target: remove target names already deprecated in v0.8.0
[fw/openocd] / src / target / cortex_a.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   Copyright (C) 2010 Ã˜yvind Harboe                                      *
15  *   oyvind.harboe@zylin.com                                               *
16  *                                                                         *
17  *   Copyright (C) ST-Ericsson SA 2011                                     *
18  *   michel.jaouen@stericsson.com : smp minimum support                    *
19  *                                                                         *
20  *   Copyright (C) Broadcom 2012                                           *
21  *   ehunter@broadcom.com : Cortex-R4 support                              *
22  *                                                                         *
23  *   Copyright (C) 2013 Kamal Dasu                                         *
24  *   kdasu.kdev@gmail.com                                                  *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
38  *                                                                         *
39  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
40  *   Cortex-A9(tm) TRM, ARM DDI 0407F                                      *
41  *   Cortex-A4(tm) TRM, ARM DDI 0363E                                      *
42  *   Cortex-A15(tm)TRM, ARM DDI 0438C                                      *
43  *                                                                         *
44  ***************************************************************************/
45
46 #ifdef HAVE_CONFIG_H
47 #include "config.h"
48 #endif
49
50 #include "breakpoints.h"
51 #include "cortex_a.h"
52 #include "register.h"
53 #include "armv7a_mmu.h"
54 #include "target_request.h"
55 #include "target_type.h"
56 #include "arm_opcodes.h"
57 #include "arm_semihosting.h"
58 #include "jtag/interface.h"
59 #include "transport/transport.h"
60 #include "smp.h"
61 #include <helper/time_support.h>
62
63 static int cortex_a_poll(struct target *target);
64 static int cortex_a_debug_entry(struct target *target);
65 static int cortex_a_restore_context(struct target *target, bool bpwp);
66 static int cortex_a_set_breakpoint(struct target *target,
67         struct breakpoint *breakpoint, uint8_t matchmode);
68 static int cortex_a_set_context_breakpoint(struct target *target,
69         struct breakpoint *breakpoint, uint8_t matchmode);
70 static int cortex_a_set_hybrid_breakpoint(struct target *target,
71         struct breakpoint *breakpoint);
72 static int cortex_a_unset_breakpoint(struct target *target,
73         struct breakpoint *breakpoint);
74 static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
75         uint32_t value, uint32_t *dscr);
76 static int cortex_a_mmu(struct target *target, int *enabled);
77 static int cortex_a_mmu_modify(struct target *target, int enable);
78 static int cortex_a_virt2phys(struct target *target,
79         target_addr_t virt, target_addr_t *phys);
80 static int cortex_a_read_cpu_memory(struct target *target,
81         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
82
83
84 /*  restore cp15_control_reg at resume */
85 static int cortex_a_restore_cp15_control_reg(struct target *target)
86 {
87         int retval = ERROR_OK;
88         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
89         struct armv7a_common *armv7a = target_to_armv7a(target);
90
91         if (cortex_a->cp15_control_reg != cortex_a->cp15_control_reg_curr) {
92                 cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
93                 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg); */
94                 retval = armv7a->arm.mcr(target, 15,
95                                 0, 0,   /* op1, op2 */
96                                 1, 0,   /* CRn, CRm */
97                                 cortex_a->cp15_control_reg);
98         }
99         return retval;
100 }
101
102 /*
103  * Set up ARM core for memory access.
104  * If !phys_access, switch to SVC mode and make sure MMU is on
105  * If phys_access, switch off mmu
106  */
107 static int cortex_a_prep_memaccess(struct target *target, int phys_access)
108 {
109         struct armv7a_common *armv7a = target_to_armv7a(target);
110         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
111         int mmu_enabled = 0;
112
113         if (phys_access == 0) {
114                 arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
115                 cortex_a_mmu(target, &mmu_enabled);
116                 if (mmu_enabled)
117                         cortex_a_mmu_modify(target, 1);
118                 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
119                         /* overwrite DACR to all-manager */
120                         armv7a->arm.mcr(target, 15,
121                                         0, 0, 3, 0,
122                                         0xFFFFFFFF);
123                 }
124         } else {
125                 cortex_a_mmu(target, &mmu_enabled);
126                 if (mmu_enabled)
127                         cortex_a_mmu_modify(target, 0);
128         }
129         return ERROR_OK;
130 }
131
132 /*
133  * Restore ARM core after memory access.
134  * If !phys_access, switch to previous mode
135  * If phys_access, restore MMU setting
136  */
137 static int cortex_a_post_memaccess(struct target *target, int phys_access)
138 {
139         struct armv7a_common *armv7a = target_to_armv7a(target);
140         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
141
142         if (phys_access == 0) {
143                 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
144                         /* restore */
145                         armv7a->arm.mcr(target, 15,
146                                         0, 0, 3, 0,
147                                         cortex_a->cp15_dacr_reg);
148                 }
149                 arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
150         } else {
151                 int mmu_enabled = 0;
152                 cortex_a_mmu(target, &mmu_enabled);
153                 if (mmu_enabled)
154                         cortex_a_mmu_modify(target, 1);
155         }
156         return ERROR_OK;
157 }
158
159
160 /*  modify cp15_control_reg in order to enable or disable mmu for :
161  *  - virt2phys address conversion
162  *  - read or write memory in phys or virt address */
163 static int cortex_a_mmu_modify(struct target *target, int enable)
164 {
165         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
166         struct armv7a_common *armv7a = target_to_armv7a(target);
167         int retval = ERROR_OK;
168         int need_write = 0;
169
170         if (enable) {
171                 /*  if mmu enabled at target stop and mmu not enable */
172                 if (!(cortex_a->cp15_control_reg & 0x1U)) {
173                         LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
174                         return ERROR_FAIL;
175                 }
176                 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0) {
177                         cortex_a->cp15_control_reg_curr |= 0x1U;
178                         need_write = 1;
179                 }
180         } else {
181                 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0x1U) {
182                         cortex_a->cp15_control_reg_curr &= ~0x1U;
183                         need_write = 1;
184                 }
185         }
186
187         if (need_write) {
188                 LOG_DEBUG("%s, writing cp15 ctrl: %" PRIx32,
189                         enable ? "enable mmu" : "disable mmu",
190                         cortex_a->cp15_control_reg_curr);
191
192                 retval = armv7a->arm.mcr(target, 15,
193                                 0, 0,   /* op1, op2 */
194                                 1, 0,   /* CRn, CRm */
195                                 cortex_a->cp15_control_reg_curr);
196         }
197         return retval;
198 }
199
200 /*
201  * Cortex-A Basic debug access, very low level assumes state is saved
202  */
203 static int cortex_a_init_debug_access(struct target *target)
204 {
205         struct armv7a_common *armv7a = target_to_armv7a(target);
206         uint32_t dscr;
207         int retval;
208
209         /* lock memory-mapped access to debug registers to prevent
210          * software interference */
211         retval = mem_ap_write_u32(armv7a->debug_ap,
212                         armv7a->debug_base + CPUDBG_LOCKACCESS, 0);
213         if (retval != ERROR_OK)
214                 return retval;
215
216         /* Disable cacheline fills and force cache write-through in debug state */
217         retval = mem_ap_write_u32(armv7a->debug_ap,
218                         armv7a->debug_base + CPUDBG_DSCCR, 0);
219         if (retval != ERROR_OK)
220                 return retval;
221
222         /* Disable TLB lookup and refill/eviction in debug state */
223         retval = mem_ap_write_u32(armv7a->debug_ap,
224                         armv7a->debug_base + CPUDBG_DSMCR, 0);
225         if (retval != ERROR_OK)
226                 return retval;
227
228         retval = dap_run(armv7a->debug_ap->dap);
229         if (retval != ERROR_OK)
230                 return retval;
231
232         /* Enabling of instruction execution in debug mode is done in debug_entry code */
233
234         /* Resync breakpoint registers */
235
236         /* Enable halt for breakpoint, watchpoint and vector catch */
237         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
238                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
239         if (retval != ERROR_OK)
240                 return retval;
241         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
242                         armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
243         if (retval != ERROR_OK)
244                 return retval;
245
246         /* Since this is likely called from init or reset, update target state information*/
247         return cortex_a_poll(target);
248 }
249
250 static int cortex_a_wait_instrcmpl(struct target *target, uint32_t *dscr, bool force)
251 {
252         /* Waits until InstrCmpl_l becomes 1, indicating instruction is done.
253          * Writes final value of DSCR into *dscr. Pass force to force always
254          * reading DSCR at least once. */
255         struct armv7a_common *armv7a = target_to_armv7a(target);
256         int retval;
257
258         if (force) {
259                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
260                                 armv7a->debug_base + CPUDBG_DSCR, dscr);
261                 if (retval != ERROR_OK) {
262                         LOG_ERROR("Could not read DSCR register");
263                         return retval;
264                 }
265         }
266
267         retval = cortex_a_wait_dscr_bits(target, DSCR_INSTR_COMP, DSCR_INSTR_COMP, dscr);
268         if (retval != ERROR_OK)
269                 LOG_ERROR("Error waiting for InstrCompl=1");
270         return retval;
271 }
272
273 /* To reduce needless round-trips, pass in a pointer to the current
274  * DSCR value.  Initialize it to zero if you just need to know the
275  * value on return from this function; or DSCR_INSTR_COMP if you
276  * happen to know that no instruction is pending.
277  */
278 static int cortex_a_exec_opcode(struct target *target,
279         uint32_t opcode, uint32_t *dscr_p)
280 {
281         uint32_t dscr;
282         int retval;
283         struct armv7a_common *armv7a = target_to_armv7a(target);
284
285         dscr = dscr_p ? *dscr_p : 0;
286
287         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
288
289         /* Wait for InstrCompl bit to be set */
290         retval = cortex_a_wait_instrcmpl(target, dscr_p, false);
291         if (retval != ERROR_OK)
292                 return retval;
293
294         retval = mem_ap_write_u32(armv7a->debug_ap,
295                         armv7a->debug_base + CPUDBG_ITR, opcode);
296         if (retval != ERROR_OK)
297                 return retval;
298
299         /* Wait for InstrCompl bit to be set */
300         retval = cortex_a_wait_instrcmpl(target, &dscr, true);
301         if (retval != ERROR_OK) {
302                 LOG_ERROR("Error waiting for cortex_a_exec_opcode");
303                 return retval;
304         }
305
306         if (dscr_p)
307                 *dscr_p = dscr;
308
309         return retval;
310 }
311
312 /* Write to memory mapped registers directly with no cache or mmu handling */
313 static int cortex_a_dap_write_memap_register_u32(struct target *target,
314         uint32_t address,
315         uint32_t value)
316 {
317         int retval;
318         struct armv7a_common *armv7a = target_to_armv7a(target);
319
320         retval = mem_ap_write_atomic_u32(armv7a->debug_ap, address, value);
321
322         return retval;
323 }
324
325 /*
326  * Cortex-A implementation of Debug Programmer's Model
327  *
328  * NOTE the invariant:  these routines return with DSCR_INSTR_COMP set,
329  * so there's no need to poll for it before executing an instruction.
330  *
331  * NOTE that in several of these cases the "stall" mode might be useful.
332  * It'd let us queue a few operations together... prepare/finish might
333  * be the places to enable/disable that mode.
