armv7a: access monitor registers only with security extensions
[fw/openocd] / src / target / cortex_a.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   Copyright (C) 2010 Ã˜yvind Harboe                                      *
15  *   oyvind.harboe@zylin.com                                               *
16  *                                                                         *
17  *   Copyright (C) ST-Ericsson SA 2011                                     *
18  *   michel.jaouen@stericsson.com : smp minimum support                    *
19  *                                                                         *
20  *   Copyright (C) Broadcom 2012                                           *
21  *   ehunter@broadcom.com : Cortex-R4 support                              *
22  *                                                                         *
23  *   Copyright (C) 2013 Kamal Dasu                                         *
24  *   kdasu.kdev@gmail.com                                                  *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
38  *                                                                         *
39  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
40  *   Cortex-A9(tm) TRM, ARM DDI 0407F                                      *
41  *   Cortex-A4(tm) TRM, ARM DDI 0363E                                      *
42  *   Cortex-A15(tm)TRM, ARM DDI 0438C                                      *
43  *                                                                         *
44  ***************************************************************************/
45
46 #ifdef HAVE_CONFIG_H
47 #include "config.h"
48 #endif
49
50 #include "breakpoints.h"
51 #include "cortex_a.h"
52 #include "register.h"
53 #include "armv7a_mmu.h"
54 #include "target_request.h"
55 #include "target_type.h"
56 #include "arm_opcodes.h"
57 #include "arm_semihosting.h"
58 #include "jtag/interface.h"
59 #include "transport/transport.h"
60 #include "smp.h"
61 #include <helper/time_support.h>
62
63 static int cortex_a_poll(struct target *target);
64 static int cortex_a_debug_entry(struct target *target);
65 static int cortex_a_restore_context(struct target *target, bool bpwp);
66 static int cortex_a_set_breakpoint(struct target *target,
67         struct breakpoint *breakpoint, uint8_t matchmode);
68 static int cortex_a_set_context_breakpoint(struct target *target,
69         struct breakpoint *breakpoint, uint8_t matchmode);
70 static int cortex_a_set_hybrid_breakpoint(struct target *target,
71         struct breakpoint *breakpoint);
72 static int cortex_a_unset_breakpoint(struct target *target,
73         struct breakpoint *breakpoint);
74 static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
75         uint32_t value, uint32_t *dscr);
76 static int cortex_a_mmu(struct target *target, int *enabled);
77 static int cortex_a_mmu_modify(struct target *target, int enable);
78 static int cortex_a_virt2phys(struct target *target,
79         target_addr_t virt, target_addr_t *phys);
80 static int cortex_a_read_cpu_memory(struct target *target,
81         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
82
83
84 /*  restore cp15_control_reg at resume */
85 static int cortex_a_restore_cp15_control_reg(struct target *target)
86 {
87         int retval = ERROR_OK;
88         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
89         struct armv7a_common *armv7a = target_to_armv7a(target);
90
91         if (cortex_a->cp15_control_reg != cortex_a->cp15_control_reg_curr) {
92                 cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
93                 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg); */
94                 retval = armv7a->arm.mcr(target, 15,
95                                 0, 0,   /* op1, op2 */
96                                 1, 0,   /* CRn, CRm */
97                                 cortex_a->cp15_control_reg);
98         }
99         return retval;
100 }
101
102 /*
103  * Set up ARM core for memory access.
104  * If !phys_access, switch to SVC mode and make sure MMU is on
105  * If phys_access, switch off mmu
106  */
107 static int cortex_a_prep_memaccess(struct target *target, int phys_access)
108 {
109         struct armv7a_common *armv7a = target_to_armv7a(target);
110         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
111         int mmu_enabled = 0;
112
113         if (phys_access == 0) {
114                 arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
115                 cortex_a_mmu(target, &mmu_enabled);
116                 if (mmu_enabled)
117                         cortex_a_mmu_modify(target, 1);
118                 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
119                         /* overwrite DACR to all-manager */
120                         armv7a->arm.mcr(target, 15,
121                                         0, 0, 3, 0,
122                                         0xFFFFFFFF);
123                 }
124         } else {
125                 cortex_a_mmu(target, &mmu_enabled);
126                 if (mmu_enabled)
127                         cortex_a_mmu_modify(target, 0);
128         }
129         return ERROR_OK;
130 }
131
132 /*
133  * Restore ARM core after memory access.
134  * If !phys_access, switch to previous mode
135  * If phys_access, restore MMU setting
136  */
137 static int cortex_a_post_memaccess(struct target *target, int phys_access)
138 {
139         struct armv7a_common *armv7a = target_to_armv7a(target);
140         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
141
142         if (phys_access == 0) {
143                 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
144                         /* restore */
145                         armv7a->arm.mcr(target, 15,
146                                         0, 0, 3, 0,
147                                         cortex_a->cp15_dacr_reg);
148                 }
149                 arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
150         } else {
151                 int mmu_enabled = 0;
152                 cortex_a_mmu(target, &mmu_enabled);
153                 if (mmu_enabled)
154                         cortex_a_mmu_modify(target, 1);
155         }
156         return ERROR_OK;
157 }
158
159
160 /*  modify cp15_control_reg in order to enable or disable mmu for :
161  *  - virt2phys address conversion
162  *  - read or write memory in phys or virt address */
163 static int cortex_a_mmu_modify(struct target *target, int enable)
164 {
165         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
166         struct armv7a_common *armv7a = target_to_armv7a(target);
167         int retval = ERROR_OK;
168         int need_write = 0;
169
170         if (enable) {
171                 /*  if mmu enabled at target stop and mmu not enable */
172                 if (!(cortex_a->cp15_control_reg & 0x1U)) {
173                         LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
174                         return ERROR_FAIL;
175                 }
176                 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0) {
177                         cortex_a->cp15_control_reg_curr |= 0x1U;
178                         need_write = 1;
179                 }
180         } else {
181                 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0x1U) {
182                         cortex_a->cp15_control_reg_curr &= ~0x1U;
183                         need_write = 1;
184                 }
185         }
186
187         if (need_write) {
188                 LOG_DEBUG("%s, writing cp15 ctrl: %" PRIx32,
189                         enable ? "enable mmu" : "disable mmu",
190                         cortex_a->cp15_control_reg_curr);
191
192                 retval = armv7a->arm.mcr(target, 15,
193                                 0, 0,   /* op1, op2 */
194                                 1, 0,   /* CRn, CRm */
195                                 cortex_a->cp15_control_reg_curr);
196         }
197         return retval;
198 }
199
200 /*
201  * Cortex-A Basic debug access, very low level assumes state is saved
202  */
203 static int cortex_a_init_debug_access(struct target *target)
204 {
205         struct armv7a_common *armv7a = target_to_armv7a(target);
206         uint32_t dscr;
207         int retval;
208
209         /* lock memory-mapped access to debug registers to prevent
210          * software interference */
211         retval = mem_ap_write_u32(armv7a->debug_ap,
212                         armv7a->debug_base + CPUDBG_LOCKACCESS, 0);
213         if (retval != ERROR_OK)
214                 return retval;
215
216         /* Disable cacheline fills and force cache write-through in debug state */
217         retval = mem_ap_write_u32(armv7a->debug_ap,
218                         armv7a->debug_base + CPUDBG_DSCCR, 0);
219         if (retval != ERROR_OK)
220                 return retval;
221
222         /* Disable TLB lookup and refill/eviction in debug state */
223         retval = mem_ap_write_u32(armv7a->debug_ap,
224                         armv7a->debug_base + CPUDBG_DSMCR, 0);
225         if (retval != ERROR_OK)
226                 return retval;
227
228         retval = dap_run(armv7a->debug_ap->dap);
229         if (retval != ERROR_OK)
230                 return retval;
231
232         /* Enabling of instruction execution in debug mode is done in debug_entry code */
233
234         /* Resync breakpoint registers */
235
236         /* Enable halt for breakpoint, watchpoint and vector catch */
237         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
238                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
239         if (retval != ERROR_OK)
240                 return retval;
241         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
242                         armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
243         if (retval != ERROR_OK)
244                 return retval;
245
246         /* Since this is likely called from init or reset, update target state information*/
247         return cortex_a_poll(target);
248 }
249
250 static int cortex_a_wait_instrcmpl(struct target *target, uint32_t *dscr, bool force)
251 {
252         /* Waits until InstrCmpl_l becomes 1, indicating instruction is done.
253          * Writes final value of DSCR into *dscr. Pass force to force always
254          * reading DSCR at least once. */
255         struct armv7a_common *armv7a = target_to_armv7a(target);
256         int retval;
257
258         if (force) {
259                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
260                                 armv7a->debug_base + CPUDBG_DSCR, dscr);
261                 if (retval != ERROR_OK) {
262                         LOG_ERROR("Could not read DSCR register");
263                         return retval;
264                 }
265         }
266
267         retval = cortex_a_wait_dscr_bits(target, DSCR_INSTR_COMP, DSCR_INSTR_COMP, dscr);
268         if (retval != ERROR_OK)
269                 LOG_ERROR("Error waiting for InstrCompl=1");
270         return retval;
271 }
272
273 /* To reduce needless round-trips, pass in a pointer to the current
274  * DSCR value.  Initialize it to zero if you just need to know the
275  * value on return from this function; or DSCR_INSTR_COMP if you
276  * happen to know that no instruction is pending.
277  */
278 static int cortex_a_exec_opcode(struct target *target,
279         uint32_t opcode, uint32_t *dscr_p)
280 {
281         uint32_t dscr;
282         int retval;
283         struct armv7a_common *armv7a = target_to_armv7a(target);
284
285         dscr = dscr_p ? *dscr_p : 0;
286
287         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
288
289         /* Wait for InstrCompl bit to be set */
290         retval = cortex_a_wait_instrcmpl(target, dscr_p, false);
291         if (retval != ERROR_OK)
292                 return retval;
293
294         retval = mem_ap_write_u32(armv7a->debug_ap,
295                         armv7a->debug_base + CPUDBG_ITR, opcode);
296         if (retval != ERROR_OK)
297                 return retval;
298
299         /* Wait for InstrCompl bit to be set */
300         retval = cortex_a_wait_instrcmpl(target, &dscr, true);
301         if (retval != ERROR_OK) {
302                 LOG_ERROR("Error waiting for cortex_a_exec_opcode");
303                 return retval;
304         }
305
306         if (dscr_p)
307                 *dscr_p = dscr;
308
309         return retval;
310 }
311
312 /* Write to memory mapped registers directly with no cache or mmu handling */
313 static int cortex_a_dap_write_memap_register_u32(struct target *target,
314         uint32_t address,
315         uint32_t value)
316 {
317         int retval;
318         struct armv7a_common *armv7a = target_to_armv7a(target);
319
320         retval = mem_ap_write_atomic_u32(armv7a->debug_ap, address, value);
321
322         return retval;
323 }
324
325 /*
326  * Cortex-A implementation of Debug Programmer's Model
327  *
328  * NOTE the invariant:  these routines return with DSCR_INSTR_COMP set,
329  * so there's no need to poll for it before executing an instruction.
330  *
331  * NOTE that in several of these cases the "stall" mode might be useful.
332  * It'd let us queue a few operations together... prepare/finish might
333  * be the places to enable/disable that mode.
