adi_v5: search for Debug and Memory AP support
[fw/openocd] / src / target / cortex_a.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   Copyright (C) 2010 Ã˜yvind Harboe                                      *
15  *   oyvind.harboe@zylin.com                                               *
16  *                                                                         *
17  *   Copyright (C) ST-Ericsson SA 2011                                     *
18  *   michel.jaouen@stericsson.com : smp minimum support                    *
19  *                                                                         *
20  *   This program is free software; you can redistribute it and/or modify  *
21  *   it under the terms of the GNU General Public License as published by  *
22  *   the Free Software Foundation; either version 2 of the License, or     *
23  *   (at your option) any later version.                                   *
24  *                                                                         *
25  *   This program is distributed in the hope that it will be useful,       *
26  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
27  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
28  *   GNU General Public License for more details.                          *
29  *                                                                         *
30  *   You should have received a copy of the GNU General Public License     *
31  *   along with this program; if not, write to the                         *
32  *   Free Software Foundation, Inc.,                                       *
33  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
34  *                                                                         *
35  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
36  *   Cortex-A9(tm) TRM, ARM DDI 0407F                                      *
37  *                                                                         *
38  ***************************************************************************/
39
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
43
44 #include "breakpoints.h"
45 #include "cortex_a.h"
46 #include "register.h"
47 #include "target_request.h"
48 #include "target_type.h"
49 #include "arm_opcodes.h"
50 #include <helper/time_support.h>
51
52 static int cortex_a8_poll(struct target *target);
53 static int cortex_a8_debug_entry(struct target *target);
54 static int cortex_a8_restore_context(struct target *target, bool bpwp);
55 static int cortex_a8_set_breakpoint(struct target *target,
56         struct breakpoint *breakpoint, uint8_t matchmode);
57 static int cortex_a8_set_context_breakpoint(struct target *target,
58         struct breakpoint *breakpoint, uint8_t matchmode);
59 static int cortex_a8_set_hybrid_breakpoint(struct target *target,
60         struct breakpoint *breakpoint);
61 static int cortex_a8_unset_breakpoint(struct target *target,
62         struct breakpoint *breakpoint);
63 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
64         uint32_t *value, int regnum);
65 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
66         uint32_t value, int regnum);
67 static int cortex_a8_mmu(struct target *target, int *enabled);
68 static int cortex_a8_virt2phys(struct target *target,
69         uint32_t virt, uint32_t *phys);
70 static int cortex_a8_read_apb_ab_memory(struct target *target,
71         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
72
73
74 /*  restore cp15_control_reg at resume */
75 static int cortex_a8_restore_cp15_control_reg(struct target *target)
76 {
77         int retval = ERROR_OK;
78         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
79         struct armv7a_common *armv7a = target_to_armv7a(target);
80
81         if (cortex_a8->cp15_control_reg != cortex_a8->cp15_control_reg_curr) {
82                 cortex_a8->cp15_control_reg_curr = cortex_a8->cp15_control_reg;
83                 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg); */
84                 retval = armv7a->arm.mcr(target, 15,
85                                 0, 0,   /* op1, op2 */
86                                 1, 0,   /* CRn, CRm */
87                                 cortex_a8->cp15_control_reg);
88         }
89         return retval;
90 }
91
92 /*  check address before cortex_a8_apb read write access with mmu on
93  *  remove apb predictible data abort */
94 static int cortex_a8_check_address(struct target *target, uint32_t address)
95 {
96         struct armv7a_common *armv7a = target_to_armv7a(target);
97         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
98         uint32_t os_border = armv7a->armv7a_mmu.os_border;
99         if ((address < os_border) &&
100                 (armv7a->arm.core_mode == ARM_MODE_SVC)) {
101                 LOG_ERROR("%x access in userspace and target in supervisor", address);
102                 return ERROR_FAIL;
103         }
104         if ((address >= os_border) &&
105                 (cortex_a8->curr_mode != ARM_MODE_SVC)) {
106                 dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
107                 cortex_a8->curr_mode = ARM_MODE_SVC;
108                 LOG_INFO("%x access in kernel space and target not in supervisor",
109                         address);
110                 return ERROR_OK;
111         }
112         if ((address < os_border) &&
113                 (cortex_a8->curr_mode == ARM_MODE_SVC)) {
114                 dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
115                 cortex_a8->curr_mode = ARM_MODE_ANY;
116         }
117         return ERROR_OK;
118 }
119 /*  modify cp15_control_reg in order to enable or disable mmu for :
120  *  - virt2phys address conversion
121  *  - read or write memory in phys or virt address */
122 static int cortex_a8_mmu_modify(struct target *target, int enable)
123 {
124         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
125         struct armv7a_common *armv7a = target_to_armv7a(target);
126         int retval = ERROR_OK;
127         if (enable) {
128                 /*  if mmu enabled at target stop and mmu not enable */
129                 if (!(cortex_a8->cp15_control_reg & 0x1U)) {
130                         LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
131                         return ERROR_FAIL;
132                 }
133                 if (!(cortex_a8->cp15_control_reg_curr & 0x1U)) {
134                         cortex_a8->cp15_control_reg_curr |= 0x1U;
135                         retval = armv7a->arm.mcr(target, 15,
136                                         0, 0,   /* op1, op2 */
137                                         1, 0,   /* CRn, CRm */
138                                         cortex_a8->cp15_control_reg_curr);
139                 }
140         } else {
141                 if (cortex_a8->cp15_control_reg_curr & 0x4U) {
142                         /*  data cache is active */
143                         cortex_a8->cp15_control_reg_curr &= ~0x4U;
144                         /* flush data cache armv7 function to be called */
145                         if (armv7a->armv7a_mmu.armv7a_cache.flush_all_data_cache)
146                                 armv7a->armv7a_mmu.armv7a_cache.flush_all_data_cache(target);
147                 }
148                 if ((cortex_a8->cp15_control_reg_curr & 0x1U)) {
149                         cortex_a8->cp15_control_reg_curr &= ~0x1U;
150                         retval = armv7a->arm.mcr(target, 15,
151                                         0, 0,   /* op1, op2 */
152                                         1, 0,   /* CRn, CRm */
153                                         cortex_a8->cp15_control_reg_curr);
154                 }
155         }
156         return retval;
157 }
158
159 /*
160  * Cortex-A8 Basic debug access, very low level assumes state is saved
161  */
162 static int cortex_a8_init_debug_access(struct target *target)
163 {
164         struct armv7a_common *armv7a = target_to_armv7a(target);
165         struct adiv5_dap *swjdp = armv7a->arm.dap;
166         int retval;
167         uint32_t dummy;
168
169         LOG_DEBUG(" ");
170
171         /* Unlocking the debug registers for modification
172          * The debugport might be uninitialised so try twice */
173         retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
174                         armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
175         if (retval != ERROR_OK) {
176                 /* try again */
177                 retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
178                                 armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
179                 if (retval == ERROR_OK)
180                         LOG_USER(
181                                 "Locking debug access failed on first, but succeeded on second try.");
182         }
183         if (retval != ERROR_OK)
184                 return retval;
185         /* Clear Sticky Power Down status Bit in PRSR to enable access to
186            the registers in the Core Power Domain */
187         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
188                         armv7a->debug_base + CPUDBG_PRSR, &dummy);
189         if (retval != ERROR_OK)
190                 return retval;
191
192         /* Enabling of instruction execution in debug mode is done in debug_entry code */
193
194         /* Resync breakpoint registers */
195
196         /* Since this is likely called from init or reset, update target state information*/
197         return cortex_a8_poll(target);
198 }
199
200 /* To reduce needless round-trips, pass in a pointer to the current
201  * DSCR value.  Initialize it to zero if you just need to know the
202  * value on return from this function; or DSCR_INSTR_COMP if you
203  * happen to know that no instruction is pending.
204  */
205 static int cortex_a8_exec_opcode(struct target *target,
206         uint32_t opcode, uint32_t *dscr_p)
207 {
208         uint32_t dscr;
209         int retval;
210         struct armv7a_common *armv7a = target_to_armv7a(target);
211         struct adiv5_dap *swjdp = armv7a->arm.dap;
212
213         dscr = dscr_p ? *dscr_p : 0;
214
215         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
216
217         /* Wait for InstrCompl bit to be set */
218         long long then = timeval_ms();
219         while ((dscr & DSCR_INSTR_COMP) == 0) {
220                 retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
221                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
222                 if (retval != ERROR_OK) {
223                         LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
224                         return retval;
225                 }
226                 if (timeval_ms() > then + 1000) {
227                         LOG_ERROR("Timeout waiting for cortex_a8_exec_opcode");
228                         return ERROR_FAIL;
229                 }
230         }
231
232         retval = mem_ap_sel_write_u32(swjdp, armv7a->debug_ap,
233                         armv7a->debug_base + CPUDBG_ITR, opcode);
234         if (retval != ERROR_OK)
235                 return retval;
236
237         then = timeval_ms();
238         do {
239                 retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
240                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
241                 if (retval != ERROR_OK) {
242                         LOG_ERROR("Could not read DSCR register");
243                         return retval;
244                 }
245                 if (timeval_ms() > then + 1000) {
246                         LOG_ERROR("Timeout waiting for cortex_a8_exec_opcode");
247                         return ERROR_FAIL;
248                 }
249         } while ((dscr & DSCR_INSTR_COMP) == 0);        /* Wait for InstrCompl bit to be set */
250
251         if (dscr_p)
252                 *dscr_p = dscr;
253
254         return retval;