334  */
335
336 static inline struct cortex_a_common *dpm_to_a(struct arm_dpm *dpm)
337 {
338         return container_of(dpm, struct cortex_a_common, armv7a_common.dpm);
339 }
340
341 static int cortex_a_write_dcc(struct cortex_a_common *a, uint32_t data)
342 {
343         LOG_DEBUG("write DCC 0x%08" PRIx32, data);
344         return mem_ap_write_u32(a->armv7a_common.debug_ap,
345                         a->armv7a_common.debug_base + CPUDBG_DTRRX, data);
346 }
347
348 static int cortex_a_read_dcc(struct cortex_a_common *a, uint32_t *data,
349         uint32_t *dscr_p)
350 {
351         uint32_t dscr = DSCR_INSTR_COMP;
352         int retval;
353
354         if (dscr_p)
355                 dscr = *dscr_p;
356
357         /* Wait for DTRRXfull */
358         retval = cortex_a_wait_dscr_bits(a->armv7a_common.arm.target,
359                         DSCR_DTR_TX_FULL, DSCR_DTR_TX_FULL, &dscr);
360         if (retval != ERROR_OK) {
361                 LOG_ERROR("Error waiting for read dcc");
362                 return retval;
363         }
364
365         retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
366                         a->armv7a_common.debug_base + CPUDBG_DTRTX, data);
367         if (retval != ERROR_OK)
368                 return retval;
369         /* LOG_DEBUG("read DCC 0x%08" PRIx32, *data); */
370
371         if (dscr_p)
372                 *dscr_p = dscr;
373
374         return retval;
375 }
376
377 static int cortex_a_dpm_prepare(struct arm_dpm *dpm)
378 {
379         struct cortex_a_common *a = dpm_to_a(dpm);
380         uint32_t dscr;
381         int retval;
382
383         /* set up invariant:  INSTR_COMP is set after ever DPM operation */
384         retval = cortex_a_wait_instrcmpl(dpm->arm->target, &dscr, true);
385         if (retval != ERROR_OK) {
386                 LOG_ERROR("Error waiting for dpm prepare");
387                 return retval;
388         }
389
390         /* this "should never happen" ... */
391         if (dscr & DSCR_DTR_RX_FULL) {
392                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
393                 /* Clear DCCRX */
394                 retval = cortex_a_exec_opcode(
395                                 a->armv7a_common.arm.target,
396                                 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
397                                 &dscr);
398                 if (retval != ERROR_OK)
399                         return retval;
400         }
401
402         return retval;
403 }
404
405 static int cortex_a_dpm_finish(struct arm_dpm *dpm)
406 {
407         /* REVISIT what could be done here? */
408         return ERROR_OK;
409 }
410
411 static int cortex_a_instr_write_data_dcc(struct arm_dpm *dpm,
412         uint32_t opcode, uint32_t data)
413 {
414         struct cortex_a_common *a = dpm_to_a(dpm);
415         int retval;
416         uint32_t dscr = DSCR_INSTR_COMP;
417
418         retval = cortex_a_write_dcc(a, data);
419         if (retval != ERROR_OK)
420                 return retval;
421
422         return cortex_a_exec_opcode(
423                         a->armv7a_common.arm.target,
424                         opcode,
425                         &dscr);
426 }
427
428 static int cortex_a_instr_write_data_rt_dcc(struct arm_dpm *dpm,
429         uint8_t rt, uint32_t data)
430 {
431         struct cortex_a_common *a = dpm_to_a(dpm);
432         uint32_t dscr = DSCR_INSTR_COMP;
433         int retval;
434
435         if (rt > 15)
436                 return ERROR_TARGET_INVALID;
437
438         retval = cortex_a_write_dcc(a, data);
439         if (retval != ERROR_OK)
440                 return retval;
441
442         /* DCCRX to Rt, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
443         return cortex_a_exec_opcode(
444                         a->armv7a_common.arm.target,
445                         ARMV4_5_MRC(14, 0, rt, 0, 5, 0),
446                         &dscr);
447 }
448
449 static int cortex_a_instr_write_data_r0(struct arm_dpm *dpm,
450         uint32_t opcode, uint32_t data)
451 {
452         struct cortex_a_common *a = dpm_to_a(dpm);
453         uint32_t dscr = DSCR_INSTR_COMP;
454         int retval;
455
456         retval = cortex_a_instr_write_data_rt_dcc(dpm, 0, data);
457         if (retval != ERROR_OK)
458                 return retval;
459
460         /* then the opcode, taking data from R0 */
461         retval = cortex_a_exec_opcode(
462                         a->armv7a_common.arm.target,
463                         opcode,
464                         &dscr);
465
466         return retval;
467 }
468
469 static int cortex_a_instr_cpsr_sync(struct arm_dpm *dpm)
470 {
471         struct target *target = dpm->arm->target;
472         uint32_t dscr = DSCR_INSTR_COMP;
473
474         /* "Prefetch flush" after modifying execution status in CPSR */
475         return cortex_a_exec_opcode(target,
476                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
477                         &dscr);
478 }
479
480 static int cortex_a_instr_read_data_dcc(struct arm_dpm *dpm,
481         uint32_t opcode, uint32_t *data)
482 {
483         struct cortex_a_common *a = dpm_to_a(dpm);
484         int retval;
485         uint32_t dscr = DSCR_INSTR_COMP;
486
487         /* the opcode, writing data to DCC */
488         retval = cortex_a_exec_opcode(
489                         a->armv7a_common.arm.target,
490                         opcode,
491                         &dscr);
492         if (retval != ERROR_OK)
493                 return retval;
494
495         return cortex_a_read_dcc(a, data, &dscr);
496 }
497
498 static int cortex_a_instr_read_data_rt_dcc(struct arm_dpm *dpm,
499         uint8_t rt, uint32_t *data)
500 {
501         struct cortex_a_common *a = dpm_to_a(dpm);
502         uint32_t dscr = DSCR_INSTR_COMP;
503         int retval;
504
505         if (rt > 15)
506                 return ERROR_TARGET_INVALID;
507
508         retval = cortex_a_exec_opcode(
509                         a->armv7a_common.arm.target,
510                         ARMV4_5_MCR(14, 0, rt, 0, 5, 0),
511                         &dscr);
512         if (retval != ERROR_OK)
513                 return retval;
514
515         return cortex_a_read_dcc(a, data, &dscr);
516 }
517
518 static int cortex_a_instr_read_data_r0(struct arm_dpm *dpm,
519         uint32_t opcode, uint32_t *data)
520 {
521         struct cortex_a_common *a = dpm_to_a(dpm);
522         uint32_t dscr = DSCR_INSTR_COMP;
523         int retval;
524
525         /* the opcode, writing data to R0 */
526         retval = cortex_a_exec_opcode(
527                         a->armv7a_common.arm.target,
528                         opcode,
529                         &dscr);
530         if (retval != ERROR_OK)
531                 return retval;
532
533         /* write R0 to DCC */
534         return cortex_a_instr_read_data_rt_dcc(dpm, 0, data);
535 }
536
537 static int cortex_a_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
538         uint32_t addr, uint32_t control)
539 {
540         struct cortex_a_common *a = dpm_to_a(dpm);
541         uint32_t vr = a->armv7a_common.debug_base;
542         uint32_t cr = a->armv7a_common.debug_base;
543         int retval;
544
545         switch (index_t) {
546                 case 0 ... 15:  /* breakpoints */
547                         vr += CPUDBG_BVR_BASE;
548                         cr += CPUDBG_BCR_BASE;
549                         break;
550                 case 16 ... 31: /* watchpoints */
551                         vr += CPUDBG_WVR_BASE;
552                         cr += CPUDBG_WCR_BASE;
553                         index_t -= 16;
554                         break;
555                 default:
556                         return ERROR_FAIL;
557         }
558         vr += 4 * index_t;
559         cr += 4 * index_t;
560
561         LOG_DEBUG("A: bpwp enable, vr %08x cr %08x",
562                 (unsigned) vr, (unsigned) cr);
563
564         retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
565                         vr, addr);
566         if (retval != ERROR_OK)
567                 return retval;
568         retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
569                         cr, control);
570         return retval;
571 }
572
573 static int cortex_a_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
574 {
575         struct cortex_a_common *a = dpm_to_a(dpm);
576         uint32_t cr;
577
578         switch (index_t) {
579                 case 0 ... 15:
580                         cr = a->armv7a_common.debug_base + CPUDBG_BCR_BASE;
581                         break;
582                 case 16 ... 31:
583                         cr = a->armv7a_common.debug_base + CPUDBG_WCR_BASE;
584                         index_t -= 16;
585                         break;
586                 default:
587                         return ERROR_FAIL;
588         }
589         cr += 4 * index_t;
590
591         LOG_DEBUG("A: bpwp disable, cr %08x", (unsigned) cr);
592
593         /* clear control register */
594         return cortex_a_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
595 }
596
597 static int cortex_a_dpm_setup(struct cortex_a_common *a, uint32_t didr)
598 {
599         struct arm_dpm *dpm = &a->armv7a_common.dpm;
600         int retval;
601
602         dpm->arm = &a->armv7a_common.arm;
603         dpm->didr = didr;
604
605         dpm->prepare = cortex_a_dpm_prepare;
606         dpm->finish = cortex_a_dpm_finish;
607
608         dpm->instr_write_data_dcc = cortex_a_instr_write_data_dcc;
609         dpm->instr_write_data_r0 = cortex_a_instr_write_data_r0;
610         dpm->instr_cpsr_sync = cortex_a_instr_cpsr_sync;
611
612         dpm->instr_read_data_dcc = cortex_a_instr_read_data_dcc;
613         dpm->instr_read_data_r0 = cortex_a_instr_read_data_r0;
614
615         dpm->bpwp_enable = cortex_a_bpwp_enable;
616         dpm->bpwp_disable = cortex_a_bpwp_disable;
617
618         retval = arm_dpm_setup(dpm);
619         if (retval == ERROR_OK)
620                 retval = arm_dpm_initialize(dpm);
621
622         return retval;
623 }
624 static struct target *get_cortex_a(struct target *target, int32_t coreid)
625 {
626         struct target_list *head;
627         struct target *curr;
628
629         head = target->head;
630         while (head != (struct target_list *)NULL) {
631                 curr = head->target;
632                 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
633                         return curr;
634                 head = head->next;
635         }
636         return target;
637 }
638 static int cortex_a_halt(struct target *target);
639
640 static int cortex_a_halt_smp(struct target *target)
641 {
642         int retval = 0;
643         struct target_list *head;
644         struct target *curr;
645         head = target->head;
646         while (head != (struct target_list *)NULL) {
647                 curr = head->target;
648                 if ((curr != target) && (curr->state != TARGET_HALTED)
649                         && target_was_examined(curr))
650                         retval += cortex_a_halt(curr);
651                 head = head->next;
652         }
653         return retval;
654 }
655
656 static int update_halt_gdb(struct target *target)
657 {
658         struct target *gdb_target = NULL;
659         struct target_list *head;
660         struct target *curr;
661         int retval = 0;
662
663         if (target->gdb_service && target->gdb_service->core[0] == -1) {
664                 target->gdb_service->target = target;
665                 target->gdb_service->core[0] = target->coreid;
666                 retval += cortex_a_halt_smp(target);
667         }
668
669         if (target->gdb_service)
670                 gdb_target = target->gdb_service->target;
671
672         foreach_smp_target(head, target->head) {
673                 curr = head->target;
674                 /* skip calling context */
675                 if (curr == target)
676                         continue;
677                 if (!target_was_examined(curr))
678                         continue;
679                 /* skip targets that were already halted */
680                 if (curr->state == TARGET_HALTED)
681                         continue;
682                 /* Skip gdb_target; it alerts GDB so has to be polled as last one */
683                 if (curr == gdb_target)
684                         continue;
685
686                 /* avoid recursion in cortex_a_poll() */
687                 curr->smp = 0;
688                 cortex_a_poll(curr);
689                 curr->smp = 1;
690         }
691
692         /* after all targets were updated, poll the gdb serving target */
693         if (gdb_target != NULL && gdb_target != target)
694                 cortex_a_poll(gdb_target);
695         return retval;
696 }
697
698 /*
699  * Cortex-A Run control
700  */
701
702 static int cortex_a_poll(struct target *target)
703 {
704         int retval = ERROR_OK;
705         uint32_t dscr;
706         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
707         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
708         enum target_state prev_target_state = target->state;
709         /*  toggle to another core is done by gdb as follow */
710         /*  maint packet J core_id */
711         /*  continue */
712         /*  the next polling trigger an halt event sent to gdb */
713         if ((target->state == TARGET_HALTED) && (target->smp) &&
714                 (target->gdb_service) &&
715                 (target->gdb_service->target == NULL)) {
716                 target->gdb_service->target =
717                         get_cortex_a(target, target->gdb_service->core[1]);
718                 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
719                 return retval;
720         }
721         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
722                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
723         if (retval != ERROR_OK)
724                 return retval;
725         cortex_a->cpudbg_dscr = dscr;
726
727         if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED)) {
728                 if (prev_target_state != TARGET_HALTED) {
729                         /* We have a halting debug event */
730                         LOG_DEBUG("Target halted");
731                         target->state = TARGET_HALTED;
732
733                         retval = cortex_a_debug_entry(target);
734                         if (retval != ERROR_OK)
735                                 return retval;
736
737                         if (target->smp) {
738                                 retval = update_halt_gdb(target);
739                                 if (retval != ERROR_OK)
740                                         return retval;
741                         }
742
743                         if (prev_target_state == TARGET_DEBUG_RUNNING) {
744                                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
745                         } else { /* prev_target_state is RUNNING, UNKNOWN or RESET */
746                                 if (arm_semihosting(target, &retval) != 0)
747                                         return retval;
748
749                                 target_call_event_callbacks(target,
750                                         TARGET_EVENT_HALTED);
751                         }
752                 }
753         } else
754                 target->state = TARGET_RUNNING;
755
756         return retval;
757 }
758
759 static int cortex_a_halt(struct target *target)
760 {
761         int retval;
762         uint32_t dscr;
763         struct armv7a_common *armv7a = target_to_armv7a(target);
764
765         /*
766          * Tell the core to be halted by writing DRCR with 0x1
767          * and then wait for the core to be halted.
768          */
769         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
770                         armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
771         if (retval != ERROR_OK)
772                 return retval;
773
774         dscr = 0; /* force read of dscr */
775         retval = cortex_a_wait_dscr_bits(target, DSCR_CORE_HALTED,
776                         DSCR_CORE_HALTED, &dscr);
777         if (retval != ERROR_OK) {
778                 LOG_ERROR("Error waiting for halt");
779                 return retval;
780         }
781
782         target->debug_reason = DBG_REASON_DBGRQ;
783
784         return ERROR_OK;
785 }
786
787 static int cortex_a_internal_restore(struct target *target, int current,
788         target_addr_t *address, int handle_breakpoints, int debug_execution)
789 {
790         struct armv7a_common *armv7a = target_to_armv7a(target);
791         struct arm *arm = &armv7a->arm;
792         int retval;
793         uint32_t resume_pc;
794
795         if (!debug_execution)
796                 target_free_all_working_areas(target);
797
798 #if 0
799         if (debug_execution) {
800                 /* Disable interrupts */
801                 /* We disable interrupts in the PRIMASK register instead of
802                  * masking with C_MASKINTS,
803                  * This is probably the same issue as Cortex-M3 Errata 377493:
804                  * C_MASKINTS in parallel with disabled interrupts can cause
805                  * local faults to not be taken. */
806                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
807                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = true;
808                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = true;
809
810                 /* Make sure we are in Thumb mode */
811                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
812                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0,
813                         32) | (1 << 24));
814                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = true;
815                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = true;
816         }
817 #endif
818
819         /* current = 1: continue on current pc, otherwise continue at <address> */
820         resume_pc = buf_get_u32(arm->pc->value, 0, 32);
821         if (!current)
822                 resume_pc = *address;
823         else
824                 *address = resume_pc;
825
826         /* Make sure that the Armv7 gdb thumb fixups does not
827          * kill the return address
828          */
829         switch (arm->core_state) {
830                 case ARM_STATE_ARM:
831                         resume_pc &= 0xFFFFFFFC;
832                         break;
833                 case ARM_STATE_THUMB:
834                 case ARM_STATE_THUMB_EE:
835                         /* When the return address is loaded into PC
836                          * bit 0 must be 1 to stay in Thumb state
837                          */
838                         resume_pc |= 0x1;
839                         break;
840                 case ARM_STATE_JAZELLE:
841                         LOG_ERROR("How do I resume into Jazelle state??");
842                         return ERROR_FAIL;
843                 case ARM_STATE_AARCH64:
844                         LOG_ERROR("Shouldn't be in AARCH64 state");
845                         return ERROR_FAIL;
846         }
847         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
848         buf_set_u32(arm->pc->value, 0, 32, resume_pc);
849         arm->pc->dirty = true;
850         arm->pc->valid = true;
851
852         /* restore dpm_mode at system halt */
853         arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
854         /* called it now before restoring context because it uses cpu
855          * register r0 for restoring cp15 control register */
856         retval = cortex_a_restore_cp15_control_reg(target);
857         if (retval != ERROR_OK)
858                 return retval;
859         retval = cortex_a_restore_context(target, handle_breakpoints);
860         if (retval != ERROR_OK)
861                 return retval;
862         target->debug_reason = DBG_REASON_NOTHALTED;
863         target->state = TARGET_RUNNING;
864
865         /* registers are now invalid */
866         register_cache_invalidate(arm->core_cache);
867
868 #if 0
869         /* the front-end may request us not to handle breakpoints */
870         if (handle_breakpoints) {
871                 /* Single step past breakpoint at current address */
872                 breakpoint = breakpoint_find(target, resume_pc);
873                 if (breakpoint) {
874                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
875                         cortex_m3_unset_breakpoint(target, breakpoint);
876                         cortex_m3_single_step_core(target);
877                         cortex_m3_set_breakpoint(target, breakpoint);
878                 }
879         }
880
881 #endif
882         return retval;
883 }
884
885 static int cortex_a_internal_restart(struct target *target)
886 {
887         struct armv7a_common *armv7a = target_to_armv7a(target);
888         struct arm *arm = &armv7a->arm;
889         int retval;
890         uint32_t dscr;
891         /*
892          * * Restart core and wait for it to be started.  Clear ITRen and sticky
893          * * exception flags: see ARMv7 ARM, C5.9.