334  */
335
336 static inline struct cortex_a_common *dpm_to_a(struct arm_dpm *dpm)
337 {
338         return container_of(dpm, struct cortex_a_common, armv7a_common.dpm);
339 }
340
341 static int cortex_a_write_dcc(struct cortex_a_common *a, uint32_t data)
342 {
343         LOG_DEBUG("write DCC 0x%08" PRIx32, data);
344         return mem_ap_write_u32(a->armv7a_common.debug_ap,
345                         a->armv7a_common.debug_base + CPUDBG_DTRRX, data);
346 }
347
348 static int cortex_a_read_dcc(struct cortex_a_common *a, uint32_t *data,
349         uint32_t *dscr_p)
350 {
351         uint32_t dscr = DSCR_INSTR_COMP;
352         int retval;
353
354         if (dscr_p)
355                 dscr = *dscr_p;
356
357         /* Wait for DTRRXfull */
358         retval = cortex_a_wait_dscr_bits(a->armv7a_common.arm.target,
359                         DSCR_DTR_TX_FULL, DSCR_DTR_TX_FULL, &dscr);
360         if (retval != ERROR_OK) {
361                 LOG_ERROR("Error waiting for read dcc");
362                 return retval;
363         }
364
365         retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
366                         a->armv7a_common.debug_base + CPUDBG_DTRTX, data);
367         if (retval != ERROR_OK)
368                 return retval;
369         /* LOG_DEBUG("read DCC 0x%08" PRIx32, *data); */
370
371         if (dscr_p)
372                 *dscr_p = dscr;
373
374         return retval;
375 }
376
377 static int cortex_a_dpm_prepare(struct arm_dpm *dpm)
378 {
379         struct cortex_a_common *a = dpm_to_a(dpm);
380         uint32_t dscr;
381         int retval;
382
383         /* set up invariant:  INSTR_COMP is set after ever DPM operation */
384         retval = cortex_a_wait_instrcmpl(dpm->arm->target, &dscr, true);
385         if (retval != ERROR_OK) {
386                 LOG_ERROR("Error waiting for dpm prepare");
387                 return retval;
388         }
389
390         /* this "should never happen" ... */
391         if (dscr & DSCR_DTR_RX_FULL) {
392                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
393                 /* Clear DCCRX */
394                 retval = cortex_a_exec_opcode(
395                                 a->armv7a_common.arm.target,
396                                 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
397                                 &dscr);
398                 if (retval != ERROR_OK)
399                         return retval;
400         }
401
402         return retval;
403 }
404
405 static int cortex_a_dpm_finish(struct arm_dpm *dpm)
406 {
407         /* REVISIT what could be done here? */
408         return ERROR_OK;
409 }
410
411 static int cortex_a_instr_write_data_dcc(struct arm_dpm *dpm,
412         uint32_t opcode, uint32_t data)
413 {
414         struct cortex_a_common *a = dpm_to_a(dpm);
415         int retval;
416         uint32_t dscr = DSCR_INSTR_COMP;
417
418         retval = cortex_a_write_dcc(a, data);
419         if (retval != ERROR_OK)
420                 return retval;
421
422         return cortex_a_exec_opcode(
423                         a->armv7a_common.arm.target,
424                         opcode,
425                         &dscr);
426 }
427
428 static int cortex_a_instr_write_data_rt_dcc(struct arm_dpm *dpm,
429         uint8_t rt, uint32_t data)
430 {
431         struct cortex_a_common *a = dpm_to_a(dpm);
432         uint32_t dscr = DSCR_INSTR_COMP;
433         int retval;
434
435         if (rt > 15)
436                 return ERROR_TARGET_INVALID;
437
438         retval = cortex_a_write_dcc(a, data);
439         if (retval != ERROR_OK)
440                 return retval;
441
442         /* DCCRX to Rt, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
443         return cortex_a_exec_opcode(
444                         a->armv7a_common.arm.target,
445                         ARMV4_5_MRC(14, 0, rt, 0, 5, 0),
446                         &dscr);
447 }
448
449 static int cortex_a_instr_write_data_r0(struct arm_dpm *dpm,
450         uint32_t opcode, uint32_t data)
451 {
452         struct cortex_a_common *a = dpm_to_a(dpm);
453         uint32_t dscr = DSCR_INSTR_COMP;
454         int retval;
455
456         retval = cortex_a_instr_write_data_rt_dcc(dpm, 0, data);
457         if (retval != ERROR_OK)
458                 return retval;
459
460         /* then the opcode, taking data from R0 */
461         retval = cortex_a_exec_opcode(
462                         a->armv7a_common.arm.target,
463                         opcode,
464                         &dscr);
465
466         return retval;
467 }
468
469 static int cortex_a_instr_cpsr_sync(struct arm_dpm *dpm)
470 {
471         struct target *target = dpm->arm->target;
472         uint32_t dscr = DSCR_INSTR_COMP;
473
474         /* "Prefetch flush" after modifying execution status in CPSR */
475         return cortex_a_exec_opcode(target,
476                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
477                         &dscr);
478 }
479
480 static int cortex_a_instr_read_data_dcc(struct arm_dpm *dpm,
481         uint32_t opcode, uint32_t *data)
482 {
483         struct cortex_a_common *a = dpm_to_a(dpm);
484         int retval;
485         uint32_t dscr = DSCR_INSTR_COMP;
486
487         /* the opcode, writing data to DCC */
488         retval = cortex_a_exec_opcode(
489                         a->armv7a_common.arm.target,
490                         opcode,
491                         &dscr);
492         if (retval != ERROR_OK)
493                 return retval;
494
495         return cortex_a_read_dcc(a, data, &dscr);
496 }
497
498 static int cortex_a_instr_read_data_rt_dcc(struct arm_dpm *dpm,
499         uint8_t rt, uint32_t *data)
500 {
501         struct cortex_a_common *a = dpm_to_a(dpm);
502         uint32_t dscr = DSCR_INSTR_COMP;
503         int retval;
504
505         if (rt > 15)
506                 return ERROR_TARGET_INVALID;
507
508         retval = cortex_a_exec_opcode(
509                         a->armv7a_common.arm.target,
510                         ARMV4_5_MCR(14, 0, rt, 0, 5, 0),
511                         &dscr);
512         if (retval != ERROR_OK)
513                 return retval;
514
515         return cortex_a_read_dcc(a, data, &dscr);
516 }
517
518 static int cortex_a_instr_read_data_r0(struct arm_dpm *dpm,
519         uint32_t opcode, uint32_t *data)
520 {
521         struct cortex_a_common *a = dpm_to_a(dpm);
522         uint32_t dscr = DSCR_INSTR_COMP;
523         int retval;
524
525         /* the opcode, writing data to R0 */
526         retval = cortex_a_exec_opcode(
527                         a->armv7a_common.arm.target,
528                         opcode,
529                         &dscr);
530         if (retval != ERROR_OK)
531                 return retval;
532
533         /* write R0 to DCC */
534         return cortex_a_instr_read_data_rt_dcc(dpm, 0, data);
535 }
536
537 static int cortex_a_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
538         uint32_t addr, uint32_t control)
539 {
540         struct cortex_a_common *a = dpm_to_a(dpm);
541         uint32_t vr = a->armv7a_common.debug_base;
542         uint32_t cr = a->armv7a_common.debug_base;
543         int retval;
544
545         switch (index_t) {
546                 case 0 ... 15:  /* breakpoints */
547                         vr += CPUDBG_BVR_BASE;
548                         cr += CPUDBG_BCR_BASE;
549                         break;
550                 case 16 ... 31: /* watchpoints */
551                         vr += CPUDBG_WVR_BASE;
552                         cr += CPUDBG_WCR_BASE;
553                         index_t -= 16;
554                         break;
555                 default:
556                         return ERROR_FAIL;
557         }
558         vr += 4 * index_t;
559         cr += 4 * index_t;
560
561         LOG_DEBUG("A: bpwp enable, vr %08x cr %08x",
562                 (unsigned) vr, (unsigned) cr);
563
564         retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
565                         vr, addr);
566         if (retval != ERROR_OK)
567                 return retval;
568         retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
569                         cr, control);
570         return retval;
571 }
572
573 static int cortex_a_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
574 {
575         struct cortex_a_common *a = dpm_to_a(dpm);
576         uint32_t cr;
577
578         switch (index_t) {
579                 case 0 ... 15:
580                         cr = a->armv7a_common.debug_base + CPUDBG_BCR_BASE;
581                         break;
582                 case 16 ... 31:
583                         cr = a->armv7a_common.debug_base + CPUDBG_WCR_BASE;
584                         index_t -= 16;
585                         break;
586                 default:
587                         return ERROR_FAIL;
588         }
589         cr += 4 * index_t;
590
591         LOG_DEBUG("A: bpwp disable, cr %08x", (unsigned) cr);
592
593         /* clear control register */
594         return cortex_a_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
595 }
596
597 static int cortex_a_dpm_setup(struct cortex_a_common *a, uint32_t didr)
598 {
599         struct arm_dpm *dpm = &a->armv7a_common.dpm;
600         int retval;
601
602         dpm->arm = &a->armv7a_common.arm;
603         dpm->didr = didr;
604
605         dpm->prepare = cortex_a_dpm_prepare;
606         dpm->finish = cortex_a_dpm_finish;
607
608         dpm->instr_write_data_dcc = cortex_a_instr_write_data_dcc;
609         dpm->instr_write_data_r0 = cortex_a_instr_write_data_r0;
610         dpm->instr_cpsr_sync = cortex_a_instr_cpsr_sync;
611
612         dpm->instr_read_data_dcc = cortex_a_instr_read_data_dcc;
613         dpm->instr_read_data_r0 = cortex_a_instr_read_data_r0;
614
615         dpm->bpwp_enable = cortex_a_bpwp_enable;
616         dpm->bpwp_disable = cortex_a_bpwp_disable;
617
618         retval = arm_dpm_setup(dpm);
619         if (retval == ERROR_OK)
620                 retval = arm_dpm_initialize(dpm);
621
622         return retval;
623 }
624 static struct target *get_cortex_a(struct target *target, int32_t coreid)
625 {
626         struct target_list *head;
627         struct target *curr;
628
629         head = target->head;
630         while (head != (struct target_list *)NULL) {
631                 curr = head->target;
632                 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
633                         return curr;
634                 head = head->next;
635         }
636         return target;
637 }
638 static int cortex_a_halt(struct target *target);
639
640 static int cortex_a_halt_smp(struct target *target)
641 {
642         int retval = 0;
643         struct target_list *head;
644         struct target *curr;
645         head = target->head;
646         while (head != (struct target_list *)NULL) {
647                 curr = head->target;
648                 if ((curr != target) && (curr->state != TARGET_HALTED)
649                         && target_was_examined(curr))
650                         retval += cortex_a_halt(curr);
651                 head = head->next;
652         }
653         return retval;
654 }
655
656 static int update_halt_gdb(struct target *target)
657 {
658         struct target *gdb_target = NULL;
659         struct target_list *head;
660         struct target *curr;
661         int retval = 0;
662
663         if (target->gdb_service && target->gdb_service->core[0] == -1) {
664                 target->gdb_service->target = target;
665                 target->gdb_service->core[0] = target->coreid;
666                 retval += cortex_a_halt_smp(target);
667         }
668
669         if (target->gdb_service)
670                 gdb_target = target->gdb_service->target;
671
672         foreach_smp_target(head, target->head) {
673                 curr = head->target;
674                 /* skip calling context */
675                 if (curr == target)
676                         continue;
677                 if (!target_was_examined(curr))
678                         continue;
679                 /* skip targets that were already halted */
680                 if (curr->state == TARGET_HALTED)
681                         continue;
682                 /* Skip gdb_target; it alerts GDB so has to be polled as last one */
683                 if (curr == gdb_target)
684                         continue;
685
686                 /* avoid recursion in cortex_a_poll() */
687                 curr->smp = 0;
688                 cortex_a_poll(curr);
689                 curr->smp = 1;
690         }
691
692         /* after all targets were updated, poll the gdb serving target */
693         if (gdb_target != NULL && gdb_target != target)
694                 cortex_a_poll(gdb_target);
695         return retval;
696 }
697
698 /*
699  * Cortex-A Run control
700  */
701
702 static int cortex_a_poll(struct target *target)
703 {
704         int retval = ERROR_OK;
705         uint32_t dscr;
706         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
707         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
708         enum target_state prev_target_state = target->state;
709         /*  toggle to another core is done by gdb as follow */
710         /*  maint packet J core_id */
711         /*  continue */
712         /*  the next polling trigger an halt event sent to gdb */
713         if ((target->state == TARGET_HALTED) && (target->smp) &&
714                 (target->gdb_service) &&
715                 (target->gdb_service->target == NULL)) {
716                 target->gdb_service->target =
717                         get_cortex_a(target, target->gdb_service->core[1]);
718                 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
719                 return retval;
720         }
721         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
722                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
723         if (retval != ERROR_OK)
724                 return retval;
725         cortex_a->cpudbg_dscr = dscr;
726
727         if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED)) {
728                 if (prev_target_state != TARGET_HALTED) {
729                         /* We have a halting debug event */
730                         LOG_DEBUG("Target halted");
731                         target->state = TARGET_HALTED;
732
733                         retval = cortex_a_debug_entry(target);
734                         if (retval != ERROR_OK)
735                                 return retval;
736
737                         if (target->smp) {
738                                 retval = update_halt_gdb(target);
739                                 if (retval != ERROR_OK)
740                                         return retval;
741                         }
742
743                         if (prev_target_state == TARGET_DEBUG_RUNNING) {
744                                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
745                         } else { /* prev_target_state is RUNNING, UNKNOWN or RESET */
746                                 if (arm_semihosting(target, &retval) != 0)
747                                         return retval;
748
749                                 target_call_event_callbacks(target,
750                                         TARGET_EVENT_HALTED);
751                         }
752                 }
753         } else
754                 target->state = TARGET_RUNNING;
755
756         return retval;
757 }
758
759 static int cortex_a_halt(struct target *target)
760 {
761         int retval;
762         uint32_t dscr;
763         struct armv7a_common *armv7a = target_to_armv7a(target);
764
765         /*
766          * Tell the core to be halted by writing DRCR with 0x1
767          * and then wait for the core to be halted.
768          */
769         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
770                         armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
771         if (retval != ERROR_OK)
772                 return retval;
773
774         dscr = 0; /* force read of dscr */
775         retval = cortex_a_wait_dscr_bits(target, DSCR_CORE_HALTED,
776                         DSCR_CORE_HALTED, &dscr);
777         if (retval != ERROR_OK) {
778                 LOG_ERROR("Error waiting for halt");
779                 return retval;
780         }
781
782         target->debug_reason = DBG_REASON_DBGRQ;
783
784         return ERROR_OK;
785 }
786
787 static int cortex_a_internal_restore(struct target *target, int current,
788         target_addr_t *address, int handle_breakpoints, int debug_execution)
789 {
790         struct armv7a_common *armv7a = target_to_armv7a(target);
791         struct arm *arm = &armv7a->arm;
792         int retval;
793         uint32_t resume_pc;
794
795         if (!debug_execution)
796                 target_free_all_working_areas(target);
797
798 #if 0
799         if (debug_execution) {
800                 /* Disable interrupts */
801                 /* We disable interrupts in the PRIMASK register instead of
802                  * masking with C_MASKINTS,
803                  * This is probably the same issue as Cortex-M3 Errata 377493:
804                  * C_MASKINTS in parallel with disabled interrupts can cause
805                  * local faults to not be taken. */
806                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
807                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = true;
808                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = true;
809
810                 /* Make sure we are in Thumb mode */
811                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
812                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0,
813                         32) | (1 << 24));
814                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = true;
815                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = true;
816         }
817 #endif
818
819         /* current = 1: continue on current pc, otherwise continue at <address> */
820         resume_pc = buf_get_u32(arm->pc->value, 0, 32);
821         if (!current)
822                 resume_pc = *address;
823         else
824                 *address = resume_pc;
825
826         /* Make sure that the Armv7 gdb thumb fixups does not
827          * kill the return address
828          */
829         switch (arm->core_state) {
830                 case ARM_STATE_ARM:
831                         resume_pc &= 0xFFFFFFFC;
832                         break;
833                 case ARM_STATE_THUMB:
834                 case ARM_STATE_THUMB_EE:
835                         /* When the return address is loaded into PC
836                          * bit 0 must be 1 to stay in Thumb state
837                          */
838                         resume_pc |= 0x1;
839                         break;
840                 case ARM_STATE_JAZELLE:
841                         LOG_ERROR("How do I resume into Jazelle state??");
842                         return ERROR_FAIL;
843                 case ARM_STATE_AARCH64:
844                         LOG_ERROR("Shoudn't be in AARCH64 state");
845                         return ERROR_FAIL;
846         }
847         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
848         buf_set_u32(arm->pc->value, 0, 32, resume_pc);
849         arm->pc->dirty = true;
850         arm->pc->valid = true;
851
852         /* restore dpm_mode at system halt */
853         arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
854         /* called it now before restoring context because it uses cpu
855          * register r0 for restoring cp15 control register */
856         retval = cortex_a_restore_cp15_control_reg(target);
857         if (retval != ERROR_OK)
858                 return retval;
859         retval = cortex_a_restore_context(target, handle_breakpoints);
860         if (retval != ERROR_OK)
861                 return retval;
862         target->debug_reason = DBG_REASON_NOTHALTED;
863         target->state = TARGET_RUNNING;
864
865         /* registers are now invalid */
866         register_cache_invalidate(arm->core_cache);
867
868 #if 0
869         /* the front-end may request us not to handle breakpoints */
870         if (handle_breakpoints) {
871                 /* Single step past breakpoint at current address */
872                 breakpoint = breakpoint_find(target, resume_pc);
873                 if (breakpoint) {
874                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
875                         cortex_m3_unset_breakpoint(target, breakpoint);
876                         cortex_m3_single_step_core(target);
877                         cortex_m3_set_breakpoint(target, breakpoint);
878                 }
879         }
880
881 #endif
882         return retval;
883 }
884
885 static int cortex_a_internal_restart(struct target *target)
886 {
887         struct armv7a_common *armv7a = target_to_armv7a(target);
888         struct arm *arm = &armv7a->arm;
889         int retval;
890         uint32_t dscr;
891         /*
892          * * Restart core and wait for it to be started.  Clear ITRen and sticky
893          * * exception flags: see ARMv7 ARM, C5.9.
