triggered the watchpoint? */
998         if (target->debug_reason == DBG_REASON_WATCHPOINT) {
999                 uint32_t wfar;
1000
1001                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1002                                 armv7a->debug_base + CPUDBG_WFAR,
1003                                 &wfar);
1004                 if (retval != ERROR_OK)
1005                         return retval;
1006                 arm_dpm_report_wfar(&armv7a->dpm, wfar);
1007         }
1008
1009         /* First load register accessible through core debug port */
1010         retval = arm_dpm_read_current_registers(&armv7a->dpm);
1011         if (retval != ERROR_OK)
1012                 return retval;
1013
1014         if (arm->spsr) {
1015                 /* read SPSR */
1016                 retval = arm_dpm_read_reg(&armv7a->dpm, arm->spsr, 17);
1017                 if (retval != ERROR_OK)
1018                         return retval;
1019         }
1020
1021 #if 0
1022 /* TODO, Move this */
1023         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
1024         cortex_a_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
1025         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
1026
1027         cortex_a_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
1028         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
1029
1030         cortex_a_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
1031         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
1032 #endif
1033
1034         /* Are we in an exception handler */
1035 /*      armv4_5->exception_number = 0; */
1036         if (armv7a->post_debug_entry) {
1037                 retval = armv7a->post_debug_entry(target);
1038                 if (retval != ERROR_OK)
1039                         return retval;
1040         }
1041
1042         return retval;
1043 }
1044
1045 static int cortex_a_post_debug_entry(struct target *target)
1046 {
1047         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1048         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1049         int retval;
1050
1051         /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1052         retval = armv7a->arm.mrc(target, 15,
1053                         0, 0,   /* op1, op2 */
1054                         1, 0,   /* CRn, CRm */
1055                         &cortex_a->cp15_control_reg);
1056         if (retval != ERROR_OK)
1057                 return retval;
1058         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg);
1059         cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
1060
1061         if (!armv7a->is_armv7r)
1062                 armv7a_read_ttbcr(target);
1063
1064         if (armv7a->armv7a_mmu.armv7a_cache.info == -1)
1065                 armv7a_identify_cache(target);
1066
1067         if (armv7a->is_armv7r) {
1068                 armv7a->armv7a_mmu.mmu_enabled = 0;
1069         } else {
1070                 armv7a->armv7a_mmu.mmu_enabled =
1071                         (cortex_a->cp15_control_reg & 0x1U) ? 1 : 0;
1072         }
1073         armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled =
1074                 (cortex_a->cp15_control_reg & 0x4U) ? 1 : 0;
1075         armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled =
1076                 (cortex_a->cp15_control_reg & 0x1000U) ? 1 : 0;
1077         cortex_a->curr_mode = armv7a->arm.core_mode;
1078
1079         /* switch to SVC mode to read DACR */
1080         arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
1081         armv7a->arm.mrc(target, 15,
1082                         0, 0, 3, 0,
1083                         &cortex_a->cp15_dacr_reg);
1084
1085         LOG_DEBUG("cp15_dacr_reg: %8.8" PRIx32,
1086                         cortex_a->cp15_dacr_reg);
1087
1088         arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
1089         return ERROR_OK;
1090 }
1091
1092 int cortex_a_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
1093 {
1094         struct armv7a_common *armv7a = target_to_armv7a(target);
1095         uint32_t dscr;
1096
1097         /* Read DSCR */
1098         int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1099                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
1100         if (ERROR_OK != retval)
1101                 return retval;
1102
1103         /* clear bitfield */
1104         dscr &= ~bit_mask;
1105         /* put new value */
1106         dscr |= value & bit_mask;
1107
1108         /* write new DSCR */
1109         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1110                         armv7a->debug_base + CPUDBG_DSCR, dscr);
1111         return retval;
1112 }
1113
1114 static int cortex_a_step(struct target *target, int current, target_addr_t address,
1115         int handle_breakpoints)
1116 {
1117         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1118         struct armv7a_common *armv7a = target_to_armv7a(target);
1119         struct arm *arm = &armv7a->arm;
1120         struct breakpoint *breakpoint = NULL;
1121         struct breakpoint stepbreakpoint;
1122         struct reg *r;
1123         int retval;
1124
1125         if (target->state != TARGET_HALTED) {
1126                 LOG_WARNING("target not halted");
1127                 return ERROR_TARGET_NOT_HALTED;
1128         }
1129
1130         /* current = 1: continue on current pc, otherwise continue at <address> */
1131         r = arm->pc;
1132         if (!current)
1133                 buf_set_u32(r->value, 0, 32, address);
1134         else
1135                 address = buf_get_u32(r->value, 0, 32);
1136
1137         /* The front-end may request us not to handle breakpoints.
1138          * But since Cortex-A uses breakpoint for single step,
1139          * we MUST handle breakpoints.
1140          */
1141         handle_breakpoints = 1;
1142         if (handle_breakpoints) {
1143                 breakpoint = breakpoint_find(target, address);
1144                 if (breakpoint)
1145                         cortex_a_unset_breakpoint(target, breakpoint);
1146         }
1147
1148         /* Setup single step breakpoint */
1149         stepbreakpoint.address = address;
1150         stepbreakpoint.asid = 0;
1151         stepbreakpoint.length = (arm->core_state == ARM_STATE_THUMB)
1152                 ? 2 : 4;
1153         stepbreakpoint.type = BKPT_HARD;
1154         stepbreakpoint.set = 0;
1155
1156         /* Disable interrupts during single step if requested */
1157         if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1158                 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, DSCR_INT_DIS);
1159                 if (ERROR_OK != retval)
1160                         return retval;
1161         }
1162
1163         /* Break on IVA mismatch */
1164         cortex_a_set_breakpoint(target, &stepbreakpoint, 0x04);
1165
1166         target->debug_reason = DBG_REASON_SINGLESTEP;
1167
1168         retval = cortex_a_resume(target, 1, address, 0, 0);
1169         if (retval != ERROR_OK)
1170                 return retval;
1171
1172         int64_t then = timeval_ms();
1173         while (target->state != TARGET_HALTED) {
1174                 retval = cortex_a_poll(target);
1175                 if (retval != ERROR_OK)
1176                         return retval;
1177                 if (target->state == TARGET_HALTED)
1178                         break;
1179                 if (timeval_ms() > then + 1000) {
1180                         LOG_ERROR("timeout waiting for target halt");
1181                         return ERROR_FAIL;
1182                 }
1183         }
1184
1185         cortex_a_unset_breakpoint(target, &stepbreakpoint);
1186
1187         /* Re-enable interrupts if they were disabled */
1188         if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1189                 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, 0);
1190                 if (ERROR_OK != retval)
1191                         return retval;
1192         }
1193
1194
1195         target->debug_reason = DBG_REASON_BREAKPOINT;
1196
1197         if (breakpoint)
1198                 cortex_a_set_breakpoint(target, breakpoint, 0);
1199
1200         if (target->state != TARGET_HALTED)
1201                 LOG_DEBUG("target stepped");
1202
1203         return ERROR_OK;
1204 }
1205
1206 static int cortex_a_restore_context(struct target *target, bool bpwp)
1207 {
1208         struct armv7a_common *armv7a = target_to_armv7a(target);
1209
1210         LOG_DEBUG(" ");
1211
1212         if (armv7a->pre_restore_context)
1213                 armv7a->pre_restore_context(target);
1214
1215         return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1216 }
1217
1218 /*
1219  * Cortex-A Breakpoint and watchpoint functions
1220  */
1221
1222 /* Setup hardware Breakpoint Register Pair */
1223 static int cortex_a_set_breakpoint(struct target *target,
1224         struct breakpoint *breakpoint, uint8_t matchmode)
1225 {
1226         int retval;
1227         int brp_i = 0;
1228         uint32_t control;
1229         uint8_t byte_addr_select = 0x0F;
1230         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1231         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1232         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1233
1234         if (breakpoint->set) {
1235                 LOG_WARNING("breakpoint already set");
1236                 return ERROR_OK;
1237         }
1238
1239         if (breakpoint->type == BKPT_HARD) {
1240                 while (brp_list[brp_i].used && (brp_i < cortex_a->brp_num))
1241                         brp_i++;
1242                 if (brp_i >= cortex_a->brp_num) {
1243                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1244                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1245                 }
1246                 breakpoint->set = brp_i + 1;
1247                 if (breakpoint->length == 2)
1248                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1249                 control = ((matchmode & 0x7) << 20)
1250                         | (byte_addr_select << 5)
1251                         | (3 << 1) | 1;
1252                 brp_list[brp_i].used = 1;
1253                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1254                 brp_list[brp_i].control = control;
1255                 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1256                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1257                                 brp_list[brp_i].value);
1258                 if (retval != ERROR_OK)
1259                         return retval;
1260                 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1261                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1262                                 brp_list[brp_i].control);
1263                 if (retval != ERROR_OK)
1264                         return retval;
1265                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1266                         brp_list[brp_i].control,
1267                         brp_list[brp_i].value);
1268         } else if (breakpoint->type == BKPT_SOFT) {
1269                 uint8_t code[4];
1270                 /* length == 2: Thumb breakpoint */
1271                 if (breakpoint->length == 2)
1272                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1273                 else
1274                 /* length == 3: Thumb-2 breakpoint, actual encoding is
1275                  * a regular Thumb BKPT instruction but we replace a
1276                  * 32bit Thumb-2 instruction, so fix-up the breakpoint
1277                  * length
1278                  */
1279                 if (breakpoint->length == 3) {
1280                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1281                         breakpoint->length = 4;
1282                 } else
1283                         /* length == 4, normal ARM breakpoint */
1284                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1285
1286                 retval = target_read_memory(target,
1287                                 breakpoint->address & 0xFFFFFFFE,
1288                                 breakpoint->length, 1,
1289                                 breakpoint->orig_instr);
1290                 if (retval != ERROR_OK)
1291                         return retval;
1292
1293                 /* make sure data cache is cleaned & invalidated down to PoC */
1294                 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1295                         armv7a_cache_flush_virt(target, breakpoint->address,
1296                                                 breakpoint->length);
1297                 }
1298
1299                 retval = target_write_memory(target,
1300                                 breakpoint->address & 0xFFFFFFFE,
1301                                 breakpoint->length, 1, code);
1302                 if (retval != ERROR_OK)
1303                         return retval;
1304
1305                 /* update i-cache at breakpoint location */
1306                 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1307                                         breakpoint->length);
1308                 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1309                                                  breakpoint->length);
1310
1311                 breakpoint->set = 0x11; /* Any nice value but 0 */
1312         }
1313
1314         return ERROR_OK;
1315 }
1316
1317 static int cortex_a_set_context_breakpoint(struct target *target,
1318         struct breakpoint *breakpoint, uint8_t matchmode)
1319 {
1320         int retval = ERROR_FAIL;
1321         int brp_i = 0;
1322         uint32_t control;
1323         uint8_t byte_addr_select = 0x0F;
1324         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1325         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1326         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1327
1328         if (breakpoint->set) {
1329                 LOG_WARNING("breakpoint already set");
1330                 return retval;
1331         }
1332         /*check available context BRPs*/
1333         while ((brp_list[brp_i].used ||
1334                 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < cortex_a->brp_num))
1335                 brp_i++;
1336
1337         if (brp_i >= cortex_a->brp_num) {
1338                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1339                 return ERROR_FAIL;