894          *
895          * REVISIT: for single stepping, we probably want to
896          * disable IRQs by default, with optional override...
897          */
898
899         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
900                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
901         if (retval != ERROR_OK)
902                 return retval;
903
904         if ((dscr & DSCR_INSTR_COMP) == 0)
905                 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
906
907         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
908                         armv7a->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
909         if (retval != ERROR_OK)
910                 return retval;
911
912         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
913                         armv7a->debug_base + CPUDBG_DRCR, DRCR_RESTART |
914                         DRCR_CLEAR_EXCEPTIONS);
915         if (retval != ERROR_OK)
916                 return retval;
917
918         dscr = 0; /* force read of dscr */
919         retval = cortex_a_wait_dscr_bits(target, DSCR_CORE_RESTARTED,
920                         DSCR_CORE_RESTARTED, &dscr);
921         if (retval != ERROR_OK) {
922                 LOG_ERROR("Error waiting for resume");
923                 return retval;
924         }
925
926         target->debug_reason = DBG_REASON_NOTHALTED;
927         target->state = TARGET_RUNNING;
928
929         /* registers are now invalid */
930         register_cache_invalidate(arm->core_cache);
931
932         return ERROR_OK;
933 }
934
935 static int cortex_a_restore_smp(struct target *target, int handle_breakpoints)
936 {
937         int retval = 0;
938         struct target_list *head;
939         struct target *curr;
940         target_addr_t address;
941         head = target->head;
942         while (head != (struct target_list *)NULL) {
943                 curr = head->target;
944                 if ((curr != target) && (curr->state != TARGET_RUNNING)
945                         && target_was_examined(curr)) {
946                         /*  resume current address , not in step mode */
947                         retval += cortex_a_internal_restore(curr, 1, &address,
948                                         handle_breakpoints, 0);
949                         retval += cortex_a_internal_restart(curr);
950                 }
951                 head = head->next;
952
953         }
954         return retval;
955 }
956
957 static int cortex_a_resume(struct target *target, int current,
958         target_addr_t address, int handle_breakpoints, int debug_execution)
959 {
960         int retval = 0;
961         /* dummy resume for smp toggle in order to reduce gdb impact  */
962         if ((target->smp) && (target->gdb_service->core[1] != -1)) {
963                 /*   simulate a start and halt of target */
964                 target->gdb_service->target = NULL;
965                 target->gdb_service->core[0] = target->gdb_service->core[1];
966                 /*  fake resume at next poll we play the  target core[1], see poll*/
967                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
968                 return 0;
969         }
970         cortex_a_internal_restore(target, current, &address, handle_breakpoints, debug_execution);
971         if (target->smp) {
972                 target->gdb_service->core[0] = -1;
973                 retval = cortex_a_restore_smp(target, handle_breakpoints);
974                 if (retval != ERROR_OK)
975                         return retval;
976         }
977         cortex_a_internal_restart(target);
978
979         if (!debug_execution) {
980                 target->state = TARGET_RUNNING;
981                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
982                 LOG_DEBUG("target resumed at " TARGET_ADDR_FMT, address);
983         } else {
984                 target->state = TARGET_DEBUG_RUNNING;
985                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
986                 LOG_DEBUG("target debug resumed at " TARGET_ADDR_FMT, address);
987         }
988
989         return ERROR_OK;
990 }
991
992 static int cortex_a_debug_entry(struct target *target)
993 {
994         uint32_t dscr;
995         int retval = ERROR_OK;
996         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
997         struct armv7a_common *armv7a = target_to_armv7a(target);
998         struct arm *arm = &armv7a->arm;
999
1000         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a->cpudbg_dscr);
1001
1002         /* REVISIT surely we should not re-read DSCR !! */
1003         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1004                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
1005         if (retval != ERROR_OK)
1006                 return retval;
1007
1008         /* REVISIT see A TRM 12.11.4 steps 2..3 -- make sure that any
1009          * imprecise data aborts get discarded by issuing a Data
1010          * Synchronization Barrier:  ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1011          */
1012
1013         /* Enable the ITR execution once we are in debug mode */
1014         dscr |= DSCR_ITR_EN;
1015         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1016                         armv7a->debug_base + CPUDBG_DSCR, dscr);
1017         if (retval != ERROR_OK)
1018                 return retval;
1019
1020         /* Examine debug reason */
1021         arm_dpm_report_dscr(&armv7a->dpm, cortex_a->cpudbg_dscr);
1022
1023         /* save address of instruction that triggered the watchpoint? */
1024         if (target->debug_reason == DBG_REASON_WATCHPOINT) {
1025                 uint32_t wfar;
1026
1027                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1028                                 armv7a->debug_base + CPUDBG_WFAR,
1029                                 &wfar);
1030                 if (retval != ERROR_OK)
1031                         return retval;
1032                 arm_dpm_report_wfar(&armv7a->dpm, wfar);
1033         }
1034
1035         /* First load register accessible through core debug port */
1036         retval = arm_dpm_read_current_registers(&armv7a->dpm);
1037         if (retval != ERROR_OK)
1038                 return retval;
1039
1040         if (arm->spsr) {
1041                 /* read SPSR */
1042                 retval = arm_dpm_read_reg(&armv7a->dpm, arm->spsr, 17);
1043                 if (retval != ERROR_OK)
1044                         return retval;
1045         }
1046
1047 #if 0
1048 /* TODO, Move this */
1049         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
1050         cortex_a_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
1051         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
1052
1053         cortex_a_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
1054         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
1055
1056         cortex_a_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
1057         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
1058 #endif
1059
1060         /* Are we in an exception handler */
1061 /*      armv4_5->exception_number = 0; */
1062         if (armv7a->post_debug_entry) {
1063                 retval = armv7a->post_debug_entry(target);
1064                 if (retval != ERROR_OK)
1065                         return retval;
1066         }
1067
1068         return retval;
1069 }
1070
1071 static int cortex_a_post_debug_entry(struct target *target)
1072 {
1073         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1074         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1075         int retval;
1076
1077         /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1078         retval = armv7a->arm.mrc(target, 15,
1079                         0, 0,   /* op1, op2 */
1080                         1, 0,   /* CRn, CRm */
1081                         &cortex_a->cp15_control_reg);
1082         if (retval != ERROR_OK)
1083                 return retval;
1084         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg);
1085         cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
1086
1087         if (!armv7a->is_armv7r)
1088                 armv7a_read_ttbcr(target);
1089
1090         if (armv7a->armv7a_mmu.armv7a_cache.info == -1)
1091                 armv7a_identify_cache(target);
1092
1093         if (armv7a->is_armv7r) {
1094                 armv7a->armv7a_mmu.mmu_enabled = 0;
1095         } else {
1096                 armv7a->armv7a_mmu.mmu_enabled =
1097                         (cortex_a->cp15_control_reg & 0x1U) ? 1 : 0;
1098         }
1099         armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled =
1100                 (cortex_a->cp15_control_reg & 0x4U) ? 1 : 0;
1101         armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled =
1102                 (cortex_a->cp15_control_reg & 0x1000U) ? 1 : 0;
1103         cortex_a->curr_mode = armv7a->arm.core_mode;
1104
1105         /* switch to SVC mode to read DACR */
1106         arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
1107         armv7a->arm.mrc(target, 15,
1108                         0, 0, 3, 0,
1109                         &cortex_a->cp15_dacr_reg);
1110
1111         LOG_DEBUG("cp15_dacr_reg: %8.8" PRIx32,
1112                         cortex_a->cp15_dacr_reg);
1113
1114         arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
1115         return ERROR_OK;
1116 }
1117
1118 static int cortex_a_set_dscr_bits(struct target *target,
1119                 unsigned long bit_mask, unsigned long value)
1120 {
1121         struct armv7a_common *armv7a = target_to_armv7a(target);
1122         uint32_t dscr;
1123
1124         /* Read DSCR */
1125         int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1126                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
1127         if (ERROR_OK != retval)
1128                 return retval;
1129
1130         /* clear bitfield */
1131         dscr &= ~bit_mask;
1132         /* put new value */
1133         dscr |= value & bit_mask;
1134
1135         /* write new DSCR */
1136         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1137                         armv7a->debug_base + CPUDBG_DSCR, dscr);
1138         return retval;
1139 }
1140
1141 static int cortex_a_step(struct target *target, int current, target_addr_t address,
1142         int handle_breakpoints)
1143 {
1144         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1145         struct armv7a_common *armv7a = target_to_armv7a(target);
1146         struct arm *arm = &armv7a->arm;
1147         struct breakpoint *breakpoint = NULL;
1148         struct breakpoint stepbreakpoint;
1149         struct reg *r;
1150         int retval;
1151
1152         if (target->state != TARGET_HALTED) {
1153                 LOG_WARNING("target not halted");
1154                 return ERROR_TARGET_NOT_HALTED;
1155         }
1156
1157         /* current = 1: continue on current pc, otherwise continue at <address> */
1158         r = arm->pc;
1159         if (!current)
1160                 buf_set_u32(r->value, 0, 32, address);
1161         else
1162                 address = buf_get_u32(r->value, 0, 32);
1163
1164         /* The front-end may request us not to handle breakpoints.
1165          * But since Cortex-A uses breakpoint for single step,
1166          * we MUST handle breakpoints.