894          *
895          * REVISIT: for single stepping, we probably want to
896          * disable IRQs by default, with optional override...
897          */
898
899         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
900                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
901         if (retval != ERROR_OK)
902                 return retval;
903
904         if ((dscr & DSCR_INSTR_COMP) == 0)
905                 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
906
907         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
908                         armv7a->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
909         if (retval != ERROR_OK)
910                 return retval;
911
912         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
913                         armv7a->debug_base + CPUDBG_DRCR, DRCR_RESTART |
914                         DRCR_CLEAR_EXCEPTIONS);
915         if (retval != ERROR_OK)
916                 return retval;
917
918         dscr = 0; /* force read of dscr */
919         retval = cortex_a_wait_dscr_bits(target, DSCR_CORE_RESTARTED,
920                         DSCR_CORE_RESTARTED, &dscr);
921         if (retval != ERROR_OK) {
922                 LOG_ERROR("Error waiting for resume");
923                 return retval;
924         }
925
926         target->debug_reason = DBG_REASON_NOTHALTED;
927         target->state = TARGET_RUNNING;
928
929         /* registers are now invalid */
930         register_cache_invalidate(arm->core_cache);
931
932         return ERROR_OK;
933 }
934
935 static int cortex_a_restore_smp(struct target *target, int handle_breakpoints)
936 {
937         int retval = 0;
938         struct target_list *head;
939         struct target *curr;
940         target_addr_t address;
941         head = target->head;
942         while (head != (struct target_list *)NULL) {
943                 curr = head->target;
944                 if ((curr != target) && (curr->state != TARGET_RUNNING)
945                         && target_was_examined(curr)) {
946                         /*  resume current address , not in step mode */
947                         retval += cortex_a_internal_restore(curr, 1, &address,
948                                         handle_breakpoints, 0);
949                         retval += cortex_a_internal_restart(curr);
950                 }
951                 head = head->next;
952
953         }
954         return retval;
955 }
956
957 static int cortex_a_resume(struct target *target, int current,
958         target_addr_t address, int handle_breakpoints, int debug_execution)
959 {
960         int retval = 0;
961         /* dummy resume for smp toggle in order to reduce gdb impact  */
962         if ((target->smp) && (target->gdb_service->core[1] != -1)) {
963                 /*   simulate a start and halt of target */
964                 target->gdb_service->target = NULL;
965                 target->gdb_service->core[0] = target->gdb_service->core[1];
966                 /*  fake resume at next poll we play the  target core[1], see poll*/
967                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
968                 return 0;
969         }
970         cortex_a_internal_restore(target, current, &address, handle_breakpoints, debug_execution);
971         if (target->smp) {
972                 target->gdb_service->core[0] = -1;
973                 retval = cortex_a_restore_smp(target, handle_breakpoints);
974                 if (retval != ERROR_OK)
975                         return retval;
976         }
977         cortex_a_internal_restart(target);
978
979         if (!debug_execution) {
980                 target->state = TARGET_RUNNING;
981                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
982                 LOG_DEBUG("target resumed at " TARGET_ADDR_FMT, address);
983         } else {
984                 target->state = TARGET_DEBUG_RUNNING;
985                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
986                 LOG_DEBUG("target debug resumed at " TARGET_ADDR_FMT, address);
987         }
988
989         return ERROR_OK;
990 }
991
992 static int cortex_a_debug_entry(struct target *target)
993 {
994         uint32_t dscr;
995         int retval = ERROR_OK;
996         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
997         struct armv7a_common *armv7a = target_to_armv7a(target);
998         struct arm *arm = &armv7a->arm;
999
1000         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a->cpudbg_dscr);
1001
1002         /* REVISIT surely we should not re-read DSCR !! */
1003         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1004                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
1005         if (retval != ERROR_OK)
1006                 return retval;
1007
1008         /* REVISIT see A TRM 12.11.4 steps 2..3 -- make sure that any
1009          * imprecise data aborts get discarded by issuing a Data
1010          * Synchronization Barrier:  ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1011          */
1012
1013         /* Enable the ITR execution once we are in debug mode */
1014         dscr |= DSCR_ITR_EN;
1015         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1016                         armv7a->debug_base + CPUDBG_DSCR, dscr);
1017         if (retval != ERROR_OK)
1018                 return retval;
1019
1020         /* Examine debug reason */
1021         arm_dpm_report_dscr(&armv7a->dpm, cortex_a->cpudbg_dscr);
1022
1023         /* save address of instruction that triggered the watchpoint? */
1024         if (target->debug_reason == DBG_REASON_WATCHPOINT) {
1025                 uint32_t wfar;
1026
1027                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1028                                 armv7a->debug_base + CPUDBG_WFAR,
1029                                 &wfar);
1030                 if (retval != ERROR_OK)
1031                         return retval;
1032                 arm_dpm_report_wfar(&armv7a->dpm, wfar);
1033         }
1034
1035         /* First load register accessible through core debug port */
1036         retval = arm_dpm_read_current_registers(&armv7a->dpm);
1037         if (retval != ERROR_OK)
1038                 return retval;
1039
1040         if (arm->spsr) {
1041                 /* read SPSR */
1042                 retval = arm_dpm_read_reg(&armv7a->dpm, arm->spsr, 17);
1043                 if (retval != ERROR_OK)
1044                         return retval;
1045         }
1046
1047 #if 0
1048 /* TODO, Move this */
1049         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
1050         cortex_a_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
1051         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
1052
1053         cortex_a_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
1054         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
1055
1056         cortex_a_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
1057         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
1058 #endif
1059
1060         /* Are we in an exception handler */
1061 /*      armv4_5->exception_number = 0; */
1062         if (armv7a->post_debug_entry) {
1063                 retval = armv7a->post_debug_entry(target);
1064                 if (retval != ERROR_OK)
1065                         return retval;
1066         }
1067
1068         return retval;
1069 }
1070
1071 static int cortex_a_post_debug_entry(struct target *target)
1072 {
1073         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1074         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1075         int retval;
1076
1077         /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1078         retval = armv7a->arm.mrc(target, 15,
1079                         0, 0,   /* op1, op2 */
1080                         1, 0,   /* CRn, CRm */
1081                         &cortex_a->cp15_control_reg);
1082         if (retval != ERROR_OK)
1083                 return retval;
1084         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg);
1085         cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
1086
1087         if (!armv7a->is_armv7r)
1088                 armv7a_read_ttbcr(target);
1089
1090         if (armv7a->armv7a_mmu.armv7a_cache.info == -1)
1091                 armv7a_identify_cache(target);
1092
1093         if (armv7a->is_armv7r) {
1094                 armv7a->armv7a_mmu.mmu_enabled = 0;
1095         } else {
1096                 armv7a->armv7a_mmu.mmu_enabled =
1097                         (cortex_a->cp15_control_reg & 0x1U) ? 1 : 0;
1098         }
1099         armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled =
1100                 (cortex_a->cp15_control_reg & 0x4U) ? 1 : 0;
1101         armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled =
1102                 (cortex_a->cp15_control_reg & 0x1000U) ? 1 : 0;
1103         cortex_a->curr_mode = armv7a->arm.core_mode;
1104
1105         /* switch to SVC mode to read DACR */
1106         arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
1107         armv7a->arm.mrc(target, 15,
1108                         0, 0, 3, 0,
1109                         &cortex_a->cp15_dacr_reg);
1110
1111         LOG_DEBUG("cp15_dacr_reg: %8.8" PRIx32,
1112                         cortex_a->cp15_dacr_reg);
1113
1114         arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
1115         return ERROR_OK;
1116 }
1117
1118 int cortex_a_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
1119 {
1120         struct armv7a_common *armv7a = target_to_armv7a(target);
1121         uint32_t dscr;
1122
1123         /* Read DSCR */
1124         int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1125                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
1126         if (ERROR_OK != retval)
1127                 return retval;
1128
1129         /* clear bitfield */
1130         dscr &= ~bit_mask;
1131         /* put new value */
1132         dscr |= value & bit_mask;
1133
1134         /* write new DSCR */
1135         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1136                         armv7a->debug_base + CPUDBG_DSCR, dscr);
1137         return retval;
1138 }
1139
1140 static int cortex_a_step(struct target *target, int current, target_addr_t address,
1141         int handle_breakpoints)
1142 {
1143         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1144         struct armv7a_common *armv7a = target_to_armv7a(target);
1145         struct arm *arm = &armv7a->arm;
1146         struct breakpoint *breakpoint = NULL;
1147         struct breakpoint stepbreakpoint;
1148         struct reg *r;
1149         int retval;
1150
1151         if (target->state != TARGET_HALTED) {
1152                 LOG_WARNING("target not halted");
1153                 return ERROR_TARGET_NOT_HALTED;
1154         }
1155
1156         /* current = 1: continue on current pc, otherwise continue at <address> */
1157         r = arm->pc;
1158         if (!current)
1159                 buf_set_u32(r->value, 0, 32, address);
1160         else
1161                 address = buf_get_u32(r->value, 0, 32);
1162
1163         /* The front-end may request us not to handle breakpoints.
1164          * But since Cortex-A uses breakpoint for single step,
1165          * we MUST handle breakpoints.