1340         }
1341
1342         breakpoint->set = brp_i + 1;
1343         control = ((matchmode & 0x7) << 20)
1344                 | (byte_addr_select << 5)
1345                 | (3 << 1) | 1;
1346         brp_list[brp_i].used = 1;
1347         brp_list[brp_i].value = (breakpoint->asid);
1348         brp_list[brp_i].control = control;
1349         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1350                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1351                         brp_list[brp_i].value);
1352         if (retval != ERROR_OK)
1353                 return retval;
1354         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1355                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1356                         brp_list[brp_i].control);
1357         if (retval != ERROR_OK)
1358                 return retval;
1359         LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1360                 brp_list[brp_i].control,
1361                 brp_list[brp_i].value);
1362         return ERROR_OK;
1363
1364 }
1365
1366 static int cortex_a_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1367 {
1368         int retval = ERROR_FAIL;
1369         int brp_1 = 0;  /* holds the contextID pair */
1370         int brp_2 = 0;  /* holds the IVA pair */
1371         uint32_t control_CTX, control_IVA;
1372         uint8_t CTX_byte_addr_select = 0x0F;
1373         uint8_t IVA_byte_addr_select = 0x0F;
1374         uint8_t CTX_machmode = 0x03;
1375         uint8_t IVA_machmode = 0x01;
1376         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1377         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1378         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1379
1380         if (breakpoint->set) {
1381                 LOG_WARNING("breakpoint already set");
1382                 return retval;
1383         }
1384         /*check available context BRPs*/
1385         while ((brp_list[brp_1].used ||
1386                 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < cortex_a->brp_num))
1387                 brp_1++;
1388
1389         printf("brp(CTX) found num: %d\n", brp_1);
1390         if (brp_1 >= cortex_a->brp_num) {
1391                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1392                 return ERROR_FAIL;
1393         }
1394
1395         while ((brp_list[brp_2].used ||
1396                 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < cortex_a->brp_num))
1397                 brp_2++;
1398
1399         printf("brp(IVA) found num: %d\n", brp_2);
1400         if (brp_2 >= cortex_a->brp_num) {
1401                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1402                 return ERROR_FAIL;
1403         }
1404
1405         breakpoint->set = brp_1 + 1;
1406         breakpoint->linked_BRP = brp_2;
1407         control_CTX = ((CTX_machmode & 0x7) << 20)
1408                 | (brp_2 << 16)
1409                 | (0 << 14)
1410                 | (CTX_byte_addr_select << 5)
1411                 | (3 << 1) | 1;
1412         brp_list[brp_1].used = 1;
1413         brp_list[brp_1].value = (breakpoint->asid);
1414         brp_list[brp_1].control = control_CTX;
1415         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1416                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_1].BRPn,
1417                         brp_list[brp_1].value);
1418         if (retval != ERROR_OK)
1419                 return retval;
1420         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1421                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_1].BRPn,
1422                         brp_list[brp_1].control);
1423         if (retval != ERROR_OK)
1424                 return retval;
1425
1426         control_IVA = ((IVA_machmode & 0x7) << 20)
1427                 | (brp_1 << 16)
1428                 | (IVA_byte_addr_select << 5)
1429                 | (3 << 1) | 1;
1430         brp_list[brp_2].used = 1;
1431         brp_list[brp_2].value = (breakpoint->address & 0xFFFFFFFC);
1432         brp_list[brp_2].control = control_IVA;
1433         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1434                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_2].BRPn,
1435                         brp_list[brp_2].value);
1436         if (retval != ERROR_OK)
1437                 return retval;
1438         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1439                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_2].BRPn,
1440                         brp_list[brp_2].control);
1441         if (retval != ERROR_OK)
1442                 return retval;
1443
1444         return ERROR_OK;
1445 }
1446
1447 static int cortex_a_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1448 {
1449         int retval;
1450         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1451         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1452         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1453
1454         if (!breakpoint->set) {
1455                 LOG_WARNING("breakpoint not set");
1456                 return ERROR_OK;
1457         }
1458
1459         if (breakpoint->type == BKPT_HARD) {
1460                 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1461                         int brp_i = breakpoint->set - 1;
1462                         int brp_j = breakpoint->linked_BRP;
1463                         if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1464                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1465                                 return ERROR_OK;
1466                         }
1467                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1468                                 brp_list[brp_i].control, brp_list[brp_i].value);
1469                         brp_list[brp_i].used = 0;
1470                         brp_list[brp_i].value = 0;
1471                         brp_list[brp_i].control = 0;
1472                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1473                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1474                                         brp_list[brp_i].control);
1475                         if (retval != ERROR_OK)
1476                                 return retval;
1477                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1478                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1479                                         brp_list[brp_i].value);
1480                         if (retval != ERROR_OK)
1481                                 return retval;
1482                         if ((brp_j < 0) || (brp_j >= cortex_a->brp_num)) {
1483                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1484                                 return ERROR_OK;
1485                         }
1486                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_j,
1487                                 brp_list[brp_j].control, brp_list[brp_j].value);
1488                         brp_list[brp_j].used = 0;
1489                         brp_list[brp_j].value = 0;
1490                         brp_list[brp_j].control = 0;
1491                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1492                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_j].BRPn,
1493                                         brp_list[brp_j].control);
1494                         if (retval != ERROR_OK)
1495                                 return retval;
1496                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1497                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_j].BRPn,
1498                                         brp_list[brp_j].value);
1499                         if (retval != ERROR_OK)
1500                                 return retval;
1501                         breakpoint->linked_BRP = 0;
1502                         breakpoint->set = 0;
1503                         return ERROR_OK;
1504
1505                 } else {
1506                         int brp_i = breakpoint->set - 1;
1507                         if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1508                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1509                                 return ERROR_OK;
1510                         }
1511                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1512                                 brp_list[brp_i].control, brp_list[brp_i].value);
1513                         brp_list[brp_i].used = 0;
1514                         brp_list[brp_i].value = 0;
1515                         brp_list[brp_i].control = 0;
1516                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1517                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1518                                         brp_list[brp_i].control);
1519                         if (retval != ERROR_OK)
1520                                 return retval;
1521                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1522                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1523                                         brp_list[brp_i].value);
1524                         if (retval != ERROR_OK)
1525                                 return retval;
1526                         breakpoint->set = 0;
1527                         return ERROR_OK;
1528                 }
1529         } else {
1530
1531                 /* make sure data cache is cleaned & invalidated down to PoC */
1532                 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1533                         armv7a_cache_flush_virt(target, breakpoint->address,
1534                                                 breakpoint->length);
1535                 }
1536
1537                 /* restore original instruction (kept in target endianness) */
1538                 if (breakpoint->length == 4) {
1539                         retval = target_write_memory(target,
1540                                         breakpoint->address & 0xFFFFFFFE,
1541                                         4, 1, breakpoint->orig_instr);
1542                         if (retval != ERROR_OK)
1543                                 return retval;
1544                 } else {
1545                         retval = target_write_memory(target,
1546                                         breakpoint->address & 0xFFFFFFFE,
1547                                         2, 1, breakpoint->orig_instr);
1548                         if (retval != ERROR_OK)
1549                                 return retval;
1550                 }
1551
1552                 /* update i-cache at breakpoint location */
1553                 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1554                                                  breakpoint->length);
1555                 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1556                                                  breakpoint->length);
1557         }
1558         breakpoint->set = 0;
1559
1560         return ERROR_OK;
1561 }
1562
1563 static int cortex_a_add_breakpoint(struct target *target,
1564         struct breakpoint *breakpoint)
1565 {
1566         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1567
1568         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1569                 LOG_INFO("no hardware breakpoint available");
1570                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1571         }
1572
1573         if (breakpoint->type == BKPT_HARD)
1574                 cortex_a->brp_num_available--;
1575
1576         return cortex_a_set_breakpoint(target, breakpoint, 0x00);       /* Exact match */
1577 }
1578
1579 static int cortex_a_add_context_breakpoint(struct target *target,
1580         struct breakpoint *breakpoint)
1581 {
1582         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1583
1584         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1585                 LOG_INFO("no hardware breakpoint available");
1586                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1587         }
1588
1589         if (breakpoint->type == BKPT_HARD)
1590                 cortex_a->brp_num_available--;
1591
1592         return cortex_a_set_context_breakpoint(target, breakpoint, 0x02);       /* asid match */
1593 }
1594
1595 static int cortex_a_add_hybrid_breakpoint(struct target *target,
1596         struct breakpoint *breakpoint)
1597 {
1598         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1599
1600         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1601                 LOG_INFO("no hardware breakpoint available");
1602                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1603         }
1604
1605         if (breakpoint->type == BKPT_HARD)
1606                 cortex_a->brp_num_available--;
1607
1608         return cortex_a_set_hybrid_breakpoint(target, breakpoint);      /* ??? */
1609 }
1610
1611
1612 static int cortex_a_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1613 {
1614         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1615
1616 #if 0
1617 /* It is perfectly possible to remove breakpoints while the target is running */
1618         if (target->state != TARGET_HALTED) {
1619                 LOG_WARNING("target not halted");
1620                 return ERROR_TARGET_NOT_HALTED;
1621         }
1622 #endif
1623
1624         if (breakpoint->set) {
1625                 cortex_a_unset_breakpoint(target, breakpoint);
1626                 if (breakpoint->type == BKPT_HARD)
1627                         cortex_a->brp_num_available++;
1628         }
1629
1630
1631         return ERROR_OK;
1632 }
1633
1634 /*
1635  * Cortex-A Reset functions
1636  */
1637
1638 static int cortex_a_assert_reset(struct target *target)
1639 {
1640         struct armv7a_common *armv7a = target_to_armv7a(target);
1641
1642         LOG_DEBUG(" ");
1643
1644         /* FIXME when halt is requested, make it work somehow... */
1645
1646         /* This function can be called in "target not examined" state */
1647
1648         /* Issue some kind of warm reset. */
1649         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1650                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1651         else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1652                 /* REVISIT handle "pulls" cases, if there's
1653                  * hardware that needs them to work.
