target: fix minor typos and duplicated words
[fw/openocd] / src / target / cortex_a.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   Copyright (C) 2010 Ã˜yvind Harboe                                      *
15  *   oyvind.harboe@zylin.com                                               *
16  *                                                                         *
17  *   Copyright (C) ST-Ericsson SA 2011                                     *
18  *   michel.jaouen@stericsson.com : smp minimum support                    *
19  *                                                                         *
20  *   Copyright (C) Broadcom 2012                                           *
21  *   ehunter@broadcom.com : Cortex-R4 support                              *
22  *                                                                         *
23  *   Copyright (C) 2013 Kamal Dasu                                         *
24  *   kdasu.kdev@gmail.com                                                  *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
38  *                                                                         *
39  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
40  *   Cortex-A9(tm) TRM, ARM DDI 0407F                                      *
41  *   Cortex-A4(tm) TRM, ARM DDI 0363E                                      *
42  *   Cortex-A15(tm)TRM, ARM DDI 0438C                                      *
43  *                                                                         *
44  ***************************************************************************/
45
46 #ifdef HAVE_CONFIG_H
47 #include "config.h"
48 #endif
49
50 #include "breakpoints.h"
51 #include "cortex_a.h"
52 #include "register.h"
53 #include "armv7a_mmu.h"
54 #include "target_request.h"
55 #include "target_type.h"
56 #include "arm_opcodes.h"
57 #include "arm_semihosting.h"
58 #include "jtag/interface.h"
59 #include "transport/transport.h"
60 #include "smp.h"
61 #include <helper/time_support.h>
62
63 static int cortex_a_poll(struct target *target);
64 static int cortex_a_debug_entry(struct target *target);
65 static int cortex_a_restore_context(struct target *target, bool bpwp);
66 static int cortex_a_set_breakpoint(struct target *target,
67         struct breakpoint *breakpoint, uint8_t matchmode);
68 static int cortex_a_set_context_breakpoint(struct target *target,
69         struct breakpoint *breakpoint, uint8_t matchmode);
70 static int cortex_a_set_hybrid_breakpoint(struct target *target,
71         struct breakpoint *breakpoint);
72 static int cortex_a_unset_breakpoint(struct target *target,
73         struct breakpoint *breakpoint);
74 static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
75         uint32_t value, uint32_t *dscr);
76 static int cortex_a_mmu(struct target *target, int *enabled);
77 static int cortex_a_mmu_modify(struct target *target, int enable);
78 static int cortex_a_virt2phys(struct target *target,
79         target_addr_t virt, target_addr_t *phys);
80 static int cortex_a_read_cpu_memory(struct target *target,
81         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
82
83
84 /*  restore cp15_control_reg at resume */
85 static int cortex_a_restore_cp15_control_reg(struct target *target)
86 {
87         int retval = ERROR_OK;
88         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
89         struct armv7a_common *armv7a = target_to_armv7a(target);
90
91         if (cortex_a->cp15_control_reg != cortex_a->cp15_control_reg_curr) {
92                 cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
93                 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg); */
94                 retval = armv7a->arm.mcr(target, 15,
95                                 0, 0,   /* op1, op2 */
96                                 1, 0,   /* CRn, CRm */
97                                 cortex_a->cp15_control_reg);
98         }
99         return retval;
100 }
101
102 /*
103  * Set up ARM core for memory access.
104  * If !phys_access, switch to SVC mode and make sure MMU is on
105  * If phys_access, switch off mmu
106  */
107 static int cortex_a_prep_memaccess(struct target *target, int phys_access)
108 {
109         struct armv7a_common *armv7a = target_to_armv7a(target);
110         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
111         int mmu_enabled = 0;
112
113         if (phys_access == 0) {
114                 arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
115                 cortex_a_mmu(target, &mmu_enabled);
116                 if (mmu_enabled)
117                         cortex_a_mmu_modify(target, 1);
118                 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
119                         /* overwrite DACR to all-manager */
120                         armv7a->arm.mcr(target, 15,
121                                         0, 0, 3, 0,
122                                         0xFFFFFFFF);
123                 }
124         } else {
125                 cortex_a_mmu(target, &mmu_enabled);
126                 if (mmu_enabled)
127                         cortex_a_mmu_modify(target, 0);
128         }
129         return ERROR_OK;
130 }
131
132 /*
133  * Restore ARM core after memory access.
134  * If !phys_access, switch to previous mode
135  * If phys_access, restore MMU setting
136  */
137 static int cortex_a_post_memaccess(struct target *target, int phys_access)
138 {
139         struct armv7a_common *armv7a = target_to_armv7a(target);
140         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
141
142         if (phys_access == 0) {
143                 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
144                         /* restore */
145                         armv7a->arm.mcr(target, 15,
146                                         0, 0, 3, 0,
147                                         cortex_a->cp15_dacr_reg);
148                 }
149                 arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
150         } else {
151                 int mmu_enabled = 0;
152                 cortex_a_mmu(target, &mmu_enabled);
153                 if (mmu_enabled)
154                         cortex_a_mmu_modify(target, 1);
155         }
156         return ERROR_OK;
157 }
158
159
160 /*  modify cp15_control_reg in order to enable or disable mmu for :
161  *  - virt2phys address conversion
162  *  - read or write memory in phys or virt address */
163 static int cortex_a_mmu_modify(struct target *target, int enable)
164 {
165         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
166         struct armv7a_common *armv7a = target_to_armv7a(target);
167         int retval = ERROR_OK;
168         int need_write = 0;
169
170         if (enable) {
171                 /*  if mmu enabled at target stop and mmu not enable */
172                 if (!(cortex_a->cp15_control_reg & 0x1U)) {
173                         LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
174                         return ERROR_FAIL;
175                 }
176                 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0) {
177                         cortex_a->cp15_control_reg_curr |= 0x1U;
178                         need_write = 1;
179                 }
180         } else {
181                 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0x1U) {
182                         cortex_a->cp15_control_reg_curr &= ~0x1U;
183                         need_write = 1;
184                 }
185         }
186
187         if (need_write) {
188                 LOG_DEBUG("%s, writing cp15 ctrl: %" PRIx32,
189                         enable ? "enable mmu" : "disable mmu",
190                         cortex_a->cp15_control_reg_curr);
191
192                 retval = armv7a->arm.mcr(target, 15,
193                                 0, 0,   /* op1, op2 */
194                                 1, 0,   /* CRn, CRm */
195                                 cortex_a->cp15_control_reg_curr);
196         }
197         return retval;
198 }
199
200 /*
201  * Cortex-A Basic debug access, very low level assumes state is saved
202  */
203 static int cortex_a_init_debug_access(struct target *target)
204 {
205         struct armv7a_common *armv7a = target_to_armv7a(target);
206         uint32_t dscr;
207         int retval;
208
209         /* lock memory-mapped access to debug registers to prevent
210          * software interference */
211         retval = mem_ap_write_u32(armv7a->debug_ap,
212                         armv7a->debug_base + CPUDBG_LOCKACCESS, 0);
213         if (retval != ERROR_OK)
214                 return retval;
215
216         /* Disable cacheline fills and force cache write-through in debug state */
217         retval = mem_ap_write_u32(armv7a->debug_ap,
218                         armv7a->debug_base + CPUDBG_DSCCR, 0);
219         if (retval != ERROR_OK)
220                 return retval;
221
222         /* Disable TLB lookup and refill/eviction in debug state */
223         retval = mem_ap_write_u32(armv7a->debug_ap,
224                         armv7a->debug_base + CPUDBG_DSMCR, 0);
225         if (retval != ERROR_OK)
226                 return retval;
227
228         retval = dap_run(armv7a->debug_ap->dap);
229         if (retval != ERROR_OK)
230                 return retval;
231
232         /* Enabling of instruction execution in debug mode is done in debug_entry code */
233
234         /* Resync breakpoint registers */
235
236         /* Enable halt for breakpoint, watchpoint and vector catch */
237         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
238                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
239         if (retval != ERROR_OK)
240                 return retval;
241         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
242                         armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
243         if (retval != ERROR_OK)
244                 return retval;
245
246         /* Since this is likely called from init or reset, update target state information*/
247         return cortex_a_poll(target);
248 }
249
250 static int cortex_a_wait_instrcmpl(struct target *target, uint32_t *dscr, bool force)
251 {
252         /* Waits until InstrCmpl_l becomes 1, indicating instruction is done.