255 }
256
257 /**************************************************************************
258 Read core register with very few exec_opcode, fast but needs work_area.
259 This can cause problems with MMU active.
260 **************************************************************************/
261 static int cortex_a8_read_regs_through_mem(struct target *target, uint32_t address,
262         uint32_t *regfile)
263 {
264         int retval = ERROR_OK;
265         struct armv7a_common *armv7a = target_to_armv7a(target);
266         struct adiv5_dap *swjdp = armv7a->arm.dap;
267
268         retval = cortex_a8_dap_read_coreregister_u32(target, regfile, 0);
269         if (retval != ERROR_OK)
270                 return retval;
271         retval = cortex_a8_dap_write_coreregister_u32(target, address, 0);
272         if (retval != ERROR_OK)
273                 return retval;
274         retval = cortex_a8_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0), NULL);
275         if (retval != ERROR_OK)
276                 return retval;
277
278         retval = mem_ap_sel_read_buf_u32(swjdp, armv7a->memory_ap,
279                         (uint8_t *)(&regfile[1]), 4*15, address);
280
281         return retval;
282 }
283
284 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
285         uint32_t *value, int regnum)
286 {
287         int retval = ERROR_OK;
288         uint8_t reg = regnum&0xFF;
289         uint32_t dscr = 0;
290         struct armv7a_common *armv7a = target_to_armv7a(target);
291         struct adiv5_dap *swjdp = armv7a->arm.dap;
292
293         if (reg > 17)
294                 return retval;
295
296         if (reg < 15) {
297                 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0"  0xEE00nE15 */
298                 retval = cortex_a8_exec_opcode(target,
299                                 ARMV4_5_MCR(14, 0, reg, 0, 5, 0),
300                                 &dscr);
301                 if (retval != ERROR_OK)
302                         return retval;
303         } else if (reg == 15) {
304                 /* "MOV r0, r15"; then move r0 to DCCTX */
305                 retval = cortex_a8_exec_opcode(target, 0xE1A0000F, &dscr);
306                 if (retval != ERROR_OK)
307                         return retval;
308                 retval = cortex_a8_exec_opcode(target,
309                                 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
310                                 &dscr);
311                 if (retval != ERROR_OK)
312                         return retval;
313         } else {
314                 /* "MRS r0, CPSR" or "MRS r0, SPSR"
315                  * then move r0 to DCCTX
316                  */
317                 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRS(0, reg & 1), &dscr);
318                 if (retval != ERROR_OK)
319                         return retval;
320                 retval = cortex_a8_exec_opcode(target,
321                                 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
322                                 &dscr);
323                 if (retval != ERROR_OK)
324                         return retval;
325         }
326
327         /* Wait for DTRRXfull then read DTRRTX */
328         long long then = timeval_ms();
329         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
330                 retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
331                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
332                 if (retval != ERROR_OK)
333                         return retval;
334                 if (timeval_ms() > then + 1000) {
335                         LOG_ERROR("Timeout waiting for cortex_a8_exec_opcode");
336                         return ERROR_FAIL;
337                 }
338         }
339
340         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
341                         armv7a->debug_base + CPUDBG_DTRTX, value);
342         LOG_DEBUG("read DCC 0x%08" PRIx32, *value);
343
344         return retval;
345 }
346
347 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
348         uint32_t value, int regnum)
349 {
350         int retval = ERROR_OK;
351         uint8_t Rd = regnum&0xFF;
352         uint32_t dscr;
353         struct armv7a_common *armv7a = target_to_armv7a(target);
354         struct adiv5_dap *swjdp = armv7a->arm.dap;
355
356         LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
357
358         /* Check that DCCRX is not full */
359         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
360                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
361         if (retval != ERROR_OK)
362                 return retval;
363         if (dscr & DSCR_DTR_RX_FULL) {
364                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
365                 /* Clear DCCRX with MRC(p14, 0, Rd, c0, c5, 0), opcode  0xEE100E15 */
366                 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
367                                 &dscr);
368                 if (retval != ERROR_OK)
369                         return retval;
370         }
371
372         if (Rd > 17)
373                 return retval;
374
375         /* Write DTRRX ... sets DSCR.DTRRXfull but exec_opcode() won't care */
376         LOG_DEBUG("write DCC 0x%08" PRIx32, value);
377         retval = mem_ap_sel_write_u32(swjdp, armv7a->debug_ap,
378                         armv7a->debug_base + CPUDBG_DTRRX, value);
379         if (retval != ERROR_OK)
380                 return retval;
381
382         if (Rd < 15) {
383                 /* DCCRX to Rn, "MRC p14, 0, Rn, c0, c5, 0", 0xEE10nE15 */
384                 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0),
385                                 &dscr);
386
387                 if (retval != ERROR_OK)
388                         return retval;
389         } else if (Rd == 15) {
390                 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
391                  * then "mov r15, r0"
392                  */
393                 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
394                                 &dscr);
395                 if (retval != ERROR_OK)
396                         return retval;
397                 retval = cortex_a8_exec_opcode(target, 0xE1A0F000, &dscr);
398                 if (retval != ERROR_OK)
399                         return retval;
400         } else {
401                 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
402                  * then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
403                  */
404                 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
405                                 &dscr);
406                 if (retval != ERROR_OK)
407                         return retval;
408                 retval = cortex_a8_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, Rd & 1),
409                                 &dscr);
410                 if (retval != ERROR_OK)
411                         return retval;
412
413                 /* "Prefetch flush" after modifying execution status in CPSR */
414                 if (Rd == 16) {
415                         retval = cortex_a8_exec_opcode(target,
416                                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
417                                         &dscr);
418                         if (retval != ERROR_OK)
419                                 return retval;
420                 }
421         }
422
423         return retval;
424 }
425
426 /* Write to memory mapped registers directly with no cache or mmu handling */
427 static int cortex_a8_dap_write_memap_register_u32(struct target *target,
428         uint32_t address,
429         uint32_t value)
430 {
431         int retval;
432         struct armv7a_common *armv7a = target_to_armv7a(target);
433         struct adiv5_dap *swjdp = armv7a->arm.dap;
434
435         retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap, address, value);
436
437         return retval;
438 }
439
440 /*
441  * Cortex-A8 implementation of Debug Programmer's Model
442  *
443  * NOTE the invariant:  these routines return with DSCR_INSTR_COMP set,
444  * so there's no need to poll for it before executing an instruction.
445  *
446  * NOTE that in several of these cases the "stall" mode might be useful.
447  * It'd let us queue a few operations together... prepare/finish might
448  * be the places to enable/disable that mode.
449  */
450
451 static inline struct cortex_a8_common *dpm_to_a8(struct arm_dpm *dpm)
452 {
453         return container_of(dpm, struct cortex_a8_common, armv7a_common.dpm);
454 }
455
456 static int cortex_a8_write_dcc(struct cortex_a8_common *a8, uint32_t data)
457 {
458         LOG_DEBUG("write DCC 0x%08" PRIx32, data);
459         return mem_ap_sel_write_u32(a8->armv7a_common.arm.dap,
460                 a8->armv7a_common.debug_ap, a8->armv7a_common.debug_base + CPUDBG_DTRRX, data);
461 }
462
463 static int cortex_a8_read_dcc(struct cortex_a8_common *a8, uint32_t *data,
464         uint32_t *dscr_p)
465 {
466         struct adiv5_dap *swjdp = a8->armv7a_common.arm.dap;
467         uint32_t dscr = DSCR_INSTR_COMP;
468         int retval;
469
470         if (dscr_p)
471                 dscr = *dscr_p;
472
473         /* Wait for DTRRXfull */
474         long long then = timeval_ms();
475         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
476                 retval = mem_ap_sel_read_atomic_u32(swjdp, a8->armv7a_common.debug_ap,
477                                 a8->armv7a_common.debug_base + CPUDBG_DSCR,
478                                 &dscr);
479                 if (retval != ERROR_OK)
480                         return retval;
481                 if (timeval_ms() > then + 1000) {
482                         LOG_ERROR("Timeout waiting for read dcc");
483                         return ERROR_FAIL;
484                 }
485         }
486
487         retval = mem_ap_sel_read_atomic_u32(swjdp, a8->armv7a_common.debug_ap,
488                         a8->armv7a_common.debug_base + CPUDBG_DTRTX, data);
489         if (retval != ERROR_OK)
490                 return retval;
491         /* LOG_DEBUG("read DCC 0x%08" PRIx32, *data); */
492
493         if (dscr_p)
494                 *dscr_p = dscr;
495
496         return retval;
497 }
498
499 static int cortex_a8_dpm_prepare(struct arm_dpm *dpm)
500 {
501         struct cortex_a8_common *a8 = dpm_to_a8(dpm);
502         struct adiv5_dap *swjdp = a8->armv7a_common.arm.dap;
503         uint32_t dscr;
504         int retval;
505
506         /* set up invariant:  INSTR_COMP is set after ever DPM operation */
507         long long then = timeval_ms();
508         for (;; ) {
509                 retval = mem_ap_sel_read_atomic_u32(swjdp, a8->armv7a_common.debug_ap,
510                                 a8->armv7a_common.debug_base + CPUDBG_DSCR,
511                                 &dscr);
512                 if (retval != ERROR_OK)
513                         return retval;
514                 if ((dscr & DSCR_INSTR_COMP) != 0)
515                         break;
516                 if (timeval_ms() > then + 1000) {
517                         LOG_ERROR("Timeout waiting for dpm prepare");
518                         return ERROR_FAIL;
519                 }
520         }
521
522         /* this "should never happen" ... */
523         if (dscr & DSCR_DTR_RX_FULL) {
524                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
525                 /* Clear DCCRX */
526                 retval = cortex_a8_exec_opcode(
527                                 a8->armv7a_common.arm.target,
528                                 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
529                                 &dscr);
530                 if (retval != ERROR_OK)
531                         return retval;
532         }
533
534         return retval;
535 }
536
537 static int cortex_a8_dpm_finish(struct arm_dpm *dpm)
538 {
539         /* REVISIT what could be done here? */
540         return ERROR_OK;
541 }
542
543 static int cortex_a8_instr_write_data_dcc(struct arm_dpm *dpm,
544         uint32_t opcode, uint32_t data)
545 {
546         struct cortex_a8_common *a8 = dpm_to_a8(dpm);
547         int retval;
548         uint32_t dscr = DSCR_INSTR_COMP;
549
550         retval = cortex_a8_write_dcc(a8, data);
551         if (retval != ERROR_OK)
552                 return retval;
553
554         return cortex_a8_exec_opcode(
555                         a8->armv7a_common.arm.target,
556                         opcode,
557                         &dscr);
558 }
559
560 static int cortex_a8_instr_write_data_r0(struct arm_dpm *dpm,
561         uint32_t opcode, uint32_t data)
562 {
563         struct cortex_a8_common *a8 = dpm_to_a8(dpm);
564         uint32_t dscr = DSCR_INSTR_COMP;
565         int retval;
566
567         retval = cortex_a8_write_dcc(a8, data);
568         if (retval != ERROR_OK)
569                 return retval;
570
571         /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
572         retval = cortex_a8_exec_opcode(
573                         a8->armv7a_common.arm.target,
574                         ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
575                         &dscr);
576         if (retval != ERROR_OK)
577                 return retval;
578
579         /* then the opcode, taking data from R0 */
580         retval = cortex_a8_exec_opcode(
581                         a8->armv7a_common.arm.target,
582                         opcode,
583                         &dscr);
584
585         return retval;
586 }
587
588 static int cortex_a8_instr_cpsr_sync(struct arm_dpm *dpm)
589 {
590         struct target *target = dpm->arm->target;
591         uint32_t dscr = DSCR_INSTR_COMP;
592
593         /* "Prefetch flush" after modifying execution status in CPSR */
594         return cortex_a8_exec_opcode(target,
595                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
596                         &dscr);
597 }
598
599 static int cortex_a8_instr_read_data_dcc(struct arm_dpm *dpm,
600         uint32_t opcode, uint32_t *data)
601 {
602         struct cortex_a8_common *a8 = dpm_to_a8(dpm);
603         int retval;
604         uint32_t dscr = DSCR_INSTR_COMP;
605
606         /* the opcode, writing data to DCC */
607         retval = cortex_a8_exec_opcode(
608                         a8->armv7a_common.arm.target,
609                         opcode,
610                         &dscr);
611         if (retval != ERROR_OK)
612                 return retval;
613
614         return cortex_a8_read_dcc(a8, data, &dscr);
615 }
616
617
618 static int cortex_a8_instr_read_data_r0(struct arm_dpm *dpm,
619         uint32_t opcode, uint32_t *data)
620 {
621         struct cortex_a8_common *a8 = dpm_to_a8(dpm);
622         uint32_t dscr = DSCR_INSTR_COMP;
623         int retval;
624
625         /* the opcode, writing data to R0 */
626         retval = cortex_a8_exec_opcode(
627                         a8->armv7a_common.arm.target,
628                         opcode,
629                         &dscr);
630         if (retval != ERROR_OK)
631                 return retval;
632
633         /* write R0 to DCC */
634         retval = cortex_a8_exec_opcode(