1167          */
1168         handle_breakpoints = 1;
1169         if (handle_breakpoints) {
1170                 breakpoint = breakpoint_find(target, address);
1171                 if (breakpoint)
1172                         cortex_a_unset_breakpoint(target, breakpoint);
1173         }
1174
1175         /* Setup single step breakpoint */
1176         stepbreakpoint.address = address;
1177         stepbreakpoint.asid = 0;
1178         stepbreakpoint.length = (arm->core_state == ARM_STATE_THUMB)
1179                 ? 2 : 4;
1180         stepbreakpoint.type = BKPT_HARD;
1181         stepbreakpoint.set = 0;
1182
1183         /* Disable interrupts during single step if requested */
1184         if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1185                 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, DSCR_INT_DIS);
1186                 if (ERROR_OK != retval)
1187                         return retval;
1188         }
1189
1190         /* Break on IVA mismatch */
1191         cortex_a_set_breakpoint(target, &stepbreakpoint, 0x04);
1192
1193         target->debug_reason = DBG_REASON_SINGLESTEP;
1194
1195         retval = cortex_a_resume(target, 1, address, 0, 0);
1196         if (retval != ERROR_OK)
1197                 return retval;
1198
1199         int64_t then = timeval_ms();
1200         while (target->state != TARGET_HALTED) {
1201                 retval = cortex_a_poll(target);
1202                 if (retval != ERROR_OK)
1203                         return retval;
1204                 if (target->state == TARGET_HALTED)
1205                         break;
1206                 if (timeval_ms() > then + 1000) {
1207                         LOG_ERROR("timeout waiting for target halt");
1208                         return ERROR_FAIL;
1209                 }
1210         }
1211
1212         cortex_a_unset_breakpoint(target, &stepbreakpoint);
1213
1214         /* Re-enable interrupts if they were disabled */
1215         if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1216                 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, 0);
1217                 if (ERROR_OK != retval)
1218                         return retval;
1219         }
1220
1221
1222         target->debug_reason = DBG_REASON_BREAKPOINT;
1223
1224         if (breakpoint)
1225                 cortex_a_set_breakpoint(target, breakpoint, 0);
1226
1227         if (target->state != TARGET_HALTED)
1228                 LOG_DEBUG("target stepped");
1229
1230         return ERROR_OK;
1231 }
1232
1233 static int cortex_a_restore_context(struct target *target, bool bpwp)
1234 {
1235         struct armv7a_common *armv7a = target_to_armv7a(target);
1236
1237         LOG_DEBUG(" ");
1238
1239         if (armv7a->pre_restore_context)
1240                 armv7a->pre_restore_context(target);
1241
1242         return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1243 }
1244
1245 /*
1246  * Cortex-A Breakpoint and watchpoint functions
1247  */
1248
1249 /* Setup hardware Breakpoint Register Pair */
1250 static int cortex_a_set_breakpoint(struct target *target,
1251         struct breakpoint *breakpoint, uint8_t matchmode)
1252 {
1253         int retval;
1254         int brp_i = 0;
1255         uint32_t control;
1256         uint8_t byte_addr_select = 0x0F;
1257         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1258         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1259         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1260
1261         if (breakpoint->set) {
1262                 LOG_WARNING("breakpoint already set");
1263                 return ERROR_OK;
1264         }
1265
1266         if (breakpoint->type == BKPT_HARD) {
1267                 while (brp_list[brp_i].used && (brp_i < cortex_a->brp_num))
1268                         brp_i++;
1269                 if (brp_i >= cortex_a->brp_num) {
1270                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1271                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1272                 }
1273                 breakpoint->set = brp_i + 1;
1274                 if (breakpoint->length == 2)
1275                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1276                 control = ((matchmode & 0x7) << 20)
1277                         | (byte_addr_select << 5)
1278                         | (3 << 1) | 1;
1279                 brp_list[brp_i].used = 1;
1280                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1281                 brp_list[brp_i].control = control;
1282                 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1283                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1284                                 brp_list[brp_i].value);
1285                 if (retval != ERROR_OK)
1286                         return retval;
1287                 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1288                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1289                                 brp_list[brp_i].control);
1290                 if (retval != ERROR_OK)
1291                         return retval;
1292                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1293                         brp_list[brp_i].control,
1294                         brp_list[brp_i].value);
1295         } else if (breakpoint->type == BKPT_SOFT) {
1296                 uint8_t code[4];
1297                 /* length == 2: Thumb breakpoint */
1298                 if (breakpoint->length == 2)
1299                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1300                 else
1301                 /* length == 3: Thumb-2 breakpoint, actual encoding is
1302                  * a regular Thumb BKPT instruction but we replace a
1303                  * 32bit Thumb-2 instruction, so fix-up the breakpoint
1304                  * length
1305                  */
1306                 if (breakpoint->length == 3) {
1307                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1308                         breakpoint->length = 4;
1309                 } else
1310                         /* length == 4, normal ARM breakpoint */
1311                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1312
1313                 retval = target_read_memory(target,
1314                                 breakpoint->address & 0xFFFFFFFE,
1315                                 breakpoint->length, 1,
1316                                 breakpoint->orig_instr);
1317                 if (retval != ERROR_OK)
1318                         return retval;
1319
1320                 /* make sure data cache is cleaned & invalidated down to PoC */
1321                 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1322                         armv7a_cache_flush_virt(target, breakpoint->address,
1323                                                 breakpoint->length);
1324                 }
1325
1326                 retval = target_write_memory(target,
1327                                 breakpoint->address & 0xFFFFFFFE,
1328                                 breakpoint->length, 1, code);
1329                 if (retval != ERROR_OK)
1330                         return retval;
1331
1332                 /* update i-cache at breakpoint location */
1333                 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1334                                         breakpoint->length);
1335                 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1336                                                  breakpoint->length);
1337
1338                 breakpoint->set = 0x11; /* Any nice value but 0 */
1339         }
1340
1341         return ERROR_OK;
1342 }
1343
1344 static int cortex_a_set_context_breakpoint(struct target *target,
1345         struct breakpoint *breakpoint, uint8_t matchmode)
1346 {
1347         int retval = ERROR_FAIL;
1348         int brp_i = 0;
1349         uint32_t control;
1350         uint8_t byte_addr_select = 0x0F;
1351         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1352         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1353         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1354
1355         if (breakpoint->set) {
1356                 LOG_WARNING("breakpoint already set");
1357                 return retval;
1358         }
1359         /*check available context BRPs*/
1360         while ((brp_list[brp_i].used ||
1361                 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < cortex_a->brp_num))
1362                 brp_i++;
1363
1364         if (brp_i >= cortex_a->brp_num) {
1365                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1366                 return ERROR_FAIL;
1367         }
1368
1369         breakpoint->set = brp_i + 1;
1370         control = ((matchmode & 0x7) << 20)
1371                 | (byte_addr_select << 5)
1372                 | (3 << 1) | 1;
1373         brp_list[brp_i].used = 1;
1374         brp_list[brp_i].value = (breakpoint->asid);
1375         brp_list[brp_i].control = control;
1376         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1377                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1378                         brp_list[brp_i].value);
1379         if (retval != ERROR_OK)
1380                 return retval;
1381         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1382                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1383                         brp_list[brp_i].control);
1384         if (retval != ERROR_OK)
1385                 return retval;
1386         LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1387                 brp_list[brp_i].control,
1388                 brp_list[brp_i].value);
1389         return ERROR_OK;
1390
1391 }
1392
1393 static int cortex_a_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1394 {
1395         int retval = ERROR_FAIL;
1396         int brp_1 = 0;  /* holds the contextID pair */
1397         int brp_2 = 0;  /* holds the IVA pair */
1398         uint32_t control_CTX, control_IVA;
1399         uint8_t CTX_byte_addr_select = 0x0F;
1400         uint8_t IVA_byte_addr_select = 0x0F;
1401         uint8_t CTX_machmode = 0x03;
1402         uint8_t IVA_machmode = 0x01;
1403         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1404         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1405         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1406
1407         if (breakpoint->set) {
1408                 LOG_WARNING("breakpoint already set");
1409                 return retval;
1410         }
1411         /*check available context BRPs*/
1412         while ((brp_list[brp_1].used ||
1413                 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < cortex_a->brp_num))
1414                 brp_1++;
1415
1416         printf("brp(CTX) found num: %d\n", brp_1);
1417         if (brp_1 >= cortex_a->brp_num) {
1418                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1419                 return ERROR_FAIL;
1420         }
1421
1422         while ((brp_list[brp_2].used ||
1423                 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < cortex_a->brp_num))
1424                 brp_2++;
1425
1426         printf("brp(IVA) found num: %d\n", brp_2);
1427         if (brp_2 >= cortex_a->brp_num) {
1428                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1429                 return ERROR_FAIL;
1430         }
1431
1432         breakpoint->set = brp_1 + 1;
1433         breakpoint->linked_BRP = brp_2;
1434         control_CTX = ((CTX_machmode & 0x7) << 20)
1435                 | (brp_2 << 16)
1436                 | (0 << 14)
1437                 | (CTX_byte_addr_select << 5)
1438                 | (3 << 1) | 1;
1439         brp_list[brp_1].used = 1;
1440         brp_list[brp_1].value = (breakpoint->asid);
1441         brp_list[brp_1].control = control_CTX;
1442         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1443                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_1].BRPn,
1444                         brp_list[brp_1].value);
1445         if (retval != ERROR_OK)
1446                 return retval;
1447         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1448                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_1].BRPn,
1449                         brp_list[brp_1].control);
1450         if (retval != ERROR_OK)
1451                 return retval;
1452
1453         control_IVA = ((IVA_machmode & 0x7) << 20)
1454                 | (brp_1 << 16)
1455                 | (IVA_byte_addr_select << 5)
1456                 | (3 << 1) | 1;
1457         brp_list[brp_2].used = 1;
1458         brp_list[brp_2].value = (breakpoint->address & 0xFFFFFFFC);
1459         brp_list[brp_2].control = control_IVA;
1460         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1461                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_2].BRPn,
1462                         brp_list[brp_2].value);
1463         if (retval != ERROR_OK)
1464                 return retval;
1465         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1466                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_2].BRPn,
1467                         brp_list[brp_2].control);
1468         if (retval != ERROR_OK)
1469                 return retval;
1470
1471         return ERROR_OK;
1472 }
1473
1474 static int cortex_a_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1475 {
1476         int retval;
1477         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1478         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1479         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1480
1481         if (!breakpoint->set) {
1482                 LOG_WARNING("breakpoint not set");
1483                 return ERROR_OK;
1484         }
1485
1486         if (breakpoint->type == BKPT_HARD) {
1487                 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1488                         int brp_i = breakpoint->set - 1;
1489                         int brp_j = breakpoint->linked_BRP;
1490                         if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1491                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1492                                 return ERROR_OK;
1493                         }
1494                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1495                                 brp_list[brp_i].control, brp_list[brp_i].value);
1496                         brp_list[brp_i].used = 0;
1497                         brp_list[brp_i].value = 0;
1498                         brp_list[brp_i].control = 0;
1499                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1500                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1501                                         brp_list[brp_i].control);
1502                         if (retval != ERROR_OK)
1503                                 return retval;
1504                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1505                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1506                                         brp_list[brp_i].value);
1507                         if (retval != ERROR_OK)
1508                                 return retval;
1509                         if ((brp_j < 0) || (brp_j >= cortex_a->brp_num)) {
1510                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1511                                 return ERROR_OK;
1512                         }
1513                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_j,
1514                                 brp_list[brp_j].control, brp_list[brp_j].value);
1515                         brp_list[brp_j].used = 0;
1516                         brp_list[brp_j].value = 0;
1517                         brp_list[brp_j].control = 0;
1518                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1519                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_j].BRPn,
1520                                         brp_list[brp_j].control);
1521                         if (retval != ERROR_OK)
1522                                 return retval;
1523                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1524                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_j].BRPn,
1525                                         brp_list[brp_j].value);
1526                         if (retval != ERROR_OK)
1527                                 return retval;
1528                         breakpoint->linked_BRP = 0;
1529                         breakpoint->set = 0;
1530                         return ERROR_OK;
1531
1532                 } else {
1533                         int brp_i = breakpoint->set - 1;
1534                         if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1535                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1536                                 return ERROR_OK;
1537                         }
1538                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1539                                 brp_list[brp_i].control, brp_list[brp_i].value);
1540                         brp_list[brp_i].used = 0;
1541                         brp_list[brp_i].value = 0;
1542                         brp_list[brp_i].control = 0;
1543                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1544                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1545                                         brp_list[brp_i].control);
1546                         if (retval != ERROR_OK)
1547                                 return retval;
1548                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1549                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1550                                         brp_list[brp_i].value);
1551                         if (retval != ERROR_OK)
1552                                 return retval;
1553                         breakpoint->set = 0;
1554                         return ERROR_OK;
1555                 }
1556         } else {
1557
1558                 /* make sure data cache is cleaned & invalidated down to PoC */
1559                 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1560                         armv7a_cache_flush_virt(target, breakpoint->address,
1561                                                 breakpoint->length);
1562                 }
1563
1564                 /* restore original instruction (kept in target endianness) */
1565                 if (breakpoint->length == 4) {
1566                         retval = target_write_memory(target,
1567                                         breakpoint->address & 0xFFFFFFFE,
1568                                         4, 1, breakpoint->orig_instr);
1569                         if (retval != ERROR_OK)
1570                                 return retval;
1571                 } else {
1572                         retval = target_write_memory(target,
1573                                         breakpoint->address & 0xFFFFFFFE,
1574                                         2, 1, breakpoint->orig_instr);
1575                         if (retval != ERROR_OK)
1576                                 return retval;
1577                 }
1578
1579                 /* update i-cache at breakpoint location */
1580                 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1581                                                  breakpoint->length);
1582                 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1583                                                  breakpoint->length);
1584         }
1585         breakpoint->set = 0;
1586
1587         return ERROR_OK;
1588 }
1589
1590 static int cortex_a_add_breakpoint(struct target *target,
1591         struct breakpoint *breakpoint)
1592 {
1593         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1594
1595         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1596                 LOG_INFO("no hardware breakpoint available");
1597                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1598         }
1599
1600         if (breakpoint->type == BKPT_HARD)
1601                 cortex_a->brp_num_available--;
1602
1603         return cortex_a_set_breakpoint(target, breakpoint, 0x00);       /* Exact match */
1604 }
1605
1606 static int cortex_a_add_context_breakpoint(struct target *target,
1607         struct breakpoint *breakpoint)
1608 {
1609         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1610
1611         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1612                 LOG_INFO("no hardware breakpoint available");
1613                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1614         }
1615
1616         if (breakpoint->type == BKPT_HARD)
1617                 cortex_a->brp_num_available--;
1618
1619         return cortex_a_set_context_breakpoint(target, breakpoint, 0x02);       /* asid match */
1620 }
1621
1622 static int cortex_a_add_hybrid_breakpoint(struct target *target,
1623         struct breakpoint *breakpoint)
1624 {
1625         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1626
1627         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1628                 LOG_INFO("no hardware breakpoint available");
1629                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1630         }
1631
1632         if (breakpoint->type == BKPT_HARD)
1633                 cortex_a->brp_num_available--;
1634
1635         return cortex_a_set_hybrid_breakpoint(target, breakpoint);      /* ??? */
1636 }
1637
1638
1639 static int cortex_a_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1640 {
1641         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1642
1643 #if 0
1644 /* It is perfectly possible to remove breakpoints while the target is running */
1645         if (target->state != TARGET_HALTED) {
1646                 LOG_WARNING("target not halted");
1647                 return ERROR_TARGET_NOT_HALTED;
1648         }
1649 #endif
1650
1651         if (breakpoint->set) {
1652                 cortex_a_unset_breakpoint(target, breakpoint);
1653                 if (breakpoint->type == BKPT_HARD)
1654                         cortex_a->brp_num_available++;
1655         }
1656
1657
1658         return ERROR_OK;
1659 }
1660
1661 /*
1662  * Cortex-A Reset functions
1663  */
1664
1665 static int cortex_a_assert_reset(struct target *target)
1666 {
1667         struct armv7a_common *armv7a = target_to_armv7a(target);
1668
1669         LOG_DEBUG(" ");
1670
1671         /* FIXME when halt is requested, make it work somehow... */
1672
1673         /* This function can be called in "target not examined" state */
1674
1675         /* Issue some kind of warm reset. */
1676         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1677                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1678         else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1679                 /* REVISIT handle "pulls" cases, if there's
1680                  * hardware that needs them to work.
1681                  */
1682
1683                 /*
1684                  * FIXME: fix reset when transport is not JTAG. This is a temporary
1685                  * work-around for release v0.10 that is not intended to stay!