253          * Writes final value of DSCR into *dscr. Pass force to force always
254          * reading DSCR at least once. */
255         struct armv7a_common *armv7a = target_to_armv7a(target);
256         int retval;
257
258         if (force) {
259                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
260                                 armv7a->debug_base + CPUDBG_DSCR, dscr);
261                 if (retval != ERROR_OK) {
262                         LOG_ERROR("Could not read DSCR register");
263                         return retval;
264                 }
265         }
266
267         retval = cortex_a_wait_dscr_bits(target, DSCR_INSTR_COMP, DSCR_INSTR_COMP, dscr);
268         if (retval != ERROR_OK)
269                 LOG_ERROR("Error waiting for InstrCompl=1");
270         return retval;
271 }
272
273 /* To reduce needless round-trips, pass in a pointer to the current
274  * DSCR value.  Initialize it to zero if you just need to know the
275  * value on return from this function; or DSCR_INSTR_COMP if you
276  * happen to know that no instruction is pending.
277  */
278 static int cortex_a_exec_opcode(struct target *target,
279         uint32_t opcode, uint32_t *dscr_p)
280 {
281         uint32_t dscr;
282         int retval;
283         struct armv7a_common *armv7a = target_to_armv7a(target);
284
285         dscr = dscr_p ? *dscr_p : 0;
286
287         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
288
289         /* Wait for InstrCompl bit to be set */
290         retval = cortex_a_wait_instrcmpl(target, dscr_p, false);
291         if (retval != ERROR_OK)
292                 return retval;
293
294         retval = mem_ap_write_u32(armv7a->debug_ap,
295                         armv7a->debug_base + CPUDBG_ITR, opcode);
296         if (retval != ERROR_OK)
297                 return retval;
298
299         /* Wait for InstrCompl bit to be set */
300         retval = cortex_a_wait_instrcmpl(target, &dscr, true);
301         if (retval != ERROR_OK) {
302                 LOG_ERROR("Error waiting for cortex_a_exec_opcode");
303                 return retval;
304         }
305
306         if (dscr_p)
307                 *dscr_p = dscr;
308
309         return retval;
310 }
311
312 /* Write to memory mapped registers directly with no cache or mmu handling */
313 static int cortex_a_dap_write_memap_register_u32(struct target *target,
314         uint32_t address,
315         uint32_t value)
316 {
317         int retval;
318         struct armv7a_common *armv7a = target_to_armv7a(target);
319
320         retval = mem_ap_write_atomic_u32(armv7a->debug_ap, address, value);
321
322         return retval;
323 }
324
325 /*
326  * Cortex-A implementation of Debug Programmer's Model
327  *
328  * NOTE the invariant:  these routines return with DSCR_INSTR_COMP set,
329  * so there's no need to poll for it before executing an instruction.
330  *
331  * NOTE that in several of these cases the "stall" mode might be useful.
332  * It'd let us queue a few operations together... prepare/finish might
333  * be the places to enable/disable that mode.
334  */
335
336 static inline struct cortex_a_common *dpm_to_a(struct arm_dpm *dpm)
337 {
338         return container_of(dpm, struct cortex_a_common, armv7a_common.dpm);
339 }
340
341 static int cortex_a_write_dcc(struct cortex_a_common *a, uint32_t data)
342 {
343         LOG_DEBUG("write DCC 0x%08" PRIx32, data);
344         return mem_ap_write_u32(a->armv7a_common.debug_ap,
345                         a->armv7a_common.debug_base + CPUDBG_DTRRX, data);
346 }
347
348 static int cortex_a_read_dcc(struct cortex_a_common *a, uint32_t *data,
349         uint32_t *dscr_p)
350 {
351         uint32_t dscr = DSCR_INSTR_COMP;
352         int retval;
353
354         if (dscr_p)
355                 dscr = *dscr_p;
356
357         /* Wait for DTRRXfull */
358         retval = cortex_a_wait_dscr_bits(a->armv7a_common.arm.target,
359                         DSCR_DTR_TX_FULL, DSCR_DTR_TX_FULL, &dscr);
360         if (retval != ERROR_OK) {
361                 LOG_ERROR("Error waiting for read dcc");
362                 return retval;
363         }
364
365         retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
366                         a->armv7a_common.debug_base + CPUDBG_DTRTX, data);
367         if (retval != ERROR_OK)
368                 return retval;
369         /* LOG_DEBUG("read DCC 0x%08" PRIx32, *data); */
370
371         if (dscr_p)
372                 *dscr_p = dscr;
373
374         return retval;
375 }
376
377 static int cortex_a_dpm_prepare(struct arm_dpm *dpm)
378 {
379         struct cortex_a_common *a = dpm_to_a(dpm);
380         uint32_t dscr;
381         int retval;
382
383         /* set up invariant:  INSTR_COMP is set after ever DPM operation */
384         retval = cortex_a_wait_instrcmpl(dpm->arm->target, &dscr, true);
385         if (retval != ERROR_OK) {
386                 LOG_ERROR("Error waiting for dpm prepare");
387                 return retval;
388         }
389
390         /* this "should never happen" ... */
391         if (dscr & DSCR_DTR_RX_FULL) {
392                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
393                 /* Clear DCCRX */
394                 retval = cortex_a_exec_opcode(
395                                 a->armv7a_common.arm.target,
396                                 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
397                                 &dscr);
398                 if (retval != ERROR_OK)
399                         return retval;
400         }
401
402         return retval;
403 }
404
405 static int cortex_a_dpm_finish(struct arm_dpm *dpm)
406 {
407         /* REVISIT what could be done here? */
408         return ERROR_OK;
409 }
410
411 static int cortex_a_instr_write_data_dcc(struct arm_dpm *dpm,
412         uint32_t opcode, uint32_t data)
413 {
414         struct cortex_a_common *a = dpm_to_a(dpm);
415         int retval;
416         uint32_t dscr = DSCR_INSTR_COMP;
417
418         retval = cortex_a_write_dcc(a, data);
419         if (retval != ERROR_OK)
420                 return retval;
421
422         return cortex_a_exec_opcode(
423                         a->armv7a_common.arm.target,
424                         opcode,
425                         &dscr);
426 }
427
428 static int cortex_a_instr_write_data_rt_dcc(struct arm_dpm *dpm,
429         uint8_t rt, uint32_t data)
430 {
431         struct cortex_a_common *a = dpm_to_a(dpm);
432         uint32_t dscr = DSCR_INSTR_COMP;
433         int retval;
434
435         if (rt > 15)
436                 return ERROR_TARGET_INVALID;
437
438         retval = cortex_a_write_dcc(a, data);
439         if (retval != ERROR_OK)
440                 return retval;
441
442         /* DCCRX to Rt, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
443         return cortex_a_exec_opcode(
444                         a->armv7a_common.arm.target,
445                         ARMV4_5_MRC(14, 0, rt, 0, 5, 0),
446                         &dscr);
447 }
448
449 static int cortex_a_instr_write_data_r0(struct arm_dpm *dpm,
450         uint32_t opcode, uint32_t data)
451 {
452         struct cortex_a_common *a = dpm_to_a(dpm);
453         uint32_t dscr = DSCR_INSTR_COMP;
454         int retval;
455
456         retval = cortex_a_instr_write_data_rt_dcc(dpm, 0, data);
457         if (retval != ERROR_OK)
458                 return retval;
459
460         /* then the opcode, taking data from R0 */
461         retval = cortex_a_exec_opcode(
462                         a->armv7a_common.arm.target,
463                         opcode,
464                         &dscr);
465
466         return retval;
467 }
468
469 static int cortex_a_instr_cpsr_sync(struct arm_dpm *dpm)
470 {
471         struct target *target = dpm->arm->target;
472         uint32_t dscr = DSCR_INSTR_COMP;
473
474         /* "Prefetch flush" after modifying execution status in CPSR */
475         return cortex_a_exec_opcode(target,
476                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
477                         &dscr);
478 }
479
480 static int cortex_a_instr_read_data_dcc(struct arm_dpm *dpm,