1166          */
1167         handle_breakpoints = 1;
1168         if (handle_breakpoints) {
1169                 breakpoint = breakpoint_find(target, address);
1170                 if (breakpoint)
1171                         cortex_a_unset_breakpoint(target, breakpoint);
1172         }
1173
1174         /* Setup single step breakpoint */
1175         stepbreakpoint.address = address;
1176         stepbreakpoint.asid = 0;
1177         stepbreakpoint.length = (arm->core_state == ARM_STATE_THUMB)
1178                 ? 2 : 4;
1179         stepbreakpoint.type = BKPT_HARD;
1180         stepbreakpoint.set = 0;
1181
1182         /* Disable interrupts during single step if requested */
1183         if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1184                 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, DSCR_INT_DIS);
1185                 if (ERROR_OK != retval)
1186                         return retval;
1187         }
1188
1189         /* Break on IVA mismatch */
1190         cortex_a_set_breakpoint(target, &stepbreakpoint, 0x04);
1191
1192         target->debug_reason = DBG_REASON_SINGLESTEP;
1193
1194         retval = cortex_a_resume(target, 1, address, 0, 0);
1195         if (retval != ERROR_OK)
1196                 return retval;
1197
1198         int64_t then = timeval_ms();
1199         while (target->state != TARGET_HALTED) {
1200                 retval = cortex_a_poll(target);
1201                 if (retval != ERROR_OK)
1202                         return retval;
1203                 if (target->state == TARGET_HALTED)
1204                         break;
1205                 if (timeval_ms() > then + 1000) {
1206                         LOG_ERROR("timeout waiting for target halt");
1207                         return ERROR_FAIL;
1208                 }
1209         }
1210
1211         cortex_a_unset_breakpoint(target, &stepbreakpoint);
1212
1213         /* Re-enable interrupts if they were disabled */
1214         if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1215                 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, 0);
1216                 if (ERROR_OK != retval)
1217                         return retval;
1218         }
1219
1220
1221         target->debug_reason = DBG_REASON_BREAKPOINT;
1222
1223         if (breakpoint)
1224                 cortex_a_set_breakpoint(target, breakpoint, 0);
1225
1226         if (target->state != TARGET_HALTED)
1227                 LOG_DEBUG("target stepped");
1228
1229         return ERROR_OK;
1230 }
1231
1232 static int cortex_a_restore_context(struct target *target, bool bpwp)
1233 {
1234         struct armv7a_common *armv7a = target_to_armv7a(target);
1235
1236         LOG_DEBUG(" ");
1237
1238         if (armv7a->pre_restore_context)
1239                 armv7a->pre_restore_context(target);
1240
1241         return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1242 }
1243
1244 /*
1245  * Cortex-A Breakpoint and watchpoint functions
1246  */
1247
1248 /* Setup hardware Breakpoint Register Pair */
1249 static int cortex_a_set_breakpoint(struct target *target,
1250         struct breakpoint *breakpoint, uint8_t matchmode)
1251 {
1252         int retval;
1253         int brp_i = 0;
1254         uint32_t control;
1255         uint8_t byte_addr_select = 0x0F;
1256         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1257         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1258         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1259
1260         if (breakpoint->set) {
1261                 LOG_WARNING("breakpoint already set");
1262                 return ERROR_OK;
1263         }
1264
1265         if (breakpoint->type == BKPT_HARD) {
1266                 while (brp_list[brp_i].used && (brp_i < cortex_a->brp_num))
1267                         brp_i++;
1268                 if (brp_i >= cortex_a->brp_num) {
1269                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1270                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1271                 }
1272                 breakpoint->set = brp_i + 1;
1273                 if (breakpoint->length == 2)
1274                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1275                 control = ((matchmode & 0x7) << 20)
1276                         | (byte_addr_select << 5)
1277                         | (3 << 1) | 1;
1278                 brp_list[brp_i].used = 1;
1279                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1280                 brp_list[brp_i].control = control;
1281                 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1282                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1283                                 brp_list[brp_i].value);
1284                 if (retval != ERROR_OK)
1285                         return retval;
1286                 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1287                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1288                                 brp_list[brp_i].control);
1289                 if (retval != ERROR_OK)
1290                         return retval;
1291                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1292                         brp_list[brp_i].control,
1293                         brp_list[brp_i].value);
1294         } else if (breakpoint->type == BKPT_SOFT) {
1295                 uint8_t code[4];
1296                 /* length == 2: Thumb breakpoint */
1297                 if (breakpoint->length == 2)
1298                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1299                 else
1300                 /* length == 3: Thumb-2 breakpoint, actual encoding is
1301                  * a regular Thumb BKPT instruction but we replace a
1302                  * 32bit Thumb-2 instruction, so fix-up the breakpoint
1303                  * length
1304                  */
1305                 if (breakpoint->length == 3) {
1306                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1307                         breakpoint->length = 4;
1308                 } else
1309                         /* length == 4, normal ARM breakpoint */
1310                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1311
1312                 retval = target_read_memory(target,
1313                                 breakpoint->address & 0xFFFFFFFE,
1314                                 breakpoint->length, 1,
1315                                 breakpoint->orig_instr);
1316                 if (retval != ERROR_OK)
1317                         return retval;
1318
1319                 /* make sure data cache is cleaned & invalidated down to PoC */
1320                 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1321                         armv7a_cache_flush_virt(target, breakpoint->address,
1322                                                 breakpoint->length);
1323                 }
1324
1325                 retval = target_write_memory(target,
1326                                 breakpoint->address & 0xFFFFFFFE,
1327                                 breakpoint->length, 1, code);
1328                 if (retval != ERROR_OK)
1329                         return retval;
1330
1331                 /* update i-cache at breakpoint location */
1332                 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1333                                         breakpoint->length);
1334                 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1335                                                  breakpoint->length);
1336
1337                 breakpoint->set = 0x11; /* Any nice value but 0 */
1338         }
1339
1340         return ERROR_OK;
1341 }
1342
1343 static int cortex_a_set_context_breakpoint(struct target *target,
1344         struct breakpoint *breakpoint, uint8_t matchmode)
1345 {
1346         int retval = ERROR_FAIL;
1347         int brp_i = 0;
1348         uint32_t control;
1349         uint8_t byte_addr_select = 0x0F;
1350         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1351         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1352         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1353
1354         if (breakpoint->set) {
1355                 LOG_WARNING("breakpoint already set");
1356                 return retval;
1357         }
1358         /*check available context BRPs*/
1359         while ((brp_list[brp_i].used ||
1360                 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < cortex_a->brp_num))
1361                 brp_i++;
1362
1363         if (brp_i >= cortex_a->brp_num) {
1364                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1365                 return ERROR_FAIL;
1366         }
1367
1368         breakpoint->set = brp_i + 1;
1369         control = ((matchmode & 0x7) << 20)
1370                 | (byte_addr_select << 5)
1371                 | (3 << 1) | 1;
1372         brp_list[brp_i].used = 1;
1373         brp_list[brp_i].value = (breakpoint->asid);
1374         brp_list[brp_i].control = control;
1375         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1376                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1377                         brp_list[brp_i].value);
1378         if (retval != ERROR_OK)
1379                 return retval;
1380         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1381                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1382                         brp_list[brp_i].control);
1383         if (retval != ERROR_OK)
1384                 return retval;
1385         LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1386                 brp_list[brp_i].control,
1387                 brp_list[brp_i].value);
1388         return ERROR_OK;
1389
1390 }
1391
1392 static int cortex_a_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1393 {
1394         int retval = ERROR_FAIL;
1395         int brp_1 = 0;  /* holds the contextID pair */
1396         int brp_2 = 0;  /* holds the IVA pair */
1397         uint32_t control_CTX, control_IVA;
1398         uint8_t CTX_byte_addr_select = 0x0F;
1399         uint8_t IVA_byte_addr_select = 0x0F;
1400         uint8_t CTX_machmode = 0x03;
1401         uint8_t IVA_machmode = 0x01;
1402         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1403         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1404         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1405
1406         if (breakpoint->set) {
1407                 LOG_WARNING("breakpoint already set");
1408                 return retval;
1409         }
1410         /*check available context BRPs*/
1411         while ((brp_list[brp_1].used ||
1412                 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < cortex_a->brp_num))
1413                 brp_1++;
1414
1415         printf("brp(CTX) found num: %d\n", brp_1);
1416         if (brp_1 >= cortex_a->brp_num) {
1417                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1418                 return ERROR_FAIL;
1419         }
1420
1421         while ((brp_list[brp_2].used ||
1422                 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < cortex_a->brp_num))
1423                 brp_2++;
1424
1425         printf("brp(IVA) found num: %d\n", brp_2);
1426         if (brp_2 >= cortex_a->brp_num) {
1427                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1428                 return ERROR_FAIL;
1429         }
1430
1431         breakpoint->set = brp_1 + 1;
1432         breakpoint->linked_BRP = brp_2;
1433         control_CTX = ((CTX_machmode & 0x7) << 20)
1434                 | (brp_2 << 16)
1435                 | (0 << 14)
1436                 | (CTX_byte_addr_select << 5)
1437                 | (3 << 1) | 1;
1438         brp_list[brp_1].used = 1;
1439         brp_list[brp_1].value = (breakpoint->asid);
1440         brp_list[brp_1].control = control_CTX;
1441         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1442                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_1].BRPn,
1443                         brp_list[brp_1].value);
1444         if (retval != ERROR_OK)
1445                 return retval;
1446         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1447                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_1].BRPn,
1448                         brp_list[brp_1].control);
1449         if (retval != ERROR_OK)
1450                 return retval;
1451
1452         control_IVA = ((IVA_machmode & 0x7) << 20)
1453                 | (brp_1 << 16)
1454                 | (IVA_byte_addr_select << 5)
1455                 | (3 << 1) | 1;
1456         brp_list[brp_2].used = 1;
1457         brp_list[brp_2].value = (breakpoint->address & 0xFFFFFFFC);
1458         brp_list[brp_2].control = control_IVA;
1459         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1460                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_2].BRPn,
1461                         brp_list[brp_2].value);
1462         if (retval != ERROR_OK)
1463                 return retval;
1464         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1465                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_2].BRPn,
1466                         brp_list[brp_2].control);
1467         if (retval != ERROR_OK)
1468                 return retval;
1469
1470         return ERROR_OK;
1471 }
1472
1473 static int cortex_a_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1474 {
1475         int retval;
1476         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1477         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1478         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1479
1480         if (!breakpoint->set) {
1481                 LOG_WARNING("breakpoint not set");
1482                 return ERROR_OK;
1483         }
1484
1485         if (breakpoint->type == BKPT_HARD) {
1486                 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1487                         int brp_i = breakpoint->set - 1;
1488                         int brp_j = breakpoint->linked_BRP;
1489                         if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1490                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1491                                 return ERROR_OK;
1492                         }
1493                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1494                                 brp_list[brp_i].control, brp_list[brp_i].value);
1495                         brp_list[brp_i].used = 0;
1496                         brp_list[brp_i].value = 0;
1497                         brp_list[brp_i].control = 0;
1498                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1499                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1500                                         brp_list[brp_i].control);
1501                         if (retval != ERROR_OK)
1502                                 return retval;
1503                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1504                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1505                                         brp_list[brp_i].value);
1506                         if (retval != ERROR_OK)
1507                                 return retval;
1508                         if ((brp_j < 0) || (brp_j >= cortex_a->brp_num)) {
1509                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1510                                 return ERROR_OK;
1511                         }
1512                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_j,
1513                                 brp_list[brp_j].control, brp_list[brp_j].value);
1514                         brp_list[brp_j].used = 0;
1515                         brp_list[brp_j].value = 0;
1516                         brp_list[brp_j].control = 0;
1517                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1518                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_j].BRPn,
1519                                         brp_list[brp_j].control);
1520                         if (retval != ERROR_OK)
1521                                 return retval;
1522                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1523                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_j].BRPn,
1524                                         brp_list[brp_j].value);
1525                         if (retval != ERROR_OK)
1526                                 return retval;
1527                         breakpoint->linked_BRP = 0;
1528                         breakpoint->set = 0;
1529                         return ERROR_OK;
1530
1531                 } else {
1532                         int brp_i = breakpoint->set - 1;
1533                         if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1534                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1535                                 return ERROR_OK;
1536                         }
1537                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1538                                 brp_list[brp_i].control, brp_list[brp_i].value);
1539                         brp_list[brp_i].used = 0;
1540                         brp_list[brp_i].value = 0;
1541                         brp_list[brp_i].control = 0;
1542                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1543                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1544                                         brp_list[brp_i].control);
1545                         if (retval != ERROR_OK)
1546                                 return retval;
1547                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1548                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1549                                         brp_list[brp_i].value);
1550                         if (retval != ERROR_OK)
1551                                 return retval;
1552                         breakpoint->set = 0;
1553                         return ERROR_OK;
1554                 }
1555         } else {
1556
1557                 /* make sure data cache is cleaned & invalidated down to PoC */
1558                 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1559                         armv7a_cache_flush_virt(target, breakpoint->address,
1560                                                 breakpoint->length);
1561                 }
1562
1563                 /* restore original instruction (kept in target endianness) */
1564                 if (breakpoint->length == 4) {
1565                         retval = target_write_memory(target,
1566                                         breakpoint->address & 0xFFFFFFFE,
1567                                         4, 1, breakpoint->orig_instr);
1568                         if (retval != ERROR_OK)
1569                                 return retval;
1570                 } else {
1571                         retval = target_write_memory(target,
1572                                         breakpoint->address & 0xFFFFFFFE,
1573                                         2, 1, breakpoint->orig_instr);
1574                         if (retval != ERROR_OK)
1575                                 return retval;
1576                 }
1577
1578                 /* update i-cache at breakpoint location */
1579                 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1580                                                  breakpoint->length);
1581                 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1582                                                  breakpoint->length);
1583         }
1584         breakpoint->set = 0;
1585
1586         return ERROR_OK;
1587 }
1588
1589 static int cortex_a_add_breakpoint(struct target *target,
1590         struct breakpoint *breakpoint)
1591 {
1592         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1593
1594         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1595                 LOG_INFO("no hardware breakpoint available");
1596                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1597         }
1598
1599         if (breakpoint->type == BKPT_HARD)
1600                 cortex_a->brp_num_available--;
1601
1602         return cortex_a_set_breakpoint(target, breakpoint, 0x00);       /* Exact match */
1603 }
1604
1605 static int cortex_a_add_context_breakpoint(struct target *target,
1606         struct breakpoint *breakpoint)
1607 {
1608         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1609
1610         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1611                 LOG_INFO("no hardware breakpoint available");
1612                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1613         }
1614
1615         if (breakpoint->type == BKPT_HARD)
1616                 cortex_a->brp_num_available--;
1617
1618         return cortex_a_set_context_breakpoint(target, breakpoint, 0x02);       /* asid match */
1619 }
1620
1621 static int cortex_a_add_hybrid_breakpoint(struct target *target,
1622         struct breakpoint *breakpoint)
1623 {
1624         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1625
1626         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1627                 LOG_INFO("no hardware breakpoint available");
1628                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1629         }
1630
1631         if (breakpoint->type == BKPT_HARD)
1632                 cortex_a->brp_num_available--;
1633
1634         return cortex_a_set_hybrid_breakpoint(target, breakpoint);      /* ??? */
1635 }
1636
1637
1638 static int cortex_a_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1639 {
1640         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1641
1642 #if 0
1643 /* It is perfectly possible to remove breakpoints while the target is running */
1644         if (target->state != TARGET_HALTED) {
1645                 LOG_WARNING("target not halted");
1646                 return ERROR_TARGET_NOT_HALTED;
1647         }
1648 #endif
1649
1650         if (breakpoint->set) {
1651                 cortex_a_unset_breakpoint(target, breakpoint);
1652                 if (breakpoint->type == BKPT_HARD)
1653                         cortex_a->brp_num_available++;
1654         }
1655
1656
1657         return ERROR_OK;
1658 }
1659
1660 /*
1661  * Cortex-A Reset functions
1662  */
1663
1664 static int cortex_a_assert_reset(struct target *target)
1665 {
1666         struct armv7a_common *armv7a = target_to_armv7a(target);
1667
1668         LOG_DEBUG(" ");
1669
1670         /* FIXME when halt is requested, make it work somehow... */
1671
1672         /* This function can be called in "target not examined" state */
1673
1674         /* Issue some kind of warm reset. */
1675         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1676                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1677         else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1678                 /* REVISIT handle "pulls" cases, if there's
1679                  * hardware that needs them to work.