1686                  */
1687                 if (!transport_is_jtag() ||
1688                                 (target->reset_halt && (jtag_get_reset_config() & RESET_SRST_NO_GATING)))
1689                         adapter_assert_reset();
1690
1691         } else {
1692                 LOG_ERROR("%s: how to reset?", target_name(target));
1693                 return ERROR_FAIL;
1694         }
1695
1696         /* registers are now invalid */
1697         if (target_was_examined(target))
1698                 register_cache_invalidate(armv7a->arm.core_cache);
1699
1700         target->state = TARGET_RESET;
1701
1702         return ERROR_OK;
1703 }
1704
1705 static int cortex_a_deassert_reset(struct target *target)
1706 {
1707         struct armv7a_common *armv7a = target_to_armv7a(target);
1708         int retval;
1709
1710         LOG_DEBUG(" ");
1711
1712         /* be certain SRST is off */
1713         adapter_deassert_reset();
1714
1715         if (target_was_examined(target)) {
1716                 retval = cortex_a_poll(target);
1717                 if (retval != ERROR_OK)
1718                         return retval;
1719         }
1720
1721         if (target->reset_halt) {
1722                 if (target->state != TARGET_HALTED) {
1723                         LOG_WARNING("%s: ran after reset and before halt ...",
1724                                 target_name(target));
1725                         if (target_was_examined(target)) {
1726                                 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1727                                                 armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
1728                                 if (retval != ERROR_OK)
1729                                         return retval;
1730                         } else
1731                                 target->state = TARGET_UNKNOWN;
1732                 }
1733         }
1734
1735         return ERROR_OK;
1736 }
1737
1738 static int cortex_a_set_dcc_mode(struct target *target, uint32_t mode, uint32_t *dscr)
1739 {
1740         /* Changes the mode of the DCC between non-blocking, stall, and fast mode.
1741          * New desired mode must be in mode. Current value of DSCR must be in
1742          * *dscr, which is updated with new value.
1743          *
1744          * This function elides actually sending the mode-change over the debug
1745          * interface if the mode is already set as desired.
1746          */
1747         uint32_t new_dscr = (*dscr & ~DSCR_EXT_DCC_MASK) | mode;
1748         if (new_dscr != *dscr) {
1749                 struct armv7a_common *armv7a = target_to_armv7a(target);
1750                 int retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1751                                 armv7a->debug_base + CPUDBG_DSCR, new_dscr);
1752                 if (retval == ERROR_OK)
1753                         *dscr = new_dscr;
1754                 return retval;
1755         } else {
1756                 return ERROR_OK;
1757         }
1758 }
1759
1760 static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
1761         uint32_t value, uint32_t *dscr)
1762 {
1763         /* Waits until the specified bit(s) of DSCR take on a specified value. */
1764         struct armv7a_common *armv7a = target_to_armv7a(target);
1765         int64_t then;
1766         int retval;
1767
1768         if ((*dscr & mask) == value)
1769                 return ERROR_OK;
1770
1771         then = timeval_ms();
1772         while (1) {
1773                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1774                                 armv7a->debug_base + CPUDBG_DSCR, dscr);
1775                 if (retval != ERROR_OK) {
1776                         LOG_ERROR("Could not read DSCR register");
1777                         return retval;
1778                 }
1779                 if ((*dscr & mask) == value)
1780                         break;
1781                 if (timeval_ms() > then + 1000) {
1782                         LOG_ERROR("timeout waiting for DSCR bit change");
1783                         return ERROR_FAIL;
1784                 }
1785         }
1786         return ERROR_OK;
1787 }
1788
1789 static int cortex_a_read_copro(struct target *target, uint32_t opcode,
1790         uint32_t *data, uint32_t *dscr)
1791 {
1792         int retval;
1793         struct armv7a_common *armv7a = target_to_armv7a(target);
1794
1795         /* Move from coprocessor to R0. */
1796         retval = cortex_a_exec_opcode(target, opcode, dscr);
1797         if (retval != ERROR_OK)
1798                 return retval;
1799
1800         /* Move from R0 to DTRTX. */
1801         retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0), dscr);
1802         if (retval != ERROR_OK)
1803                 return retval;
1804
1805         /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
1806          * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
1807          * must also check TXfull_l). Most of the time this will be free
1808          * because TXfull_l will be set immediately and cached in dscr. */
1809         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
1810                         DSCR_DTRTX_FULL_LATCHED, dscr);
1811         if (retval != ERROR_OK)
1812                 return retval;
1813
1814         /* Read the value transferred to DTRTX. */
1815         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1816                         armv7a->debug_base + CPUDBG_DTRTX, data);
1817         if (retval != ERROR_OK)
1818                 return retval;
1819
1820         return ERROR_OK;
1821 }
1822
1823 static int cortex_a_read_dfar_dfsr(struct target *target, uint32_t *dfar,
1824         uint32_t *dfsr, uint32_t *dscr)
1825 {
1826         int retval;
1827
1828         if (dfar) {
1829                 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 6, 0, 0), dfar, dscr);
1830                 if (retval != ERROR_OK)
1831                         return retval;
1832         }
1833
1834         if (dfsr) {
1835                 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 5, 0, 0), dfsr, dscr);
1836                 if (retval != ERROR_OK)
1837                         return retval;
1838         }
1839
1840         return ERROR_OK;
1841 }
1842
1843 static int cortex_a_write_copro(struct target *target, uint32_t opcode,
1844         uint32_t data, uint32_t *dscr)
1845 {
1846         int retval;
1847         struct armv7a_common *armv7a = target_to_armv7a(target);
1848
1849         /* Write the value into DTRRX. */
1850         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1851                         armv7a->debug_base + CPUDBG_DTRRX, data);
1852         if (retval != ERROR_OK)
1853                 return retval;
1854
1855         /* Move from DTRRX to R0. */
1856         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), dscr);
1857         if (retval != ERROR_OK)
1858                 return retval;
1859
1860         /* Move from R0 to coprocessor. */
1861         retval = cortex_a_exec_opcode(target, opcode, dscr);
1862         if (retval != ERROR_OK)
1863                 return retval;
1864
1865         /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
1866          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
1867          * check RXfull_l). Most of the time this will be free because RXfull_l
1868          * will be cleared immediately and cached in dscr. */
1869         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
1870         if (retval != ERROR_OK)
1871                 return retval;
1872
1873         return ERROR_OK;
1874 }
1875
1876 static int cortex_a_write_dfar_dfsr(struct target *target, uint32_t dfar,
1877         uint32_t dfsr, uint32_t *dscr)
1878 {
1879         int retval;
1880
1881         retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 6, 0, 0), dfar, dscr);
1882         if (retval != ERROR_OK)
1883                 return retval;
1884
1885         retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 5, 0, 0), dfsr, dscr);
1886         if (retval != ERROR_OK)
1887                 return retval;
1888
1889         return ERROR_OK;
1890 }
1891
1892 static int cortex_a_dfsr_to_error_code(uint32_t dfsr)
1893 {
1894         uint32_t status, upper4;
1895
1896         if (dfsr & (1 << 9)) {
1897                 /* LPAE format. */
1898                 status = dfsr & 0x3f;
1899                 upper4 = status >> 2;
1900                 if (upper4 == 1 || upper4 == 2 || upper4 == 3 || upper4 == 15)
1901                         return ERROR_TARGET_TRANSLATION_FAULT;
1902                 else if (status == 33)
1903                         return ERROR_TARGET_UNALIGNED_ACCESS;
1904                 else
1905                         return ERROR_TARGET_DATA_ABORT;
1906         } else {
1907                 /* Normal format. */
1908                 status = ((dfsr >> 6) & 0x10) | (dfsr & 0xf);
1909                 if (status == 1)
1910                         return ERROR_TARGET_UNALIGNED_ACCESS;
1911                 else if (status == 5 || status == 7 || status == 3 || status == 6 ||
1912                                 status == 9 || status == 11 || status == 13 || status == 15)
1913                         return ERROR_TARGET_TRANSLATION_FAULT;
1914                 else
1915                         return ERROR_TARGET_DATA_ABORT;
1916         }
1917 }
1918
1919 static int cortex_a_write_cpu_memory_slow(struct target *target,
1920         uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
1921 {
1922         /* Writes count objects of size size from *buffer. Old value of DSCR must
1923          * be in *dscr; updated to new value. This is slow because it works for
1924          * non-word-sized objects. Avoid unaligned accesses as they do not work
1925          * on memory address space without "Normal" attribute. If size == 4 and
1926          * the address is aligned, cortex_a_write_cpu_memory_fast should be
1927          * preferred.
1928          * Preconditions:
1929          * - Address is in R0.
1930          * - R0 is marked dirty.
1931          */
1932         struct armv7a_common *armv7a = target_to_armv7a(target);
1933         struct arm *arm = &armv7a->arm;
1934         int retval;
1935
1936         /* Mark register R1 as dirty, to use for transferring data. */
1937         arm_reg_current(arm, 1)->dirty = true;
1938
1939         /* Switch to non-blocking mode if not already in that mode. */
1940         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
1941         if (retval != ERROR_OK)
1942                 return retval;
1943
1944         /* Go through the objects. */
1945         while (count) {
1946                 /* Write the value to store into DTRRX. */
1947                 uint32_t data, opcode;
1948                 if (size == 1)
1949                         data = *buffer;
1950                 else if (size == 2)
1951                         data = target_buffer_get_u16(target, buffer);
1952                 else
1953                         data = target_buffer_get_u32(target, buffer);
1954                 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1955                                 armv7a->debug_base + CPUDBG_DTRRX, data);
1956                 if (retval != ERROR_OK)
1957                         return retval;
1958
1959                 /* Transfer the value from DTRRX to R1. */
1960                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), dscr);
1961                 if (retval != ERROR_OK)
1962                         return retval;
1963
1964                 /* Write the value transferred to R1 into memory. */
1965                 if (size == 1)
1966                         opcode = ARMV4_5_STRB_IP(1, 0);
1967                 else if (size == 2)
1968                         opcode = ARMV4_5_STRH_IP(1, 0);
1969                 else
1970                         opcode = ARMV4_5_STRW_IP(1, 0);
1971                 retval = cortex_a_exec_opcode(target, opcode, dscr);
1972                 if (retval != ERROR_OK)
1973                         return retval;
1974
1975                 /* Check for faults and return early. */
1976                 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
1977                         return ERROR_OK; /* A data fault is not considered a system failure. */
1978
1979                 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture
1980                  * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
1981                  * must also check RXfull_l). Most of the time this will be free
1982                  * because RXfull_l will be cleared immediately and cached in dscr. */
1983                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
1984                 if (retval != ERROR_OK)
1985                         return retval;
1986
1987                 /* Advance. */
1988                 buffer += size;
1989                 --count;
1990         }
1991
1992         return ERROR_OK;
1993 }
1994
1995 static int cortex_a_write_cpu_memory_fast(struct target *target,
1996         uint32_t count, const uint8_t *buffer, uint32_t *dscr)
1997 {
1998         /* Writes count objects of size 4 from *buffer. Old value of DSCR must be
1999          * in *dscr; updated to new value. This is fast but only works for
2000          * word-sized objects at aligned addresses.
2001          * Preconditions:
2002          * - Address is in R0 and must be a multiple of 4.
2003          * - R0 is marked dirty.