481         uint32_t opcode, uint32_t *data)
482 {
483         struct cortex_a_common *a = dpm_to_a(dpm);
484         int retval;
485         uint32_t dscr = DSCR_INSTR_COMP;
486
487         /* the opcode, writing data to DCC */
488         retval = cortex_a_exec_opcode(
489                         a->armv7a_common.arm.target,
490                         opcode,
491                         &dscr);
492         if (retval != ERROR_OK)
493                 return retval;
494
495         return cortex_a_read_dcc(a, data, &dscr);
496 }
497
498 static int cortex_a_instr_read_data_rt_dcc(struct arm_dpm *dpm,
499         uint8_t rt, uint32_t *data)
500 {
501         struct cortex_a_common *a = dpm_to_a(dpm);
502         uint32_t dscr = DSCR_INSTR_COMP;
503         int retval;
504
505         if (rt > 15)
506                 return ERROR_TARGET_INVALID;
507
508         retval = cortex_a_exec_opcode(
509                         a->armv7a_common.arm.target,
510                         ARMV4_5_MCR(14, 0, rt, 0, 5, 0),
511                         &dscr);
512         if (retval != ERROR_OK)
513                 return retval;
514
515         return cortex_a_read_dcc(a, data, &dscr);
516 }
517
518 static int cortex_a_instr_read_data_r0(struct arm_dpm *dpm,
519         uint32_t opcode, uint32_t *data)
520 {
521         struct cortex_a_common *a = dpm_to_a(dpm);
522         uint32_t dscr = DSCR_INSTR_COMP;
523         int retval;
524
525         /* the opcode, writing data to R0 */
526         retval = cortex_a_exec_opcode(
527                         a->armv7a_common.arm.target,
528                         opcode,
529                         &dscr);
530         if (retval != ERROR_OK)
531                 return retval;
532
533         /* write R0 to DCC */
534         return cortex_a_instr_read_data_rt_dcc(dpm, 0, data);
535 }
536
537 static int cortex_a_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
538         uint32_t addr, uint32_t control)
539 {
540         struct cortex_a_common *a = dpm_to_a(dpm);
541         uint32_t vr = a->armv7a_common.debug_base;
542         uint32_t cr = a->armv7a_common.debug_base;
543         int retval;
544
545         switch (index_t) {
546                 case 0 ... 15:  /* breakpoints */
547                         vr += CPUDBG_BVR_BASE;
548                         cr += CPUDBG_BCR_BASE;
549                         break;
550                 case 16 ... 31: /* watchpoints */
551                         vr += CPUDBG_WVR_BASE;
552                         cr += CPUDBG_WCR_BASE;
553                         index_t -= 16;
554                         break;
555                 default:
556                         return ERROR_FAIL;
557         }
558         vr += 4 * index_t;
559         cr += 4 * index_t;
560
561         LOG_DEBUG("A: bpwp enable, vr %08x cr %08x",
562                 (unsigned) vr, (unsigned) cr);
563
564         retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
565                         vr, addr);
566         if (retval != ERROR_OK)
567                 return retval;
568         retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
569                         cr, control);
570         return retval;
571 }
572
573 static int cortex_a_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
574 {
575         struct cortex_a_common *a = dpm_to_a(dpm);
576         uint32_t cr;
577
578         switch (index_t) {
579                 case 0 ... 15:
580                         cr = a->armv7a_common.debug_base + CPUDBG_BCR_BASE;
581                         break;
582                 case 16 ... 31:
583                         cr = a->armv7a_common.debug_base + CPUDBG_WCR_BASE;
584                         index_t -= 16;
585                         break;
586                 default:
587                         return ERROR_FAIL;
588         }
589         cr += 4 * index_t;
590
591         LOG_DEBUG("A: bpwp disable, cr %08x", (unsigned) cr);
592
593         /* clear control register */
594         return cortex_a_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
595 }
596
597 static int cortex_a_dpm_setup(struct cortex_a_common *a, uint32_t didr)
598 {
599         struct arm_dpm *dpm = &a->armv7a_common.dpm;
600         int retval;
601
602         dpm->arm = &a->armv7a_common.arm;
603         dpm->didr = didr;
604
605         dpm->prepare = cortex_a_dpm_prepare;
606         dpm->finish = cortex_a_dpm_finish;
607
608         dpm->instr_write_data_dcc = cortex_a_instr_write_data_dcc;
609         dpm->instr_write_data_r0 = cortex_a_instr_write_data_r0;
610         dpm->instr_cpsr_sync = cortex_a_instr_cpsr_sync;
611
612         dpm->instr_read_data_dcc = cortex_a_instr_read_data_dcc;
613         dpm->instr_read_data_r0 = cortex_a_instr_read_data_r0;
614
615         dpm->bpwp_enable = cortex_a_bpwp_enable;
616         dpm->bpwp_disable = cortex_a_bpwp_disable;
617
618         retval = arm_dpm_setup(dpm);
619         if (retval == ERROR_OK)
620                 retval = arm_dpm_initialize(dpm);
621
622         return retval;
623 }
624 static struct target *get_cortex_a(struct target *target, int32_t coreid)
625 {
626         struct target_list *head;
627         struct target *curr;
628
629         head = target->head;
630         while (head != (struct target_list *)NULL) {
631                 curr = head->target;
632                 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
633                         return curr;
634                 head = head->next;
635         }
636         return target;
637 }
638 static int cortex_a_halt(struct target *target);
639
640 static int cortex_a_halt_smp(struct target *target)
641 {
642         int retval = 0;
643         struct target_list *head;
644         struct target *curr;
645         head = target->head;
646         while (head != (struct target_list *)NULL) {
647                 curr = head->target;
648                 if ((curr != target) && (curr->state != TARGET_HALTED)
649                         && target_was_examined(curr))
650                         retval += cortex_a_halt(curr);
651                 head = head->next;
652         }
653         return retval;
654 }
655
656 static int update_halt_gdb(struct target *target)
657 {
658         struct target *gdb_target = NULL;
659         struct target_list *head;
660         struct target *curr;
661         int retval = 0;
662
663         if (target->gdb_service && target->gdb_service->core[0] == -1) {
664                 target->gdb_service->target = target;
665                 target->gdb_service->core[0] = target->coreid;
666                 retval += cortex_a_halt_smp(target);
667         }
668
669         if (target->gdb_service)
670                 gdb_target = target->gdb_service->target;
671
672         foreach_smp_target(head, target->head) {
673                 curr = head->target;
674                 /* skip calling context */
675                 if (curr == target)
676                         continue;
677                 if (!target_was_examined(curr))
678                         continue;
679                 /* skip targets that were already halted */
680                 if (curr->state == TARGET_HALTED)
681                         continue;
682                 /* Skip gdb_target; it alerts GDB so has to be polled as last one */
683                 if (curr == gdb_target)
684                         continue;
685
686                 /* avoid recursion in cortex_a_poll() */
687                 curr->smp = 0;
688                 cortex_a_poll(curr);
689                 curr->smp = 1;
690         }
691
692         /* after all targets were updated, poll the gdb serving target */
693         if (gdb_target != NULL && gdb_target != target)
694                 cortex_a_poll(gdb_target);
695         return retval;
696 }
697
698 /*
699  * Cortex-A Run control
700  */
701
702 static int cortex_a_poll(struct target *target)
703 {
704         int retval = ERROR_OK;
705         uint32_t dscr;
706         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
707         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
708         enum target_state prev_target_state = target->state;