1680                  */
1681
1682                 /*
1683                  * FIXME: fix reset when transport is SWD. This is a temporary
1684                  * work-around for release v0.10 that is not intended to stay!
1685                  */
1686                 if (transport_is_swd() ||
1687                                 (target->reset_halt && (jtag_get_reset_config() & RESET_SRST_NO_GATING)))
1688                         adapter_assert_reset();
1689
1690         } else {
1691                 LOG_ERROR("%s: how to reset?", target_name(target));
1692                 return ERROR_FAIL;
1693         }
1694
1695         /* registers are now invalid */
1696         if (target_was_examined(target))
1697                 register_cache_invalidate(armv7a->arm.core_cache);
1698
1699         target->state = TARGET_RESET;
1700
1701         return ERROR_OK;
1702 }
1703
1704 static int cortex_a_deassert_reset(struct target *target)
1705 {
1706         int retval;
1707
1708         LOG_DEBUG(" ");
1709
1710         /* be certain SRST is off */
1711         adapter_deassert_reset();
1712
1713         if (target_was_examined(target)) {
1714                 retval = cortex_a_poll(target);
1715                 if (retval != ERROR_OK)
1716                         return retval;
1717         }
1718
1719         if (target->reset_halt) {
1720                 if (target->state != TARGET_HALTED) {
1721                         LOG_WARNING("%s: ran after reset and before halt ...",
1722                                 target_name(target));
1723                         if (target_was_examined(target)) {
1724                                 retval = target_halt(target);
1725                                 if (retval != ERROR_OK)
1726                                         return retval;
1727                         } else
1728                                 target->state = TARGET_UNKNOWN;
1729                 }
1730         }
1731
1732         return ERROR_OK;
1733 }
1734
1735 static int cortex_a_set_dcc_mode(struct target *target, uint32_t mode, uint32_t *dscr)
1736 {
1737         /* Changes the mode of the DCC between non-blocking, stall, and fast mode.
1738          * New desired mode must be in mode. Current value of DSCR must be in
1739          * *dscr, which is updated with new value.
1740          *
1741          * This function elides actually sending the mode-change over the debug
1742          * interface if the mode is already set as desired.
1743          */
1744         uint32_t new_dscr = (*dscr & ~DSCR_EXT_DCC_MASK) | mode;
1745         if (new_dscr != *dscr) {
1746                 struct armv7a_common *armv7a = target_to_armv7a(target);
1747                 int retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1748                                 armv7a->debug_base + CPUDBG_DSCR, new_dscr);
1749                 if (retval == ERROR_OK)
1750                         *dscr = new_dscr;
1751                 return retval;
1752         } else {
1753                 return ERROR_OK;
1754         }
1755 }
1756
1757 static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
1758         uint32_t value, uint32_t *dscr)
1759 {
1760         /* Waits until the specified bit(s) of DSCR take on a specified value. */
1761         struct armv7a_common *armv7a = target_to_armv7a(target);
1762         int64_t then;
1763         int retval;
1764
1765         if ((*dscr & mask) == value)
1766                 return ERROR_OK;
1767
1768         then = timeval_ms();
1769         while (1) {
1770                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1771                                 armv7a->debug_base + CPUDBG_DSCR, dscr);
1772                 if (retval != ERROR_OK) {
1773                         LOG_ERROR("Could not read DSCR register");
1774                         return retval;
1775                 }
1776                 if ((*dscr & mask) == value)
1777                         break;
1778                 if (timeval_ms() > then + 1000) {
1779                         LOG_ERROR("timeout waiting for DSCR bit change");
1780                         return ERROR_FAIL;
1781                 }
1782         }
1783         return ERROR_OK;
1784 }
1785
1786 static int cortex_a_read_copro(struct target *target, uint32_t opcode,
1787         uint32_t *data, uint32_t *dscr)
1788 {
1789         int retval;
1790         struct armv7a_common *armv7a = target_to_armv7a(target);
1791
1792         /* Move from coprocessor to R0. */
1793         retval = cortex_a_exec_opcode(target, opcode, dscr);
1794         if (retval != ERROR_OK)
1795                 return retval;
1796
1797         /* Move from R0 to DTRTX. */
1798         retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0), dscr);
1799         if (retval != ERROR_OK)
1800                 return retval;
1801
1802         /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
1803          * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
1804          * must also check TXfull_l). Most of the time this will be free
1805          * because TXfull_l will be set immediately and cached in dscr. */
1806         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
1807                         DSCR_DTRTX_FULL_LATCHED, dscr);
1808         if (retval != ERROR_OK)
1809                 return retval;
1810
1811         /* Read the value transferred to DTRTX. */
1812         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1813                         armv7a->debug_base + CPUDBG_DTRTX, data);
1814         if (retval != ERROR_OK)
1815                 return retval;
1816
1817         return ERROR_OK;
1818 }
1819
1820 static int cortex_a_read_dfar_dfsr(struct target *target, uint32_t *dfar,
1821         uint32_t *dfsr, uint32_t *dscr)
1822 {
1823         int retval;
1824
1825         if (dfar) {
1826                 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 6, 0, 0), dfar, dscr);
1827                 if (retval != ERROR_OK)
1828                         return retval;
1829         }
1830
1831         if (dfsr) {
1832                 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 5, 0, 0), dfsr, dscr);
1833                 if (retval != ERROR_OK)
1834                         return retval;
1835         }
1836
1837         return ERROR_OK;
1838 }
1839
1840 static int cortex_a_write_copro(struct target *target, uint32_t opcode,
1841         uint32_t data, uint32_t *dscr)
1842 {
1843         int retval;
1844         struct armv7a_common *armv7a = target_to_armv7a(target);
1845
1846         /* Write the value into DTRRX. */
1847         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1848                         armv7a->debug_base + CPUDBG_DTRRX, data);
1849         if (retval != ERROR_OK)
1850                 return retval;
1851
1852         /* Move from DTRRX to R0. */
1853         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), dscr);
1854         if (retval != ERROR_OK)
1855                 return retval;
1856
1857         /* Move from R0 to coprocessor. */
1858         retval = cortex_a_exec_opcode(target, opcode, dscr);
1859         if (retval != ERROR_OK)
1860                 return retval;
1861
1862         /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
1863          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
1864          * check RXfull_l). Most of the time this will be free because RXfull_l
1865          * will be cleared immediately and cached in dscr. */
1866         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
1867         if (retval != ERROR_OK)
1868                 return retval;
1869
1870         return ERROR_OK;
1871 }
1872
1873 static int cortex_a_write_dfar_dfsr(struct target *target, uint32_t dfar,
1874         uint32_t dfsr, uint32_t *dscr)
1875 {
1876         int retval;
1877
1878         retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 6, 0, 0), dfar, dscr);
1879         if (retval != ERROR_OK)
1880                 return retval;
1881
1882         retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 5, 0, 0), dfsr, dscr);
1883         if (retval != ERROR_OK)
1884                 return retval;
1885
1886         return ERROR_OK;
1887 }
1888
1889 static int cortex_a_dfsr_to_error_code(uint32_t dfsr)
1890 {
1891         uint32_t status, upper4;
1892
1893         if (dfsr & (1 << 9)) {
1894                 /* LPAE format. */
1895                 status = dfsr & 0x3f;
1896                 upper4 = status >> 2;
1897                 if (upper4 == 1 || upper4 == 2 || upper4 == 3 || upper4 == 15)
1898                         return ERROR_TARGET_TRANSLATION_FAULT;
1899                 else if (status == 33)
1900                         return ERROR_TARGET_UNALIGNED_ACCESS;
1901                 else
1902                         return ERROR_TARGET_DATA_ABORT;
1903         } else {
1904                 /* Normal format. */
1905                 status = ((dfsr >> 6) & 0x10) | (dfsr & 0xf);
1906                 if (status == 1)
1907                         return ERROR_TARGET_UNALIGNED_ACCESS;
1908                 else if (status == 5 || status == 7 || status == 3 || status == 6 ||
1909                                 status == 9 || status == 11 || status == 13 || status == 15)
1910                         return ERROR_TARGET_TRANSLATION_FAULT;
1911                 else
1912                         return ERROR_TARGET_DATA_ABORT;
1913         }
1914 }
1915
1916 static int cortex_a_write_cpu_memory_slow(struct target *target,
1917         uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
1918 {
1919         /* Writes count objects of size size from *buffer. Old value of DSCR must
1920          * be in *dscr; updated to new value. This is slow because it works for
1921          * non-word-sized objects. Avoid unaligned accesses as they do not work
1922          * on memory address space without "Normal" attribute. If size == 4 and
1923          * the address is aligned, cortex_a_write_cpu_memory_fast should be
1924          * preferred.
1925          * Preconditions:
1926          * - Address is in R0.
1927          * - R0 is marked dirty.
1928          */
1929         struct armv7a_common *armv7a = target_to_armv7a(target);
1930         struct arm *arm = &armv7a->arm;
1931         int retval;
1932
1933         /* Mark register R1 as dirty, to use for transferring data. */
1934         arm_reg_current(arm, 1)->dirty = true;
1935
1936         /* Switch to non-blocking mode if not already in that mode. */
1937         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
1938         if (retval != ERROR_OK)
1939                 return retval;
1940
1941         /* Go through the objects. */
1942         while (count) {
1943                 /* Write the value to store into DTRRX. */
1944                 uint32_t data, opcode;
1945                 if (size == 1)
1946                         data = *buffer;
1947                 else if (size == 2)
1948                         data = target_buffer_get_u16(target, buffer);
1949                 else
1950                         data = target_buffer_get_u32(target, buffer);
1951                 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1952                                 armv7a->debug_base + CPUDBG_DTRRX, data);
1953                 if (retval != ERROR_OK)
1954                         return retval;
1955
1956                 /* Transfer the value from DTRRX to R1. */
1957                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), dscr);
1958                 if (retval != ERROR_OK)
1959                         return retval;
1960
1961                 /* Write the value transferred to R1 into memory. */
1962                 if (size == 1)
1963                         opcode = ARMV4_5_STRB_IP(1, 0);
1964                 else if (size == 2)
1965                         opcode = ARMV4_5_STRH_IP(1, 0);
1966                 else
1967                         opcode = ARMV4_5_STRW_IP(1, 0);
1968                 retval = cortex_a_exec_opcode(target, opcode, dscr);
1969                 if (retval != ERROR_OK)
1970                         return retval;
1971
1972                 /* Check for faults and return early. */
1973                 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
1974                         return ERROR_OK; /* A data fault is not considered a system failure. */
1975
1976                 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture
1977                  * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
1978                  * must also check RXfull_l). Most of the time this will be free
1979                  * because RXfull_l will be cleared immediately and cached in dscr. */
1980                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
1981                 if (retval != ERROR_OK)
1982                         return retval;
1983
1984                 /* Advance. */
1985                 buffer += size;
1986                 --count;
1987         }
1988
1989         return ERROR_OK;
1990 }
1991
1992 static int cortex_a_write_cpu_memory_fast(struct target *target,
1993         uint32_t count, const uint8_t *buffer, uint32_t *dscr)
1994 {
1995         /* Writes count objects of size 4 from *buffer. Old value of DSCR must be
1996          * in *dscr; updated to new value. This is fast but only works for
1997          * word-sized objects at aligned addresses.
1998          * Preconditions:
1999          * - Address is in R0 and must be a multiple of 4.
2000          * - R0 is marked dirty.