635                         a8->armv7a_common.arm.target,
636                         ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
637                         &dscr);
638         if (retval != ERROR_OK)
639                 return retval;
640
641         return cortex_a8_read_dcc(a8, data, &dscr);
642 }
643
644 static int cortex_a8_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
645         uint32_t addr, uint32_t control)
646 {
647         struct cortex_a8_common *a8 = dpm_to_a8(dpm);
648         uint32_t vr = a8->armv7a_common.debug_base;
649         uint32_t cr = a8->armv7a_common.debug_base;
650         int retval;
651
652         switch (index_t) {
653                 case 0 ... 15:  /* breakpoints */
654                         vr += CPUDBG_BVR_BASE;
655                         cr += CPUDBG_BCR_BASE;
656                         break;
657                 case 16 ... 31: /* watchpoints */
658                         vr += CPUDBG_WVR_BASE;
659                         cr += CPUDBG_WCR_BASE;
660                         index_t -= 16;
661                         break;
662                 default:
663                         return ERROR_FAIL;
664         }
665         vr += 4 * index_t;
666         cr += 4 * index_t;
667
668         LOG_DEBUG("A8: bpwp enable, vr %08x cr %08x",
669                 (unsigned) vr, (unsigned) cr);
670
671         retval = cortex_a8_dap_write_memap_register_u32(dpm->arm->target,
672                         vr, addr);
673         if (retval != ERROR_OK)
674                 return retval;
675         retval = cortex_a8_dap_write_memap_register_u32(dpm->arm->target,
676                         cr, control);
677         return retval;
678 }
679
680 static int cortex_a8_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
681 {
682         struct cortex_a8_common *a8 = dpm_to_a8(dpm);
683         uint32_t cr;
684
685         switch (index_t) {
686                 case 0 ... 15:
687                         cr = a8->armv7a_common.debug_base + CPUDBG_BCR_BASE;
688                         break;
689                 case 16 ... 31:
690                         cr = a8->armv7a_common.debug_base + CPUDBG_WCR_BASE;
691                         index_t -= 16;
692                         break;
693                 default:
694                         return ERROR_FAIL;
695         }
696         cr += 4 * index_t;
697
698         LOG_DEBUG("A8: bpwp disable, cr %08x", (unsigned) cr);
699
700         /* clear control register */
701         return cortex_a8_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
702 }
703
704 static int cortex_a8_dpm_setup(struct cortex_a8_common *a8, uint32_t didr)
705 {
706         struct arm_dpm *dpm = &a8->armv7a_common.dpm;
707         int retval;
708
709         dpm->arm = &a8->armv7a_common.arm;
710         dpm->didr = didr;
711
712         dpm->prepare = cortex_a8_dpm_prepare;
713         dpm->finish = cortex_a8_dpm_finish;
714
715         dpm->instr_write_data_dcc = cortex_a8_instr_write_data_dcc;
716         dpm->instr_write_data_r0 = cortex_a8_instr_write_data_r0;
717         dpm->instr_cpsr_sync = cortex_a8_instr_cpsr_sync;
718
719         dpm->instr_read_data_dcc = cortex_a8_instr_read_data_dcc;
720         dpm->instr_read_data_r0 = cortex_a8_instr_read_data_r0;
721
722         dpm->bpwp_enable = cortex_a8_bpwp_enable;
723         dpm->bpwp_disable = cortex_a8_bpwp_disable;
724
725         retval = arm_dpm_setup(dpm);
726         if (retval == ERROR_OK)
727                 retval = arm_dpm_initialize(dpm);
728
729         return retval;
730 }
731 static struct target *get_cortex_a8(struct target *target, int32_t coreid)
732 {
733         struct target_list *head;
734         struct target *curr;
735
736         head = target->head;
737         while (head != (struct target_list *)NULL) {
738                 curr = head->target;
739                 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
740                         return curr;
741                 head = head->next;
742         }
743         return target;
744 }
745 static int cortex_a8_halt(struct target *target);
746
747 static int cortex_a8_halt_smp(struct target *target)
748 {
749         int retval = 0;
750         struct target_list *head;
751         struct target *curr;
752         head = target->head;
753         while (head != (struct target_list *)NULL) {
754                 curr = head->target;
755                 if ((curr != target) && (curr->state != TARGET_HALTED))
756                         retval += cortex_a8_halt(curr);
757                 head = head->next;
758         }
759         return retval;
760 }
761
762 static int update_halt_gdb(struct target *target)
763 {
764         int retval = 0;
765         if (target->gdb_service->core[0] == -1) {
766                 target->gdb_service->target = target;
767                 target->gdb_service->core[0] = target->coreid;
768                 retval += cortex_a8_halt_smp(target);
769         }
770         return retval;
771 }
772
773 /*
774  * Cortex-A8 Run control
775  */
776
777 static int cortex_a8_poll(struct target *target)
778 {
779         int retval = ERROR_OK;
780         uint32_t dscr;
781         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
782         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
783         struct adiv5_dap *swjdp = armv7a->arm.dap;
784         enum target_state prev_target_state = target->state;
785         /*  toggle to another core is done by gdb as follow */
786         /*  maint packet J core_id */
787         /*  continue */
788         /*  the next polling trigger an halt event sent to gdb */
789         if ((target->state == TARGET_HALTED) && (target->smp) &&
790                 (target->gdb_service) &&
791                 (target->gdb_service->target == NULL)) {
792                 target->gdb_service->target =
793                         get_cortex_a8(target, target->gdb_service->core[1]);
794                 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
795                 return retval;
796         }
797         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
798                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
799         if (retval != ERROR_OK)
800                 return retval;
801         cortex_a8->cpudbg_dscr = dscr;
802
803         if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED)) {
804                 if (prev_target_state != TARGET_HALTED) {
805                         /* We have a halting debug event */
806                         LOG_DEBUG("Target halted");
807                         target->state = TARGET_HALTED;
808                         if ((prev_target_state == TARGET_RUNNING)
809                                 || (prev_target_state == TARGET_UNKNOWN)
810                                 || (prev_target_state == TARGET_RESET)) {
811                                 retval = cortex_a8_debug_entry(target);
812                                 if (retval != ERROR_OK)
813                                         return retval;
814                                 if (target->smp) {
815                                         retval = update_halt_gdb(target);
816                                         if (retval != ERROR_OK)
817                                                 return retval;
818                                 }
819                                 target_call_event_callbacks(target,
820                                         TARGET_EVENT_HALTED);
821                         }
822                         if (prev_target_state == TARGET_DEBUG_RUNNING) {
823                                 LOG_DEBUG(" ");
824
825                                 retval = cortex_a8_debug_entry(target);
826                                 if (retval != ERROR_OK)
827                                         return retval;
828                                 if (target->smp) {
829                                         retval = update_halt_gdb(target);
830                                         if (retval != ERROR_OK)
831                                                 return retval;
832                                 }
833
834                                 target_call_event_callbacks(target,
835                                         TARGET_EVENT_DEBUG_HALTED);
836                         }
837                 }
838         } else if (DSCR_RUN_MODE(dscr) == DSCR_CORE_RESTARTED)
839                 target->state = TARGET_RUNNING;
840         else {
841                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
842                 target->state = TARGET_UNKNOWN;
843         }
844
845         return retval;
846 }
847
848 static int cortex_a8_halt(struct target *target)
849 {
850         int retval = ERROR_OK;
851         uint32_t dscr;
852         struct armv7a_common *armv7a = target_to_armv7a(target);
853         struct adiv5_dap *swjdp = armv7a->arm.dap;
854
855         /*
856          * Tell the core to be halted by writing DRCR with 0x1
857          * and then wait for the core to be halted.
858          */
859         retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
860                         armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
861         if (retval != ERROR_OK)
862                 return retval;
863
864         /*
865          * enter halting debug mode
866          */
867         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
868                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
869         if (retval != ERROR_OK)
870                 return retval;
871
872         retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
873                         armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
874         if (retval != ERROR_OK)
875                 return retval;
876
877         long long then = timeval_ms();
878         for (;; ) {
879                 retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
880                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
881                 if (retval != ERROR_OK)
882                         return retval;
883                 if ((dscr & DSCR_CORE_HALTED) != 0)
884                         break;
885                 if (timeval_ms() > then + 1000) {
886                         LOG_ERROR("Timeout waiting for halt");
887                         return ERROR_FAIL;
888                 }
889         }
890
891         target->debug_reason = DBG_REASON_DBGRQ;
892
893         return ERROR_OK;
894 }
895
896 static int cortex_a8_internal_restore(struct target *target, int current,
897         uint32_t *address, int handle_breakpoints, int debug_execution)
898 {
899         struct armv7a_common *armv7a = target_to_armv7a(target);
900         struct arm *arm = &armv7a->arm;
901         int retval;
902         uint32_t resume_pc;
903
904         if (!debug_execution)
905                 target_free_all_working_areas(target);
906
907 #if 0
908         if (debug_execution) {
909                 /* Disable interrupts */
910                 /* We disable interrupts in the PRIMASK register instead of
911                  * masking with C_MASKINTS,
912                  * This is probably the same issue as Cortex-M3 Errata 377493:
913                  * C_MASKINTS in parallel with disabled interrupts can cause
914                  * local faults to not be taken. */
915                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
916                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
917                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
918
919                 /* Make sure we are in Thumb mode */
920                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
921                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0,
922                         32) | (1 << 24));
923                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
924                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
925         }
926 #endif
927
928         /* current = 1: continue on current pc, otherwise continue at <address> */
929         resume_pc = buf_get_u32(arm->pc->value, 0, 32);
930         if (!current)
931                 resume_pc = *address;
932         else
933                 *address = resume_pc;
934
935         /* Make sure that the Armv7 gdb thumb fixups does not
936          * kill the return address
937          */
938         switch (arm->core_state) {
939                 case ARM_STATE_ARM:
940                         resume_pc &= 0xFFFFFFFC;
941                         break;
942                 case ARM_STATE_THUMB:
943                 case ARM_STATE_THUMB_EE:
944                         /* When the return address is loaded into PC
945                          * bit 0 must be 1 to stay in Thumb state
946                          */
947                         resume_pc |= 0x1;
948                         break;
949                 case ARM_STATE_JAZELLE:
950                         LOG_ERROR("How do I resume into Jazelle state??");
951                         return ERROR_FAIL;
952         }
953         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
954         buf_set_u32(arm->pc->value, 0, 32, resume_pc);
955         arm->pc->dirty = 1;
956         arm->pc->valid = 1;
957         /* restore dpm_mode at system halt */
958         dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
959         /* called it now before restoring context because it uses cpu
960          * register r0 for restoring cp15 control register */
961         retval = cortex_a8_restore_cp15_control_reg(target);
962         if (retval != ERROR_OK)
963                 return retval;
964         retval = cortex_a8_restore_context(target, handle_breakpoints);
965         if (retval != ERROR_OK)
966                 return retval;
967         target->debug_reason = DBG_REASON_NOTHALTED;
968         target->state = TARGET_RUNNING;
969
970         /* registers are now invalid */
971         register_cache_invalidate(arm->core_cache);
972
973 #if 0
974         /* the front-end may request us not to handle breakpoints */
975         if (handle_breakpoints) {
976                 /* Single step past breakpoint at current address */
977                 breakpoint = breakpoint_find(target, resume_pc);
978                 if (breakpoint) {
979                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
980                         cortex_m3_unset_breakpoint(target, breakpoint);
981                         cortex_m3_single_step_core(target);
982                         cortex_m3_set_breakpoint(target, breakpoint);
983                 }
984         }
985
986 #endif
987         return retval;
988 }
989
990 static int cortex_a8_internal_restart(struct target *target)
991 {
992         struct armv7a_common *armv7a = target_to_armv7a(target);
993         struct arm *arm = &armv7a->arm;
994         struct adiv5_dap *swjdp = arm->dap;
995         int retval;
996         uint32_t dscr;
997         /*
998          * * Restart core and wait for it to be started.  Clear ITRen and sticky
999          * * exception flags: see ARMv7 ARM, C5.9.
1000          *
1001          * REVISIT: for single stepping, we probably want to
1002          * disable IRQs by default, with optional override...