709         /*  toggle to another core is done by gdb as follow */
710         /*  maint packet J core_id */
711         /*  continue */
712         /*  the next polling trigger an halt event sent to gdb */
713         if ((target->state == TARGET_HALTED) && (target->smp) &&
714                 (target->gdb_service) &&
715                 (target->gdb_service->target == NULL)) {
716                 target->gdb_service->target =
717                         get_cortex_a(target, target->gdb_service->core[1]);
718                 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
719                 return retval;
720         }
721         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
722                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
723         if (retval != ERROR_OK)
724                 return retval;
725         cortex_a->cpudbg_dscr = dscr;
726
727         if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED)) {
728                 if (prev_target_state != TARGET_HALTED) {
729                         /* We have a halting debug event */
730                         LOG_DEBUG("Target halted");
731                         target->state = TARGET_HALTED;
732
733                         retval = cortex_a_debug_entry(target);
734                         if (retval != ERROR_OK)
735                                 return retval;
736
737                         if (target->smp) {
738                                 retval = update_halt_gdb(target);
739                                 if (retval != ERROR_OK)
740                                         return retval;
741                         }
742
743                         if (prev_target_state == TARGET_DEBUG_RUNNING) {
744                                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
745                         } else { /* prev_target_state is RUNNING, UNKNOWN or RESET */
746                                 if (arm_semihosting(target, &retval) != 0)
747                                         return retval;
748
749                                 target_call_event_callbacks(target,
750                                         TARGET_EVENT_HALTED);
751                         }
752                 }
753         } else
754                 target->state = TARGET_RUNNING;
755
756         return retval;
757 }
758
759 static int cortex_a_halt(struct target *target)
760 {
761         int retval;
762         uint32_t dscr;
763         struct armv7a_common *armv7a = target_to_armv7a(target);
764
765         /*
766          * Tell the core to be halted by writing DRCR with 0x1
767          * and then wait for the core to be halted.
768          */
769         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
770                         armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
771         if (retval != ERROR_OK)
772                 return retval;
773
774         dscr = 0; /* force read of dscr */
775         retval = cortex_a_wait_dscr_bits(target, DSCR_CORE_HALTED,
776                         DSCR_CORE_HALTED, &dscr);
777         if (retval != ERROR_OK) {
778                 LOG_ERROR("Error waiting for halt");
779                 return retval;
780         }
781
782         target->debug_reason = DBG_REASON_DBGRQ;
783
784         return ERROR_OK;
785 }
786
787 static int cortex_a_internal_restore(struct target *target, int current,
788         target_addr_t *address, int handle_breakpoints, int debug_execution)
789 {
790         struct armv7a_common *armv7a = target_to_armv7a(target);
791         struct arm *arm = &armv7a->arm;
792         int retval;
793         uint32_t resume_pc;
794
795         if (!debug_execution)
796                 target_free_all_working_areas(target);
797
798 #if 0
799         if (debug_execution) {
800                 /* Disable interrupts */
801                 /* We disable interrupts in the PRIMASK register instead of
802                  * masking with C_MASKINTS,
803                  * This is probably the same issue as Cortex-M3 Errata 377493:
804                  * C_MASKINTS in parallel with disabled interrupts can cause
805                  * local faults to not be taken. */
806                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
807                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = true;
808                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = true;
809
810                 /* Make sure we are in Thumb mode */
811                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
812                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0,
813                         32) | (1 << 24));
814                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = true;
815                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = true;
816         }
817 #endif
818
819         /* current = 1: continue on current pc, otherwise continue at <address> */
820         resume_pc = buf_get_u32(arm->pc->value, 0, 32);
821         if (!current)
822                 resume_pc = *address;
823         else
824                 *address = resume_pc;
825
826         /* Make sure that the Armv7 gdb thumb fixups does not
827          * kill the return address
828          */
829         switch (arm->core_state) {
830                 case ARM_STATE_ARM:
831                         resume_pc &= 0xFFFFFFFC;
832                         break;
833                 case ARM_STATE_THUMB:
834                 case ARM_STATE_THUMB_EE:
835                         /* When the return address is loaded into PC
836                          * bit 0 must be 1 to stay in Thumb state
837                          */
838                         resume_pc |= 0x1;
839                         break;
840                 case ARM_STATE_JAZELLE:
841                         LOG_ERROR("How do I resume into Jazelle state??");
842                         return ERROR_FAIL;
843                 case ARM_STATE_AARCH64:
844                         LOG_ERROR("Shouldn't be in AARCH64 state");
845                         return ERROR_FAIL;
846         }
847         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
848         buf_set_u32(arm->pc->value, 0, 32, resume_pc);
849         arm->pc->dirty = true;
850         arm->pc->valid = true;
851
852         /* restore dpm_mode at system halt */
853         arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
854         /* called it now before restoring context because it uses cpu
855          * register r0 for restoring cp15 control register */
856         retval = cortex_a_restore_cp15_control_reg(target);
857         if (retval != ERROR_OK)
858                 return retval;
859         retval = cortex_a_restore_context(target, handle_breakpoints);
860         if (retval != ERROR_OK)
861                 return retval;
862         target->debug_reason = DBG_REASON_NOTHALTED;
863         target->state = TARGET_RUNNING;
864
865         /* registers are now invalid */
866         register_cache_invalidate(arm->core_cache);
867
868 #if 0
869         /* the front-end may request us not to handle breakpoints */
870         if (handle_breakpoints) {
871                 /* Single step past breakpoint at current address */
872                 breakpoint = breakpoint_find(target, resume_pc);
873                 if (breakpoint) {
874                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
875                         cortex_m3_unset_breakpoint(target, breakpoint);
876                         cortex_m3_single_step_core(target);
877                         cortex_m3_set_breakpoint(target, breakpoint);
878                 }
879         }
880
881 #endif
882         return retval;
883 }
884
885 static int cortex_a_internal_restart(struct target *target)
886 {
887         struct armv7a_common *armv7a = target_to_armv7a(target);
888         struct arm *arm = &armv7a->arm;
889         int retval;
890         uint32_t dscr;
891         /*
892          * * Restart core and wait for it to be started.  Clear ITRen and sticky
893          * * exception flags: see ARMv7 ARM, C5.9.