2004          */
2005         struct armv7a_common *armv7a = target_to_armv7a(target);
2006         int retval;
2007
2008         /* Switch to fast mode if not already in that mode. */
2009         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2010         if (retval != ERROR_OK)
2011                 return retval;
2012
2013         /* Latch STC instruction. */
2014         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2015                         armv7a->debug_base + CPUDBG_ITR, ARMV4_5_STC(0, 1, 0, 1, 14, 5, 0, 4));
2016         if (retval != ERROR_OK)
2017                 return retval;
2018
2019         /* Transfer all the data and issue all the instructions. */
2020         return mem_ap_write_buf_noincr(armv7a->debug_ap, buffer,
2021                         4, count, armv7a->debug_base + CPUDBG_DTRRX);
2022 }
2023
2024 static int cortex_a_write_cpu_memory(struct target *target,
2025         uint32_t address, uint32_t size,
2026         uint32_t count, const uint8_t *buffer)
2027 {
2028         /* Write memory through the CPU. */
2029         int retval, final_retval;
2030         struct armv7a_common *armv7a = target_to_armv7a(target);
2031         struct arm *arm = &armv7a->arm;
2032         uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2033
2034         LOG_DEBUG("Writing CPU memory address 0x%" PRIx32 " size %"  PRIu32 " count %"  PRIu32,
2035                           address, size, count);
2036         if (target->state != TARGET_HALTED) {
2037                 LOG_WARNING("target not halted");
2038                 return ERROR_TARGET_NOT_HALTED;
2039         }
2040
2041         if (!count)
2042                 return ERROR_OK;
2043
2044         /* Clear any abort. */
2045         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2046                         armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2047         if (retval != ERROR_OK)
2048                 return retval;
2049
2050         /* Read DSCR. */
2051         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2052                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
2053         if (retval != ERROR_OK)
2054                 return retval;
2055
2056         /* Switch to non-blocking mode if not already in that mode. */
2057         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2058         if (retval != ERROR_OK)
2059                 goto out;
2060
2061         /* Mark R0 as dirty. */
2062         arm_reg_current(arm, 0)->dirty = true;
2063
2064         /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2065         retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2066         if (retval != ERROR_OK)
2067                 goto out;
2068
2069         /* Get the memory address into R0. */
2070         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2071                         armv7a->debug_base + CPUDBG_DTRRX, address);
2072         if (retval != ERROR_OK)
2073                 goto out;
2074         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2075         if (retval != ERROR_OK)
2076                 goto out;
2077
2078         if (size == 4 && (address % 4) == 0) {
2079                 /* We are doing a word-aligned transfer, so use fast mode. */
2080                 retval = cortex_a_write_cpu_memory_fast(target, count, buffer, &dscr);
2081         } else {
2082                 /* Use slow path. Adjust size for aligned accesses */
2083                 switch (address % 4) {
2084                         case 1:
2085                         case 3:
2086                                 count *= size;
2087                                 size = 1;
2088                                 break;
2089                         case 2:
2090                                 if (size == 4) {
2091                                         count *= 2;
2092                                         size = 2;
2093                                 }
2094                         case 0:
2095                         default:
2096                                 break;
2097                 }
2098                 retval = cortex_a_write_cpu_memory_slow(target, size, count, buffer, &dscr);
2099         }
2100
2101 out:
2102         final_retval = retval;
2103
2104         /* Switch to non-blocking mode if not already in that mode. */
2105         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2106         if (final_retval == ERROR_OK)
2107                 final_retval = retval;
2108
2109         /* Wait for last issued instruction to complete. */
2110         retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2111         if (final_retval == ERROR_OK)
2112                 final_retval = retval;
2113
2114         /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2115          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2116          * check RXfull_l). Most of the time this will be free because RXfull_l
2117          * will be cleared immediately and cached in dscr. However, don't do this
2118          * if there is fault, because then the instruction might not have completed
2119          * successfully. */
2120         if (!(dscr & DSCR_STICKY_ABORT_PRECISE)) {
2121                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, &dscr);
2122                 if (retval != ERROR_OK)
2123                         return retval;
2124         }
2125
2126         /* If there were any sticky abort flags, clear them. */
2127         if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2128                 fault_dscr = dscr;
2129                 mem_ap_write_atomic_u32(armv7a->debug_ap,
2130                                 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2131                 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2132         } else {
2133                 fault_dscr = 0;
2134         }
2135
2136         /* Handle synchronous data faults. */
2137         if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2138                 if (final_retval == ERROR_OK) {
2139                         /* Final return value will reflect cause of fault. */
2140                         retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2141                         if (retval == ERROR_OK) {
2142                                 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2143                                 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2144                         } else
2145                                 final_retval = retval;
2146                 }
2147                 /* Fault destroyed DFAR/DFSR; restore them. */
2148                 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2149                 if (retval != ERROR_OK)
2150                         LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2151         }
2152
2153         /* Handle asynchronous data faults. */
2154         if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2155                 if (final_retval == ERROR_OK)
2156                         /* No other error has been recorded so far, so keep this one. */
2157                         final_retval = ERROR_TARGET_DATA_ABORT;
2158         }
2159
2160         /* If the DCC is nonempty, clear it. */
2161         if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2162                 uint32_t dummy;
2163                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2164                                 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2165                 if (final_retval == ERROR_OK)
2166                         final_retval = retval;
2167         }
2168         if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2169                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2170                 if (final_retval == ERROR_OK)
2171                         final_retval = retval;
2172         }
2173
2174         /* Done. */
2175         return final_retval;
2176 }
2177
2178 static int cortex_a_read_cpu_memory_slow(struct target *target,
2179         uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
2180 {
2181         /* Reads count objects of size size into *buffer. Old value of DSCR must be
2182          * in *dscr; updated to new value. This is slow because it works for
2183          * non-word-sized objects. Avoid unaligned accesses as they do not work
2184          * on memory address space without "Normal" attribute. If size == 4 and
2185          * the address is aligned, cortex_a_read_cpu_memory_fast should be
2186          * preferred.
2187          * Preconditions:
2188          * - Address is in R0.
2189          * - R0 is marked dirty.
2190          */
2191         struct armv7a_common *armv7a = target_to_armv7a(target);
2192         struct arm *arm = &armv7a->arm;
2193         int retval;
2194
2195         /* Mark register R1 as dirty, to use for transferring data. */
2196         arm_reg_current(arm, 1)->dirty = true;
2197
2198         /* Switch to non-blocking mode if not already in that mode. */
2199         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2200         if (retval != ERROR_OK)
2201                 return retval;
2202
2203         /* Go through the objects. */
2204         while (count) {
2205                 /* Issue a load of the appropriate size to R1. */
2206                 uint32_t opcode, data;
2207                 if (size == 1)
2208                         opcode = ARMV4_5_LDRB_IP(1, 0);
2209                 else if (size == 2)
2210                         opcode = ARMV4_5_LDRH_IP(1, 0);
2211                 else
2212                         opcode = ARMV4_5_LDRW_IP(1, 0);
2213                 retval = cortex_a_exec_opcode(target, opcode, dscr);
2214                 if (retval != ERROR_OK)
2215                         return retval;
2216
2217                 /* Issue a write of R1 to DTRTX. */
2218                 retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 1, 0, 5, 0), dscr);
2219                 if (retval != ERROR_OK)
2220                         return retval;
2221
2222                 /* Check for faults and return early. */
2223                 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2224                         return ERROR_OK; /* A data fault is not considered a system failure. */
2225
2226                 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
2227                  * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2228                  * must also check TXfull_l). Most of the time this will be free
2229                  * because TXfull_l will be set immediately and cached in dscr. */
2230                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2231                                 DSCR_DTRTX_FULL_LATCHED, dscr);
2232                 if (retval != ERROR_OK)
2233                         return retval;
2234
2235                 /* Read the value transferred to DTRTX into the buffer. */
2236                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2237                                 armv7a->debug_base + CPUDBG_DTRTX, &data);
2238                 if (retval != ERROR_OK)
2239                         return retval;
2240                 if (size == 1)
2241                         *buffer = (uint8_t) data;
2242                 else if (size == 2)
2243                         target_buffer_set_u16(target, buffer, (uint16_t) data);
2244                 else
2245                         target_buffer_set_u32(target, buffer, data);
2246
2247                 /* Advance. */
2248                 buffer += size;
2249                 --count;
2250         }
2251
2252         return ERROR_OK;
2253 }
2254
2255 static int cortex_a_read_cpu_memory_fast(struct target *target,
2256         uint32_t count, uint8_t *buffer, uint32_t *dscr)
2257 {
2258         /* Reads count objects of size 4 into *buffer. Old value of DSCR must be in
2259          * *dscr; updated to new value. This is fast but only works for word-sized
2260          * objects at aligned addresses.
2261          * Preconditions:
2262          * - Address is in R0 and must be a multiple of 4.
2263          * - R0 is marked dirty.
2264          */
2265         struct armv7a_common *armv7a = target_to_armv7a(target);
2266         uint32_t u32;
2267         int retval;
2268
2269         /* Switch to non-blocking mode if not already in that mode. */
2270         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2271         if (retval != ERROR_OK)
2272                 return retval;
2273
2274         /* Issue the LDC instruction via a write to ITR. */
2275         retval = cortex_a_exec_opcode(target, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4), dscr);
2276         if (retval != ERROR_OK)
2277                 return retval;
2278
2279         count--;
2280
2281         if (count > 0) {
2282                 /* Switch to fast mode if not already in that mode. */
2283                 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2284                 if (retval != ERROR_OK)
2285                         return retval;
2286
2287                 /* Latch LDC instruction. */
2288                 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2289                                 armv7a->debug_base + CPUDBG_ITR, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4));
2290                 if (retval != ERROR_OK)
2291                         return retval;
2292
2293                 /* Read the value transferred to DTRTX into the buffer. Due to fast
2294                  * mode rules, this blocks until the instruction finishes executing and
2295                  * then reissues the read instruction to read the next word from
2296                  * memory. The last read of DTRTX in this call reads the second-to-last
2297                  * word from memory and issues the read instruction for the last word.
2298                  */
2299                 retval = mem_ap_read_buf_noincr(armv7a->debug_ap, buffer,
2300                                 4, count, armv7a->debug_base + CPUDBG_DTRTX);
2301                 if (retval != ERROR_OK)
2302                         return retval;
2303
2304                 /* Advance. */
2305                 buffer += count * 4;
2306         }
2307
2308         /* Wait for last issued instruction to complete. */
2309         retval = cortex_a_wait_instrcmpl(target, dscr, false);
2310         if (retval != ERROR_OK)
2311                 return retval;
2312
2313         /* Switch to non-blocking mode if not already in that mode. */
2314         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2315         if (retval != ERROR_OK)
2316                 return retval;
2317
2318         /* Check for faults and return early. */
2319         if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2320                 return ERROR_OK; /* A data fault is not considered a system failure. */
2321
2322         /* Wait until DTRTX is full (according to ARMv7-A/-R architecture manual
2323          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2324          * check TXfull_l). Most of the time this will be free because TXfull_l
2325          * will be set immediately and cached in dscr. */
2326         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2327                         DSCR_DTRTX_FULL_LATCHED, dscr);
2328         if (retval != ERROR_OK)
2329                 return retval;
2330
2331         /* Read the value transferred to DTRTX into the buffer. This is the last
2332          * word. */
2333         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2334                         armv7a->debug_base + CPUDBG_DTRTX, &u32);
2335         if (retval != ERROR_OK)
2336                 return retval;
2337         target_buffer_set_u32(target, buffer, u32);
2338
2339         return ERROR_OK;
2340 }
2341
2342 static int cortex_a_read_cpu_memory(struct target *target,
2343         uint32_t address, uint32_t size,
2344         uint32_t count, uint8_t *buffer)
2345 {
2346         /* Read memory through the CPU. */
2347         int retval, final_retval;
2348         struct armv7a_common *armv7a = target_to_armv7a(target);
2349         struct arm *arm = &armv7a->arm;
2350         uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2351
2352         LOG_DEBUG("Reading CPU memory address 0x%" PRIx32 " size %"  PRIu32 " count %"  PRIu32,
2353                           address, size, count);
2354         if (target->state != TARGET_HALTED) {
2355                 LOG_WARNING("target not halted");
2356                 return ERROR_TARGET_NOT_HALTED;
2357         }
2358
2359         if (!count)
2360                 return ERROR_OK;
2361
2362         /* Clear any abort. */
2363         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2364                         armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2365         if (retval != ERROR_OK)
2366                 return retval;
2367
2368         /* Read DSCR */
2369         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2370                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
2371         if (retval != ERROR_OK)
2372                 return retval;
2373
2374         /* Switch to non-blocking mode if not already in that mode. */
2375         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2376         if (retval != ERROR_OK)
2377                 goto out;
2378
2379         /* Mark R0 as dirty. */
2380         arm_reg_current(arm, 0)->dirty = true;
2381
2382         /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2383         retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2384         if (retval != ERROR_OK)
2385                 goto out;
2386
2387         /* Get the memory address into R0. */
2388         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2389                         armv7a->debug_base + CPUDBG_DTRRX, address);
2390         if (retval != ERROR_OK)
2391                 goto out;
2392         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2393         if (retval != ERROR_OK)
2394                 goto out;
2395
2396         if (size == 4 && (address % 4) == 0) {
2397                 /* We are doing a word-aligned transfer, so use fast mode. */
2398                 retval = cortex_a_read_cpu_memory_fast(target, count, buffer, &dscr);
2399         } else {
2400                 /* Use slow path. Adjust size for aligned accesses */
2401                 switch (address % 4) {
2402                         case 1:
2403                         case 3:
2404                                 count *= size;
2405                                 size = 1;
2406                                 break;
2407                         case 2:
2408                                 if (size == 4) {
2409                                         count *= 2;
2410                                         size = 2;
2411                                 }
2412                                 break;
2413                         case 0:
2414                         default:
2415                                 break;
2416                 }
2417                 retval = cortex_a_read_cpu_memory_slow(target, size, count, buffer, &dscr);
2418         }
2419
2420 out:
2421         final_retval = retval;
2422
2423         /* Switch to non-blocking mode if not already in that mode. */
2424         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2425         if (final_retval == ERROR_OK)
2426                 final_retval = retval;
2427
2428         /* Wait for last issued instruction to complete. */
2429         retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2430         if (final_retval == ERROR_OK)
2431                 final_retval = retval;
2432
2433         /* If there were any sticky abort flags, clear them. */
2434         if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2435                 fault_dscr = dscr;
2436                 mem_ap_write_atomic_u32(armv7a->debug_ap,
2437                                 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2438                 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2439         } else {
2440                 fault_dscr = 0;
2441         }
2442
2443         /* Handle synchronous data faults. */
2444         if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2445                 if (final_retval == ERROR_OK) {
2446                         /* Final return value will reflect cause of fault. */
2447                         retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2448                         if (retval == ERROR_OK) {
2449                                 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2450                                 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2451                         } else
2452                                 final_retval = retval;
2453                 }
2454                 /* Fault destroyed DFAR/DFSR; restore them. */
2455                 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2456                 if (retval != ERROR_OK)
2457                         LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2458         }
2459
2460         /* Handle asynchronous data faults. */
2461         if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2462                 if (final_retval == ERROR_OK)
2463                         /* No other error has been recorded so far, so keep this one. */
2464                         final_retval = ERROR_TARGET_DATA_ABORT;
2465         }
2466
2467         /* If the DCC is nonempty, clear it. */
2468         if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2469                 uint32_t dummy;
2470                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2471                                 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2472                 if (final_retval == ERROR_OK)
2473                         final_retval = retval;
2474         }
2475         if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2476                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2477                 if (final_retval == ERROR_OK)
2478                         final_retval = retval;
2479         }
2480
2481         /* Done. */
2482         return final_retval;
2483 }
2484
2485
2486 /*
2487  * Cortex-A Memory access
2488  *
2489  * This is same Cortex-M3 but we must also use the correct
2490  * ap number for every access.