1003          */
1004
1005         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
1006                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
1007         if (retval != ERROR_OK)
1008                 return retval;
1009
1010         if ((dscr & DSCR_INSTR_COMP) == 0)
1011                 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
1012
1013         retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
1014                         armv7a->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
1015         if (retval != ERROR_OK)
1016                 return retval;
1017
1018         retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
1019                         armv7a->debug_base + CPUDBG_DRCR, DRCR_RESTART |
1020                         DRCR_CLEAR_EXCEPTIONS);
1021         if (retval != ERROR_OK)
1022                 return retval;
1023
1024         long long then = timeval_ms();
1025         for (;; ) {
1026                 retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
1027                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1028                 if (retval != ERROR_OK)
1029                         return retval;
1030                 if ((dscr & DSCR_CORE_RESTARTED) != 0)
1031                         break;
1032                 if (timeval_ms() > then + 1000) {
1033                         LOG_ERROR("Timeout waiting for resume");
1034                         return ERROR_FAIL;
1035                 }
1036         }
1037
1038         target->debug_reason = DBG_REASON_NOTHALTED;
1039         target->state = TARGET_RUNNING;
1040
1041         /* registers are now invalid */
1042         register_cache_invalidate(arm->core_cache);
1043
1044         return ERROR_OK;
1045 }
1046
1047 static int cortex_a8_restore_smp(struct target *target, int handle_breakpoints)
1048 {
1049         int retval = 0;
1050         struct target_list *head;
1051         struct target *curr;
1052         uint32_t address;
1053         head = target->head;
1054         while (head != (struct target_list *)NULL) {
1055                 curr = head->target;
1056                 if ((curr != target) && (curr->state != TARGET_RUNNING)) {
1057                         /*  resume current address , not in step mode */
1058                         retval += cortex_a8_internal_restore(curr, 1, &address,
1059                                         handle_breakpoints, 0);
1060                         retval += cortex_a8_internal_restart(curr);
1061                 }
1062                 head = head->next;
1063
1064         }
1065         return retval;
1066 }
1067
1068 static int cortex_a8_resume(struct target *target, int current,
1069         uint32_t address, int handle_breakpoints, int debug_execution)
1070 {
1071         int retval = 0;
1072         /* dummy resume for smp toggle in order to reduce gdb impact  */
1073         if ((target->smp) && (target->gdb_service->core[1] != -1)) {
1074                 /*   simulate a start and halt of target */
1075                 target->gdb_service->target = NULL;
1076                 target->gdb_service->core[0] = target->gdb_service->core[1];
1077                 /*  fake resume at next poll we play the  target core[1], see poll*/
1078                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1079                 return 0;
1080         }
1081         cortex_a8_internal_restore(target, current, &address, handle_breakpoints, debug_execution);
1082         if (target->smp) {
1083                 target->gdb_service->core[0] = -1;
1084                 retval = cortex_a8_restore_smp(target, handle_breakpoints);
1085                 if (retval != ERROR_OK)
1086                         return retval;
1087         }
1088         cortex_a8_internal_restart(target);
1089
1090         if (!debug_execution) {
1091                 target->state = TARGET_RUNNING;
1092                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1093                 LOG_DEBUG("target resumed at 0x%" PRIx32, address);
1094         } else {
1095                 target->state = TARGET_DEBUG_RUNNING;
1096                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
1097                 LOG_DEBUG("target debug resumed at 0x%" PRIx32, address);
1098         }
1099
1100         return ERROR_OK;
1101 }
1102
1103 static int cortex_a8_debug_entry(struct target *target)
1104 {
1105         int i;
1106         uint32_t regfile[16], cpsr, dscr;
1107         int retval = ERROR_OK;
1108         struct working_area *regfile_working_area = NULL;
1109         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1110         struct armv7a_common *armv7a = target_to_armv7a(target);
1111         struct arm *arm = &armv7a->arm;
1112         struct adiv5_dap *swjdp = armv7a->arm.dap;
1113         struct reg *reg;
1114
1115         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a8->cpudbg_dscr);
1116
1117         /* REVISIT surely we should not re-read DSCR !! */
1118         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
1119                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
1120         if (retval != ERROR_OK)
1121                 return retval;
1122
1123         /* REVISIT see A8 TRM 12.11.4 steps 2..3 -- make sure that any
1124          * imprecise data aborts get discarded by issuing a Data
1125          * Synchronization Barrier:  ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1126          */
1127
1128         /* Enable the ITR execution once we are in debug mode */
1129         dscr |= DSCR_ITR_EN;
1130         retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
1131                         armv7a->debug_base + CPUDBG_DSCR, dscr);
1132         if (retval != ERROR_OK)
1133                 return retval;
1134
1135         /* Examine debug reason */
1136         arm_dpm_report_dscr(&armv7a->dpm, cortex_a8->cpudbg_dscr);
1137
1138         /* save address of instruction that triggered the watchpoint? */
1139         if (target->debug_reason == DBG_REASON_WATCHPOINT) {
1140                 uint32_t wfar;
1141
1142                 retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
1143                                 armv7a->debug_base + CPUDBG_WFAR,
1144                                 &wfar);
1145                 if (retval != ERROR_OK)
1146                         return retval;
1147                 arm_dpm_report_wfar(&armv7a->dpm, wfar);
1148         }
1149
1150         /* REVISIT fast_reg_read is never set ... */
1151
1152         /* Examine target state and mode */
1153         if (cortex_a8->fast_reg_read)
1154                 target_alloc_working_area(target, 64, &regfile_working_area);
1155
1156         /* First load register acessible through core debug port*/
1157         if (!regfile_working_area)
1158                 retval = arm_dpm_read_current_registers(&armv7a->dpm);
1159         else {
1160                 retval = cortex_a8_read_regs_through_mem(target,
1161                                 regfile_working_area->address, regfile);
1162
1163                 target_free_working_area(target, regfile_working_area);
1164                 if (retval != ERROR_OK)
1165                         return retval;
1166
1167                 /* read Current PSR */
1168                 retval = cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16);
1169                 /*  store current cpsr */
1170                 if (retval != ERROR_OK)
1171                         return retval;
1172
1173                 LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
1174
1175                 arm_set_cpsr(arm, cpsr);
1176
1177                 /* update cache */
1178                 for (i = 0; i <= ARM_PC; i++) {
1179                         reg = arm_reg_current(arm, i);
1180
1181                         buf_set_u32(reg->value, 0, 32, regfile[i]);
1182                         reg->valid = 1;
1183                         reg->dirty = 0;
1184                 }
1185
1186                 /* Fixup PC Resume Address */
1187                 if (cpsr & (1 << 5)) {
1188                         /* T bit set for Thumb or ThumbEE state */
1189                         regfile[ARM_PC] -= 4;
1190                 } else {
1191                         /* ARM state */
1192                         regfile[ARM_PC] -= 8;
1193                 }
1194
1195                 reg = arm->pc;
1196                 buf_set_u32(reg->value, 0, 32, regfile[ARM_PC]);
1197                 reg->dirty = reg->valid;
1198         }
1199
1200 #if 0
1201 /* TODO, Move this */
1202         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
1203         cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
1204         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
1205
1206         cortex_a8_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
1207         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
1208
1209         cortex_a8_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
1210         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
1211 #endif
1212
1213         /* Are we in an exception handler */
1214 /*      armv4_5->exception_number = 0; */
1215         if (armv7a->post_debug_entry) {
1216                 retval = armv7a->post_debug_entry(target);
1217                 if (retval != ERROR_OK)
1218                         return retval;
1219         }
1220
1221         return retval;
1222 }
1223
1224 static int cortex_a8_post_debug_entry(struct target *target)
1225 {
1226         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1227         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1228         int retval;
1229
1230         /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1231         retval = armv7a->arm.mrc(target, 15,
1232                         0, 0,   /* op1, op2 */
1233                         1, 0,   /* CRn, CRm */
1234                         &cortex_a8->cp15_control_reg);
1235         if (retval != ERROR_OK)
1236                 return retval;
1237         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
1238         cortex_a8->cp15_control_reg_curr = cortex_a8->cp15_control_reg;
1239
1240         if (armv7a->armv7a_mmu.armv7a_cache.ctype == -1)
1241                 armv7a_identify_cache(target);
1242
1243         armv7a->armv7a_mmu.mmu_enabled =
1244                 (cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0;
1245         armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled =
1246                 (cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0;
1247         armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled =
1248                 (cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0;
1249         cortex_a8->curr_mode = armv7a->arm.core_mode;
1250
1251         return ERROR_OK;
1252 }
1253
1254 static int cortex_a8_step(struct target *target, int current, uint32_t address,
1255         int handle_breakpoints)
1256 {
1257         struct armv7a_common *armv7a = target_to_armv7a(target);
1258         struct arm *arm = &armv7a->arm;
1259         struct breakpoint *breakpoint = NULL;
1260         struct breakpoint stepbreakpoint;
1261         struct reg *r;
1262         int retval;
1263
1264         if (target->state != TARGET_HALTED) {
1265                 LOG_WARNING("target not halted");
1266                 return ERROR_TARGET_NOT_HALTED;
1267         }
1268
1269         /* current = 1: continue on current pc, otherwise continue at <address> */
1270         r = arm->pc;
1271         if (!current)
1272                 buf_set_u32(r->value, 0, 32, address);
1273         else
1274                 address = buf_get_u32(r->value, 0, 32);
1275
1276         /* The front-end may request us not to handle breakpoints.
1277          * But since Cortex-A8 uses breakpoint for single step,
1278          * we MUST handle breakpoints.
1279          */
1280         handle_breakpoints = 1;
1281         if (handle_breakpoints) {
1282                 breakpoint = breakpoint_find(target, address);
1283                 if (breakpoint)
1284                         cortex_a8_unset_breakpoint(target, breakpoint);
1285         }
1286
1287         /* Setup single step breakpoint */
1288         stepbreakpoint.address = address;
1289         stepbreakpoint.length = (arm->core_state == ARM_STATE_THUMB)
1290                 ? 2 : 4;
1291         stepbreakpoint.type = BKPT_HARD;
1292         stepbreakpoint.set = 0;
1293
1294         /* Break on IVA mismatch */
1295         cortex_a8_set_breakpoint(target, &stepbreakpoint, 0x04);
1296
1297         target->debug_reason = DBG_REASON_SINGLESTEP;
1298
1299         retval = cortex_a8_resume(target, 1, address, 0, 0);
1300         if (retval != ERROR_OK)
1301                 return retval;
1302
1303         long long then = timeval_ms();
1304         while (target->state != TARGET_HALTED) {
1305                 retval = cortex_a8_poll(target);
1306                 if (retval != ERROR_OK)
1307                         return retval;
1308                 if (timeval_ms() > then + 1000) {
1309                         LOG_ERROR("timeout waiting for target halt");
1310                         return ERROR_FAIL;
1311                 }
1312         }
1313
1314         cortex_a8_unset_breakpoint(target, &stepbreakpoint);
1315
1316         target->debug_reason = DBG_REASON_BREAKPOINT;
1317
1318         if (breakpoint)
1319                 cortex_a8_set_breakpoint(target, breakpoint, 0);
1320
1321         if (target->state != TARGET_HALTED)
1322                 LOG_DEBUG("target stepped");
1323
1324         return ERROR_OK;
1325 }
1326
1327 static int cortex_a8_restore_context(struct target *target, bool bpwp)
1328 {
1329         struct armv7a_common *armv7a = target_to_armv7a(target);
1330
1331         LOG_DEBUG(" ");
1332
1333         if (armv7a->pre_restore_context)
1334                 armv7a->pre_restore_context(target);
1335
1336         return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1337 }
1338
1339 /*
1340  * Cortex-A8 Breakpoint and watchpoint functions
1341  */
1342
1343 /* Setup hardware Breakpoint Register Pair */
1344 static int cortex_a8_set_breakpoint(struct target *target,
1345         struct breakpoint *breakpoint, uint8_t matchmode)
1346 {
1347         int retval;
1348         int brp_i = 0;
1349         uint32_t control;
1350         uint8_t byte_addr_select = 0x0F;
1351         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1352         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1353         struct cortex_a8_brp *brp_list = cortex_a8->brp_list;
1354
1355         if (breakpoint->set) {
1356                 LOG_WARNING("breakpoint already set");
1357                 return ERROR_OK;
1358         }
1359
1360         if (breakpoint->type == BKPT_HARD) {
1361                 while (brp_list[brp_i].used && (brp_i < cortex_a8->brp_num))
1362                         brp_i++;
1363                 if (brp_i >= cortex_a8->brp_num) {
1364                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1365                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1366                 }
1367                 breakpoint->set = brp_i + 1;
1368                 if (breakpoint->length == 2)
1369                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1370                 control = ((matchmode & 0x7) << 20)
1371                         | (byte_addr_select << 5)
1372                         | (3 << 1) | 1;
1373                 brp_list[brp_i].used = 1;
1374                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1375                 brp_list[brp_i].control = control;
1376                 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1377                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1378                                 brp_list[brp_i].value);
1379                 if (retval != ERROR_OK)
1380                         return retval;
1381                 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1382                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1383                                 brp_list[brp_i].control);
1384                 if (retval != ERROR_OK)
1385                         return retval;
1386                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1387                         brp_list[brp_i].control,
1388                         brp_list[brp_i].value);
1389         } else if (breakpoint->type == BKPT_SOFT) {
1390                 uint8_t code[4];
1391                 if (breakpoint->length == 2)
1392                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1393                 else
1394                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1395                 retval = target_read_memory(target,
1396                                 breakpoint->address & 0xFFFFFFFE,
1397                                 breakpoint->length, 1,
1398                                 breakpoint->orig_instr);
1399                 if (retval != ERROR_OK)
1400                         return retval;
1401                 retval = target_write_memory(target,
1402                                 breakpoint->address & 0xFFFFFFFE,
1403                                 breakpoint->length, 1, code);
1404                 if (retval != ERROR_OK)
1405                         return retval;
1406                 breakpoint->set = 0x11; /* Any nice value but 0 */
1407         }
1408
1409         return ERROR_OK;
1410 }
1411
1412 static int cortex_a8_set_context_breakpoint(struct target *target,
1413         struct breakpoint *breakpoint, uint8_t matchmode)
1414 {
1415         int retval = ERROR_FAIL;
1416         int brp_i = 0;
1417         uint32_t control;