894          *
895          * REVISIT: for single stepping, we probably want to
896          * disable IRQs by default, with optional override...
897          */
898
899         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
900                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
901         if (retval != ERROR_OK)
902                 return retval;
903
904         if ((dscr & DSCR_INSTR_COMP) == 0)
905                 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
906
907         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
908                         armv7a->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
909         if (retval != ERROR_OK)
910                 return retval;
911
912         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
913                         armv7a->debug_base + CPUDBG_DRCR, DRCR_RESTART |
914                         DRCR_CLEAR_EXCEPTIONS);
915         if (retval != ERROR_OK)
916                 return retval;
917
918         dscr = 0; /* force read of dscr */
919         retval = cortex_a_wait_dscr_bits(target, DSCR_CORE_RESTARTED,
920                         DSCR_CORE_RESTARTED, &dscr);
921         if (retval != ERROR_OK) {
922                 LOG_ERROR("Error waiting for resume");
923                 return retval;
924         }
925
926         target->debug_reason = DBG_REASON_NOTHALTED;
927         target->state = TARGET_RUNNING;
928
929         /* registers are now invalid */
930         register_cache_invalidate(arm->core_cache);
931
932         return ERROR_OK;
933 }
934
935 static int cortex_a_restore_smp(struct target *target, int handle_breakpoints)
936 {
937         int retval = 0;
938         struct target_list *head;
939         struct target *curr;
940         target_addr_t address;
941         head = target->head;
942         while (head != (struct target_list *)NULL) {
943                 curr = head->target;
944                 if ((curr != target) && (curr->state != TARGET_RUNNING)
945                         && target_was_examined(curr)) {
946                         /*  resume current address , not in step mode */
947                         retval += cortex_a_internal_restore(curr, 1, &address,
948                                         handle_breakpoints, 0);
949                         retval += cortex_a_internal_restart(curr);
950                 }
951                 head = head->next;
952
953         }
954         return retval;
955 }
956
957 static int cortex_a_resume(struct target *target, int current,
958         target_addr_t address, int handle_breakpoints, int debug_execution)
959 {
960         int retval = 0;
961         /* dummy resume for smp toggle in order to reduce gdb impact  */
962         if ((target->smp) && (target->gdb_service->core[1] != -1)) {
963                 /*   simulate a start and halt of target */
964                 target->gdb_service->target = NULL;
965                 target->gdb_service->core[0] = target->gdb_service->core[1];
966                 /*  fake resume at next poll we play the  target core[1], see poll*/
967                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
968                 return 0;
969         }
970         cortex_a_internal_restore(target, current, &address, handle_breakpoints, debug_execution);
971         if (target->smp) {
972                 target->gdb_service->core[0] = -1;
973                 retval = cortex_a_restore_smp(target, handle_breakpoints);
974                 if (retval != ERROR_OK)
975                         return retval;
976         }
977         cortex_a_internal_restart(target);
978
979         if (!debug_execution) {
980                 target->state = TARGET_RUNNING;
981                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
982                 LOG_DEBUG("target resumed at " TARGET_ADDR_FMT, address);
983         } else {
984                 target->state = TARGET_DEBUG_RUNNING;
985                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
986                 LOG_DEBUG("target debug resumed at " TARGET_ADDR_FMT, address);
987         }
988
989         return ERROR_OK;
990 }
991
992 static int cortex_a_debug_entry(struct target *target)
993 {
994         uint32_t dscr;
995         int retval = ERROR_OK;
996         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
997         struct armv7a_common *armv7a = target_to_armv7a(target);
998         struct arm *arm = &armv7a->arm;
999
1000         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a->cpudbg_dscr);
1001
1002         /* REVISIT surely we should not re-read DSCR !! */
1003         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1004                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
1005         if (retval != ERROR_OK)
1006                 return retval;
1007
1008         /* REVISIT see A TRM 12.11.4 steps 2..3 -- make sure that any
1009          * imprecise data aborts get discarded by issuing a Data
1010          * Synchronization Barrier:  ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1011          */
1012
1013         /* Enable the ITR execution once we are in debug mode */
1014         dscr |= DSCR_ITR_EN;
1015         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1016                         armv7a->debug_base + CPUDBG_DSCR, dscr);
1017         if (retval != ERROR_OK)
1018                 return retval;
1019
1020         /* Examine debug reason */
1021         arm_dpm_report_dscr(&armv7a->dpm, cortex_a->cpudbg_dscr);
1022
1023         /* save address of instruction that triggered the watchpoint? */
1024         if (target->debug_reason == DBG_REASON_WATCHPOINT) {
1025                 uint32_t wfar;
1026
1027                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1028                                 armv7a->debug_base + CPUDBG_WFAR,
1029                                 &wfar);
1030                 if (retval != ERROR_OK)
1031                         return retval;
1032                 arm_dpm_report_wfar(&armv7a->dpm, wfar);
1033         }
1034
1035         /* First load register accessible through core debug port */
1036         retval = arm_dpm_read_current_registers(&armv7a->dpm);
1037         if (retval != ERROR_OK)
1038                 return retval;
1039
1040         if (arm->spsr) {
1041                 /* read SPSR */
1042                 retval = arm_dpm_read_reg(&armv7a->dpm, arm->spsr, 17);
1043                 if (retval != ERROR_OK)
1044                         return retval;
1045         }
1046
1047 #if 0
1048 /* TODO, Move this */
1049         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
1050         cortex_a_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
1051         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
1052
1053         cortex_a_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
1054         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
1055
1056         cortex_a_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
1057         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
1058 #endif
1059
1060         /* Are we in an exception handler */
1061 /*      armv4_5->exception_number = 0; */
1062         if (armv7a->post_debug_entry) {
1063                 retval = armv7a->post_debug_entry(target);
1064                 if (retval != ERROR_OK)
1065                         return retval;
1066         }
1067
1068         return retval;
1069 }
1070
1071 static int cortex_a_post_debug_entry(struct target *target)
1072 {
1073         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1074         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1075         int retval;
1076
1077         /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1078         retval = armv7a->arm.mrc(target, 15,
1079                         0, 0,   /* op1, op2 */
1080                         1, 0,   /* CRn, CRm */
1081                         &cortex_a->cp15_control_reg);
1082         if (retval != ERROR_OK)
1083                 return retval;
1084         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg);
1085         cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
1086
1087         if (!armv7a->is_armv7r)
1088                 armv7a_read_ttbcr(target);
1089
1090         if (armv7a->armv7a_mmu.armv7a_cache.info == -1)
1091                 armv7a_identify_cache(target);
1092
1093         if (armv7a->is_armv7r) {
1094                 armv7a->armv7a_mmu.mmu_enabled = 0;
1095         } else {
1096                 armv7a->armv7a_mmu.mmu_enabled =
1097                         (cortex_a->cp15_control_reg & 0x1U) ? 1 : 0;
1098         }
1099         armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled =
1100                 (cortex_a->cp15_control_reg & 0x4U) ? 1 : 0;
1101         armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled =
1102                 (cortex_a->cp15_control_reg & 0x1000U) ? 1 : 0;