2001          */
2002         struct armv7a_common *armv7a = target_to_armv7a(target);
2003         int retval;
2004
2005         /* Switch to fast mode if not already in that mode. */
2006         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2007         if (retval != ERROR_OK)
2008                 return retval;
2009
2010         /* Latch STC instruction. */
2011         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2012                         armv7a->debug_base + CPUDBG_ITR, ARMV4_5_STC(0, 1, 0, 1, 14, 5, 0, 4));
2013         if (retval != ERROR_OK)
2014                 return retval;
2015
2016         /* Transfer all the data and issue all the instructions. */
2017         return mem_ap_write_buf_noincr(armv7a->debug_ap, buffer,
2018                         4, count, armv7a->debug_base + CPUDBG_DTRRX);
2019 }
2020
2021 static int cortex_a_write_cpu_memory(struct target *target,
2022         uint32_t address, uint32_t size,
2023         uint32_t count, const uint8_t *buffer)
2024 {
2025         /* Write memory through the CPU. */
2026         int retval, final_retval;
2027         struct armv7a_common *armv7a = target_to_armv7a(target);
2028         struct arm *arm = &armv7a->arm;
2029         uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2030
2031         LOG_DEBUG("Writing CPU memory address 0x%" PRIx32 " size %"  PRIu32 " count %"  PRIu32,
2032                           address, size, count);
2033         if (target->state != TARGET_HALTED) {
2034                 LOG_WARNING("target not halted");
2035                 return ERROR_TARGET_NOT_HALTED;
2036         }
2037
2038         if (!count)
2039                 return ERROR_OK;
2040
2041         /* Clear any abort. */
2042         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2043                         armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2044         if (retval != ERROR_OK)
2045                 return retval;
2046
2047         /* Read DSCR. */
2048         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2049                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
2050         if (retval != ERROR_OK)
2051                 return retval;
2052
2053         /* Switch to non-blocking mode if not already in that mode. */
2054         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2055         if (retval != ERROR_OK)
2056                 goto out;
2057
2058         /* Mark R0 as dirty. */
2059         arm_reg_current(arm, 0)->dirty = true;
2060
2061         /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2062         retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2063         if (retval != ERROR_OK)
2064                 goto out;
2065
2066         /* Get the memory address into R0. */
2067         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2068                         armv7a->debug_base + CPUDBG_DTRRX, address);
2069         if (retval != ERROR_OK)
2070                 goto out;
2071         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2072         if (retval != ERROR_OK)
2073                 goto out;
2074
2075         if (size == 4 && (address % 4) == 0) {
2076                 /* We are doing a word-aligned transfer, so use fast mode. */
2077                 retval = cortex_a_write_cpu_memory_fast(target, count, buffer, &dscr);
2078         } else {
2079                 /* Use slow path. Adjust size for aligned accesses */
2080                 switch (address % 4) {
2081                         case 1:
2082                         case 3:
2083                                 count *= size;
2084                                 size = 1;
2085                                 break;
2086                         case 2:
2087                                 if (size == 4) {
2088                                         count *= 2;
2089                                         size = 2;
2090                                 }
2091                         case 0:
2092                         default:
2093                                 break;
2094                 }
2095                 retval = cortex_a_write_cpu_memory_slow(target, size, count, buffer, &dscr);
2096         }
2097
2098 out:
2099         final_retval = retval;
2100
2101         /* Switch to non-blocking mode if not already in that mode. */
2102         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2103         if (final_retval == ERROR_OK)
2104                 final_retval = retval;
2105
2106         /* Wait for last issued instruction to complete. */
2107         retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2108         if (final_retval == ERROR_OK)
2109                 final_retval = retval;
2110
2111         /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2112          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2113          * check RXfull_l). Most of the time this will be free because RXfull_l
2114          * will be cleared immediately and cached in dscr. However, don't do this
2115          * if there is fault, because then the instruction might not have completed
2116          * successfully. */
2117         if (!(dscr & DSCR_STICKY_ABORT_PRECISE)) {
2118                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, &dscr);
2119                 if (retval != ERROR_OK)
2120                         return retval;
2121         }
2122
2123         /* If there were any sticky abort flags, clear them. */
2124         if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2125                 fault_dscr = dscr;
2126                 mem_ap_write_atomic_u32(armv7a->debug_ap,
2127                                 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2128                 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2129         } else {
2130                 fault_dscr = 0;
2131         }
2132
2133         /* Handle synchronous data faults. */
2134         if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2135                 if (final_retval == ERROR_OK) {
2136                         /* Final return value will reflect cause of fault. */
2137                         retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2138                         if (retval == ERROR_OK) {
2139                                 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2140                                 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2141                         } else
2142                                 final_retval = retval;
2143                 }
2144                 /* Fault destroyed DFAR/DFSR; restore them. */
2145                 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2146                 if (retval != ERROR_OK)
2147                         LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2148         }
2149
2150         /* Handle asynchronous data faults. */
2151         if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2152                 if (final_retval == ERROR_OK)
2153                         /* No other error has been recorded so far, so keep this one. */
2154                         final_retval = ERROR_TARGET_DATA_ABORT;
2155         }
2156
2157         /* If the DCC is nonempty, clear it. */
2158         if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2159                 uint32_t dummy;
2160                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2161                                 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2162                 if (final_retval == ERROR_OK)
2163                         final_retval = retval;
2164         }
2165         if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2166                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2167                 if (final_retval == ERROR_OK)
2168                         final_retval = retval;
2169         }
2170
2171         /* Done. */
2172         return final_retval;
2173 }
2174
2175 static int cortex_a_read_cpu_memory_slow(struct target *target,
2176         uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
2177 {
2178         /* Reads count objects of size size into *buffer. Old value of DSCR must be
2179          * in *dscr; updated to new value. This is slow because it works for
2180          * non-word-sized objects. Avoid unaligned accesses as they do not work
2181          * on memory address space without "Normal" attribute. If size == 4 and
2182          * the address is aligned, cortex_a_read_cpu_memory_fast should be
2183          * preferred.
2184          * Preconditions:
2185          * - Address is in R0.
2186          * - R0 is marked dirty.
2187          */
2188         struct armv7a_common *armv7a = target_to_armv7a(target);
2189         struct arm *arm = &armv7a->arm;
2190         int retval;
2191
2192         /* Mark register R1 as dirty, to use for transferring data. */
2193         arm_reg_current(arm, 1)->dirty = true;
2194
2195         /* Switch to non-blocking mode if not already in that mode. */
2196         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2197         if (retval != ERROR_OK)
2198                 return retval;
2199
2200         /* Go through the objects. */
2201         while (count) {
2202                 /* Issue a load of the appropriate size to R1. */
2203                 uint32_t opcode, data;
2204                 if (size == 1)
2205                         opcode = ARMV4_5_LDRB_IP(1, 0);
2206                 else if (size == 2)
2207                         opcode = ARMV4_5_LDRH_IP(1, 0);
2208                 else
2209                         opcode = ARMV4_5_LDRW_IP(1, 0);
2210                 retval = cortex_a_exec_opcode(target, opcode, dscr);
2211                 if (retval != ERROR_OK)
2212                         return retval;
2213
2214                 /* Issue a write of R1 to DTRTX. */
2215                 retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 1, 0, 5, 0), dscr);
2216                 if (retval != ERROR_OK)
2217                         return retval;
2218
2219                 /* Check for faults and return early. */
2220                 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2221                         return ERROR_OK; /* A data fault is not considered a system failure. */
2222
2223                 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
2224                  * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2225                  * must also check TXfull_l). Most of the time this will be free
2226                  * because TXfull_l will be set immediately and cached in dscr. */
2227                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2228                                 DSCR_DTRTX_FULL_LATCHED, dscr);
2229                 if (retval != ERROR_OK)
2230                         return retval;
2231
2232                 /* Read the value transferred to DTRTX into the buffer. */
2233                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2234                                 armv7a->debug_base + CPUDBG_DTRTX, &data);
2235                 if (retval != ERROR_OK)
2236                         return retval;
2237                 if (size == 1)
2238                         *buffer = (uint8_t) data;
2239                 else if (size == 2)
2240                         target_buffer_set_u16(target, buffer, (uint16_t) data);
2241                 else
2242                         target_buffer_set_u32(target, buffer, data);
2243
2244                 /* Advance. */
2245                 buffer += size;
2246                 --count;
2247         }
2248
2249         return ERROR_OK;
2250 }
2251
2252 static int cortex_a_read_cpu_memory_fast(struct target *target,
2253         uint32_t count, uint8_t *buffer, uint32_t *dscr)
2254 {
2255         /* Reads count objects of size 4 into *buffer. Old value of DSCR must be in
2256          * *dscr; updated to new value. This is fast but only works for word-sized
2257          * objects at aligned addresses.
2258          * Preconditions:
2259          * - Address is in R0 and must be a multiple of 4.
2260          * - R0 is marked dirty.
2261          */
2262         struct armv7a_common *armv7a = target_to_armv7a(target);
2263         uint32_t u32;
2264         int retval;
2265
2266         /* Switch to non-blocking mode if not already in that mode. */
2267         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2268         if (retval != ERROR_OK)
2269                 return retval;
2270
2271         /* Issue the LDC instruction via a write to ITR. */
2272         retval = cortex_a_exec_opcode(target, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4), dscr);
2273         if (retval != ERROR_OK)
2274                 return retval;
2275
2276         count--;
2277
2278         if (count > 0) {
2279                 /* Switch to fast mode if not already in that mode. */
2280                 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2281                 if (retval != ERROR_OK)
2282                         return retval;
2283
2284                 /* Latch LDC instruction. */
2285                 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2286                                 armv7a->debug_base + CPUDBG_ITR, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4));
2287                 if (retval != ERROR_OK)
2288                         return retval;
2289
2290                 /* Read the value transferred to DTRTX into the buffer. Due to fast
2291                  * mode rules, this blocks until the instruction finishes executing and
2292                  * then reissues the read instruction to read the next word from
2293                  * memory. The last read of DTRTX in this call reads the second-to-last
2294                  * word from memory and issues the read instruction for the last word.
2295                  */
2296                 retval = mem_ap_read_buf_noincr(armv7a->debug_ap, buffer,
2297                                 4, count, armv7a->debug_base + CPUDBG_DTRTX);
2298                 if (retval != ERROR_OK)
2299                         return retval;
2300
2301                 /* Advance. */
2302                 buffer += count * 4;
2303         }
2304
2305         /* Wait for last issued instruction to complete. */
2306         retval = cortex_a_wait_instrcmpl(target, dscr, false);
2307         if (retval != ERROR_OK)
2308                 return retval;
2309
2310         /* Switch to non-blocking mode if not already in that mode. */
2311         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2312         if (retval != ERROR_OK)
2313                 return retval;
2314
2315         /* Check for faults and return early. */
2316         if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2317                 return ERROR_OK; /* A data fault is not considered a system failure. */
2318
2319         /* Wait until DTRTX is full (according to ARMv7-A/-R architecture manual
2320          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2321          * check TXfull_l). Most of the time this will be free because TXfull_l
2322          * will be set immediately and cached in dscr. */
2323         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2324                         DSCR_DTRTX_FULL_LATCHED, dscr);
2325         if (retval != ERROR_OK)
2326                 return retval;
2327
2328         /* Read the value transferred to DTRTX into the buffer. This is the last
2329          * word. */
2330         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2331                         armv7a->debug_base + CPUDBG_DTRTX, &u32);
2332         if (retval != ERROR_OK)
2333                 return retval;
2334         target_buffer_set_u32(target, buffer, u32);
2335
2336         return ERROR_OK;
2337 }
2338
2339 static int cortex_a_read_cpu_memory(struct target *target,
2340         uint32_t address, uint32_t size,
2341         uint32_t count, uint8_t *buffer)
2342 {
2343         /* Read memory through the CPU. */
2344         int retval, final_retval;
2345         struct armv7a_common *armv7a = target_to_armv7a(target);
2346         struct arm *arm = &armv7a->arm;
2347         uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2348
2349         LOG_DEBUG("Reading CPU memory address 0x%" PRIx32 " size %"  PRIu32 " count %"  PRIu32,
2350                           address, size, count);
2351         if (target->state != TARGET_HALTED) {
2352                 LOG_WARNING("target not halted");
2353                 return ERROR_TARGET_NOT_HALTED;
2354         }
2355
2356         if (!count)
2357                 return ERROR_OK;
2358
2359         /* Clear any abort. */
2360         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2361                         armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2362         if (retval != ERROR_OK)
2363                 return retval;
2364
2365         /* Read DSCR */
2366         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2367                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
2368         if (retval != ERROR_OK)
2369                 return retval;
2370
2371         /* Switch to non-blocking mode if not already in that mode. */
2372         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2373         if (retval != ERROR_OK)
2374                 goto out;
2375
2376         /* Mark R0 as dirty. */
2377         arm_reg_current(arm, 0)->dirty = true;
2378
2379         /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2380         retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2381         if (retval != ERROR_OK)
2382                 goto out;
2383
2384         /* Get the memory address into R0. */
2385         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2386                         armv7a->debug_base + CPUDBG_DTRRX, address);
2387         if (retval != ERROR_OK)
2388                 goto out;
2389         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2390         if (retval != ERROR_OK)
2391                 goto out;
2392
2393         if (size == 4 && (address % 4) == 0) {
2394                 /* We are doing a word-aligned transfer, so use fast mode. */
2395                 retval = cortex_a_read_cpu_memory_fast(target, count, buffer, &dscr);
2396         } else {
2397                 /* Use slow path. Adjust size for aligned accesses */
2398                 switch (address % 4) {
2399                         case 1:
2400                         case 3:
2401                                 count *= size;
2402                                 size = 1;
2403                                 break;
2404                         case 2:
2405                                 if (size == 4) {
2406                                         count *= 2;
2407                                         size = 2;
2408                                 }
2409                                 break;
2410                         case 0:
2411                         default:
2412                                 break;
2413                 }
2414                 retval = cortex_a_read_cpu_memory_slow(target, size, count, buffer, &dscr);
2415         }
2416
2417 out:
2418         final_retval = retval;
2419
2420         /* Switch to non-blocking mode if not already in that mode. */
2421         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2422         if (final_retval == ERROR_OK)
2423                 final_retval = retval;
2424
2425         /* Wait for last issued instruction to complete. */
2426         retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2427         if (final_retval == ERROR_OK)
2428                 final_retval = retval;
2429
2430         /* If there were any sticky abort flags, clear them. */
2431         if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2432                 fault_dscr = dscr;
2433                 mem_ap_write_atomic_u32(armv7a->debug_ap,
2434                                 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2435                 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2436         } else {
2437                 fault_dscr = 0;
2438         }
2439
2440         /* Handle synchronous data faults. */
2441         if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2442                 if (final_retval == ERROR_OK) {
2443                         /* Final return value will reflect cause of fault. */
2444                         retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2445                         if (retval == ERROR_OK) {
2446                                 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2447                                 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2448                         } else
2449                                 final_retval = retval;
2450                 }
2451                 /* Fault destroyed DFAR/DFSR; restore them. */
2452                 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2453                 if (retval != ERROR_OK)
2454                         LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2455         }
2456
2457         /* Handle asynchronous data faults. */
2458         if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2459                 if (final_retval == ERROR_OK)
2460                         /* No other error has been recorded so far, so keep this one. */
2461                         final_retval = ERROR_TARGET_DATA_ABORT;
2462         }
2463
2464         /* If the DCC is nonempty, clear it. */
2465         if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2466                 uint32_t dummy;
2467                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2468                                 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2469                 if (final_retval == ERROR_OK)
2470                         final_retval = retval;
2471         }
2472         if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2473                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2474                 if (final_retval == ERROR_OK)
2475                         final_retval = retval;
2476         }
2477
2478         /* Done. */
2479         return final_retval;
2480 }
2481
2482
2483 /*
2484  * Cortex-A Memory access
2485  *
2486  * This is same Cortex-M3 but we must also use the correct
2487  * ap number for every access.