1418         uint8_t byte_addr_select = 0x0F;
1419         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1420         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1421         struct cortex_a8_brp *brp_list = cortex_a8->brp_list;
1422
1423         if (breakpoint->set) {
1424                 LOG_WARNING("breakpoint already set");
1425                 return retval;
1426         }
1427         /*check available context BRPs*/
1428         while ((brp_list[brp_i].used ||
1429                 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < cortex_a8->brp_num))
1430                 brp_i++;
1431
1432         if (brp_i >= cortex_a8->brp_num) {
1433                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1434                 return ERROR_FAIL;
1435         }
1436
1437         breakpoint->set = brp_i + 1;
1438         control = ((matchmode & 0x7) << 20)
1439                 | (byte_addr_select << 5)
1440                 | (3 << 1) | 1;
1441         brp_list[brp_i].used = 1;
1442         brp_list[brp_i].value = (breakpoint->asid);
1443         brp_list[brp_i].control = control;
1444         retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1445                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1446                         brp_list[brp_i].value);
1447         if (retval != ERROR_OK)
1448                 return retval;
1449         retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1450                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1451                         brp_list[brp_i].control);
1452         if (retval != ERROR_OK)
1453                 return retval;
1454         LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1455                 brp_list[brp_i].control,
1456                 brp_list[brp_i].value);
1457         return ERROR_OK;
1458
1459 }
1460
1461 static int cortex_a8_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1462 {
1463         int retval = ERROR_FAIL;
1464         int brp_1 = 0;  /* holds the contextID pair */
1465         int brp_2 = 0;  /* holds the IVA pair */
1466         uint32_t control_CTX, control_IVA;
1467         uint8_t CTX_byte_addr_select = 0x0F;
1468         uint8_t IVA_byte_addr_select = 0x0F;
1469         uint8_t CTX_machmode = 0x03;
1470         uint8_t IVA_machmode = 0x01;
1471         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1472         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1473         struct cortex_a8_brp *brp_list = cortex_a8->brp_list;
1474
1475         if (breakpoint->set) {
1476                 LOG_WARNING("breakpoint already set");
1477                 return retval;
1478         }
1479         /*check available context BRPs*/
1480         while ((brp_list[brp_1].used ||
1481                 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < cortex_a8->brp_num))
1482                 brp_1++;
1483
1484         printf("brp(CTX) found num: %d\n", brp_1);
1485         if (brp_1 >= cortex_a8->brp_num) {
1486                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1487                 return ERROR_FAIL;
1488         }
1489
1490         while ((brp_list[brp_2].used ||
1491                 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < cortex_a8->brp_num))
1492                 brp_2++;
1493
1494         printf("brp(IVA) found num: %d\n", brp_2);
1495         if (brp_2 >= cortex_a8->brp_num) {
1496                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1497                 return ERROR_FAIL;
1498         }
1499
1500         breakpoint->set = brp_1 + 1;
1501         breakpoint->linked_BRP = brp_2;
1502         control_CTX = ((CTX_machmode & 0x7) << 20)
1503                 | (brp_2 << 16)
1504                 | (0 << 14)
1505                 | (CTX_byte_addr_select << 5)
1506                 | (3 << 1) | 1;
1507         brp_list[brp_1].used = 1;
1508         brp_list[brp_1].value = (breakpoint->asid);
1509         brp_list[brp_1].control = control_CTX;
1510         retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1511                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_1].BRPn,
1512                         brp_list[brp_1].value);
1513         if (retval != ERROR_OK)
1514                 return retval;
1515         retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1516                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_1].BRPn,
1517                         brp_list[brp_1].control);
1518         if (retval != ERROR_OK)
1519                 return retval;
1520
1521         control_IVA = ((IVA_machmode & 0x7) << 20)
1522                 | (brp_1 << 16)
1523                 | (IVA_byte_addr_select << 5)
1524                 | (3 << 1) | 1;
1525         brp_list[brp_2].used = 1;
1526         brp_list[brp_2].value = (breakpoint->address & 0xFFFFFFFC);
1527         brp_list[brp_2].control = control_IVA;
1528         retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1529                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_2].BRPn,
1530                         brp_list[brp_2].value);
1531         if (retval != ERROR_OK)
1532                 return retval;
1533         retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1534                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_2].BRPn,
1535                         brp_list[brp_2].control);
1536         if (retval != ERROR_OK)
1537                 return retval;
1538
1539         return ERROR_OK;
1540 }
1541
1542 static int cortex_a8_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1543 {
1544         int retval;
1545         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1546         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1547         struct cortex_a8_brp *brp_list = cortex_a8->brp_list;
1548
1549         if (!breakpoint->set) {
1550                 LOG_WARNING("breakpoint not set");
1551                 return ERROR_OK;
1552         }
1553
1554         if (breakpoint->type == BKPT_HARD) {
1555                 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1556                         int brp_i = breakpoint->set - 1;
1557                         int brp_j = breakpoint->linked_BRP;
1558                         if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num)) {
1559                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1560                                 return ERROR_OK;
1561                         }
1562                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1563                                 brp_list[brp_i].control, brp_list[brp_i].value);
1564                         brp_list[brp_i].used = 0;
1565                         brp_list[brp_i].value = 0;
1566                         brp_list[brp_i].control = 0;
1567                         retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1568                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1569                                         brp_list[brp_i].control);
1570                         if (retval != ERROR_OK)
1571                                 return retval;
1572                         retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1573                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1574                                         brp_list[brp_i].value);
1575                         if (retval != ERROR_OK)
1576                                 return retval;
1577                         if ((brp_j < 0) || (brp_j >= cortex_a8->brp_num)) {
1578                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1579                                 return ERROR_OK;
1580                         }
1581                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_j,
1582                                 brp_list[brp_j].control, brp_list[brp_j].value);
1583                         brp_list[brp_j].used = 0;
1584                         brp_list[brp_j].value = 0;
1585                         brp_list[brp_j].control = 0;
1586                         retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1587                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_j].BRPn,
1588                                         brp_list[brp_j].control);
1589                         if (retval != ERROR_OK)
1590                                 return retval;
1591                         retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1592                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_j].BRPn,
1593                                         brp_list[brp_j].value);
1594                         if (retval != ERROR_OK)
1595                                 return retval;
1596                         breakpoint->linked_BRP = 0;
1597                         breakpoint->set = 0;
1598                         return ERROR_OK;
1599
1600                 } else {
1601                         int brp_i = breakpoint->set - 1;
1602                         if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num)) {
1603                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1604                                 return ERROR_OK;
1605                         }
1606                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1607                                 brp_list[brp_i].control, brp_list[brp_i].value);
1608                         brp_list[brp_i].used = 0;
1609                         brp_list[brp_i].value = 0;
1610                         brp_list[brp_i].control = 0;
1611                         retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1612                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1613                                         brp_list[brp_i].control);
1614                         if (retval != ERROR_OK)
1615                                 return retval;
1616                         retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1617                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1618                                         brp_list[brp_i].value);
1619                         if (retval != ERROR_OK)
1620                                 return retval;
1621                         breakpoint->set = 0;
1622                         return ERROR_OK;
1623                 }
1624         } else {
1625                 /* restore original instruction (kept in target endianness) */
1626                 if (breakpoint->length == 4) {
1627                         retval = target_write_memory(target,
1628                                         breakpoint->address & 0xFFFFFFFE,
1629                                         4, 1, breakpoint->orig_instr);
1630                         if (retval != ERROR_OK)
1631                                 return retval;
1632                 } else {
1633                         retval = target_write_memory(target,
1634                                         breakpoint->address & 0xFFFFFFFE,
1635                                         2, 1, breakpoint->orig_instr);
1636                         if (retval != ERROR_OK)
1637                                 return retval;
1638                 }
1639         }
1640         breakpoint->set = 0;
1641
1642         return ERROR_OK;
1643 }
1644
1645 static int cortex_a8_add_breakpoint(struct target *target,
1646         struct breakpoint *breakpoint)
1647 {
1648         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1649
1650         if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1)) {
1651                 LOG_INFO("no hardware breakpoint available");
1652                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1653         }
1654
1655         if (breakpoint->type == BKPT_HARD)
1656                 cortex_a8->brp_num_available--;
1657
1658         return cortex_a8_set_breakpoint(target, breakpoint, 0x00);      /* Exact match */
1659 }
1660
1661 static int cortex_a8_add_context_breakpoint(struct target *target,
1662         struct breakpoint *breakpoint)
1663 {
1664         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1665
1666         if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1)) {
1667                 LOG_INFO("no hardware breakpoint available");
1668                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1669         }
1670
1671         if (breakpoint->type == BKPT_HARD)
1672                 cortex_a8->brp_num_available--;
1673
1674         return cortex_a8_set_context_breakpoint(target, breakpoint, 0x02);      /* asid match */
1675 }
1676
1677 static int cortex_a8_add_hybrid_breakpoint(struct target *target,
1678         struct breakpoint *breakpoint)
1679 {
1680         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1681
1682         if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1)) {
1683                 LOG_INFO("no hardware breakpoint available");
1684                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1685         }
1686
1687         if (breakpoint->type == BKPT_HARD)
1688                 cortex_a8->brp_num_available--;
1689
1690         return cortex_a8_set_hybrid_breakpoint(target, breakpoint);     /* ??? */
1691 }
1692
1693
1694 static int cortex_a8_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1695 {
1696         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1697
1698 #if 0
1699 /* It is perfectly possible to remove breakpoints while the target is running */
1700         if (target->state != TARGET_HALTED) {
1701                 LOG_WARNING("target not halted");
1702                 return ERROR_TARGET_NOT_HALTED;
1703         }
1704 #endif
1705
1706         if (breakpoint->set) {
1707                 cortex_a8_unset_breakpoint(target, breakpoint);
1708                 if (breakpoint->type == BKPT_HARD)
1709                         cortex_a8->brp_num_available++;
1710         }
1711
1712
1713         return ERROR_OK;
1714 }
1715
1716 /*
1717  * Cortex-A8 Reset functions
1718  */
1719
1720 static int cortex_a8_assert_reset(struct target *target)
1721 {
1722         struct armv7a_common *armv7a = target_to_armv7a(target);
1723
1724         LOG_DEBUG(" ");
1725
1726         /* FIXME when halt is requested, make it work somehow... */
1727
1728         /* Issue some kind of warm reset. */
1729         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1730                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1731         else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1732                 /* REVISIT handle "pulls" cases, if there's
1733                  * hardware that needs them to work.
1734                  */
1735                 jtag_add_reset(0, 1);
1736         } else {
1737                 LOG_ERROR("%s: how to reset?", target_name(target));
1738                 return ERROR_FAIL;
1739         }
1740
1741         /* registers are now invalid */
1742         register_cache_invalidate(armv7a->arm.core_cache);
1743
1744         target->state = TARGET_RESET;
1745
1746         return ERROR_OK;
1747 }
1748
1749 static int cortex_a8_deassert_reset(struct target *target)
1750 {
1751         int retval;
1752
1753         LOG_DEBUG(" ");
1754
1755         /* be certain SRST is off */
1756         jtag_add_reset(0, 0);
1757
1758         retval = cortex_a8_poll(target);
1759         if (retval != ERROR_OK)
1760                 return retval;
1761
1762         if (target->reset_halt) {
1763                 if (target->state != TARGET_HALTED) {
1764                         LOG_WARNING("%s: ran after reset and before halt ...",
1765                                 target_name(target));
1766                         retval = target_halt(target);
1767                         if (retval != ERROR_OK)
1768                                 return retval;
1769                 }
1770         }
1771
1772         return ERROR_OK;
1773 }
1774
1775 static int cortex_a8_write_apb_ab_memory(struct target *target,
1776         uint32_t address, uint32_t size,
1777         uint32_t count, const uint8_t *buffer)
1778 {
1779         /* write memory through APB-AP */
1780
1781         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1782         struct armv7a_common *armv7a = target_to_armv7a(target);
1783         struct arm *arm = &armv7a->arm;
1784         struct adiv5_dap *swjdp = armv7a->arm.dap;
1785         int total_bytes = count * size;
1786         int total_u32;
1787         int start_byte = address & 0x3;
1788         int end_byte   = (address + total_bytes) & 0x3;
1789         struct reg *reg;
1790         uint32_t dscr;
1791         uint8_t *tmp_buff = NULL;
1792
1793         if (target->state != TARGET_HALTED) {
1794                 LOG_WARNING("target not halted");
1795                 return ERROR_TARGET_NOT_HALTED;
1796         }
1797
1798         total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
1799
1800         /* Mark register R0 as dirty, as it will be used
1801          * for transferring the data.
1802          * It will be restored automatically when exiting
1803          * debug mode
1804          */
1805         reg = arm_reg_current(arm, 0);
1806         reg->dirty = true;
1807
1808         /*  clear any abort  */
1809         retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap, armv7a->debug_base + CPUDBG_DRCR, 1<<2);
1810         if (retval != ERROR_OK)
1811                 return retval;
1812
1813         /* This algorithm comes from either :
1814          * Cortex-A8 TRM Example 12-25
1815          * Cortex-R4 TRM Example 11-26
1816          * (slight differences)
1817          */
1818
1819         /* The algorithm only copies 32 bit words, so the buffer
1820          * should be expanded to include the words at either end.