1103         cortex_a->curr_mode = armv7a->arm.core_mode;
1104
1105         /* switch to SVC mode to read DACR */
1106         arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
1107         armv7a->arm.mrc(target, 15,
1108                         0, 0, 3, 0,
1109                         &cortex_a->cp15_dacr_reg);
1110
1111         LOG_DEBUG("cp15_dacr_reg: %8.8" PRIx32,
1112                         cortex_a->cp15_dacr_reg);
1113
1114         arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
1115         return ERROR_OK;
1116 }
1117
1118 int cortex_a_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
1119 {
1120         struct armv7a_common *armv7a = target_to_armv7a(target);
1121         uint32_t dscr;
1122
1123         /* Read DSCR */
1124         int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1125                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
1126         if (ERROR_OK != retval)
1127                 return retval;
1128
1129         /* clear bitfield */
1130         dscr &= ~bit_mask;
1131         /* put new value */
1132         dscr |= value & bit_mask;
1133
1134         /* write new DSCR */
1135         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1136                         armv7a->debug_base + CPUDBG_DSCR, dscr);
1137         return retval;
1138 }
1139
1140 static int cortex_a_step(struct target *target, int current, target_addr_t address,
1141         int handle_breakpoints)
1142 {
1143         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1144         struct armv7a_common *armv7a = target_to_armv7a(target);
1145         struct arm *arm = &armv7a->arm;
1146         struct breakpoint *breakpoint = NULL;
1147         struct breakpoint stepbreakpoint;
1148         struct reg *r;
1149         int retval;
1150
1151         if (target->state != TARGET_HALTED) {
1152                 LOG_WARNING("target not halted");
1153                 return ERROR_TARGET_NOT_HALTED;
1154         }
1155
1156         /* current = 1: continue on current pc, otherwise continue at <address> */
1157         r = arm->pc;
1158         if (!current)
1159                 buf_set_u32(r->value, 0, 32, address);
1160         else
1161                 address = buf_get_u32(r->value, 0, 32);
1162
1163         /* The front-end may request us not to handle breakpoints.
1164          * But since Cortex-A uses breakpoint for single step,
1165          * we MUST handle breakpoints.
1166          */
1167         handle_breakpoints = 1;
1168         if (handle_breakpoints) {
1169                 breakpoint = breakpoint_find(target, address);
1170                 if (breakpoint)
1171                         cortex_a_unset_breakpoint(target, breakpoint);
1172         }
1173
1174         /* Setup single step breakpoint */
1175         stepbreakpoint.address = address;
1176         stepbreakpoint.asid = 0;
1177         stepbreakpoint.length = (arm->core_state == ARM_STATE_THUMB)
1178                 ? 2 : 4;
1179         stepbreakpoint.type = BKPT_HARD;
1180         stepbreakpoint.set = 0;
1181
1182         /* Disable interrupts during single step if requested */
1183         if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1184                 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, DSCR_INT_DIS);
1185                 if (ERROR_OK != retval)
1186                         return retval;
1187         }
1188
1189         /* Break on IVA mismatch */
1190         cortex_a_set_breakpoint(target, &stepbreakpoint, 0x04);
1191
1192         target->debug_reason = DBG_REASON_SINGLESTEP;
1193
1194         retval = cortex_a_resume(target, 1, address, 0, 0);
1195         if (retval != ERROR_OK)
1196                 return retval;
1197
1198         int64_t then = timeval_ms();
1199         while (target->state != TARGET_HALTED) {
1200                 retval = cortex_a_poll(target);
1201                 if (retval != ERROR_OK)
1202                         return retval;
1203                 if (target->state == TARGET_HALTED)
1204                         break;
1205                 if (timeval_ms() > then + 1000) {
1206                         LOG_ERROR("timeout waiting for target halt");
1207                         return ERROR_FAIL;
1208                 }
1209         }
1210
1211         cortex_a_unset_breakpoint(target, &stepbreakpoint);
1212
1213         /* Re-enable interrupts if they were disabled */
1214         if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1215                 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, 0);
1216                 if (ERROR_OK != retval)
1217                         return retval;
1218         }
1219
1220
1221         target->debug_reason = DBG_REASON_BREAKPOINT;
1222
1223         if (breakpoint)
1224                 cortex_a_set_breakpoint(target, breakpoint, 0);
1225
1226         if (target->state != TARGET_HALTED)
1227                 LOG_DEBUG("target stepped");
1228
1229         return ERROR_OK;
1230 }
1231
1232 static int cortex_a_restore_context(struct target *target, bool bpwp)
1233 {
1234         struct armv7a_common *armv7a = target_to_armv7a(target);
1235
1236         LOG_DEBUG(" ");
1237
1238         if (armv7a->pre_restore_context)
1239                 armv7a->pre_restore_context(target);
1240
1241         return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1242 }
1243
1244 /*
1245  * Cortex-A Breakpoint and watchpoint functions
1246  */
1247
1248 /* Setup hardware Breakpoint Register Pair */
1249 static int cortex_a_set_breakpoint(struct target *target,
1250         struct breakpoint *breakpoint, uint8_t matchmode)
1251 {
1252         int retval;
1253         int brp_i = 0;
1254         uint32_t control;
1255         uint8_t byte_addr_select = 0x0F;
1256         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1257         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1258         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1259
1260         if (breakpoint->set) {
1261                 LOG_WARNING("breakpoint already set");
1262                 return ERROR_OK;
1263         }
1264
1265         if (breakpoint->type == BKPT_HARD) {
1266                 while (brp_list[brp_i].used && (brp_i < cortex_a->brp_num))
1267                         brp_i++;
1268                 if (brp_i >= cortex_a->brp_num) {
1269                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1270                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1271                 }
1272                 breakpoint->set = brp_i + 1;
1273                 if (breakpoint->length == 2)
1274                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1275                 control = ((matchmode & 0x7) << 20)
1276                         | (byte_addr_select << 5)
1277                         | (3 << 1) | 1;
1278                 brp_list[brp_i].used = 1;
1279                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1280                 brp_list[brp_i].control = control;
1281                 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1282                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1283                                 brp_list[brp_i].value);
1284                 if (retval != ERROR_OK)
1285                         return retval;
1286                 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1287                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1288                                 brp_list[brp_i].control);
1289                 if (retval != ERROR_OK)
1290                         return retval;
1291                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1292                         brp_list[brp_i].control,
1293                         brp_list[brp_i].value);
1294         } else if (breakpoint->type == BKPT_SOFT) {
1295                 uint8_t code[4];
1296                 /* length == 2: Thumb breakpoint */
1297                 if (breakpoint->length == 2)
1298                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1299                 else
1300                 /* length == 3: Thumb-2 breakpoint, actual encoding is
1301                  * a regular Thumb BKPT instruction but we replace a
1302                  * 32bit Thumb-2 instruction, so fix-up the breakpoint
1303                  * length
1304                  */
1305                 if (breakpoint->length == 3) {
1306                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1307                         breakpoint->length = 4;
1308                 } else
1309                         /* length == 4, normal ARM breakpoint */
1310                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1311
1312                 retval = target_read_memory(target,
1313                                 breakpoint->address & 0xFFFFFFFE,
1314                                 breakpoint->length, 1,