1654                  */
1655
1656                 /*
1657                  * FIXME: fix reset when transport is SWD. This is a temporary
1658                  * work-around for release v0.10 that is not intended to stay!
1659                  */
1660                 if (transport_is_swd() ||
1661                                 (target->reset_halt && (jtag_get_reset_config() & RESET_SRST_NO_GATING)))
1662                         jtag_add_reset(0, 1);
1663
1664         } else {
1665                 LOG_ERROR("%s: how to reset?", target_name(target));
1666                 return ERROR_FAIL;
1667         }
1668
1669         /* registers are now invalid */
1670         if (target_was_examined(target))
1671                 register_cache_invalidate(armv7a->arm.core_cache);
1672
1673         target->state = TARGET_RESET;
1674
1675         return ERROR_OK;
1676 }
1677
1678 static int cortex_a_deassert_reset(struct target *target)
1679 {
1680         int retval;
1681
1682         LOG_DEBUG(" ");
1683
1684         /* be certain SRST is off */
1685         jtag_add_reset(0, 0);
1686
1687         if (target_was_examined(target)) {
1688                 retval = cortex_a_poll(target);
1689                 if (retval != ERROR_OK)
1690                         return retval;
1691         }
1692
1693         if (target->reset_halt) {
1694                 if (target->state != TARGET_HALTED) {
1695                         LOG_WARNING("%s: ran after reset and before halt ...",
1696                                 target_name(target));
1697                         if (target_was_examined(target)) {
1698                                 retval = target_halt(target);
1699                                 if (retval != ERROR_OK)
1700                                         return retval;
1701                         } else
1702                                 target->state = TARGET_UNKNOWN;
1703                 }
1704         }
1705
1706         return ERROR_OK;
1707 }
1708
1709 static int cortex_a_set_dcc_mode(struct target *target, uint32_t mode, uint32_t *dscr)
1710 {
1711         /* Changes the mode of the DCC between non-blocking, stall, and fast mode.
1712          * New desired mode must be in mode. Current value of DSCR must be in
1713          * *dscr, which is updated with new value.
1714          *
1715          * This function elides actually sending the mode-change over the debug
1716          * interface if the mode is already set as desired.
1717          */
1718         uint32_t new_dscr = (*dscr & ~DSCR_EXT_DCC_MASK) | mode;
1719         if (new_dscr != *dscr) {
1720                 struct armv7a_common *armv7a = target_to_armv7a(target);
1721                 int retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1722                                 armv7a->debug_base + CPUDBG_DSCR, new_dscr);
1723                 if (retval == ERROR_OK)
1724                         *dscr = new_dscr;
1725                 return retval;
1726         } else {
1727                 return ERROR_OK;
1728         }
1729 }
1730
1731 static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
1732         uint32_t value, uint32_t *dscr)
1733 {
1734         /* Waits until the specified bit(s) of DSCR take on a specified value. */
1735         struct armv7a_common *armv7a = target_to_armv7a(target);
1736         int64_t then;
1737         int retval;
1738
1739         if ((*dscr & mask) == value)
1740                 return ERROR_OK;
1741
1742         then = timeval_ms();
1743         while (1) {
1744                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1745                                 armv7a->debug_base + CPUDBG_DSCR, dscr);
1746                 if (retval != ERROR_OK) {
1747                         LOG_ERROR("Could not read DSCR register");
1748                         return retval;
1749                 }
1750                 if ((*dscr & mask) == value)
1751                         break;
1752                 if (timeval_ms() > then + 1000) {
1753                         LOG_ERROR("timeout waiting for DSCR bit change");
1754                         return ERROR_FAIL;
1755                 }
1756         }
1757         return ERROR_OK;
1758 }
1759
1760 static int cortex_a_read_copro(struct target *target, uint32_t opcode,
1761         uint32_t *data, uint32_t *dscr)
1762 {
1763         int retval;
1764         struct armv7a_common *armv7a = target_to_armv7a(target);
1765
1766         /* Move from coprocessor to R0. */
1767         retval = cortex_a_exec_opcode(target, opcode, dscr);
1768         if (retval != ERROR_OK)
1769                 return retval;
1770
1771         /* Move from R0 to DTRTX. */
1772         retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0), dscr);
1773         if (retval != ERROR_OK)
1774                 return retval;
1775
1776         /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
1777          * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
1778          * must also check TXfull_l). Most of the time this will be free
1779          * because TXfull_l will be set immediately and cached in dscr. */
1780         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
1781                         DSCR_DTRTX_FULL_LATCHED, dscr);
1782         if (retval != ERROR_OK)
1783                 return retval;
1784
1785         /* Read the value transferred to DTRTX. */
1786         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1787                         armv7a->debug_base + CPUDBG_DTRTX, data);
1788         if (retval != ERROR_OK)
1789                 return retval;
1790
1791         return ERROR_OK;
1792 }
1793
1794 static int cortex_a_read_dfar_dfsr(struct target *target, uint32_t *dfar,
1795         uint32_t *dfsr, uint32_t *dscr)
1796 {
1797         int retval;
1798
1799         if (dfar) {
1800                 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 6, 0, 0), dfar, dscr);
1801                 if (retval != ERROR_OK)
1802                         return retval;
1803         }
1804
1805         if (dfsr) {
1806                 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 5, 0, 0), dfsr, dscr);
1807                 if (retval != ERROR_OK)
1808                         return retval;
1809         }
1810
1811         return ERROR_OK;
1812 }
1813
1814 static int cortex_a_write_copro(struct target *target, uint32_t opcode,
1815         uint32_t data, uint32_t *dscr)
1816 {
1817         int retval;
1818         struct armv7a_common *armv7a = target_to_armv7a(target);
1819
1820         /* Write the value into DTRRX. */
1821         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1822                         armv7a->debug_base + CPUDBG_DTRRX, data);
1823         if (retval != ERROR_OK)
1824                 return retval;
1825
1826         /* Move from DTRRX to R0. */
1827         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), dscr);
1828         if (retval != ERROR_OK)
1829                 return retval;
1830
1831         /* Move from R0 to coprocessor. */
1832         retval = cortex_a_exec_opcode(target, opcode, dscr);
1833         if (retval != ERROR_OK)
1834                 return retval;
1835
1836         /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
1837          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
1838          * check RXfull_l). Most of the time this will be free because RXfull_l
1839          * will be cleared immediately and cached in dscr. */
1840         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
1841         if (retval != ERROR_OK)
1842                 return retval;
1843
1844         return ERROR_OK;
1845 }
1846
1847 static int cortex_a_write_dfar_dfsr(struct target *target, uint32_t dfar,
1848         uint32_t dfsr, uint32_t *dscr)
1849 {
1850         int retval;
1851
1852         retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 6, 0, 0), dfar, dscr);
1853         if (retval != ERROR_OK)
1854                 return retval;
1855
1856         retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 5, 0, 0), dfsr, dscr);
1857         if (retval != ERROR_OK)
1858                 return retval;
1859
1860         return ERROR_OK;
1861 }
1862
1863 static int cortex_a_dfsr_to_error_code(uint32_t dfsr)
1864 {
1865         uint32_t status, upper4;
1866
1867         if (dfsr & (1 << 9)) {
1868                 /* LPAE format. */
1869                 status = dfsr & 0x3f;
1870                 upper4 = status >> 2;
1871                 if (upper4 == 1 || upper4 == 2 || upper4 == 3 || upper4 == 15)
1872                         return ERROR_TARGET_TRANSLATION_FAULT;
1873                 else if (status == 33)
1874                         return ERROR_TARGET_UNALIGNED_ACCESS;
1875                 else
1876                         return ERROR_TARGET_DATA_ABORT;
1877         } else {
1878                 /* Normal format. */
1879                 status = ((dfsr >> 6) & 0x10) | (dfsr & 0xf);
1880                 if (status == 1)
1881                         return ERROR_TARGET_UNALIGNED_ACCESS;
1882                 else if (status == 5 || status == 7 || status == 3 || status == 6 ||
1883                                 status == 9 || status == 11 || status == 13 || status == 15)
1884                         return ERROR_TARGET_TRANSLATION_FAULT;
1885                 else
1886                         return ERROR_TARGET_DATA_ABORT;
1887         }
1888 }
1889
1890 static int cortex_a_write_cpu_memory_slow(struct target *target,
1891         uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
1892 {
1893         /* Writes count objects of size size from *buffer. Old value of DSCR must
1894          * be in *dscr; updated to new value. This is slow because it works for
1895          * non-word-sized objects and (maybe) unaligned accesses. If size == 4 and
1896          * the address is aligned, cortex_a_write_cpu_memory_fast should be
1897          * preferred.