2488  */
2489
2490 static int cortex_a_read_phys_memory(struct target *target,
2491         target_addr_t address, uint32_t size,
2492         uint32_t count, uint8_t *buffer)
2493 {
2494         int retval;
2495
2496         if (!count || !buffer)
2497                 return ERROR_COMMAND_SYNTAX_ERROR;
2498
2499         LOG_DEBUG("Reading memory at real address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2500                 address, size, count);
2501
2502         /* read memory through the CPU */
2503         cortex_a_prep_memaccess(target, 1);
2504         retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2505         cortex_a_post_memaccess(target, 1);
2506
2507         return retval;
2508 }
2509
2510 static int cortex_a_read_memory(struct target *target, target_addr_t address,
2511         uint32_t size, uint32_t count, uint8_t *buffer)
2512 {
2513         int retval;
2514
2515         /* cortex_a handles unaligned memory access */
2516         LOG_DEBUG("Reading memory at address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2517                 address, size, count);
2518
2519         cortex_a_prep_memaccess(target, 0);
2520         retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2521         cortex_a_post_memaccess(target, 0);
2522
2523         return retval;
2524 }
2525
2526 static int cortex_a_write_phys_memory(struct target *target,
2527         target_addr_t address, uint32_t size,
2528         uint32_t count, const uint8_t *buffer)
2529 {
2530         int retval;
2531
2532         if (!count || !buffer)
2533                 return ERROR_COMMAND_SYNTAX_ERROR;
2534
2535         LOG_DEBUG("Writing memory to real address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2536                 address, size, count);
2537
2538         /* write memory through the CPU */
2539         cortex_a_prep_memaccess(target, 1);
2540         retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2541         cortex_a_post_memaccess(target, 1);
2542
2543         return retval;
2544 }
2545
2546 static int cortex_a_write_memory(struct target *target, target_addr_t address,
2547         uint32_t size, uint32_t count, const uint8_t *buffer)
2548 {
2549         int retval;
2550
2551         /* cortex_a handles unaligned memory access */
2552         LOG_DEBUG("Writing memory at address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2553                 address, size, count);
2554
2555         /* memory writes bypass the caches, must flush before writing */
2556         armv7a_cache_auto_flush_on_write(target, address, size * count);
2557
2558         cortex_a_prep_memaccess(target, 0);
2559         retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2560         cortex_a_post_memaccess(target, 0);
2561         return retval;
2562 }
2563
2564 static int cortex_a_read_buffer(struct target *target, target_addr_t address,
2565                                 uint32_t count, uint8_t *buffer)
2566 {
2567         uint32_t size;
2568
2569         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2570          * will have something to do with the size we leave to it. */
2571         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2572                 if (address & size) {
2573                         int retval = target_read_memory(target, address, size, 1, buffer);
2574                         if (retval != ERROR_OK)
2575                                 return retval;
2576                         address += size;
2577                         count -= size;
2578                         buffer += size;
2579                 }
2580         }
2581
2582         /* Read the data with as large access size as possible. */
2583         for (; size > 0; size /= 2) {
2584                 uint32_t aligned = count - count % size;
2585                 if (aligned > 0) {
2586                         int retval = target_read_memory(target, address, size, aligned / size, buffer);
2587                         if (retval != ERROR_OK)
2588                                 return retval;
2589                         address += aligned;
2590                         count -= aligned;
2591                         buffer += aligned;
2592                 }
2593         }
2594
2595         return ERROR_OK;
2596 }
2597
2598 static int cortex_a_write_buffer(struct target *target, target_addr_t address,
2599                                  uint32_t count, const uint8_t *buffer)
2600 {
2601         uint32_t size;
2602
2603         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2604          * will have something to do with the size we leave to it. */
2605         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2606                 if (address & size) {
2607                         int retval = target_write_memory(target, address, size, 1, buffer);
2608                         if (retval != ERROR_OK)
2609                                 return retval;
2610                         address += size;
2611                         count -= size;
2612                         buffer += size;
2613                 }
2614         }
2615
2616         /* Write the data with as large access size as possible. */
2617         for (; size > 0; size /= 2) {
2618                 uint32_t aligned = count - count % size;
2619                 if (aligned > 0) {
2620                         int retval = target_write_memory(target, address, size, aligned / size, buffer);
2621                         if (retval != ERROR_OK)
2622                                 return retval;
2623                         address += aligned;
2624                         count -= aligned;
2625                         buffer += aligned;
2626                 }
2627         }
2628
2629         return ERROR_OK;
2630 }
2631
2632 static int cortex_a_handle_target_request(void *priv)
2633 {
2634         struct target *target = priv;
2635         struct armv7a_common *armv7a = target_to_armv7a(target);
2636         int retval;
2637
2638         if (!target_was_examined(target))
2639                 return ERROR_OK;
2640         if (!target->dbg_msg_enabled)
2641                 return ERROR_OK;
2642
2643         if (target->state == TARGET_RUNNING) {
2644                 uint32_t request;
2645                 uint32_t dscr;
2646                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2647                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2648
2649                 /* check if we have data */
2650                 int64_t then = timeval_ms();
2651                 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2652                         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2653                                         armv7a->debug_base + CPUDBG_DTRTX, &request);
2654                         if (retval == ERROR_OK) {
2655                                 target_request(target, request);
2656                                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2657                                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2658                         }
2659                         if (timeval_ms() > then + 1000) {
2660                                 LOG_ERROR("Timeout waiting for dtr tx full");
2661                                 return ERROR_FAIL;
2662                         }
2663                 }
2664         }
2665
2666         return ERROR_OK;
2667 }
2668
2669 /*
2670  * Cortex-A target information and configuration
2671  */
2672
2673 static int cortex_a_examine_first(struct target *target)
2674 {
2675         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
2676         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2677         struct adiv5_dap *swjdp = armv7a->arm.dap;
2678
2679         int i;
2680         int retval = ERROR_OK;
2681         uint32_t didr, cpuid, dbg_osreg, dbg_idpfr1;
2682
2683         /* Search for the APB-AP - it is needed for access to debug registers */
2684         retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv7a->debug_ap);
2685         if (retval != ERROR_OK) {
2686                 LOG_ERROR("Could not find APB-AP for debug access");
2687                 return retval;
2688         }
2689
2690         retval = mem_ap_init(armv7a->debug_ap);
2691         if (retval != ERROR_OK) {
2692                 LOG_ERROR("Could not initialize the APB-AP");
2693                 return retval;
2694         }
2695
2696         armv7a->debug_ap->memaccess_tck = 80;
2697
2698         if (!target->dbgbase_set) {
2699                 uint32_t dbgbase;
2700                 /* Get ROM Table base */
2701                 uint32_t apid;
2702                 int32_t coreidx = target->coreid;
2703                 LOG_DEBUG("%s's dbgbase is not set, trying to detect using the ROM table",
2704                           target->cmd_name);
2705                 retval = dap_get_debugbase(armv7a->debug_ap, &dbgbase, &apid);
2706                 if (retval != ERROR_OK)
2707                         return retval;
2708                 /* Lookup 0x15 -- Processor DAP */
2709                 retval = dap_lookup_cs_component(armv7a->debug_ap, dbgbase, 0x15,
2710                                 &armv7a->debug_base, &coreidx);
2711                 if (retval != ERROR_OK) {
2712                         LOG_ERROR("Can't detect %s's dbgbase from the ROM table; you need to specify it explicitly.",
2713                                   target->cmd_name);
2714                         return retval;
2715                 }
2716                 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32,
2717                           target->coreid, armv7a->debug_base);
2718         } else
2719                 armv7a->debug_base = target->dbgbase;
2720
2721         if ((armv7a->debug_base & (1UL<<31)) == 0)
2722                 LOG_WARNING("Debug base address for target %s has bit 31 set to 0. Access to debug registers will likely fail!\n"
2723                             "Please fix the target configuration.", target_name(target));
2724
2725         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2726                         armv7a->debug_base + CPUDBG_DIDR, &didr);
2727         if (retval != ERROR_OK) {
2728                 LOG_DEBUG("Examine %s failed", "DIDR");
2729                 return retval;
2730         }
2731
2732         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2733                         armv7a->debug_base + CPUDBG_CPUID, &cpuid);
2734         if (retval != ERROR_OK) {
2735                 LOG_DEBUG("Examine %s failed", "CPUID");
2736                 return retval;
2737         }
2738
2739         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
2740         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
2741
2742         cortex_a->didr = didr;
2743         cortex_a->cpuid = cpuid;
2744
2745         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2746                                     armv7a->debug_base + CPUDBG_PRSR, &dbg_osreg);
2747         if (retval != ERROR_OK)
2748                 return retval;
2749         LOG_DEBUG("target->coreid %" PRId32 " DBGPRSR  0x%" PRIx32, target->coreid, dbg_osreg);
2750
2751         if ((dbg_osreg & PRSR_POWERUP_STATUS) == 0) {
2752                 LOG_ERROR("target->coreid %" PRId32 " powered down!", target->coreid);
2753                 target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
2754                 return ERROR_TARGET_INIT_FAILED;
2755         }
2756
2757         if (dbg_osreg & PRSR_STICKY_RESET_STATUS)
2758                 LOG_DEBUG("target->coreid %" PRId32 " was reset!", target->coreid);
2759
2760         /* Read DBGOSLSR and check if OSLK is implemented */
2761         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2762                                 armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
2763         if (retval != ERROR_OK)
2764                 return retval;
2765         LOG_DEBUG("target->coreid %" PRId32 " DBGOSLSR 0x%" PRIx32, target->coreid, dbg_osreg);
2766
2767         /* check if OS Lock is implemented */
2768         if ((dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM0 || (dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM1) {
2769                 /* check if OS Lock is set */
2770                 if (dbg_osreg & OSLSR_OSLK) {
2771                         LOG_DEBUG("target->coreid %" PRId32 " OSLock set! Trying to unlock", target->coreid);
2772
2773                         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2774                                                         armv7a->debug_base + CPUDBG_OSLAR,
2775                                                         0);
2776                         if (retval == ERROR_OK)
2777                                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2778                                                         armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
2779
2780                         /* if we fail to access the register or cannot reset the OSLK bit, bail out */
2781                         if (retval != ERROR_OK || (dbg_osreg & OSLSR_OSLK) != 0) {
2782                                 LOG_ERROR("target->coreid %" PRId32 " OSLock sticky, core not powered?",
2783                                                 target->coreid);
2784                                 target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
2785                                 return ERROR_TARGET_INIT_FAILED;
2786                         }
2787                 }
2788         }
2789
2790         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2791                                  armv7a->debug_base + CPUDBG_ID_PFR1, &dbg_idpfr1);
2792         if (retval != ERROR_OK)
2793                 return retval;
2794
2795         if (dbg_idpfr1 & 0x000000f0) {
2796                 LOG_DEBUG("target->coreid %" PRId32 " has security extensions",
2797                                 target->coreid);
2798                 armv7a->arm.core_type = ARM_CORE_TYPE_SEC_EXT;
2799         }
2800
2801         /* Avoid recreating the registers cache */
2802         if (!target_was_examined(target)) {
2803                 retval = cortex_a_dpm_setup(cortex_a, didr);
2804                 if (retval != ERROR_OK)
2805                         return retval;
2806         }
2807
2808         /* Setup Breakpoint Register Pairs */
2809         cortex_a->brp_num = ((didr >> 24) & 0x0F) + 1;
2810         cortex_a->brp_num_context = ((didr >> 20) & 0x0F) + 1;
2811         cortex_a->brp_num_available = cortex_a->brp_num;
2812         free(cortex_a->brp_list);
2813         cortex_a->brp_list = calloc(cortex_a->brp_num, sizeof(struct cortex_a_brp));
2814 /*      cortex_a->brb_enabled = ????; */
2815         for (i = 0; i < cortex_a->brp_num; i++) {
2816                 cortex_a->brp_list[i].used = 0;
2817                 if (i < (cortex_a->brp_num-cortex_a->brp_num_context))
2818                         cortex_a->brp_list[i].type = BRP_NORMAL;
2819                 else
2820                         cortex_a->brp_list[i].type = BRP_CONTEXT;
2821                 cortex_a->brp_list[i].value = 0;
2822                 cortex_a->brp_list[i].control = 0;
2823                 cortex_a->brp_list[i].BRPn = i;
2824         }
2825
2826         LOG_DEBUG("Configured %i hw breakpoints", cortex_a->brp_num);
2827
2828         /* select debug_ap as default */
2829         swjdp->apsel = armv7a->debug_ap->ap_num;
2830
2831         target_set_examined(target);
2832         return ERROR_OK;
2833 }
2834
2835 static int cortex_a_examine(struct target *target)
2836 {
2837         int retval = ERROR_OK;
2838
2839         /* Reestablish communication after target reset */
2840         retval = cortex_a_examine_first(target);
2841
2842         /* Configure core debug access */
2843         if (retval == ERROR_OK)
2844                 retval = cortex_a_init_debug_access(target);
2845
2846         return retval;
2847 }
2848
2849 /*
2850  *      Cortex-A target creation and initialization
2851  */
2852
2853 static int cortex_a_init_target(struct command_context *cmd_ctx,
2854         struct target *target)
2855 {
2856         /* examine_first() does a bunch of this */
2857         arm_semihosting_init(target);
2858         return ERROR_OK;
2859 }
2860
2861 static int cortex_a_init_arch_info(struct target *target,
2862         struct cortex_a_common *cortex_a, struct adiv5_dap *dap)
2863 {
2864         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2865
2866         /* Setup struct cortex_a_common */
2867         cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
2868         armv7a->arm.dap = dap;
2869
2870         /* register arch-specific functions */
2871         armv7a->examine_debug_reason = NULL;
2872
2873         armv7a->post_debug_entry = cortex_a_post_debug_entry;
2874
2875         armv7a->pre_restore_context = NULL;
2876
2877         armv7a->armv7a_mmu.read_physical_memory = cortex_a_read_phys_memory;
2878
2879
2880 /*      arm7_9->handle_target_request = cortex_a_handle_target_request; */
2881
2882         /* REVISIT v7a setup should be in a v7a-specific routine */
2883         armv7a_init_arch_info(target, armv7a);
2884         target_register_timer_callback(cortex_a_handle_target_request, 1,
2885                 TARGET_TIMER_TYPE_PERIODIC, target);
2886
2887         return ERROR_OK;
2888 }
2889
2890 static int cortex_a_target_create(struct target *target, Jim_Interp *interp)
2891 {
2892         struct cortex_a_common *cortex_a;
2893         struct adiv5_private_config *pc;
2894
2895         if (target->private_config == NULL)
2896                 return ERROR_FAIL;
2897
2898         pc = (struct adiv5_private_config *)target->private_config;
2899
2900         cortex_a = calloc(1, sizeof(struct cortex_a_common));
2901         if (cortex_a == NULL) {
2902                 LOG_ERROR("Out of memory");
2903                 return ERROR_FAIL;
2904         }
2905         cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
2906         cortex_a->armv7a_common.is_armv7r = false;
2907         cortex_a->armv7a_common.arm.arm_vfp_version = ARM_VFP_V3;
2908
2909         return cortex_a_init_arch_info(target, cortex_a, pc->dap);
2910 }
2911
2912 static int cortex_r4_target_create(struct target *target, Jim_Interp *interp)
2913 {
2914         struct cortex_a_common *cortex_a;
2915         struct adiv5_private_config *pc;
2916
2917         pc = (struct adiv5_private_config *)target->private_config;
2918         if (adiv5_verify_config(pc) != ERROR_OK)
2919                 return ERROR_FAIL;
2920
2921         cortex_a = calloc(1, sizeof(struct cortex_a_common));
2922         if (cortex_a == NULL) {
2923                 LOG_ERROR("Out of memory");
2924                 return ERROR_FAIL;
2925         }
2926         cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
2927         cortex_a->armv7a_common.is_armv7r = true;
2928
2929         return cortex_a_init_arch_info(target, cortex_a, pc->dap);
2930 }
2931
2932 static void cortex_a_deinit_target(struct target *target)
2933 {
2934         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
2935         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2936         struct arm_dpm *dpm = &armv7a->dpm;
2937         uint32_t dscr;
2938         int retval;
2939
2940         if (target_was_examined(target)) {
2941                 /* Disable halt for breakpoint, watchpoint and vector catch */
2942                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2943                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2944                 if (retval == ERROR_OK)
2945                         mem_ap_write_atomic_u32(armv7a->debug_ap,
2946                                         armv7a->debug_base + CPUDBG_DSCR,
2947                                         dscr & ~DSCR_HALT_DBG_MODE);
2948         }
2949
2950         free(cortex_a->brp_list);
2951         free(dpm->dbp);
2952         free(dpm->dwp);
2953         free(target->private_config);
2954         free(cortex_a);
2955 }
2956
2957 static int cortex_a_mmu(struct target *target, int *enabled)
2958 {
2959         struct armv7a_common *armv7a = target_to_armv7a(target);
2960
2961         if (target->state != TARGET_HALTED) {
2962                 LOG_ERROR("%s: target not halted", __func__);
2963                 return ERROR_TARGET_INVALID;
2964         }
2965
2966         if (armv7a->is_armv7r)
2967                 *enabled = 0;
2968         else
2969                 *enabled = target_to_cortex_a(target)->armv7a_common.armv7a_mmu.mmu_enabled;
2970
2971         return ERROR_OK;
2972 }
2973
2974 static int cortex_a_virt2phys(struct target *target,
2975         target_addr_t virt, target_addr_t *phys)
2976 {
2977         int retval;
2978         int mmu_enabled = 0;
2979
2980         /*
2981          * If the MMU was not enabled at debug entry, there is no
2982          * way of knowing if there was ever a valid configuration
2983          * for it and thus it's not safe to enable it. In this case,
2984          * just return the virtual address as physical.