1315                                 breakpoint->orig_instr);
1316                 if (retval != ERROR_OK)
1317                         return retval;
1318
1319                 /* make sure data cache is cleaned & invalidated down to PoC */
1320                 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1321                         armv7a_cache_flush_virt(target, breakpoint->address,
1322                                                 breakpoint->length);
1323                 }
1324
1325                 retval = target_write_memory(target,
1326                                 breakpoint->address & 0xFFFFFFFE,
1327                                 breakpoint->length, 1, code);
1328                 if (retval != ERROR_OK)
1329                         return retval;
1330
1331                 /* update i-cache at breakpoint location */
1332                 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1333                                         breakpoint->length);
1334                 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1335                                                  breakpoint->length);
1336
1337                 breakpoint->set = 0x11; /* Any nice value but 0 */
1338         }
1339
1340         return ERROR_OK;
1341 }
1342
1343 static int cortex_a_set_context_breakpoint(struct target *target,
1344         struct breakpoint *breakpoint, uint8_t matchmode)
1345 {
1346         int retval = ERROR_FAIL;
1347         int brp_i = 0;
1348         uint32_t control;
1349         uint8_t byte_addr_select = 0x0F;
1350         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1351         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1352         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1353
1354         if (breakpoint->set) {
1355                 LOG_WARNING("breakpoint already set");
1356                 return retval;
1357         }
1358         /*check available context BRPs*/
1359         while ((brp_list[brp_i].used ||
1360                 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < cortex_a->brp_num))
1361                 brp_i++;
1362
1363         if (brp_i >= cortex_a->brp_num) {
1364                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1365                 return ERROR_FAIL;
1366         }
1367
1368         breakpoint->set = brp_i + 1;
1369         control = ((matchmode & 0x7) << 20)
1370                 | (byte_addr_select << 5)
1371                 | (3 << 1) | 1;
1372         brp_list[brp_i].used = 1;
1373         brp_list[brp_i].value = (breakpoint->asid);
1374         brp_list[brp_i].control = control;
1375         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1376                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1377                         brp_list[brp_i].value);
1378         if (retval != ERROR_OK)
1379                 return retval;
1380         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1381                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1382                         brp_list[brp_i].control);
1383         if (retval != ERROR_OK)
1384                 return retval;
1385         LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1386                 brp_list[brp_i].control,
1387                 brp_list[brp_i].value);
1388         return ERROR_OK;
1389
1390 }
1391
1392 static int cortex_a_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1393 {
1394         int retval = ERROR_FAIL;
1395         int brp_1 = 0;  /* holds the contextID pair */
1396         int brp_2 = 0;  /* holds the IVA pair */
1397         uint32_t control_CTX, control_IVA;
1398         uint8_t CTX_byte_addr_select = 0x0F;
1399         uint8_t IVA_byte_addr_select = 0x0F;
1400         uint8_t CTX_machmode = 0x03;
1401         uint8_t IVA_machmode = 0x01;
1402         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1403         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1404         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1405
1406         if (breakpoint->set) {
1407                 LOG_WARNING("breakpoint already set");
1408                 return retval;
1409         }
1410         /*check available context BRPs*/
1411         while ((brp_list[brp_1].used ||
1412                 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < cortex_a->brp_num))
1413                 brp_1++;
1414
1415         printf("brp(CTX) found num: %d\n", brp_1);
1416         if (brp_1 >= cortex_a->brp_num) {
1417                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1418                 return ERROR_FAIL;
1419         }
1420
1421         while ((brp_list[brp_2].used ||
1422                 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < cortex_a->brp_num))
1423                 brp_2++;
1424
1425         printf("brp(IVA) found num: %d\n", brp_2);
1426         if (brp_2 >= cortex_a->brp_num) {
1427                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1428                 return ERROR_FAIL;
1429         }
1430
1431         breakpoint->set = brp_1 + 1;
1432         breakpoint->linked_BRP = brp_2;
1433         control_CTX = ((CTX_machmode & 0x7) << 20)
1434                 | (brp_2 << 16)
1435                 | (0 << 14)
1436                 | (CTX_byte_addr_select << 5)
1437                 | (3 << 1) | 1;
1438         brp_list[brp_1].used = 1;
1439         brp_list[brp_1].value = (breakpoint->asid);
1440         brp_list[brp_1].control = control_CTX;
1441         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1442                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_1].BRPn,
1443                         brp_list[brp_1].value);
1444         if (retval != ERROR_OK)
1445                 return retval;
1446         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1447                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_1].BRPn,
1448                         brp_list[brp_1].control);
1449         if (retval != ERROR_OK)
1450                 return retval;
1451
1452         control_IVA = ((IVA_machmode & 0x7) << 20)
1453                 | (brp_1 << 16)
1454                 | (IVA_byte_addr_select << 5)
1455                 | (3 << 1) | 1;
1456         brp_list[brp_2].used = 1;
1457         brp_list[brp_2].value = (breakpoint->address & 0xFFFFFFFC);
1458         brp_list[brp_2].control = control_IVA;
1459         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1460                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_2].BRPn,
1461                         brp_list[brp_2].value);
1462         if (retval != ERROR_OK)
1463                 return retval;
1464         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1465                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_2].BRPn,
1466                         brp_list[brp_2].control);
1467         if (retval != ERROR_OK)
1468                 return retval;
1469
1470         return ERROR_OK;
1471 }
1472
1473 static int cortex_a_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1474 {
1475         int retval;
1476         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1477         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1478         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1479
1480         if (!breakpoint->set) {
1481                 LOG_WARNING("breakpoint not set");
1482                 return ERROR_OK;
1483         }
1484
1485         if (breakpoint->type == BKPT_HARD) {
1486                 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1487                         int brp_i = breakpoint->set - 1;
1488                         int brp_j = breakpoint->linked_BRP;
1489                         if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1490                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1491                                 return ERROR_OK;
1492                         }
1493                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1494                                 brp_list[brp_i].control, brp_list[brp_i].value);
1495                         brp_list[brp_i].used = 0;
1496                         brp_list[brp_i].value = 0;
1497                         brp_list[brp_i].control = 0;
1498                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1499                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1500                                         brp_list[brp_i].control);
1501                         if (retval != ERROR_OK)
1502                                 return retval;
1503                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1504                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1505                                         brp_list[brp_i].value);
1506                         if (retval != ERROR_OK)
1507                                 return retval;
1508                         if ((brp_j < 0) || (brp_j >= cortex_a->brp_num)) {