1821          * The first and last words will be read first to avoid
1822          * corruption if needed.
1823          */
1824         tmp_buff = (uint8_t *) malloc(total_u32 << 2);
1825
1826
1827         if ((start_byte != 0) && (total_u32 > 1)) {
1828                 /* First bytes not aligned - read the 32 bit word to avoid corrupting
1829                  * the other bytes in the word.
1830                  */
1831                 retval = cortex_a8_read_apb_ab_memory(target, (address & ~0x3), 4, 1, tmp_buff);
1832                 if (retval != ERROR_OK)
1833                         goto error_free_buff_w;
1834         }
1835
1836         /* If end of write is not aligned, or the write is less than 4 bytes */
1837         if ((end_byte != 0) ||
1838                 ((total_u32 == 1) && (total_bytes != 4))) {
1839
1840                 /* Read the last word to avoid corruption during 32 bit write */
1841                 int mem_offset = (total_u32-1) << 4;
1842                 retval = cortex_a8_read_apb_ab_memory(target, (address & ~0x3) + mem_offset, 4, 1, &tmp_buff[mem_offset]);
1843                 if (retval != ERROR_OK)
1844                         goto error_free_buff_w;
1845         }
1846
1847         /* Copy the write buffer over the top of the temporary buffer */
1848         memcpy(&tmp_buff[start_byte], buffer, total_bytes);
1849
1850         /* We now have a 32 bit aligned buffer that can be written */
1851
1852         /* Read DSCR */
1853         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
1854                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
1855         if (retval != ERROR_OK)
1856                 goto error_free_buff_w;
1857
1858         /* Set DTR mode to Fast (2) */
1859         dscr = (dscr & ~DSCR_EXT_DCC_MASK) | DSCR_EXT_DCC_FAST_MODE;
1860         retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
1861                         armv7a->debug_base + CPUDBG_DSCR, dscr);
1862         if (retval != ERROR_OK)
1863                 goto error_free_buff_w;
1864
1865         /* Copy the destination address into R0 */
1866         /*  - pend an instruction  MRC p14, 0, R0, c5, c0 */
1867         retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
1868                                 armv7a->debug_base + CPUDBG_ITR, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
1869         if (retval != ERROR_OK)
1870                 goto error_unset_dtr_w;
1871         /* Write address into DTRRX, which triggers previous instruction */
1872         retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
1873                                 armv7a->debug_base + CPUDBG_DTRRX, address & (~0x3));
1874         if (retval != ERROR_OK)
1875                 goto error_unset_dtr_w;
1876
1877         /* Write the data transfer instruction into the ITR
1878          * (STC p14, c5, [R0], 4)
1879          */
1880         retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
1881                                 armv7a->debug_base + CPUDBG_ITR, ARMV4_5_STC(0, 1, 0, 1, 14, 5, 0, 4));
1882         if (retval != ERROR_OK)
1883                 goto error_unset_dtr_w;
1884
1885         /* Do the write */
1886         retval = mem_ap_sel_write_buf_u32_noincr(swjdp, armv7a->debug_ap,
1887                                         tmp_buff, (total_u32)<<2, armv7a->debug_base + CPUDBG_DTRRX);
1888         if (retval != ERROR_OK)
1889                 goto error_unset_dtr_w;
1890
1891
1892         /* Switch DTR mode back to non-blocking (0) */
1893         dscr = (dscr & ~DSCR_EXT_DCC_MASK) | DSCR_EXT_DCC_NON_BLOCKING;
1894         retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
1895                                 armv7a->debug_base + CPUDBG_DSCR, dscr);
1896         if (retval != ERROR_OK)
1897                 goto error_unset_dtr_w;
1898
1899     /* Check for sticky abort flags in the DSCR */
1900         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
1901                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1902         if (retval != ERROR_OK)
1903                 goto error_free_buff_w;
1904         if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
1905                 /* Abort occurred - clear it and exit */
1906                 LOG_ERROR("abort occurred - dscr = 0x%08x", dscr);
1907                 mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
1908                                         armv7a->debug_base + CPUDBG_DRCR, 1<<2);
1909                 goto error_free_buff_w;
1910         }
1911
1912         /* Done */
1913         free(tmp_buff);
1914         return ERROR_OK;
1915
1916 error_unset_dtr_w:
1917         /* Unset DTR mode */
1918         mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
1919                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1920         dscr = (dscr & ~DSCR_EXT_DCC_MASK) | DSCR_EXT_DCC_NON_BLOCKING;
1921         mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
1922                                 armv7a->debug_base + CPUDBG_DSCR, dscr);
1923 error_free_buff_w:
1924         LOG_ERROR("error");
1925         free(tmp_buff);
1926         return ERROR_FAIL;
1927 }
1928
1929 static int cortex_a8_read_apb_ab_memory(struct target *target,
1930         uint32_t address, uint32_t size,
1931         uint32_t count, uint8_t *buffer)
1932 {
1933         /* read memory through APB-AP */
1934
1935         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1936         struct armv7a_common *armv7a = target_to_armv7a(target);
1937         struct adiv5_dap *swjdp = armv7a->arm.dap;
1938         struct arm *arm = &armv7a->arm;
1939         int total_bytes = count * size;
1940         int total_u32;
1941         int start_byte = address & 0x3;
1942         struct reg *reg;
1943         uint32_t dscr;
1944         char *tmp_buff = NULL;
1945         uint32_t buff32[2];
1946         if (target->state != TARGET_HALTED) {
1947                 LOG_WARNING("target not halted");
1948                 return ERROR_TARGET_NOT_HALTED;
1949         }
1950
1951         total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
1952
1953         /* Mark register R0 as dirty, as it will be used
1954          * for transferring the data.
1955          * It will be restored automatically when exiting
1956          * debug mode
1957          */
1958         reg = arm_reg_current(arm, 0);
1959         reg->dirty = true;
1960
1961         /*  clear any abort  */
1962         retval =
1963                 mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap, armv7a->debug_base + CPUDBG_DRCR, 1<<2);
1964         if (retval != ERROR_OK)
1965                 return retval;
1966
1967         /* Read DSCR */
1968         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
1969                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
1970
1971         /* This algorithm comes from either :
1972          * Cortex-A8 TRM Example 12-24
1973          * Cortex-R4 TRM Example 11-25
1974          * (slight differences)
1975          */
1976
1977         /* Set DTR access mode to stall mode b01  */
1978         dscr = (dscr & ~DSCR_EXT_DCC_MASK) | DSCR_EXT_DCC_STALL_MODE;
1979         retval +=  mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
1980                         armv7a->debug_base + CPUDBG_DSCR, dscr);
1981
1982     /* Write R0 with value 'address' using write procedure for stall mode */
1983         /*   - Write the address for read access into DTRRX */
1984         retval += mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
1985                         armv7a->debug_base + CPUDBG_DTRRX, address & ~0x3);
1986         /*  - Copy value from DTRRX to R0 using instruction mrc p14, 0, r0, c5, c0 */
1987         cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
1988
1989
1990         /* Write the data transfer instruction (ldc p14, c5, [r0],4)
1991          * and the DTR mode setting to fast mode
1992          * in one combined write (since they are adjacent registers)
1993          */
1994         buff32[0] = ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4);
1995         dscr = (dscr & ~DSCR_EXT_DCC_MASK) | DSCR_EXT_DCC_FAST_MODE;
1996         buff32[1] = dscr;
1997         /*  group the 2 access CPUDBG_ITR 0x84 and CPUDBG_DSCR 0x88 */
1998         retval += mem_ap_sel_write_buf_u32(swjdp, armv7a->debug_ap, (uint8_t *)buff32, 8,
1999                         armv7a->debug_base + CPUDBG_ITR);
2000         if (retval != ERROR_OK)
2001                 goto error_unset_dtr_r;
2002
2003
2004         /* Due to offset word alignment, the  buffer may not have space
2005          * to read the full first and last int32 words,
2006          * hence, malloc space to read into, then copy and align into the buffer.
2007          */
2008         tmp_buff = (char *) malloc(total_u32<<2);
2009
2010         /* The last word needs to be handled separately - read all other words in one go.
2011          */
2012         if (total_u32 > 1) {
2013                 /* Read the data - Each read of the DTRTX register causes the instruction to be reissued
2014                  * Abort flags are sticky, so can be read at end of transactions
2015                  *
2016                  * This data is read in aligned to 32 bit boundary, hence may need shifting later.
2017                  */
2018                 retval = mem_ap_sel_read_buf_u32_noincr(swjdp, armv7a->debug_ap, (uint8_t *)tmp_buff, (total_u32-1)<<2,
2019                                                                         armv7a->debug_base + CPUDBG_DTRTX);
2020                 if (retval != ERROR_OK)
2021                         goto error_unset_dtr_r;
2022         }
2023
2024         /* set DTR access mode back to non blocking b00  */
2025         dscr = (dscr & ~DSCR_EXT_DCC_MASK) | DSCR_EXT_DCC_NON_BLOCKING;
2026         retval =  mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
2027                                         armv7a->debug_base + CPUDBG_DSCR, dscr);
2028         if (retval != ERROR_OK)
2029                 goto error_free_buff_r;
2030
2031         /* Wait for the final read instruction to finish */
2032         do {
2033                 retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2034                                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
2035                 if (retval != ERROR_OK)
2036                         goto error_free_buff_r;
2037         } while ((dscr & DSCR_INSTR_COMP) == 0);
2038
2039
2040         /* Check for sticky abort flags in the DSCR */
2041         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2042                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2043         if (retval != ERROR_OK)
2044                 goto error_free_buff_r;
2045         if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2046                 /* Abort occurred - clear it and exit */
2047                 LOG_ERROR("abort occurred - dscr = 0x%08x", dscr);
2048                 mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
2049                                         armv7a->debug_base + CPUDBG_DRCR, 1<<2);
2050                 goto error_free_buff_r;
2051         }
2052
2053         /* Read the last word */
2054         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2055                                 armv7a->debug_base + CPUDBG_DTRTX, (uint32_t *)&tmp_buff[(total_u32-1)<<2]);
2056         if (retval != ERROR_OK)
2057                 goto error_free_buff_r;
2058
2059         /* Copy and align the data into the output buffer */
2060         memcpy(buffer, &tmp_buff[start_byte], total_bytes);
2061
2062         free(tmp_buff);
2063
2064         /* Done */
2065         return ERROR_OK;
2066
2067
2068 error_unset_dtr_r:
2069         /* Unset DTR mode */
2070         mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2071                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2072         dscr = (dscr & ~DSCR_EXT_DCC_MASK) | DSCR_EXT_DCC_NON_BLOCKING;
2073         mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
2074                                 armv7a->debug_base + CPUDBG_DSCR, dscr);
2075 error_free_buff_r:
2076         LOG_ERROR("error");
2077         free(tmp_buff);
2078         return ERROR_FAIL;
2079 }
2080
2081
2082 /*
2083  * Cortex-A8 Memory access
2084  *
2085  * This is same Cortex M3 but we must also use the correct
2086  * ap number for every access.