2491  */
2492
2493 static int cortex_a_read_phys_memory(struct target *target,
2494         target_addr_t address, uint32_t size,
2495         uint32_t count, uint8_t *buffer)
2496 {
2497         int retval;
2498
2499         if (!count || !buffer)
2500                 return ERROR_COMMAND_SYNTAX_ERROR;
2501
2502         LOG_DEBUG("Reading memory at real address " TARGET_ADDR_FMT "; size %" PRIu32 "; count %" PRIu32,
2503                 address, size, count);
2504
2505         /* read memory through the CPU */
2506         cortex_a_prep_memaccess(target, 1);
2507         retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2508         cortex_a_post_memaccess(target, 1);
2509
2510         return retval;
2511 }
2512
2513 static int cortex_a_read_memory(struct target *target, target_addr_t address,
2514         uint32_t size, uint32_t count, uint8_t *buffer)
2515 {
2516         int retval;
2517
2518         /* cortex_a handles unaligned memory access */
2519         LOG_DEBUG("Reading memory at address " TARGET_ADDR_FMT "; size %" PRIu32 "; count %" PRIu32,
2520                 address, size, count);
2521
2522         cortex_a_prep_memaccess(target, 0);
2523         retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2524         cortex_a_post_memaccess(target, 0);
2525
2526         return retval;
2527 }
2528
2529 static int cortex_a_write_phys_memory(struct target *target,
2530         target_addr_t address, uint32_t size,
2531         uint32_t count, const uint8_t *buffer)
2532 {
2533         int retval;
2534
2535         if (!count || !buffer)
2536                 return ERROR_COMMAND_SYNTAX_ERROR;
2537
2538         LOG_DEBUG("Writing memory to real address " TARGET_ADDR_FMT "; size %" PRIu32 "; count %" PRIu32,
2539                 address, size, count);
2540
2541         /* write memory through the CPU */
2542         cortex_a_prep_memaccess(target, 1);
2543         retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2544         cortex_a_post_memaccess(target, 1);
2545
2546         return retval;
2547 }
2548
2549 static int cortex_a_write_memory(struct target *target, target_addr_t address,
2550         uint32_t size, uint32_t count, const uint8_t *buffer)
2551 {
2552         int retval;
2553
2554         /* cortex_a handles unaligned memory access */
2555         LOG_DEBUG("Writing memory at address " TARGET_ADDR_FMT "; size %" PRIu32 "; count %" PRIu32,
2556                 address, size, count);
2557
2558         /* memory writes bypass the caches, must flush before writing */
2559         armv7a_cache_auto_flush_on_write(target, address, size * count);
2560
2561         cortex_a_prep_memaccess(target, 0);
2562         retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2563         cortex_a_post_memaccess(target, 0);
2564         return retval;
2565 }
2566
2567 static int cortex_a_read_buffer(struct target *target, target_addr_t address,
2568                                 uint32_t count, uint8_t *buffer)
2569 {
2570         uint32_t size;
2571
2572         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2573          * will have something to do with the size we leave to it. */
2574         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2575                 if (address & size) {
2576                         int retval = target_read_memory(target, address, size, 1, buffer);
2577                         if (retval != ERROR_OK)
2578                                 return retval;
2579                         address += size;
2580                         count -= size;
2581                         buffer += size;
2582                 }
2583         }
2584
2585         /* Read the data with as large access size as possible. */
2586         for (; size > 0; size /= 2) {
2587                 uint32_t aligned = count - count % size;
2588                 if (aligned > 0) {
2589                         int retval = target_read_memory(target, address, size, aligned / size, buffer);
2590                         if (retval != ERROR_OK)
2591                                 return retval;
2592                         address += aligned;
2593                         count -= aligned;
2594                         buffer += aligned;
2595                 }
2596         }
2597
2598         return ERROR_OK;
2599 }
2600
2601 static int cortex_a_write_buffer(struct target *target, target_addr_t address,
2602                                  uint32_t count, const uint8_t *buffer)
2603 {
2604         uint32_t size;
2605
2606         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2607          * will have something to do with the size we leave to it. */
2608         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2609                 if (address & size) {
2610                         int retval = target_write_memory(target, address, size, 1, buffer);
2611                         if (retval != ERROR_OK)
2612                                 return retval;
2613                         address += size;
2614                         count -= size;
2615                         buffer += size;
2616                 }
2617         }
2618
2619         /* Write the data with as large access size as possible. */
2620         for (; size > 0; size /= 2) {
2621                 uint32_t aligned = count - count % size;
2622                 if (aligned > 0) {
2623                         int retval = target_write_memory(target, address, size, aligned / size, buffer);
2624                         if (retval != ERROR_OK)
2625                                 return retval;
2626                         address += aligned;
2627                         count -= aligned;
2628                         buffer += aligned;
2629                 }
2630         }
2631
2632         return ERROR_OK;
2633 }
2634
2635 static int cortex_a_handle_target_request(void *priv)
2636 {
2637         struct target *target = priv;
2638         struct armv7a_common *armv7a = target_to_armv7a(target);
2639         int retval;
2640
2641         if (!target_was_examined(target))
2642                 return ERROR_OK;
2643         if (!target->dbg_msg_enabled)
2644                 return ERROR_OK;
2645
2646         if (target->state == TARGET_RUNNING) {
2647                 uint32_t request;
2648                 uint32_t dscr;
2649                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2650                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2651
2652                 /* check if we have data */
2653                 int64_t then = timeval_ms();
2654                 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2655                         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2656                                         armv7a->debug_base + CPUDBG_DTRTX, &request);
2657                         if (retval == ERROR_OK) {
2658                                 target_request(target, request);
2659                                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2660                                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2661                         }
2662                         if (timeval_ms() > then + 1000) {
2663                                 LOG_ERROR("Timeout waiting for dtr tx full");
2664                                 return ERROR_FAIL;
2665                         }
2666                 }
2667         }
2668
2669         return ERROR_OK;
2670 }
2671
2672 /*
2673  * Cortex-A target information and configuration
2674  */
2675
2676 static int cortex_a_examine_first(struct target *target)
2677 {
2678         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
2679         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2680         struct adiv5_dap *swjdp = armv7a->arm.dap;
2681
2682         int i;
2683         int retval = ERROR_OK;
2684         uint32_t didr, cpuid, dbg_osreg, dbg_idpfr1;
2685
2686         /* Search for the APB-AP - it is needed for access to debug registers */
2687         retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv7a->debug_ap);
2688         if (retval != ERROR_OK) {
2689                 LOG_ERROR("Could not find APB-AP for debug access");
2690                 return retval;
2691         }
2692
2693         retval = mem_ap_init(armv7a->debug_ap);
2694         if (retval != ERROR_OK) {
2695                 LOG_ERROR("Could not initialize the APB-AP");
2696                 return retval;
2697         }
2698
2699         armv7a->debug_ap->memaccess_tck = 80;
2700
2701         if (!target->dbgbase_set) {
2702                 uint32_t dbgbase;
2703                 /* Get ROM Table base */
2704                 uint32_t apid;
2705                 int32_t coreidx = target->coreid;
2706                 LOG_DEBUG("%s's dbgbase is not set, trying to detect using the ROM table",
2707                           target->cmd_name);
2708                 retval = dap_get_debugbase(armv7a->debug_ap, &dbgbase, &apid);
2709                 if (retval != ERROR_OK)
2710                         return retval;
2711                 /* Lookup 0x15 -- Processor DAP */
2712                 retval = dap_lookup_cs_component(armv7a->debug_ap, dbgbase, 0x15,
2713                                 &armv7a->debug_base, &coreidx);
2714                 if (retval != ERROR_OK) {
2715                         LOG_ERROR("Can't detect %s's dbgbase from the ROM table; you need to specify it explicitly.",
2716                                   target->cmd_name);
2717                         return retval;
2718                 }
2719                 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32,
2720                           target->coreid, armv7a->debug_base);
2721         } else
2722                 armv7a->debug_base = target->dbgbase;
2723
2724         if ((armv7a->debug_base & (1UL<<31)) == 0)
2725                 LOG_WARNING("Debug base address for target %s has bit 31 set to 0. Access to debug registers will likely fail!\n"
2726                             "Please fix the target configuration.", target_name(target));
2727
2728         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2729                         armv7a->debug_base + CPUDBG_DIDR, &didr);
2730         if (retval != ERROR_OK) {
2731                 LOG_DEBUG("Examine %s failed", "DIDR");
2732                 return retval;
2733         }
2734
2735         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2736                         armv7a->debug_base + CPUDBG_CPUID, &cpuid);
2737         if (retval != ERROR_OK) {
2738                 LOG_DEBUG("Examine %s failed", "CPUID");
2739                 return retval;
2740         }
2741
2742         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
2743         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
2744
2745         cortex_a->didr = didr;
2746         cortex_a->cpuid = cpuid;
2747
2748         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2749                                     armv7a->debug_base + CPUDBG_PRSR, &dbg_osreg);
2750         if (retval != ERROR_OK)
2751                 return retval;
2752         LOG_DEBUG("target->coreid %" PRId32 " DBGPRSR  0x%" PRIx32, target->coreid, dbg_osreg);
2753
2754         if ((dbg_osreg & PRSR_POWERUP_STATUS) == 0) {
2755                 LOG_ERROR("target->coreid %" PRId32 " powered down!", target->coreid);
2756                 target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
2757                 return ERROR_TARGET_INIT_FAILED;
2758         }
2759
2760         if (dbg_osreg & PRSR_STICKY_RESET_STATUS)
2761                 LOG_DEBUG("target->coreid %" PRId32 " was reset!", target->coreid);
2762
2763         /* Read DBGOSLSR and check if OSLK is implemented */
2764         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2765                                 armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
2766         if (retval != ERROR_OK)
2767                 return retval;
2768         LOG_DEBUG("target->coreid %" PRId32 " DBGOSLSR 0x%" PRIx32, target->coreid, dbg_osreg);
2769
2770         /* check if OS Lock is implemented */
2771         if ((dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM0 || (dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM1) {
2772                 /* check if OS Lock is set */
2773                 if (dbg_osreg & OSLSR_OSLK) {
2774                         LOG_DEBUG("target->coreid %" PRId32 " OSLock set! Trying to unlock", target->coreid);
2775
2776                         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2777                                                         armv7a->debug_base + CPUDBG_OSLAR,
2778                                                         0);
2779                         if (retval == ERROR_OK)
2780                                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2781                                                         armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
2782
2783                         /* if we fail to access the register or cannot reset the OSLK bit, bail out */
2784                         if (retval != ERROR_OK || (dbg_osreg & OSLSR_OSLK) != 0) {
2785                                 LOG_ERROR("target->coreid %" PRId32 " OSLock sticky, core not powered?",
2786                                                 target->coreid);
2787                                 target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
2788                                 return ERROR_TARGET_INIT_FAILED;
2789                         }
2790                 }
2791         }
2792
2793         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2794                                  armv7a->debug_base + CPUDBG_ID_PFR1, &dbg_idpfr1);
2795         if (retval != ERROR_OK)
2796                 return retval;
2797
2798         if (dbg_idpfr1 & 0x000000f0) {
2799                 LOG_DEBUG("target->coreid %" PRId32 " has security extensions",
2800                                 target->coreid);
2801                 armv7a->arm.core_type = ARM_CORE_TYPE_SEC_EXT;
2802         }
2803         if (dbg_idpfr1 & 0x0000f000) {
2804                 LOG_DEBUG("target->coreid %" PRId32 " has virtualization extensions",
2805                                 target->coreid);
2806                 /*
2807                  * overwrite and simplify the checks.