1898          * Preconditions:
1899          * - Address is in R0.
1900          * - R0 is marked dirty.
1901          */
1902         struct armv7a_common *armv7a = target_to_armv7a(target);
1903         struct arm *arm = &armv7a->arm;
1904         int retval;
1905
1906         /* Mark register R1 as dirty, to use for transferring data. */
1907         arm_reg_current(arm, 1)->dirty = true;
1908
1909         /* Switch to non-blocking mode if not already in that mode. */
1910         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
1911         if (retval != ERROR_OK)
1912                 return retval;
1913
1914         /* Go through the objects. */
1915         while (count) {
1916                 /* Write the value to store into DTRRX. */
1917                 uint32_t data, opcode;
1918                 if (size == 1)
1919                         data = *buffer;
1920                 else if (size == 2)
1921                         data = target_buffer_get_u16(target, buffer);
1922                 else
1923                         data = target_buffer_get_u32(target, buffer);
1924                 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1925                                 armv7a->debug_base + CPUDBG_DTRRX, data);
1926                 if (retval != ERROR_OK)
1927                         return retval;
1928
1929                 /* Transfer the value from DTRRX to R1. */
1930                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), dscr);
1931                 if (retval != ERROR_OK)
1932                         return retval;
1933
1934                 /* Write the value transferred to R1 into memory. */
1935                 if (size == 1)
1936                         opcode = ARMV4_5_STRB_IP(1, 0);
1937                 else if (size == 2)
1938                         opcode = ARMV4_5_STRH_IP(1, 0);
1939                 else
1940                         opcode = ARMV4_5_STRW_IP(1, 0);
1941                 retval = cortex_a_exec_opcode(target, opcode, dscr);
1942                 if (retval != ERROR_OK)
1943                         return retval;
1944
1945                 /* Check for faults and return early. */
1946                 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
1947                         return ERROR_OK; /* A data fault is not considered a system failure. */
1948
1949                 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture
1950                  * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
1951                  * must also check RXfull_l). Most of the time this will be free
1952                  * because RXfull_l will be cleared immediately and cached in dscr. */
1953                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
1954                 if (retval != ERROR_OK)
1955                         return retval;
1956
1957                 /* Advance. */
1958                 buffer += size;
1959                 --count;
1960         }
1961
1962         return ERROR_OK;
1963 }
1964
1965 static int cortex_a_write_cpu_memory_fast(struct target *target,
1966         uint32_t count, const uint8_t *buffer, uint32_t *dscr)
1967 {
1968         /* Writes count objects of size 4 from *buffer. Old value of DSCR must be
1969          * in *dscr; updated to new value. This is fast but only works for
1970          * word-sized objects at aligned addresses.
1971          * Preconditions:
1972          * - Address is in R0 and must be a multiple of 4.
1973          * - R0 is marked dirty.
1974          */
1975         struct armv7a_common *armv7a = target_to_armv7a(target);
1976         int retval;
1977
1978         /* Switch to fast mode if not already in that mode. */
1979         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
1980         if (retval != ERROR_OK)
1981                 return retval;
1982
1983         /* Latch STC instruction. */
1984         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1985                         armv7a->debug_base + CPUDBG_ITR, ARMV4_5_STC(0, 1, 0, 1, 14, 5, 0, 4));
1986         if (retval != ERROR_OK)
1987                 return retval;
1988
1989         /* Transfer all the data and issue all the instructions. */
1990         return mem_ap_write_buf_noincr(armv7a->debug_ap, buffer,
1991                         4, count, armv7a->debug_base + CPUDBG_DTRRX);
1992 }
1993
1994 static int cortex_a_write_cpu_memory(struct target *target,
1995         uint32_t address, uint32_t size,
1996         uint32_t count, const uint8_t *buffer)
1997 {
1998         /* Write memory through the CPU. */
1999         int retval, final_retval;
2000         struct armv7a_common *armv7a = target_to_armv7a(target);
2001         struct arm *arm = &armv7a->arm;
2002         uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2003
2004         LOG_DEBUG("Writing CPU memory address 0x%" PRIx32 " size %"  PRIu32 " count %"  PRIu32,
2005                           address, size, count);
2006         if (target->state != TARGET_HALTED) {
2007                 LOG_WARNING("target not halted");
2008                 return ERROR_TARGET_NOT_HALTED;
2009         }
2010
2011         if (!count)
2012                 return ERROR_OK;
2013
2014         /* Clear any abort. */
2015         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2016                         armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2017         if (retval != ERROR_OK)
2018                 return retval;
2019
2020         /* Read DSCR. */
2021         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2022                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
2023         if (retval != ERROR_OK)
2024                 return retval;
2025
2026         /* Switch to non-blocking mode if not already in that mode. */
2027         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2028         if (retval != ERROR_OK)
2029                 goto out;
2030
2031         /* Mark R0 as dirty. */
2032         arm_reg_current(arm, 0)->dirty = true;
2033
2034         /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2035         retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2036         if (retval != ERROR_OK)
2037                 goto out;
2038
2039         /* Get the memory address into R0. */
2040         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2041                         armv7a->debug_base + CPUDBG_DTRRX, address);
2042         if (retval != ERROR_OK)
2043                 goto out;
2044         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2045         if (retval != ERROR_OK)
2046                 goto out;
2047
2048         if (size == 4 && (address % 4) == 0) {
2049                 /* We are doing a word-aligned transfer, so use fast mode. */
2050                 retval = cortex_a_write_cpu_memory_fast(target, count, buffer, &dscr);
2051         } else {
2052                 /* Use slow path. */
2053                 retval = cortex_a_write_cpu_memory_slow(target, size, count, buffer, &dscr);
2054         }
2055
2056 out:
2057         final_retval = retval;
2058
2059         /* Switch to non-blocking mode if not already in that mode. */
2060         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2061         if (final_retval == ERROR_OK)
2062                 final_retval = retval;
2063
2064         /* Wait for last issued instruction to complete. */
2065         retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2066         if (final_retval == ERROR_OK)
2067                 final_retval = retval;
2068
2069         /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2070          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2071          * check RXfull_l). Most of the time this will be free because RXfull_l
2072          * will be cleared immediately and cached in dscr. However, don't do this
2073          * if there is fault, because then the instruction might not have completed
2074          * successfully. */
2075         if (!(dscr & DSCR_STICKY_ABORT_PRECISE)) {
2076                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, &dscr);
2077                 if (retval != ERROR_OK)
2078                         return retval;
2079         }
2080
2081         /* If there were any sticky abort flags, clear them. */
2082         if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2083                 fault_dscr = dscr;
2084                 mem_ap_write_atomic_u32(armv7a->debug_ap,
2085                                 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2086                 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2087         } else {
2088                 fault_dscr = 0;
2089         }
2090
2091         /* Handle synchronous data faults. */
2092         if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2093                 if (final_retval == ERROR_OK) {
2094                         /* Final return value will reflect cause of fault. */
2095                         retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2096                         if (retval == ERROR_OK) {
2097                                 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2098                                 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2099                         } else
2100                                 final_retval = retval;
2101                 }
2102                 /* Fault destroyed DFAR/DFSR; restore them. */
2103                 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2104                 if (retval != ERROR_OK)
2105                         LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2106         }
2107
2108         /* Handle asynchronous data faults. */
2109         if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2110                 if (final_retval == ERROR_OK)
2111                         /* No other error has been recorded so far, so keep this one. */
2112                         final_retval = ERROR_TARGET_DATA_ABORT;
2113         }
2114
2115         /* If the DCC is nonempty, clear it. */
2116         if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2117                 uint32_t dummy;
2118                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2119                                 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2120                 if (final_retval == ERROR_OK)
2121                         final_retval = retval;
2122         }
2123         if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2124                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2125                 if (final_retval == ERROR_OK)
2126                         final_retval = retval;
2127         }
2128
2129         /* Done. */
2130         return final_retval;
2131 }
2132
2133 static int cortex_a_read_cpu_memory_slow(struct target *target,
2134         uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
2135 {
2136         /* Reads count objects of size size into *buffer. Old value of DSCR must be
2137          * in *dscr; updated to new value. This is slow because it works for
2138          * non-word-sized objects and (maybe) unaligned accesses. If size == 4 and
2139          * the address is aligned, cortex_a_read_cpu_memory_fast should be
2140          * preferred.