2985          */
2986         cortex_a_mmu(target, &mmu_enabled);
2987         if (!mmu_enabled) {
2988                 *phys = virt;
2989                 return ERROR_OK;
2990         }
2991
2992         /* mmu must be enable in order to get a correct translation */
2993         retval = cortex_a_mmu_modify(target, 1);
2994         if (retval != ERROR_OK)
2995                 return retval;
2996         return armv7a_mmu_translate_va_pa(target, (uint32_t)virt,
2997                                                     phys, 1);
2998 }
2999
3000 COMMAND_HANDLER(cortex_a_handle_cache_info_command)
3001 {
3002         struct target *target = get_current_target(CMD_CTX);
3003         struct armv7a_common *armv7a = target_to_armv7a(target);
3004
3005         return armv7a_handle_cache_info_command(CMD,
3006                         &armv7a->armv7a_mmu.armv7a_cache);
3007 }
3008
3009
3010 COMMAND_HANDLER(cortex_a_handle_dbginit_command)
3011 {
3012         struct target *target = get_current_target(CMD_CTX);
3013         if (!target_was_examined(target)) {
3014                 LOG_ERROR("target not examined yet");
3015                 return ERROR_FAIL;
3016         }
3017
3018         return cortex_a_init_debug_access(target);
3019 }
3020
3021 COMMAND_HANDLER(handle_cortex_a_mask_interrupts_command)
3022 {
3023         struct target *target = get_current_target(CMD_CTX);
3024         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3025
3026         static const Jim_Nvp nvp_maskisr_modes[] = {
3027                 { .name = "off", .value = CORTEX_A_ISRMASK_OFF },
3028                 { .name = "on", .value = CORTEX_A_ISRMASK_ON },
3029                 { .name = NULL, .value = -1 },
3030         };
3031         const Jim_Nvp *n;
3032
3033         if (CMD_ARGC > 0) {
3034                 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
3035                 if (n->name == NULL) {
3036                         LOG_ERROR("Unknown parameter: %s - should be off or on", CMD_ARGV[0]);
3037                         return ERROR_COMMAND_SYNTAX_ERROR;
3038                 }
3039
3040                 cortex_a->isrmasking_mode = n->value;
3041         }
3042
3043         n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_a->isrmasking_mode);
3044         command_print(CMD, "cortex_a interrupt mask %s", n->name);
3045
3046         return ERROR_OK;
3047 }
3048
3049 COMMAND_HANDLER(handle_cortex_a_dacrfixup_command)
3050 {
3051         struct target *target = get_current_target(CMD_CTX);
3052         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3053
3054         static const Jim_Nvp nvp_dacrfixup_modes[] = {
3055                 { .name = "off", .value = CORTEX_A_DACRFIXUP_OFF },
3056                 { .name = "on", .value = CORTEX_A_DACRFIXUP_ON },
3057                 { .name = NULL, .value = -1 },
3058         };
3059         const Jim_Nvp *n;
3060
3061         if (CMD_ARGC > 0) {
3062                 n = Jim_Nvp_name2value_simple(nvp_dacrfixup_modes, CMD_ARGV[0]);
3063                 if (n->name == NULL)
3064                         return ERROR_COMMAND_SYNTAX_ERROR;
3065                 cortex_a->dacrfixup_mode = n->value;
3066
3067         }
3068
3069         n = Jim_Nvp_value2name_simple(nvp_dacrfixup_modes, cortex_a->dacrfixup_mode);
3070         command_print(CMD, "cortex_a domain access control fixup %s", n->name);
3071
3072         return ERROR_OK;
3073 }
3074
3075 static const struct command_registration cortex_a_exec_command_handlers[] = {
3076         {
3077                 .name = "cache_info",
3078                 .handler = cortex_a_handle_cache_info_command,
3079                 .mode = COMMAND_EXEC,
3080                 .help = "display information about target caches",
3081                 .usage = "",
3082         },
3083         {
3084                 .name = "dbginit",
3085                 .handler = cortex_a_handle_dbginit_command,
3086                 .mode = COMMAND_EXEC,
3087                 .help = "Initialize core debug",
3088                 .usage = "",
3089         },
3090         {
3091                 .name = "maskisr",
3092                 .handler = handle_cortex_a_mask_interrupts_command,
3093                 .mode = COMMAND_ANY,
3094                 .help = "mask cortex_a interrupts",
3095                 .usage = "['on'|'off']",
3096         },
3097         {
3098                 .name = "dacrfixup",
3099                 .handler = handle_cortex_a_dacrfixup_command,
3100                 .mode = COMMAND_ANY,
3101                 .help = "set domain access control (DACR) to all-manager "
3102                         "on memory access",
3103                 .usage = "['on'|'off']",
3104         },
3105         {
3106                 .chain = armv7a_mmu_command_handlers,
3107         },
3108         {
3109                 .chain = smp_command_handlers,
3110         },
3111
3112         COMMAND_REGISTRATION_DONE
3113 };
3114 static const struct command_registration cortex_a_command_handlers[] = {
3115         {
3116                 .chain = arm_command_handlers,
3117         },
3118         {
3119                 .chain = armv7a_command_handlers,
3120         },
3121         {
3122                 .name = "cortex_a",
3123                 .mode = COMMAND_ANY,
3124                 .help = "Cortex-A command group",
3125                 .usage = "",
3126                 .chain = cortex_a_exec_command_handlers,
3127         },
3128         COMMAND_REGISTRATION_DONE
3129 };
3130
3131 struct target_type cortexa_target = {
3132         .name = "cortex_a",
3133         .deprecated_name = "cortex_a8",
3134
3135         .poll = cortex_a_poll,
3136         .arch_state = armv7a_arch_state,
3137
3138         .halt = cortex_a_halt,
3139         .resume = cortex_a_resume,
3140         .step = cortex_a_step,
3141
3142         .assert_reset = cortex_a_assert_reset,
3143         .deassert_reset = cortex_a_deassert_reset,
3144
3145         /* REVISIT allow exporting VFP3 registers ... */
3146         .get_gdb_arch = arm_get_gdb_arch,
3147         .get_gdb_reg_list = arm_get_gdb_reg_list,
3148
3149         .read_memory = cortex_a_read_memory,
3150         .write_memory = cortex_a_write_memory,
3151
3152         .read_buffer = cortex_a_read_buffer,
3153         .write_buffer = cortex_a_write_buffer,
3154
3155         .checksum_memory = arm_checksum_memory,
3156         .blank_check_memory = arm_blank_check_memory,
3157
3158         .run_algorithm = armv4_5_run_algorithm,
3159
3160         .add_breakpoint = cortex_a_add_breakpoint,
3161         .add_context_breakpoint = cortex_a_add_context_breakpoint,
3162         .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3163         .remove_breakpoint = cortex_a_remove_breakpoint,
3164         .add_watchpoint = NULL,
3165         .remove_watchpoint = NULL,
3166
3167         .commands = cortex_a_command_handlers,
3168         .target_create = cortex_a_target_create,
3169         .target_jim_configure = adiv5_jim_configure,
3170         .init_target = cortex_a_init_target,
3171         .examine = cortex_a_examine,
3172         .deinit_target = cortex_a_deinit_target,
3173
3174         .read_phys_memory = cortex_a_read_phys_memory,
3175         .write_phys_memory = cortex_a_write_phys_memory,
3176         .mmu = cortex_a_mmu,
3177         .virt2phys = cortex_a_virt2phys,
3178 };
3179
3180 static const struct command_registration cortex_r4_exec_command_handlers[] = {
3181         {
3182                 .name = "dbginit",
3183                 .handler = cortex_a_handle_dbginit_command,
3184                 .mode = COMMAND_EXEC,
3185                 .help = "Initialize core debug",
3186                 .usage = "",
3187         },
3188         {
3189                 .name = "maskisr",
3190                 .handler = handle_cortex_a_mask_interrupts_command,
3191                 .mode = COMMAND_EXEC,
3192                 .help = "mask cortex_r4 interrupts",
3193                 .usage = "['on'|'off']",
3194         },
3195
3196         COMMAND_REGISTRATION_DONE
3197 };
3198 static const struct command_registration cortex_r4_command_handlers[] = {
3199         {
3200                 .chain = arm_command_handlers,
3201         },
3202         {
3203                 .name = "cortex_r4",
3204                 .mode = COMMAND_ANY,
3205                 .help = "Cortex-R4 command group",
3206                 .usage = "",
3207                 .chain = cortex_r4_exec_command_handlers,
3208         },
3209         COMMAND_REGISTRATION_DONE
3210 };
3211
3212 struct target_type cortexr4_target = {
3213         .name = "cortex_r4",
3214
3215         .poll = cortex_a_poll,
3216         .arch_state = armv7a_arch_state,
3217
3218         .halt = cortex_a_halt,
3219         .resume = cortex_a_resume,
3220         .step = cortex_a_step,
3221
3222         .assert_reset = cortex_a_assert_reset,
3223         .deassert_reset = cortex_a_deassert_reset,
3224
3225         /* REVISIT allow exporting VFP3 registers ... */
3226         .get_gdb_arch = arm_get_gdb_arch,
3227         .get_gdb_reg_list = arm_get_gdb_reg_list,
3228
3229         .read_memory = cortex_a_read_phys_memory,
3230         .write_memory = cortex_a_write_phys_memory,
3231
3232         .checksum_memory = arm_checksum_memory,
3233         .blank_check_memory = arm_blank_check_memory,
3234
3235         .run_algorithm = armv4_5_run_algorithm,
3236
3237         .add_breakpoint = cortex_a_add_breakpoint,
3238         .add_context_breakpoint = cortex_a_add_context_breakpoint,
3239         .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3240         .remove_breakpoint = cortex_a_remove_breakpoint,
3241         .add_watchpoint = NULL,
3242         .remove_watchpoint = NULL,
3243
3244         .commands = cortex_r4_command_handlers,
3245         .target_create = cortex_r4_target_create,
3246         .target_jim_configure = adiv5_jim_configure,
3247         .init_target = cortex_a_init_target,
3248         .examine = cortex_a_examine,
3249         .deinit_target = cortex_a_deinit_target,
3250 };