2087  */
2088
2089 static int cortex_a8_read_phys_memory(struct target *target,
2090         uint32_t address, uint32_t size,
2091         uint32_t count, uint8_t *buffer)
2092 {
2093         struct armv7a_common *armv7a = target_to_armv7a(target);
2094         struct adiv5_dap *swjdp = armv7a->arm.dap;
2095         int retval = ERROR_COMMAND_SYNTAX_ERROR;
2096         uint8_t apsel = swjdp->apsel;
2097         LOG_DEBUG("Reading memory at real address 0x%x; size %d; count %d",
2098                 address, size, count);
2099
2100         if (count && buffer) {
2101
2102                 if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap)) {
2103
2104                         /* read memory through AHB-AP */
2105
2106                         switch (size) {
2107                                 case 4:
2108                                         retval = mem_ap_sel_read_buf_u32(swjdp, armv7a->memory_ap,
2109                                                 buffer, 4 * count, address);
2110                                         break;
2111                                 case 2:
2112                                         retval = mem_ap_sel_read_buf_u16(swjdp, armv7a->memory_ap,
2113                                                 buffer, 2 * count, address);
2114                                         break;
2115                                 case 1:
2116                                         retval = mem_ap_sel_read_buf_u8(swjdp, armv7a->memory_ap,
2117                                                 buffer, count, address);
2118                                         break;
2119                         }
2120                 } else {
2121
2122                         /* read memory through APB-AP
2123                          *  disable mmu */
2124                         retval = cortex_a8_mmu_modify(target, 0);
2125                         if (retval != ERROR_OK)
2126                                 return retval;
2127                         retval = cortex_a8_read_apb_ab_memory(target, address, size, count, buffer);
2128                 }
2129         }
2130         return retval;
2131 }
2132
2133 static int cortex_a8_read_memory(struct target *target, uint32_t address,
2134         uint32_t size, uint32_t count, uint8_t *buffer)
2135 {
2136         int enabled = 0;
2137         uint32_t virt, phys;
2138         int retval;
2139         struct armv7a_common *armv7a = target_to_armv7a(target);
2140         struct adiv5_dap *swjdp = armv7a->arm.dap;
2141         uint8_t apsel = swjdp->apsel;
2142
2143         /* cortex_a8 handles unaligned memory access */
2144         LOG_DEBUG("Reading memory at address 0x%x; size %d; count %d", address,
2145                 size, count);
2146         if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap)) {
2147                 retval = cortex_a8_mmu(target, &enabled);
2148                 if (retval != ERROR_OK)
2149                         return retval;
2150
2151
2152                 if (enabled) {
2153                         virt = address;
2154                         retval = cortex_a8_virt2phys(target, virt, &phys);
2155                         if (retval != ERROR_OK)
2156                                 return retval;
2157
2158                         LOG_DEBUG("Reading at virtual address. Translating v:0x%x to r:0x%x",
2159                                 virt, phys);
2160                         address = phys;
2161                 }
2162                 retval = cortex_a8_read_phys_memory(target, address, size, count, buffer);
2163         } else {
2164                 retval = cortex_a8_check_address(target, address);
2165                 if (retval != ERROR_OK)
2166                         return retval;
2167                 /*  enable mmu */
2168                 retval = cortex_a8_mmu_modify(target, 1);
2169                 if (retval != ERROR_OK)
2170                         return retval;
2171                 retval = cortex_a8_read_apb_ab_memory(target, address, size, count, buffer);
2172         }
2173         return retval;
2174 }
2175
2176 static int cortex_a8_write_phys_memory(struct target *target,
2177         uint32_t address, uint32_t size,
2178         uint32_t count, const uint8_t *buffer)
2179 {
2180         struct armv7a_common *armv7a = target_to_armv7a(target);
2181         struct adiv5_dap *swjdp = armv7a->arm.dap;
2182         int retval = ERROR_COMMAND_SYNTAX_ERROR;
2183         uint8_t apsel = swjdp->apsel;
2184
2185         LOG_DEBUG("Writing memory to real address 0x%x; size %d; count %d", address,
2186                 size, count);
2187
2188         if (count && buffer) {
2189
2190                 if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap)) {
2191
2192                         /* write memory through AHB-AP */
2193
2194                         switch (size) {
2195                                 case 4:
2196                                         retval = mem_ap_sel_write_buf_u32(swjdp, armv7a->memory_ap,
2197                                                 buffer, 4 * count, address);
2198                                         break;
2199                                 case 2:
2200                                         retval = mem_ap_sel_write_buf_u16(swjdp, armv7a->memory_ap,
2201                                                 buffer, 2 * count, address);
2202                                         break;
2203                                 case 1:
2204                                         retval = mem_ap_sel_write_buf_u8(swjdp, armv7a->memory_ap,
2205                                                 buffer, count, address);
2206                                         break;
2207                         }
2208
2209                 } else {
2210
2211                         /* write memory through APB-AP */
2212                         retval = cortex_a8_mmu_modify(target, 0);
2213                         if (retval != ERROR_OK)
2214                                 return retval;
2215                         return cortex_a8_write_apb_ab_memory(target, address, size, count, buffer);
2216                 }
2217         }
2218
2219
2220         /* REVISIT this op is generic ARMv7-A/R stuff */
2221         if (retval == ERROR_OK && target->state == TARGET_HALTED) {
2222                 struct arm_dpm *dpm = armv7a->arm.dpm;
2223
2224                 retval = dpm->prepare(dpm);
2225                 if (retval != ERROR_OK)
2226                         return retval;
2227
2228                 /* The Cache handling will NOT work with MMU active, the
2229                  * wrong addresses will be invalidated!
2230                  *
2231                  * For both ICache and DCache, walk all cache lines in the
2232                  * address range. Cortex-A8 has fixed 64 byte line length.
2233                  *
2234                  * REVISIT per ARMv7, these may trigger watchpoints ...
2235                  */
2236
2237                 /* invalidate I-Cache */
2238                 if (armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled) {
2239                         /* ICIMVAU - Invalidate Cache single entry
2240                          * with MVA to PoU
2241                          *      MCR p15, 0, r0, c7, c5, 1
2242                          */
2243                         for (uint32_t cacheline = address;
2244                                 cacheline < address + size * count;
2245                                 cacheline += 64) {
2246                                 retval = dpm->instr_write_data_r0(dpm,
2247                                                 ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
2248                                                 cacheline);
2249                                 if (retval != ERROR_OK)
2250                                         return retval;
2251                         }
2252                 }
2253
2254                 /* invalidate D-Cache */
2255                 if (armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled) {
2256                         /* DCIMVAC - Invalidate data Cache line
2257                          * with MVA to PoC
2258                          *      MCR p15, 0, r0, c7, c6, 1
2259                          */
2260                         for (uint32_t cacheline = address;
2261                                 cacheline < address + size * count;
2262                                 cacheline += 64) {
2263                                 retval = dpm->instr_write_data_r0(dpm,
2264                                                 ARMV4_5_MCR(15, 0, 0, 7, 6, 1),
2265                                                 cacheline);
2266                                 if (retval != ERROR_OK)
2267                                         return retval;
2268                         }
2269                 }
2270
2271                 /* (void) */ dpm->finish(dpm);
2272         }
2273
2274         return retval;
2275 }
2276
2277 static int cortex_a8_write_memory(struct target *target, uint32_t address,
2278         uint32_t size, uint32_t count, const uint8_t *buffer)
2279 {
2280         int enabled = 0;
2281         uint32_t virt, phys;
2282         int retval;
2283         struct armv7a_common *armv7a = target_to_armv7a(target);
2284         struct adiv5_dap *swjdp = armv7a->arm.dap;
2285         uint8_t apsel = swjdp->apsel;
2286         /* cortex_a8 handles unaligned memory access */
2287         LOG_DEBUG("Reading memory at address 0x%x; size %d; count %d", address,
2288                 size, count);
2289         if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap)) {
2290
2291                 LOG_DEBUG("Writing memory to address 0x%x; size %d; count %d", address, size,
2292                         count);
2293                 retval = cortex_a8_mmu(target, &enabled);
2294                 if (retval != ERROR_OK)
2295                         return retval;
2296
2297                 if (enabled) {
2298                         virt = address;
2299                         retval = cortex_a8_virt2phys(target, virt, &phys);
2300                         if (retval != ERROR_OK)
2301                                 return retval;
2302                         LOG_DEBUG("Writing to virtual address. Translating v:0x%x to r:0x%x",
2303                                 virt,
2304                                 phys);
2305                         address = phys;
2306                 }
2307
2308                 retval = cortex_a8_write_phys_memory(target, address, size,
2309                                 count, buffer);
2310         } else {
2311                 retval = cortex_a8_check_address(target, address);
2312                 if (retval != ERROR_OK)
2313                         return retval;
2314                 /*  enable mmu  */
2315                 retval = cortex_a8_mmu_modify(target, 1);
2316                 if (retval != ERROR_OK)
2317                         return retval;
2318                 retval = cortex_a8_write_apb_ab_memory(target, address, size, count, buffer);
2319         }
2320         return retval;
2321 }
2322
2323 static int cortex_a8_bulk_write_memory(struct target *target, uint32_t address,
2324         uint32_t count, const uint8_t *buffer)
2325 {
2326         return cortex_a8_write_memory(target, address, 4, count, buffer);
2327 }
2328
2329 static int cortex_a8_handle_target_request(void *priv)
2330 {
2331         struct target *target = priv;
2332         struct armv7a_common *armv7a = target_to_armv7a(target);
2333         struct adiv5_dap *swjdp = armv7a->arm.dap;
2334         int retval;
2335
2336         if (!target_was_examined(target))
2337                 return ERROR_OK;
2338         if (!target->dbg_msg_enabled)
2339                 return ERROR_OK;
2340
2341         if (target->state == TARGET_RUNNING) {
2342                 uint32_t request;
2343                 uint32_t dscr;
2344                 retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2345                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2346
2347                 /* check if we have data */
2348                 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2349                         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2350                                         armv7a->debug_base + CPUDBG_DTRTX, &request);
2351                         if (retval == ERROR_OK) {
2352                                 target_request(target, request);
2353                                 retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2354                                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2355                         }
2356                 }
2357         }
2358
2359         return ERROR_OK;
2360 }
2361
2362 /*
2363  * Cortex-A8 target information and configuration
2364  */
2365
2366 static int cortex_a8_examine_first(struct target *target)
2367 {
2368         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
2369         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
2370         struct adiv5_dap *swjdp = armv7a->arm.dap;
2371         int i;
2372         int retval = ERROR_OK;
2373         uint32_t didr, ctypr, ttypr, cpuid;
2374
2375         /* We do one extra read to ensure DAP is configured,
2376          * we call ahbap_debugport_init(swjdp) instead
2377          */
2378         retval = ahbap_debugport_init(swjdp);
2379         if (retval != ERROR_OK)
2380                 return retval;
2381
2382         /* Search for the APB-AB - it is needed for access to debug registers */
2383         retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv7a->debug_ap);
2384         if (retval != ERROR_OK) {
2385                 LOG_ERROR("Could not find APB-AP for debug access");
2386                 return retval;
2387         }
2388         /* Search for the AHB-AB */
2389         retval = dap_find_ap(swjdp, AP_TYPE_AHB_AP, &armv7a->memory_ap);
2390         if (retval != ERROR_OK) {
2391                 /* AHB-AP not found - use APB-AP */
2392                 LOG_DEBUG("Could not find AHB-AP - using APB-AP for memory access");
2393                 armv7a->memory_ap_available = false;
2394         } else {
2395                 armv7a->memory_ap_available = true;
2396         }
2397
2398
2399         if (!target->dbgbase_set) {
2400                 uint32_t dbgbase;
2401                 /* Get ROM Table base */
2402                 uint32_t apid;
2403                 retval = dap_get_debugbase(swjdp, 1, &dbgbase, &apid);
2404                 if (retval != ERROR_OK)