2141          * Preconditions:
2142          * - Address is in R0.
2143          * - R0 is marked dirty.
2144          */
2145         struct armv7a_common *armv7a = target_to_armv7a(target);
2146         struct arm *arm = &armv7a->arm;
2147         int retval;
2148
2149         /* Mark register R1 as dirty, to use for transferring data. */
2150         arm_reg_current(arm, 1)->dirty = true;
2151
2152         /* Switch to non-blocking mode if not already in that mode. */
2153         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2154         if (retval != ERROR_OK)
2155                 return retval;
2156
2157         /* Go through the objects. */
2158         while (count) {
2159                 /* Issue a load of the appropriate size to R1. */
2160                 uint32_t opcode, data;
2161                 if (size == 1)
2162                         opcode = ARMV4_5_LDRB_IP(1, 0);
2163                 else if (size == 2)
2164                         opcode = ARMV4_5_LDRH_IP(1, 0);
2165                 else
2166                         opcode = ARMV4_5_LDRW_IP(1, 0);
2167                 retval = cortex_a_exec_opcode(target, opcode, dscr);
2168                 if (retval != ERROR_OK)
2169                         return retval;
2170
2171                 /* Issue a write of R1 to DTRTX. */
2172                 retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 1, 0, 5, 0), dscr);
2173                 if (retval != ERROR_OK)
2174                         return retval;
2175
2176                 /* Check for faults and return early. */
2177                 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2178                         return ERROR_OK; /* A data fault is not considered a system failure. */
2179
2180                 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
2181                  * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2182                  * must also check TXfull_l). Most of the time this will be free
2183                  * because TXfull_l will be set immediately and cached in dscr. */
2184                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2185                                 DSCR_DTRTX_FULL_LATCHED, dscr);
2186                 if (retval != ERROR_OK)
2187                         return retval;
2188
2189                 /* Read the value transferred to DTRTX into the buffer. */
2190                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2191                                 armv7a->debug_base + CPUDBG_DTRTX, &data);
2192                 if (retval != ERROR_OK)
2193                         return retval;
2194                 if (size == 1)
2195                         *buffer = (uint8_t) data;
2196                 else if (size == 2)
2197                         target_buffer_set_u16(target, buffer, (uint16_t) data);
2198                 else
2199                         target_buffer_set_u32(target, buffer, data);
2200
2201                 /* Advance. */
2202                 buffer += size;
2203                 --count;
2204         }
2205
2206         return ERROR_OK;
2207 }
2208
2209 static int cortex_a_read_cpu_memory_fast(struct target *target,
2210         uint32_t count, uint8_t *buffer, uint32_t *dscr)
2211 {
2212         /* Reads count objects of size 4 into *buffer. Old value of DSCR must be in
2213          * *dscr; updated to new value. This is fast but only works for word-sized
2214          * objects at aligned addresses.
2215          * Preconditions:
2216          * - Address is in R0 and must be a multiple of 4.
2217          * - R0 is marked dirty.
2218          */
2219         struct armv7a_common *armv7a = target_to_armv7a(target);
2220         uint32_t u32;
2221         int retval;
2222
2223         /* Switch to non-blocking mode if not already in that mode. */
2224         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2225         if (retval != ERROR_OK)
2226                 return retval;
2227
2228         /* Issue the LDC instruction via a write to ITR. */
2229         retval = cortex_a_exec_opcode(target, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4), dscr);
2230         if (retval != ERROR_OK)
2231                 return retval;
2232
2233         count--;
2234
2235         if (count > 0) {
2236                 /* Switch to fast mode if not already in that mode. */
2237                 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2238                 if (retval != ERROR_OK)
2239                         return retval;
2240
2241                 /* Latch LDC instruction. */
2242                 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2243                                 armv7a->debug_base + CPUDBG_ITR, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4));
2244                 if (retval != ERROR_OK)
2245                         return retval;
2246
2247                 /* Read the value transferred to DTRTX into the buffer. Due to fast
2248                  * mode rules, this blocks until the instruction finishes executing and
2249                  * then reissues the read instruction to read the next word from
2250                  * memory. The last read of DTRTX in this call reads the second-to-last
2251                  * word from memory and issues the read instruction for the last word.
2252                  */
2253                 retval = mem_ap_read_buf_noincr(armv7a->debug_ap, buffer,
2254                                 4, count, armv7a->debug_base + CPUDBG_DTRTX);
2255                 if (retval != ERROR_OK)
2256                         return retval;
2257
2258                 /* Advance. */
2259                 buffer += count * 4;
2260         }
2261
2262         /* Wait for last issued instruction to complete. */
2263         retval = cortex_a_wait_instrcmpl(target, dscr, false);
2264         if (retval != ERROR_OK)
2265                 return retval;
2266
2267         /* Switch to non-blocking mode if not already in that mode. */
2268         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2269         if (retval != ERROR_OK)
2270                 return retval;
2271
2272         /* Check for faults and return early. */
2273         if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2274                 return ERROR_OK; /* A data fault is not considered a system failure. */
2275
2276         /* Wait until DTRTX is full (according to ARMv7-A/-R architecture manual
2277          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2278          * check TXfull_l). Most of the time this will be free because TXfull_l
2279          * will be set immediately and cached in dscr. */
2280         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2281                         DSCR_DTRTX_FULL_LATCHED, dscr);
2282         if (retval != ERROR_OK)
2283                 return retval;
2284
2285         /* Read the value transferred to DTRTX into the buffer. This is the last
2286          * word. */
2287         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2288                         armv7a->debug_base + CPUDBG_DTRTX, &u32);
2289         if (retval != ERROR_OK)
2290                 return retval;
2291         target_buffer_set_u32(target, buffer, u32);
2292
2293         return ERROR_OK;
2294 }
2295
2296 static int cortex_a_read_cpu_memory(struct target *target,
2297         uint32_t address, uint32_t size,
2298         uint32_t count, uint8_t *buffer)
2299 {
2300         /* Read memory through the CPU. */
2301         int retval, final_retval;
2302         struct armv7a_common *armv7a = target_to_armv7a(target);
2303         struct arm *arm = &armv7a->arm;
2304         uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2305
2306         LOG_DEBUG("Reading CPU memory address 0x%" PRIx32 " size %"  PRIu32 " count %"  PRIu32,
2307                           address, size, count);
2308         if (target->state != TARGET_HALTED) {
2309                 LOG_WARNING("target not halted");
2310                 return ERROR_TARGET_NOT_HALTED;
2311         }
2312
2313         if (!count)
2314                 return ERROR_OK;
2315
2316         /* Clear any abort. */
2317         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2318                         armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2319         if (retval != ERROR_OK)
2320                 return retval;
2321
2322         /* Read DSCR */
2323         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2324                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
2325         if (retval != ERROR_OK)
2326                 return retval;
2327
2328         /* Switch to non-blocking mode if not already in that mode. */
2329         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2330         if (retval != ERROR_OK)
2331                 goto out;
2332
2333         /* Mark R0 as dirty. */
2334         arm_reg_current(arm, 0)->dirty = true;
2335
2336         /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2337         retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2338         if (retval != ERROR_OK)
2339                 goto out;
2340
2341         /* Get the memory address into R0. */
2342         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2343                         armv7a->debug_base + CPUDBG_DTRRX, address);
2344         if (retval != ERROR_OK)
2345                 goto out;
2346         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2347         if (retval != ERROR_OK)
2348                 goto out;
2349
2350         if (size == 4 && (address % 4) == 0) {
2351                 /* We are doing a word-aligned transfer, so use fast mode. */
2352                 retval = cortex_a_read_cpu_memory_fast(target, count, buffer, &dscr);
2353         } else {
2354                 /* Use slow path. */
2355                 retval = cortex_a_read_cpu_memory_slow(target, size, count, buffer, &dscr);
2356         }
2357
2358 out:
2359         final_retval = retval;
2360
2361         /* Switch to non-blocking mode if not already in that mode. */
2362         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2363         if (final_retval == ERROR_OK)
2364                 final_retval = retval;
2365
2366         /* Wait for last issued instruction to complete. */
2367         retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2368         if (final_retval == ERROR_OK)
2369                 final_retval = retval;
2370
2371         /* If there were any sticky abort flags, clear them. */
2372         if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2373                 fault_dscr = dscr;
2374                 mem_ap_write_atomic_u32(armv7a->debug_ap,
2375                                 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2376                 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2377         } else {
2378                 fault_dscr = 0;
2379         }
2380
2381         /* Handle synchronous data faults. */
2382         if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2383                 if (final_retval == ERROR_OK) {
2384                         /* Final return value will reflect cause of fault. */
2385                         retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2386                         if (retval == ERROR_OK) {
2387                                 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2388                                 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2389                         } else
2390                                 final_retval = retval;
2391                 }
2392                 /* Fault destroyed DFAR/DFSR; restore them. */
2393                 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2394                 if (retval != ERROR_OK)
2395                         LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2396         }
2397
2398         /* Handle asynchronous data faults. */
2399         if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2400                 if (final_retval == ERROR_OK)
2401                         /* No other error has been recorded so far, so keep this one. */
2402                         final_retval = ERROR_TARGET_DATA_ABORT;
2403         }
2404
2405         /* If the DCC is nonempty, clear it. */
2406         if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2407                 uint32_t dummy;
2408                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2409                                 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2410                 if (final_retval == ERROR_OK)
2411                         final_retval = retval;
2412         }
2413         if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2414                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2415                 if (final_retval == ERROR_OK)
2416                         final_retval = retval;
2417         }
2418
2419         /* Done. */
2420         return final_retval;
2421 }
2422
2423
2424 /*
2425  * Cortex-A Memory access
2426  *
2427  * This is same Cortex-M3 but we must also use the correct
2428  * ap number for every access.