2808                  * virtualization extensions require implementation of security extension
2809                  */
2810                 armv7a->arm.core_type = ARM_CORE_TYPE_VIRT_EXT;
2811         }
2812
2813         /* Avoid recreating the registers cache */
2814         if (!target_was_examined(target)) {
2815                 retval = cortex_a_dpm_setup(cortex_a, didr);
2816                 if (retval != ERROR_OK)
2817                         return retval;
2818         }
2819
2820         /* Setup Breakpoint Register Pairs */
2821         cortex_a->brp_num = ((didr >> 24) & 0x0F) + 1;
2822         cortex_a->brp_num_context = ((didr >> 20) & 0x0F) + 1;
2823         cortex_a->brp_num_available = cortex_a->brp_num;
2824         free(cortex_a->brp_list);
2825         cortex_a->brp_list = calloc(cortex_a->brp_num, sizeof(struct cortex_a_brp));
2826 /*      cortex_a->brb_enabled = ????; */
2827         for (i = 0; i < cortex_a->brp_num; i++) {
2828                 cortex_a->brp_list[i].used = 0;
2829                 if (i < (cortex_a->brp_num-cortex_a->brp_num_context))
2830                         cortex_a->brp_list[i].type = BRP_NORMAL;
2831                 else
2832                         cortex_a->brp_list[i].type = BRP_CONTEXT;
2833                 cortex_a->brp_list[i].value = 0;
2834                 cortex_a->brp_list[i].control = 0;
2835                 cortex_a->brp_list[i].BRPn = i;
2836         }
2837
2838         LOG_DEBUG("Configured %i hw breakpoints", cortex_a->brp_num);
2839
2840         /* select debug_ap as default */
2841         swjdp->apsel = armv7a->debug_ap->ap_num;
2842
2843         target_set_examined(target);
2844         return ERROR_OK;
2845 }
2846
2847 static int cortex_a_examine(struct target *target)
2848 {
2849         int retval = ERROR_OK;
2850
2851         /* Reestablish communication after target reset */
2852         retval = cortex_a_examine_first(target);
2853
2854         /* Configure core debug access */
2855         if (retval == ERROR_OK)
2856                 retval = cortex_a_init_debug_access(target);
2857
2858         return retval;
2859 }
2860
2861 /*
2862  *      Cortex-A target creation and initialization
2863  */
2864
2865 static int cortex_a_init_target(struct command_context *cmd_ctx,
2866         struct target *target)
2867 {
2868         /* examine_first() does a bunch of this */
2869         arm_semihosting_init(target);
2870         return ERROR_OK;
2871 }
2872
2873 static int cortex_a_init_arch_info(struct target *target,
2874         struct cortex_a_common *cortex_a, struct adiv5_dap *dap)
2875 {
2876         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2877
2878         /* Setup struct cortex_a_common */
2879         cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
2880         armv7a->arm.dap = dap;
2881
2882         /* register arch-specific functions */
2883         armv7a->examine_debug_reason = NULL;
2884
2885         armv7a->post_debug_entry = cortex_a_post_debug_entry;
2886
2887         armv7a->pre_restore_context = NULL;
2888
2889         armv7a->armv7a_mmu.read_physical_memory = cortex_a_read_phys_memory;
2890
2891
2892 /*      arm7_9->handle_target_request = cortex_a_handle_target_request; */
2893
2894         /* REVISIT v7a setup should be in a v7a-specific routine */
2895         armv7a_init_arch_info(target, armv7a);
2896         target_register_timer_callback(cortex_a_handle_target_request, 1,
2897                 TARGET_TIMER_TYPE_PERIODIC, target);
2898
2899         return ERROR_OK;
2900 }
2901
2902 static int cortex_a_target_create(struct target *target, Jim_Interp *interp)
2903 {
2904         struct cortex_a_common *cortex_a;
2905         struct adiv5_private_config *pc;
2906
2907         if (target->private_config == NULL)
2908                 return ERROR_FAIL;
2909
2910         pc = (struct adiv5_private_config *)target->private_config;
2911
2912         cortex_a = calloc(1, sizeof(struct cortex_a_common));
2913         if (cortex_a == NULL) {
2914                 LOG_ERROR("Out of memory");
2915                 return ERROR_FAIL;
2916         }
2917         cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
2918         cortex_a->armv7a_common.is_armv7r = false;
2919         cortex_a->armv7a_common.arm.arm_vfp_version = ARM_VFP_V3;
2920
2921         return cortex_a_init_arch_info(target, cortex_a, pc->dap);
2922 }
2923
2924 static int cortex_r4_target_create(struct target *target, Jim_Interp *interp)
2925 {
2926         struct cortex_a_common *cortex_a;
2927         struct adiv5_private_config *pc;
2928
2929         pc = (struct adiv5_private_config *)target->private_config;
2930         if (adiv5_verify_config(pc) != ERROR_OK)
2931                 return ERROR_FAIL;
2932
2933         cortex_a = calloc(1, sizeof(struct cortex_a_common));
2934         if (cortex_a == NULL) {
2935                 LOG_ERROR("Out of memory");
2936                 return ERROR_FAIL;
2937         }
2938         cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
2939         cortex_a->armv7a_common.is_armv7r = true;
2940
2941         return cortex_a_init_arch_info(target, cortex_a, pc->dap);
2942 }
2943
2944 static void cortex_a_deinit_target(struct target *target)
2945 {
2946         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
2947         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2948         struct arm_dpm *dpm = &armv7a->dpm;
2949         uint32_t dscr;
2950         int retval;
2951
2952         if (target_was_examined(target)) {
2953                 /* Disable halt for breakpoint, watchpoint and vector catch */
2954                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2955                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2956                 if (retval == ERROR_OK)
2957                         mem_ap_write_atomic_u32(armv7a->debug_ap,
2958                                         armv7a->debug_base + CPUDBG_DSCR,
2959                                         dscr & ~DSCR_HALT_DBG_MODE);
2960         }
2961
2962         free(cortex_a->brp_list);
2963         arm_free_reg_cache(dpm->arm);
2964         free(dpm->dbp);
2965         free(dpm->dwp);
2966         free(target->private_config);
2967         free(cortex_a);
2968 }
2969
2970 static int cortex_a_mmu(struct target *target, int *enabled)
2971 {
2972         struct armv7a_common *armv7a = target_to_armv7a(target);
2973
2974         if (target->state != TARGET_HALTED) {
2975                 LOG_ERROR("%s: target not halted", __func__);
2976                 return ERROR_TARGET_INVALID;
2977         }
2978
2979         if (armv7a->is_armv7r)
2980                 *enabled = 0;
2981         else
2982                 *enabled = target_to_cortex_a(target)->armv7a_common.armv7a_mmu.mmu_enabled;
2983
2984         return ERROR_OK;
2985 }
2986
2987 static int cortex_a_virt2phys(struct target *target,
2988         target_addr_t virt, target_addr_t *phys)
2989 {
2990         int retval;
2991         int mmu_enabled = 0;
2992
2993         /*
2994          * If the MMU was not enabled at debug entry, there is no
2995          * way of knowing if there was ever a valid configuration
2996          * for it and thus it's not safe to enable it. In this case,
2997          * just return the virtual address as physical.
2998          */
2999         cortex_a_mmu(target, &mmu_enabled);
3000         if (!mmu_enabled) {
3001                 *phys = virt;
3002                 return ERROR_OK;
3003         }
3004
3005         /* mmu must be enable in order to get a correct translation */
3006         retval = cortex_a_mmu_modify(target, 1);
3007         if (retval != ERROR_OK)
3008                 return retval;
3009         return armv7a_mmu_translate_va_pa(target, (uint32_t)virt,
3010                                                     phys, 1);
3011 }
3012
3013 COMMAND_HANDLER(cortex_a_handle_cache_info_command)
3014 {
3015         struct target *target = get_current_target(CMD_CTX);
3016         struct armv7a_common *armv7a = target_to_armv7a(target);
3017
3018         return armv7a_handle_cache_info_command(CMD,
3019                         &armv7a->armv7a_mmu.armv7a_cache);
3020 }
3021
3022
3023 COMMAND_HANDLER(cortex_a_handle_dbginit_command)
3024 {
3025         struct target *target = get_current_target(CMD_CTX);
3026         if (!target_was_examined(target)) {
3027                 LOG_ERROR("target not examined yet");
3028                 return ERROR_FAIL;
3029         }
3030
3031         return cortex_a_init_debug_access(target);
3032 }
3033
3034 COMMAND_HANDLER(handle_cortex_a_mask_interrupts_command)
3035 {
3036         struct target *target = get_current_target(CMD_CTX);
3037         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3038
3039         static const Jim_Nvp nvp_maskisr_modes[] = {
3040                 { .name = "off", .value = CORTEX_A_ISRMASK_OFF },
3041                 { .name = "on", .value = CORTEX_A_ISRMASK_ON },
3042                 { .name = NULL, .value = -1 },
3043         };
3044         const Jim_Nvp *n;
3045
3046         if (CMD_ARGC > 0) {
3047                 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
3048                 if (n->name == NULL) {
3049                         LOG_ERROR("Unknown parameter: %s - should be off or on", CMD_ARGV[0]);
3050                         return ERROR_COMMAND_SYNTAX_ERROR;
3051                 }
3052
3053                 cortex_a->isrmasking_mode = n->value;
3054         }
3055
3056         n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_a->isrmasking_mode);
3057         command_print(CMD, "cortex_a interrupt mask %s", n->name);
3058
3059         return ERROR_OK;
3060 }
3061
3062 COMMAND_HANDLER(handle_cortex_a_dacrfixup_command)
3063 {
3064         struct target *target = get_current_target(CMD_CTX);
3065         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3066
3067         static const Jim_Nvp nvp_dacrfixup_modes[] = {
3068                 { .name = "off", .value = CORTEX_A_DACRFIXUP_OFF },
3069                 { .name = "on", .value = CORTEX_A_DACRFIXUP_ON },
3070                 { .name = NULL, .value = -1 },
3071         };
3072         const Jim_Nvp *n;
3073
3074         if (CMD_ARGC > 0) {
3075                 n = Jim_Nvp_name2value_simple(nvp_dacrfixup_modes, CMD_ARGV[0]);
3076                 if (n->name == NULL)
3077                         return ERROR_COMMAND_SYNTAX_ERROR;
3078                 cortex_a->dacrfixup_mode = n->value;
3079
3080         }
3081
3082         n = Jim_Nvp_value2name_simple(nvp_dacrfixup_modes, cortex_a->dacrfixup_mode);
3083         command_print(CMD, "cortex_a domain access control fixup %s", n->name);
3084
3085         return ERROR_OK;
3086 }
3087
3088 static const struct command_registration cortex_a_exec_command_handlers[] = {
3089         {
3090                 .name = "cache_info",
3091                 .handler = cortex_a_handle_cache_info_command,
3092                 .mode = COMMAND_EXEC,
3093                 .help = "display information about target caches",
3094                 .usage = "",
3095         },
3096         {
3097                 .name = "dbginit",
3098                 .handler = cortex_a_handle_dbginit_command,
3099                 .mode = COMMAND_EXEC,
3100                 .help = "Initialize core debug",
3101                 .usage = "",
3102         },
3103         {
3104                 .name = "maskisr",
3105                 .handler = handle_cortex_a_mask_interrupts_command,
3106                 .mode = COMMAND_ANY,
3107                 .help = "mask cortex_a interrupts",
3108                 .usage = "['on'|'off']",
3109         },
3110         {
3111                 .name = "dacrfixup",
3112                 .handler = handle_cortex_a_dacrfixup_command,
3113                 .mode = COMMAND_ANY,
3114                 .help = "set domain access control (DACR) to all-manager "
3115                         "on memory access",
3116                 .usage = "['on'|'off']",
3117         },
3118         {
3119                 .chain = armv7a_mmu_command_handlers,
3120         },
3121         {
3122                 .chain = smp_command_handlers,
3123         },
3124
3125         COMMAND_REGISTRATION_DONE
3126 };
3127 static const struct command_registration cortex_a_command_handlers[] = {
3128         {
3129                 .chain = arm_command_handlers,
3130         },
3131         {
3132                 .chain = armv7a_command_handlers,
3133         },
3134         {
3135                 .name = "cortex_a",
3136                 .mode = COMMAND_ANY,
3137                 .help = "Cortex-A command group",
3138                 .usage = "",
3139                 .chain = cortex_a_exec_command_handlers,
3140         },
3141         COMMAND_REGISTRATION_DONE
3142 };
3143
3144 struct target_type cortexa_target = {
3145         .name = "cortex_a",
3146
3147         .poll = cortex_a_poll,
3148         .arch_state = armv7a_arch_state,
3149
3150         .halt = cortex_a_halt,
3151         .resume = cortex_a_resume,
3152         .step = cortex_a_step,
3153
3154         .assert_reset = cortex_a_assert_reset,
3155         .deassert_reset = cortex_a_deassert_reset,
3156
3157         /* REVISIT allow exporting VFP3 registers ... */
3158         .get_gdb_arch = arm_get_gdb_arch,
3159         .get_gdb_reg_list = arm_get_gdb_reg_list,
3160
3161         .read_memory = cortex_a_read_memory,
3162         .write_memory = cortex_a_write_memory,
3163
3164         .read_buffer = cortex_a_read_buffer,
3165         .write_buffer = cortex_a_write_buffer,
3166
3167         .checksum_memory = arm_checksum_memory,
3168         .blank_check_memory = arm_blank_check_memory,
3169
3170         .run_algorithm = armv4_5_run_algorithm,
3171
3172         .add_breakpoint = cortex_a_add_breakpoint,
3173         .add_context_breakpoint = cortex_a_add_context_breakpoint,
3174         .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3175         .remove_breakpoint = cortex_a_remove_breakpoint,
3176         .add_watchpoint = NULL,
3177         .remove_watchpoint = NULL,
3178
3179         .commands = cortex_a_command_handlers,
3180         .target_create = cortex_a_target_create,
3181         .target_jim_configure = adiv5_jim_configure,
3182         .init_target = cortex_a_init_target,
3183         .examine = cortex_a_examine,
3184         .deinit_target = cortex_a_deinit_target,
3185
3186         .read_phys_memory = cortex_a_read_phys_memory,
3187         .write_phys_memory = cortex_a_write_phys_memory,
3188         .mmu = cortex_a_mmu,
3189         .virt2phys = cortex_a_virt2phys,
3190 };
3191
3192 static const struct command_registration cortex_r4_exec_command_handlers[] = {
3193         {
3194                 .name = "dbginit",
3195                 .handler = cortex_a_handle_dbginit_command,
3196                 .mode = COMMAND_EXEC,
3197                 .help = "Initialize core debug",
3198                 .usage = "",
3199         },
3200         {
3201                 .name = "maskisr",
3202                 .handler = handle_cortex_a_mask_interrupts_command,
3203                 .mode = COMMAND_EXEC,
3204                 .help = "mask cortex_r4 interrupts",
3205                 .usage = "['on'|'off']",
3206         },
3207
3208         COMMAND_REGISTRATION_DONE
3209 };
3210 static const struct command_registration cortex_r4_command_handlers[] = {
3211         {
3212                 .chain = arm_command_handlers,
3213         },
3214         {
3215                 .name = "cortex_r4",
3216                 .mode = COMMAND_ANY,
3217                 .help = "Cortex-R4 command group",
3218                 .usage = "",
3219                 .chain = cortex_r4_exec_command_handlers,
3220         },
3221         COMMAND_REGISTRATION_DONE
3222 };
3223
3224 struct target_type cortexr4_target = {
3225         .name = "cortex_r4",
3226
3227         .poll = cortex_a_poll,
3228         .arch_state = armv7a_arch_state,
3229
3230         .halt = cortex_a_halt,
3231         .resume = cortex_a_resume,
3232         .step = cortex_a_step,
3233
3234         .assert_reset = cortex_a_assert_reset,
3235         .deassert_reset = cortex_a_deassert_reset,
3236
3237         /* REVISIT allow exporting VFP3 registers ... */
3238         .get_gdb_arch = arm_get_gdb_arch,
3239         .get_gdb_reg_list = arm_get_gdb_reg_list,
3240
3241         .read_memory = cortex_a_read_phys_memory,
3242         .write_memory = cortex_a_write_phys_memory,
3243
3244         .checksum_memory = arm_checksum_memory,
3245         .blank_check_memory = arm_blank_check_memory,
3246
3247         .run_algorithm = armv4_5_run_algorithm,
3248
3249         .add_breakpoint = cortex_a_add_breakpoint,
3250         .add_context_breakpoint = cortex_a_add_context_breakpoint,
3251         .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3252         .remove_breakpoint = cortex_a_remove_breakpoint,
3253         .add_watchpoint = NULL,
3254         .remove_watchpoint = NULL,
3255
3256         .commands = cortex_r4_command_handlers,
3257         .target_create = cortex_r4_target_create,
3258         .target_jim_configure = adiv5_jim_configure,
3259         .init_target = cortex_a_init_target,
3260         .examine = cortex_a_examine,
3261         .deinit_target = cortex_a_deinit_target,
3262 };