2405                         return retval;
2406                 /* Lookup 0x15 -- Processor DAP */
2407                 retval = dap_lookup_cs_component(swjdp, 1, dbgbase, 0x15,
2408                                 &armv7a->debug_base);
2409                 if (retval != ERROR_OK)
2410                         return retval;
2411         } else
2412                 armv7a->debug_base = target->dbgbase;
2413
2414         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2415                         armv7a->debug_base + CPUDBG_CPUID, &cpuid);
2416         if (retval != ERROR_OK)
2417                 return retval;
2418
2419         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2420                         armv7a->debug_base + CPUDBG_CPUID, &cpuid);
2421         if (retval != ERROR_OK) {
2422                 LOG_DEBUG("Examine %s failed", "CPUID");
2423                 return retval;
2424         }
2425
2426         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2427                         armv7a->debug_base + CPUDBG_CTYPR, &ctypr);
2428         if (retval != ERROR_OK) {
2429                 LOG_DEBUG("Examine %s failed", "CTYPR");
2430                 return retval;
2431         }
2432
2433         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2434                         armv7a->debug_base + CPUDBG_TTYPR, &ttypr);
2435         if (retval != ERROR_OK) {
2436                 LOG_DEBUG("Examine %s failed", "TTYPR");
2437                 return retval;
2438         }
2439
2440         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2441                         armv7a->debug_base + CPUDBG_DIDR, &didr);
2442         if (retval != ERROR_OK) {
2443                 LOG_DEBUG("Examine %s failed", "DIDR");
2444                 return retval;
2445         }
2446
2447         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
2448         LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
2449         LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
2450         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
2451
2452         armv7a->arm.core_type = ARM_MODE_MON;
2453         retval = cortex_a8_dpm_setup(cortex_a8, didr);
2454         if (retval != ERROR_OK)
2455                 return retval;
2456
2457         /* Setup Breakpoint Register Pairs */
2458         cortex_a8->brp_num = ((didr >> 24) & 0x0F) + 1;
2459         cortex_a8->brp_num_context = ((didr >> 20) & 0x0F) + 1;
2460         cortex_a8->brp_num_available = cortex_a8->brp_num;
2461         cortex_a8->brp_list = calloc(cortex_a8->brp_num, sizeof(struct cortex_a8_brp));
2462 /*      cortex_a8->brb_enabled = ????; */
2463         for (i = 0; i < cortex_a8->brp_num; i++) {
2464                 cortex_a8->brp_list[i].used = 0;
2465                 if (i < (cortex_a8->brp_num-cortex_a8->brp_num_context))
2466                         cortex_a8->brp_list[i].type = BRP_NORMAL;
2467                 else
2468                         cortex_a8->brp_list[i].type = BRP_CONTEXT;
2469                 cortex_a8->brp_list[i].value = 0;
2470                 cortex_a8->brp_list[i].control = 0;
2471                 cortex_a8->brp_list[i].BRPn = i;
2472         }
2473
2474         LOG_DEBUG("Configured %i hw breakpoints", cortex_a8->brp_num);
2475
2476         target_set_examined(target);
2477         return ERROR_OK;
2478 }
2479
2480 static int cortex_a8_examine(struct target *target)
2481 {
2482         int retval = ERROR_OK;
2483
2484         /* don't re-probe hardware after each reset */
2485         if (!target_was_examined(target))
2486                 retval = cortex_a8_examine_first(target);
2487
2488         /* Configure core debug access */
2489         if (retval == ERROR_OK)
2490                 retval = cortex_a8_init_debug_access(target);
2491
2492         return retval;
2493 }
2494
2495 /*
2496  *      Cortex-A8 target creation and initialization
2497  */
2498
2499 static int cortex_a8_init_target(struct command_context *cmd_ctx,
2500         struct target *target)
2501 {
2502         /* examine_first() does a bunch of this */
2503         return ERROR_OK;
2504 }
2505
2506 static int cortex_a8_init_arch_info(struct target *target,
2507         struct cortex_a8_common *cortex_a8, struct jtag_tap *tap)
2508 {
2509         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
2510         struct adiv5_dap *dap = &armv7a->dap;
2511
2512         armv7a->arm.dap = dap;
2513
2514         /* Setup struct cortex_a8_common */
2515         cortex_a8->common_magic = CORTEX_A8_COMMON_MAGIC;
2516         /*  tap has no dap initialized */
2517         if (!tap->dap) {
2518                 armv7a->arm.dap = dap;
2519                 /* Setup struct cortex_a8_common */
2520
2521                 /* prepare JTAG information for the new target */
2522                 cortex_a8->jtag_info.tap = tap;
2523                 cortex_a8->jtag_info.scann_size = 4;
2524
2525                 /* Leave (only) generic DAP stuff for debugport_init() */
2526                 dap->jtag_info = &cortex_a8->jtag_info;
2527
2528                 /* Number of bits for tar autoincrement, impl. dep. at least 10 */
2529                 dap->tar_autoincr_block = (1 << 10);
2530                 dap->memaccess_tck = 80;
2531                 tap->dap = dap;
2532         } else
2533                 armv7a->arm.dap = tap->dap;
2534
2535         cortex_a8->fast_reg_read = 0;
2536
2537         /* register arch-specific functions */
2538         armv7a->examine_debug_reason = NULL;
2539
2540         armv7a->post_debug_entry = cortex_a8_post_debug_entry;
2541
2542         armv7a->pre_restore_context = NULL;
2543
2544         armv7a->armv7a_mmu.read_physical_memory = cortex_a8_read_phys_memory;
2545
2546
2547 /*      arm7_9->handle_target_request = cortex_a8_handle_target_request; */
2548
2549         /* REVISIT v7a setup should be in a v7a-specific routine */
2550         armv7a_init_arch_info(target, armv7a);
2551         target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target);
2552
2553         return ERROR_OK;
2554 }
2555
2556 static int cortex_a8_target_create(struct target *target, Jim_Interp *interp)
2557 {
2558         struct cortex_a8_common *cortex_a8 = calloc(1, sizeof(struct cortex_a8_common));
2559
2560         return cortex_a8_init_arch_info(target, cortex_a8, target->tap);
2561 }
2562
2563
2564
2565 static int cortex_a8_mmu(struct target *target, int *enabled)
2566 {
2567         if (target->state != TARGET_HALTED) {
2568                 LOG_ERROR("%s: target not halted", __func__);
2569                 return ERROR_TARGET_INVALID;
2570         }
2571
2572         *enabled = target_to_cortex_a8(target)->armv7a_common.armv7a_mmu.mmu_enabled;
2573         return ERROR_OK;
2574 }
2575
2576 static int cortex_a8_virt2phys(struct target *target,
2577         uint32_t virt, uint32_t *phys)
2578 {
2579         int retval = ERROR_FAIL;
2580         struct armv7a_common *armv7a = target_to_armv7a(target);
2581         struct adiv5_dap *swjdp = armv7a->arm.dap;
2582         uint8_t apsel = swjdp->apsel;
2583         if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap)) {
2584                 uint32_t ret;
2585                 retval = armv7a_mmu_translate_va(target,
2586                                 virt, &ret);
2587                 if (retval != ERROR_OK)
2588                         goto done;
2589                 *phys = ret;
2590         } else {/*  use this method if armv7a->memory_ap not selected
2591                  *  mmu must be enable in order to get a correct translation */
2592                 retval = cortex_a8_mmu_modify(target, 1);
2593                 if (retval != ERROR_OK)
2594                         goto done;
2595                 retval = armv7a_mmu_translate_va_pa(target, virt,  phys, 1);
2596         }
2597 done:
2598         return retval;
2599 }
2600
2601 COMMAND_HANDLER(cortex_a8_handle_cache_info_command)
2602 {
2603         struct target *target = get_current_target(CMD_CTX);
2604         struct armv7a_common *armv7a = target_to_armv7a(target);
2605
2606         return armv7a_handle_cache_info_command(CMD_CTX,
2607                         &armv7a->armv7a_mmu.armv7a_cache);
2608 }
2609
2610
2611 COMMAND_HANDLER(cortex_a8_handle_dbginit_command)
2612 {
2613         struct target *target = get_current_target(CMD_CTX);
2614         if (!target_was_examined(target)) {
2615                 LOG_ERROR("target not examined yet");
2616                 return ERROR_FAIL;
2617         }
2618
2619         return cortex_a8_init_debug_access(target);
2620 }
2621 COMMAND_HANDLER(cortex_a8_handle_smp_off_command)
2622 {
2623         struct target *target = get_current_target(CMD_CTX);
2624         /* check target is an smp target */
2625         struct target_list *head;
2626         struct target *curr;
2627         head = target->head;
2628         target->smp = 0;
2629         if (head != (struct target_list *)NULL) {
2630                 while (head != (struct target_list *)NULL) {
2631                         curr = head->target;
2632                         curr->smp = 0;
2633                         head = head->next;
2634                 }
2635                 /*  fixes the target display to the debugger */
2636                 target->gdb_service->target = target;
2637         }
2638         return ERROR_OK;
2639 }
2640
2641 COMMAND_HANDLER(cortex_a8_handle_smp_on_command)
2642 {
2643         struct target *target = get_current_target(CMD_CTX);
2644         struct target_list *head;
2645         struct target *curr;
2646         head = target->head;
2647         if (head != (struct target_list *)NULL) {
2648                 target->smp = 1;
2649                 while (head != (struct target_list *)NULL) {
2650                         curr = head->target;
2651                         curr->smp = 1;
2652                         head = head->next;
2653                 }
2654         }
2655         return ERROR_OK;
2656 }
2657
2658 COMMAND_HANDLER(cortex_a8_handle_smp_gdb_command)
2659 {
2660         struct target *target = get_current_target(CMD_CTX);
2661         int retval = ERROR_OK;
2662         struct target_list *head;
2663         head = target->head;
2664         if (head != (struct target_list *)NULL) {
2665                 if (CMD_ARGC == 1) {
2666                         int coreid = 0;
2667                         COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], coreid);
2668                         if (ERROR_OK != retval)
2669                                 return retval;
2670                         target->gdb_service->core[1] = coreid;
2671
2672                 }
2673                 command_print(CMD_CTX, "gdb coreid  %d -> %d", target->gdb_service->core[0]
2674                         , target->gdb_service->core[1]);
2675         }
2676         return ERROR_OK;
2677 }
2678
2679 static const struct command_registration cortex_a8_exec_command_handlers[] = {
2680         {
2681                 .name = "cache_info",
2682                 .handler = cortex_a8_handle_cache_info_command,
2683                 .mode = COMMAND_EXEC,
2684                 .help = "display information about target caches",
2685                 .usage = "",
2686         },
2687         {
2688                 .name = "dbginit",
2689                 .handler = cortex_a8_handle_dbginit_command,
2690                 .mode = COMMAND_EXEC,
2691                 .help = "Initialize core debug",
2692                 .usage = "",
2693         },
2694         {   .name = "smp_off",
2695             .handler = cortex_a8_handle_smp_off_command,
2696             .mode = COMMAND_EXEC,
2697             .help = "Stop smp handling",
2698             .usage = "",},
2699         {
2700                 .name = "smp_on",
2701                 .handler = cortex_a8_handle_smp_on_command,
2702                 .mode = COMMAND_EXEC,
2703                 .help = "Restart smp handling",
2704                 .usage = "",
2705         },
2706         {
2707                 .name = "smp_gdb",
2708                 .handler = cortex_a8_handle_smp_gdb_command,
2709                 .mode = COMMAND_EXEC,
2710                 .help = "display/fix current core played to gdb",
2711                 .usage = "",
2712         },
2713
2714
2715         COMMAND_REGISTRATION_DONE
2716 };
2717 static const struct command_registration cortex_a8_command_handlers[] = {
2718         {
2719                 .chain = arm_command_handlers,
2720         },
2721         {
2722                 .chain = armv7a_command_handlers,
2723         },
2724         {
2725                 .name = "cortex_a8",
2726                 .mode = COMMAND_ANY,
2727                 .help = "Cortex-A8 command group",
2728                 .usage = "",
2729                 .chain = cortex_a8_exec_command_handlers,
2730         },
2731         COMMAND_REGISTRATION_DONE
2732 };
2733
2734 struct target_type cortexa8_target = {
2735         .name = "cortex_a8",
2736
2737         .poll = cortex_a8_poll,
2738         .arch_state = armv7a_arch_state,
2739
2740         .target_request_data = NULL,
2741
2742         .halt = cortex_a8_halt,
2743         .resume = cortex_a8_resume,
2744         .step = cortex_a8_step,
2745
2746         .assert_reset = cortex_a8_assert_reset,
2747         .deassert_reset = cortex_a8_deassert_reset,
2748         .soft_reset_halt = NULL,
2749
2750         /* REVISIT allow exporting VFP3 registers ... */
2751         .get_gdb_reg_list = arm_get_gdb_reg_list,
2752
2753         .read_memory = cortex_a8_read_memory,
2754         .write_memory = cortex_a8_write_memory,
2755         .bulk_write_memory = cortex_a8_bulk_write_memory,
2756
2757         .checksum_memory = arm_checksum_memory,
2758         .blank_check_memory = arm_blank_check_memory,
2759
2760         .run_algorithm = armv4_5_run_algorithm,
2761
2762         .add_breakpoint = cortex_a8_add_breakpoint,
2763         .add_context_breakpoint = cortex_a8_add_context_breakpoint,
2764         .add_hybrid_breakpoint = cortex_a8_add_hybrid_breakpoint,
2765         .remove_breakpoint = cortex_a8_remove_breakpoint,
2766         .add_watchpoint = NULL,
2767         .remove_watchpoint = NULL,
2768
2769         .commands = cortex_a8_command_handlers,
2770         .target_create = cortex_a8_target_create,
2771         .init_target = cortex_a8_init_target,
2772         .examine = cortex_a8_examine,
2773
2774         .read_phys_memory = cortex_a8_read_phys_memory,
2775         .write_phys_memory = cortex_a8_write_phys_memory,
2776         .mmu = cortex_a8_mmu,
2777         .virt2phys = cortex_a8_virt2phys,
2778 };