2429  */
2430
2431 static int cortex_a_read_phys_memory(struct target *target,
2432         target_addr_t address, uint32_t size,
2433         uint32_t count, uint8_t *buffer)
2434 {
2435         int retval;
2436
2437         if (!count || !buffer)
2438                 return ERROR_COMMAND_SYNTAX_ERROR;
2439
2440         LOG_DEBUG("Reading memory at real address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2441                 address, size, count);
2442
2443         /* read memory through the CPU */
2444         cortex_a_prep_memaccess(target, 1);
2445         retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2446         cortex_a_post_memaccess(target, 1);
2447
2448         return retval;
2449 }
2450
2451 static int cortex_a_read_memory(struct target *target, target_addr_t address,
2452         uint32_t size, uint32_t count, uint8_t *buffer)
2453 {
2454         int retval;
2455
2456         /* cortex_a handles unaligned memory access */
2457         LOG_DEBUG("Reading memory at address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2458                 address, size, count);
2459
2460         cortex_a_prep_memaccess(target, 0);
2461         retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2462         cortex_a_post_memaccess(target, 0);
2463
2464         return retval;
2465 }
2466
2467 static int cortex_a_write_phys_memory(struct target *target,
2468         target_addr_t address, uint32_t size,
2469         uint32_t count, const uint8_t *buffer)
2470 {
2471         int retval;
2472
2473         if (!count || !buffer)
2474                 return ERROR_COMMAND_SYNTAX_ERROR;
2475
2476         LOG_DEBUG("Writing memory to real address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2477                 address, size, count);
2478
2479         /* write memory through the CPU */
2480         cortex_a_prep_memaccess(target, 1);
2481         retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2482         cortex_a_post_memaccess(target, 1);
2483
2484         return retval;
2485 }
2486
2487 static int cortex_a_write_memory(struct target *target, target_addr_t address,
2488         uint32_t size, uint32_t count, const uint8_t *buffer)
2489 {
2490         int retval;
2491
2492         /* cortex_a handles unaligned memory access */
2493         LOG_DEBUG("Writing memory at address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2494                 address, size, count);
2495
2496         /* memory writes bypass the caches, must flush before writing */
2497         armv7a_cache_auto_flush_on_write(target, address, size * count);
2498
2499         cortex_a_prep_memaccess(target, 0);
2500         retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2501         cortex_a_post_memaccess(target, 0);
2502         return retval;
2503 }
2504
2505 static int cortex_a_read_buffer(struct target *target, target_addr_t address,
2506                                 uint32_t count, uint8_t *buffer)
2507 {
2508         uint32_t size;
2509
2510         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2511          * will have something to do with the size we leave to it. */
2512         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2513                 if (address & size) {
2514                         int retval = target_read_memory(target, address, size, 1, buffer);
2515                         if (retval != ERROR_OK)
2516                                 return retval;
2517                         address += size;
2518                         count -= size;
2519                         buffer += size;
2520                 }
2521         }
2522
2523         /* Read the data with as large access size as possible. */
2524         for (; size > 0; size /= 2) {
2525                 uint32_t aligned = count - count % size;
2526                 if (aligned > 0) {
2527                         int retval = target_read_memory(target, address, size, aligned / size, buffer);
2528                         if (retval != ERROR_OK)
2529                                 return retval;
2530                         address += aligned;
2531                         count -= aligned;
2532                         buffer += aligned;
2533                 }
2534         }
2535
2536         return ERROR_OK;
2537 }
2538
2539 static int cortex_a_write_buffer(struct target *target, target_addr_t address,
2540                                  uint32_t count, const uint8_t *buffer)
2541 {
2542         uint32_t size;
2543
2544         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2545          * will have something to do with the size we leave to it. */
2546         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2547                 if (address & size) {
2548                         int retval = target_write_memory(target, address, size, 1, buffer);
2549                         if (retval != ERROR_OK)
2550                                 return retval;
2551                         address += size;
2552                         count -= size;
2553                         buffer += size;
2554                 }
2555         }
2556
2557         /* Write the data with as large access size as possible. */
2558         for (; size > 0; size /= 2) {
2559                 uint32_t aligned = count - count % size;
2560                 if (aligned > 0) {
2561                         int retval = target_write_memory(target, address, size, aligned / size, buffer);
2562                         if (retval != ERROR_OK)
2563                                 return retval;
2564                         address += aligned;
2565                         count -= aligned;
2566                         buffer += aligned;
2567                 }
2568         }
2569
2570         return ERROR_OK;
2571 }
2572
2573 static int cortex_a_handle_target_request(void *priv)
2574 {
2575         struct target *target = priv;
2576         struct armv7a_common *armv7a = target_to_armv7a(target);
2577         int retval;
2578
2579         if (!target_was_examined(target))
2580                 return ERROR_OK;
2581         if (!target->dbg_msg_enabled)
2582                 return ERROR_OK;
2583
2584         if (target->state == TARGET_RUNNING) {
2585                 uint32_t request;
2586                 uint32_t dscr;
2587                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2588                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2589
2590                 /* check if we have data */
2591                 int64_t then = timeval_ms();
2592                 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2593                         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2594                                         armv7a->debug_base + CPUDBG_DTRTX, &request);
2595                         if (retval == ERROR_OK) {
2596                                 target_request(target, request);
2597                                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2598                                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2599                         }
2600                         if (timeval_ms() > then + 1000) {
2601                                 LOG_ERROR("Timeout waiting for dtr tx full");
2602                                 return ERROR_FAIL;
2603                         }
2604                 }
2605         }
2606
2607         return ERROR_OK;
2608 }
2609
2610 /*
2611  * Cortex-A target information and configuration
2612  */
2613
2614 static int cortex_a_examine_first(struct target *target)
2615 {
2616         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
2617         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2618         struct adiv5_dap *swjdp = armv7a->arm.dap;
2619
2620         int i;
2621         int retval = ERROR_OK;
2622         uint32_t didr, cpuid, dbg_osreg;
2623
2624         /* Search for the APB-AP - it is needed for access to debug registers */
2625         retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv7a->debug_ap);
2626         if (retval != ERROR_OK) {
2627                 LOG_ERROR("Could not find APB-AP for debug access");
2628                 return retval;
2629         }
2630
2631         retval = mem_ap_init(armv7a->debug_ap);
2632         if (retval != ERROR_OK) {
2633                 LOG_ERROR("Could not initialize the APB-AP");
2634                 return retval;
2635         }
2636
2637         armv7a->debug_ap->memaccess_tck = 80;
2638
2639         if (!target->dbgbase_set) {
2640                 uint32_t dbgbase;
2641                 /* Get ROM Table base */
2642                 uint32_t apid;
2643                 int32_t coreidx = target->coreid;
2644                 LOG_DEBUG("%s's dbgbase is not set, trying to detect using the ROM table",
2645                           target->cmd_name);
2646                 retval = dap_get_debugbase(armv7a->debug_ap, &dbgbase, &apid);
2647                 if (retval != ERROR_OK)
2648                         return retval;
2649                 /* Lookup 0x15 -- Processor DAP */
2650                 retval = dap_lookup_cs_component(armv7a->debug_ap, dbgbase, 0x15,
2651                                 &armv7a->debug_base, &coreidx);
2652                 if (retval != ERROR_OK) {
2653                         LOG_ERROR("Can't detect %s's dbgbase from the ROM table; you need to specify it explicitly.",
2654                                   target->cmd_name);
2655                         return retval;
2656                 }
2657                 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32,
2658                           target->coreid, armv7a->debug_base);
2659         } else
2660                 armv7a->debug_base = target->dbgbase;
2661
2662         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2663                         armv7a->debug_base + CPUDBG_DIDR, &didr);
2664         if (retval != ERROR_OK) {
2665                 LOG_DEBUG("Examine %s failed", "DIDR");
2666                 return retval;
2667         }
2668
2669         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2670                         armv7a->debug_base + CPUDBG_CPUID, &cpuid);
2671         if (retval != ERROR_OK) {
2672                 LOG_DEBUG("Examine %s failed", "CPUID");
2673                 return retval;
2674         }
2675
2676         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
2677         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
2678
2679         cortex_a->didr = didr;
2680         cortex_a->cpuid = cpuid;
2681
2682         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2683                                     armv7a->debug_base + CPUDBG_PRSR, &dbg_osreg);
2684         if (retval != ERROR_OK)
2685                 return retval;
2686         LOG_DEBUG("target->coreid %" PRId32 " DBGPRSR  0x%" PRIx32, target->coreid, dbg_osreg);
2687
2688         if ((dbg_osreg & PRSR_POWERUP_STATUS) == 0) {
2689                 LOG_ERROR("target->coreid %" PRId32 " powered down!", target->coreid);
2690                 target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
2691                 return ERROR_TARGET_INIT_FAILED;
2692         }
2693
2694         if (dbg_osreg & PRSR_STICKY_RESET_STATUS)
2695                 LOG_DEBUG("target->coreid %" PRId32 " was reset!", target->coreid);
2696
2697         /* Read DBGOSLSR and check if OSLK is implemented */
2698         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2699                                 armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
2700         if (retval != ERROR_OK)
2701                 return retval;
2702         LOG_DEBUG("target->coreid %" PRId32 " DBGOSLSR 0x%" PRIx32, target->coreid, dbg_osreg);
2703
2704         /* check if OS Lock is implemented */
2705         if ((dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM0 || (dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM1) {
2706                 /* check if OS Lock is set */
2707                 if (dbg_osreg & OSLSR_OSLK) {
2708                         LOG_DEBUG("target->coreid %" PRId32 " OSLock set! Trying to unlock", target->coreid);
2709
2710                         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2711                                                         armv7a->debug_base + CPUDBG_OSLAR,
2712                                                         0);
2713                         if (retval == ERROR_OK)
2714                                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2715                                                         armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
2716
2717                         /* if we fail to access the register or cannot reset the OSLK bit, bail out */
2718                         if (retval != ERROR_OK || (dbg_osreg & OSLSR_OSLK) != 0) {
2719                                 LOG_ERROR("target->coreid %" PRId32 " OSLock sticky, core not powered?",
2720                                                 target->coreid);
2721                                 target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
2722                                 return ERROR_TARGET_INIT_FAILED;
2723                         }
2724                 }
2725         }
2726
2727         armv7a->arm.core_type = ARM_MODE_MON;
2728
2729         /* Avoid recreating the registers cache */
2730         if (!target_was_examined(target)) {
2731                 retval = cortex_a_dpm_setup(cortex_a, didr);
2732                 if (retval != ERROR_OK)
2733                         return retval;
2734         }
2735
2736         /* Setup Breakpoint Register Pairs */
2737         cortex_a->brp_num = ((didr >> 24) & 0x0F) + 1;
2738         cortex_a->brp_num_context = ((didr >> 20) & 0x0F) + 1;
2739         cortex_a->brp_num_available = cortex_a->brp_num;
2740         free(cortex_a->brp_list);
2741         cortex_a->brp_list = calloc(cortex_a->brp_num, sizeof(struct cortex_a_brp));
2742 /*      cortex_a->brb_enabled = ????; */
2743         for (i = 0; i < cortex_a->brp_num; i++) {
2744                 cortex_a->brp_list[i].used = 0;
2745                 if (i < (cortex_a->brp_num-cortex_a->brp_num_context))
2746                         cortex_a->brp_list[i].type = BRP_NORMAL;
2747                 else
2748                         cortex_a->brp_list[i].type = BRP_CONTEXT;
2749                 cortex_a->brp_list[i].value = 0;
2750                 cortex_a->brp_list[i].control = 0;
2751                 cortex_a->brp_list[i].BRPn = i;
2752         }
2753
2754         LOG_DEBUG("Configured %i hw breakpoints", cortex_a->brp_num);
2755
2756         /* select debug_ap as default */
2757         swjdp->apsel = armv7a->debug_ap->ap_num;
2758
2759         target_set_examined(target);
2760         return ERROR_OK;
2761 }
2762
2763 static int cortex_a_examine(struct target *target)
2764 {
2765         int retval = ERROR_OK;
2766
2767         /* Reestablish communication after target reset */
2768         retval = cortex_a_examine_first(target);
2769
2770         /* Configure core debug access */
2771         if (retval == ERROR_OK)
2772                 retval = cortex_a_init_debug_access(target);
2773
2774         return retval;
2775 }
2776
2777 /*
2778  *      Cortex-A target creation and initialization
2779  */
2780
2781 static int cortex_a_init_target(struct command_context *cmd_ctx,
2782         struct target *target)
2783 {
2784         /* examine_first() does a bunch of this */
2785         arm_semihosting_init(target);
2786         return ERROR_OK;
2787 }
2788
2789 static int cortex_a_init_arch_info(struct target *target,
2790         struct cortex_a_common *cortex_a, struct adiv5_dap *dap)
2791 {
2792         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2793
2794         /* Setup struct cortex_a_common */
2795         cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
2796         armv7a->arm.dap = dap;
2797
2798         /* register arch-specific functions */
2799         armv7a->examine_debug_reason = NULL;
2800
2801         armv7a->post_debug_entry = cortex_a_post_debug_entry;
2802
2803         armv7a->pre_restore_context = NULL;
2804
2805         armv7a->armv7a_mmu.read_physical_memory = cortex_a_read_phys_memory;
2806
2807
2808 /*      arm7_9->handle_target_request = cortex_a_handle_target_request; */
2809
2810         /* REVISIT v7a setup should be in a v7a-specific routine */
2811         armv7a_init_arch_info(target, armv7a);
2812         target_register_timer_callback(cortex_a_handle_target_request, 1,
2813                 TARGET_TIMER_TYPE_PERIODIC, target);
2814
2815         return ERROR_OK;
2816 }
2817
2818 static int cortex_a_target_create(struct target *target, Jim_Interp *interp)
2819 {
2820         struct cortex_a_common *cortex_a;
2821         struct adiv5_private_config *pc;
2822
2823         if (target->private_config == NULL)
2824                 return ERROR_FAIL;
2825
2826         pc = (struct adiv5_private_config *)target->private_config;
2827
2828         cortex_a = calloc(1, sizeof(struct cortex_a_common));
2829         if (cortex_a == NULL) {
2830                 LOG_ERROR("Out of memory");
2831                 return ERROR_FAIL;
2832         }
2833         cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
2834         cortex_a->armv7a_common.is_armv7r = false;
2835         cortex_a->armv7a_common.arm.arm_vfp_version = ARM_VFP_V3;
2836
2837         return cortex_a_init_arch_info(target, cortex_a, pc->dap);
2838 }
2839
2840 static int cortex_r4_target_create(struct target *target, Jim_Interp *interp)
2841 {
2842         struct cortex_a_common *cortex_a;
2843         struct adiv5_private_config *pc;
2844
2845         pc = (struct adiv5_private_config *)target->private_config;
2846         if (adiv5_verify_config(pc) != ERROR_OK)
2847                 return ERROR_FAIL;
2848
2849         cortex_a = calloc(1, sizeof(struct cortex_a_common));
2850         if (cortex_a == NULL) {
2851                 LOG_ERROR("Out of memory");
2852                 return ERROR_FAIL;
2853         }
2854         cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
2855         cortex_a->armv7a_common.is_armv7r = true;
2856
2857         return cortex_a_init_arch_info(target, cortex_a, pc->dap);
2858 }
2859
2860 static void cortex_a_deinit_target(struct target *target)
2861 {
2862         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
2863         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2864         struct arm_dpm *dpm = &armv7a->dpm;
2865         uint32_t dscr;
2866         int retval;
2867
2868         if (target_was_examined(target)) {
2869                 /* Disable halt for breakpoint, watchpoint and vector catch */
2870                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2871                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2872                 if (retval == ERROR_OK)
2873                         mem_ap_write_atomic_u32(armv7a->debug_ap,
2874                                         armv7a->debug_base + CPUDBG_DSCR,
2875                                         dscr & ~DSCR_HALT_DBG_MODE);
2876         }
2877
2878         free(cortex_a->brp_list);
2879         free(dpm->dbp);
2880         free(dpm->dwp);
2881         free(target->private_config);
2882         free(cortex_a);
2883 }
2884
2885 static int cortex_a_mmu(struct target *target, int *enabled)
2886 {
2887         struct armv7a_common *armv7a = target_to_armv7a(target);
2888
2889         if (target->state != TARGET_HALTED) {
2890                 LOG_ERROR("%s: target not halted", __func__);
2891                 return ERROR_TARGET_INVALID;
2892         }
2893
2894         if (armv7a->is_armv7r)
2895                 *enabled = 0;
2896         else
2897                 *enabled = target_to_cortex_a(target)->armv7a_common.armv7a_mmu.mmu_enabled;
2898
2899         return ERROR_OK;
2900 }
2901
2902 static int cortex_a_virt2phys(struct target *target,
2903         target_addr_t virt, target_addr_t *phys)
2904 {
2905         int retval;
2906         int mmu_enabled = 0;
2907
2908         /*
2909          * If the MMU was not enabled at debug entry, there is no
2910          * way of knowing if there was ever a valid configuration
2911          * for it and thus it's not safe to enable it. In this case,
2912          * just return the virtual address as physical.
2913          */
2914         cortex_a_mmu(target, &mmu_enabled);
2915         if (!mmu_enabled) {
2916                 *phys = virt;
2917                 return ERROR_OK;
2918         }
2919
2920         /* mmu must be enable in order to get a correct translation */
2921         retval = cortex_a_mmu_modify(target, 1);
2922         if (retval != ERROR_OK)
2923                 return retval;
2924         return armv7a_mmu_translate_va_pa(target, (uint32_t)virt,
2925                                                     (uint32_t *)phys, 1);
2926 }
2927
2928 COMMAND_HANDLER(cortex_a_handle_cache_info_command)
2929 {
2930         struct target *target = get_current_target(CMD_CTX);
2931         struct armv7a_common *armv7a = target_to_armv7a(target);
2932
2933         return armv7a_handle_cache_info_command(CMD,
2934                         &armv7a->armv7a_mmu.armv7a_cache);
2935 }
2936
2937
2938 COMMAND_HANDLER(cortex_a_handle_dbginit_command)
2939 {
2940         struct target *target = get_current_target(CMD_CTX);
2941         if (!target_was_examined(target)) {
2942                 LOG_ERROR("target not examined yet");
2943                 return ERROR_FAIL;
2944         }
2945
2946         return cortex_a_init_debug_access(target);
2947 }
2948
2949 COMMAND_HANDLER(handle_cortex_a_mask_interrupts_command)
2950 {
2951         struct target *target = get_current_target(CMD_CTX);
2952         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
2953
2954         static const Jim_Nvp nvp_maskisr_modes[] = {
2955                 { .name = "off", .value = CORTEX_A_ISRMASK_OFF },
2956                 { .name = "on", .value = CORTEX_A_ISRMASK_ON },
2957                 { .name = NULL, .value = -1 },
2958         };
2959         const Jim_Nvp *n;
2960
2961         if (CMD_ARGC > 0) {
2962                 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
2963                 if (n->name == NULL) {
2964                         LOG_ERROR("Unknown parameter: %s - should be off or on", CMD_ARGV[0]);
2965                         return ERROR_COMMAND_SYNTAX_ERROR;
2966                 }
2967
2968                 cortex_a->isrmasking_mode = n->value;
2969         }
2970
2971         n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_a->isrmasking_mode);
2972         command_print(CMD, "cortex_a interrupt mask %s", n->name);
2973
2974         return ERROR_OK;
2975 }
2976
2977 COMMAND_HANDLER(handle_cortex_a_dacrfixup_command)
2978 {
2979         struct target *target = get_current_target(CMD_CTX);
2980         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
2981
2982         static const Jim_Nvp nvp_dacrfixup_modes[] = {
2983                 { .name = "off", .value = CORTEX_A_DACRFIXUP_OFF },
2984                 { .name = "on", .value = CORTEX_A_DACRFIXUP_ON },
2985                 { .name = NULL, .value = -1 },
2986         };
2987         const Jim_Nvp *n;
2988
2989         if (CMD_ARGC > 0) {
2990                 n = Jim_Nvp_name2value_simple(nvp_dacrfixup_modes, CMD_ARGV[0]);
2991                 if (n->name == NULL)
2992                         return ERROR_COMMAND_SYNTAX_ERROR;
2993                 cortex_a->dacrfixup_mode = n->value;
2994
2995         }
2996
2997         n = Jim_Nvp_value2name_simple(nvp_dacrfixup_modes, cortex_a->dacrfixup_mode);
2998         command_print(CMD, "cortex_a domain access control fixup %s", n->name);
2999
3000         return ERROR_OK;
3001 }
3002
3003 static const struct command_registration cortex_a_exec_command_handlers[] = {
3004         {
3005                 .name = "cache_info",
3006                 .handler = cortex_a_handle_cache_info_command,
3007                 .mode = COMMAND_EXEC,
3008                 .help = "display information about target caches",
3009                 .usage = "",
3010         },
3011         {
3012                 .name = "dbginit",
3013                 .handler = cortex_a_handle_dbginit_command,
3014                 .mode = COMMAND_EXEC,
3015                 .help = "Initialize core debug",
3016                 .usage = "",
3017         },
3018         {
3019                 .name = "maskisr",
3020                 .handler = handle_cortex_a_mask_interrupts_command,
3021                 .mode = COMMAND_ANY,
3022                 .help = "mask cortex_a interrupts",
3023                 .usage = "['on'|'off']",
3024         },
3025         {
3026                 .name = "dacrfixup",
3027                 .handler = handle_cortex_a_dacrfixup_command,
3028                 .mode = COMMAND_ANY,
3029                 .help = "set domain access control (DACR) to all-manager "
3030                         "on memory access",
3031                 .usage = "['on'|'off']",
3032         },
3033         {
3034                 .chain = armv7a_mmu_command_handlers,
3035         },
3036         {
3037                 .chain = smp_command_handlers,
3038         },
3039
3040         COMMAND_REGISTRATION_DONE
3041 };
3042 static const struct command_registration cortex_a_command_handlers[] = {
3043         {
3044                 .chain = arm_command_handlers,
3045         },
3046         {
3047                 .chain = armv7a_command_handlers,
3048         },
3049         {
3050                 .name = "cortex_a",
3051                 .mode = COMMAND_ANY,
3052                 .help = "Cortex-A command group",
3053                 .usage = "",
3054                 .chain = cortex_a_exec_command_handlers,
3055         },
3056         COMMAND_REGISTRATION_DONE
3057 };
3058
3059 struct target_type cortexa_target = {
3060         .name = "cortex_a",
3061         .deprecated_name = "cortex_a8",
3062
3063         .poll = cortex_a_poll,
3064         .arch_state = armv7a_arch_state,
3065
3066         .halt = cortex_a_halt,
3067         .resume = cortex_a_resume,
3068         .step = cortex_a_step,
3069
3070         .assert_reset = cortex_a_assert_reset,
3071         .deassert_reset = cortex_a_deassert_reset,
3072
3073         /* REVISIT allow exporting VFP3 registers ... */
3074         .get_gdb_arch = arm_get_gdb_arch,
3075         .get_gdb_reg_list = arm_get_gdb_reg_list,
3076
3077         .read_memory = cortex_a_read_memory,
3078         .write_memory = cortex_a_write_memory,
3079
3080         .read_buffer = cortex_a_read_buffer,
3081         .write_buffer = cortex_a_write_buffer,
3082
3083         .checksum_memory = arm_checksum_memory,
3084         .blank_check_memory = arm_blank_check_memory,
3085
3086         .run_algorithm = armv4_5_run_algorithm,
3087
3088         .add_breakpoint = cortex_a_add_breakpoint,
3089         .add_context_breakpoint = cortex_a_add_context_breakpoint,
3090         .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3091         .remove_breakpoint = cortex_a_remove_breakpoint,
3092         .add_watchpoint = NULL,
3093         .remove_watchpoint = NULL,
3094
3095         .commands = cortex_a_command_handlers,
3096         .target_create = cortex_a_target_create,
3097         .target_jim_configure = adiv5_jim_configure,
3098         .init_target = cortex_a_init_target,
3099         .examine = cortex_a_examine,
3100         .deinit_target = cortex_a_deinit_target,
3101
3102         .read_phys_memory = cortex_a_read_phys_memory,
3103         .write_phys_memory = cortex_a_write_phys_memory,
3104         .mmu = cortex_a_mmu,
3105         .virt2phys = cortex_a_virt2phys,
3106 };
3107
3108 static const struct command_registration cortex_r4_exec_command_handlers[] = {
3109         {
3110                 .name = "dbginit",
3111                 .handler = cortex_a_handle_dbginit_command,
3112                 .mode = COMMAND_EXEC,
3113                 .help = "Initialize core debug",
3114                 .usage = "",
3115         },
3116         {
3117                 .name = "maskisr",
3118                 .handler = handle_cortex_a_mask_interrupts_command,
3119                 .mode = COMMAND_EXEC,
3120                 .help = "mask cortex_r4 interrupts",
3121                 .usage = "['on'|'off']",
3122         },
3123
3124         COMMAND_REGISTRATION_DONE
3125 };
3126 static const struct command_registration cortex_r4_command_handlers[] = {
3127         {
3128                 .chain = arm_command_handlers,
3129         },
3130         {
3131                 .name = "cortex_r4",
3132                 .mode = COMMAND_ANY,
3133                 .help = "Cortex-R4 command group",
3134                 .usage = "",
3135                 .chain = cortex_r4_exec_command_handlers,
3136         },
3137         COMMAND_REGISTRATION_DONE
3138 };
3139
3140 struct target_type cortexr4_target = {
3141         .name = "cortex_r4",
3142
3143         .poll = cortex_a_poll,
3144         .arch_state = armv7a_arch_state,
3145
3146         .halt = cortex_a_halt,
3147         .resume = cortex_a_resume,
3148         .step = cortex_a_step,
3149
3150         .assert_reset = cortex_a_assert_reset,
3151         .deassert_reset = cortex_a_deassert_reset,
3152
3153         /* REVISIT allow exporting VFP3 registers ... */
3154         .get_gdb_arch = arm_get_gdb_arch,
3155         .get_gdb_reg_list = arm_get_gdb_reg_list,
3156
3157         .read_memory = cortex_a_read_phys_memory,
3158         .write_memory = cortex_a_write_phys_memory,
3159
3160         .checksum_memory = arm_checksum_memory,
3161         .blank_check_memory = arm_blank_check_memory,
3162
3163         .run_algorithm = armv4_5_run_algorithm,
3164
3165         .add_breakpoint = cortex_a_add_breakpoint,
3166         .add_context_breakpoint = cortex_a_add_context_breakpoint,
3167         .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3168         .remove_breakpoint = cortex_a_remove_breakpoint,
3169         .add_watchpoint = NULL,
3170         .remove_watchpoint = NULL,
3171
3172         .commands = cortex_r4_command_handlers,
3173         .target_create = cortex_r4_target_create,
3174         .target_jim_configure = adiv5_jim_configure,
3175         .init_target = cortex_a_init_target,
3176         .examine = cortex_a_examine,
3177         .deinit_target = cortex_a_deinit_target,
3178 };