1509                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1510                                 return ERROR_OK;
1511                         }
1512                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_j,
1513                                 brp_list[brp_j].control, brp_list[brp_j].value);
1514                         brp_list[brp_j].used = 0;
1515                         brp_list[brp_j].value = 0;
1516                         brp_list[brp_j].control = 0;
1517                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1518                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_j].BRPn,
1519                                         brp_list[brp_j].control);
1520                         if (retval != ERROR_OK)
1521                                 return retval;
1522                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1523                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_j].BRPn,
1524                                         brp_list[brp_j].value);
1525                         if (retval != ERROR_OK)
1526                                 return retval;
1527                         breakpoint->linked_BRP = 0;
1528                         breakpoint->set = 0;
1529                         return ERROR_OK;
1530
1531                 } else {
1532                         int brp_i = breakpoint->set - 1;
1533                         if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1534                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1535                                 return ERROR_OK;
1536                         }
1537                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1538                                 brp_list[brp_i].control, brp_list[brp_i].value);
1539                         brp_list[brp_i].used = 0;
1540                         brp_list[brp_i].value = 0;
1541                         brp_list[brp_i].control = 0;
1542                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1543                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1544                                         brp_list[brp_i].control);
1545                         if (retval != ERROR_OK)
1546                                 return retval;
1547                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1548                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1549                                         brp_list[brp_i].value);
1550                         if (retval != ERROR_OK)
1551                                 return retval;
1552                         breakpoint->set = 0;
1553                         return ERROR_OK;
1554                 }
1555         } else {
1556
1557                 /* make sure data cache is cleaned & invalidated down to PoC */
1558                 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1559                         armv7a_cache_flush_virt(target, breakpoint->address,
1560                                                 breakpoint->length);
1561                 }
1562
1563                 /* restore original instruction (kept in target endianness) */
1564                 if (breakpoint->length == 4) {
1565                         retval = target_write_memory(target,
1566                                         breakpoint->address & 0xFFFFFFFE,
1567                                         4, 1, breakpoint->orig_instr);
1568                         if (retval != ERROR_OK)
1569                                 return retval;
1570                 } else {
1571                         retval = target_write_memory(target,
1572                                         breakpoint->address & 0xFFFFFFFE,
1573                                         2, 1, breakpoint->orig_instr);
1574                         if (retval != ERROR_OK)
1575                                 return retval;
1576                 }
1577
1578                 /* update i-cache at breakpoint location */
1579                 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1580                                                  breakpoint->length);
1581                 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1582                                                  breakpoint->length);
1583         }
1584         breakpoint->set = 0;
1585
1586         return ERROR_OK;
1587 }
1588
1589 static int cortex_a_add_breakpoint(struct target *target,
1590         struct breakpoint *breakpoint)
1591 {
1592         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1593
1594         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1595                 LOG_INFO("no hardware breakpoint available");
1596                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1597         }
1598
1599         if (breakpoint->type == BKPT_HARD)
1600                 cortex_a->brp_num_available--;
1601
1602         return cortex_a_set_breakpoint(target, breakpoint, 0x00);       /* Exact match */
1603 }
1604
1605 static int cortex_a_add_context_breakpoint(struct target *target,
1606         struct breakpoint *breakpoint)
1607 {
1608         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1609
1610         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1611                 LOG_INFO("no hardware breakpoint available");
1612                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1613         }
1614
1615         if (breakpoint->type == BKPT_HARD)
1616                 cortex_a->brp_num_available--;
1617
1618         return cortex_a_set_context_breakpoint(target, breakpoint, 0x02);       /* asid match */
1619 }
1620
1621 static int cortex_a_add_hybrid_breakpoint(struct target *target,
1622         struct breakpoint *breakpoint)
1623 {
1624         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1625
1626         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1627                 LOG_INFO("no hardware breakpoint available");
1628                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1629         }
1630
1631         if (breakpoint->type == BKPT_HARD)
1632                 cortex_a->brp_num_available--;
1633
1634         return cortex_a_set_hybrid_breakpoint(target, breakpoint);      /* ??? */
1635 }
1636
1637
1638 static int cortex_a_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1639 {
1640         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1641
1642 #if 0
1643 /* It is perfectly possible to remove breakpoints while the target is running */
1644         if (target->state != TARGET_HALTED) {
1645                 LOG_WARNING("target not halted");
1646                 return ERROR_TARGET_NOT_HALTED;
1647         }
1648 #endif
1649
1650         if (breakpoint->set) {
1651                 cortex_a_unset_breakpoint(target, breakpoint);
1652                 if (breakpoint->type == BKPT_HARD)
1653                         cortex_a->brp_num_available++;
1654         }
1655
1656
1657         return ERROR_OK;
1658 }
1659
1660 /*
1661  * Cortex-A Reset functions
1662  */
1663
1664 static int cortex_a_assert_reset(struct target *target)
1665 {
1666         struct armv7a_common *armv7a = target_to_armv7a(target);
1667
1668         LOG_DEBUG(" ");
1669
1670         /* FIXME when halt is requested, make it work somehow... */
1671
1672         /* This function can be called in "target not examined" state */
1673
1674         /* Issue some kind of warm reset. */
1675         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1676                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1677         else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1678                 /* REVISIT handle "pulls" cases, if there's
1679                  * hardware that needs them to work.
1680                  */
1681
1682                 /*
1683                  * FIXME: fix reset when transport is SWD. This is a temporary
1684                  * work-around for release v0.10 that is not intended to stay!
1685                  */
1686                 if (transport_is_swd() ||
1687                                 (target->reset_halt && (jtag_get_reset_config() & RESET_SRST_NO_GATING)))
1688                         adapter_assert_reset();
1689
1690         } else {
1691                 LOG_ERROR("%s: how to reset?", target_name(target));
1692                 return ERROR_FAIL;
1693         }
1694
1695         /* registers are now invalid */
1696         if (target_was_examined(target))
1697                 register_cache_invalidate(armv7a->arm.core_cache);
1698
1699         target->state = TARGET_RESET;
1700
1701         return ERROR_OK;
1702 }
1703
1704 static int cortex_a_deassert_reset(struct target *target)
1705 {
1706         struct armv7a_common *armv7a = target_to_armv7a(target);
1707         int retval;
1708
1709         LOG_DEBUG(" ");
1710
1711         /* be certain SRST is off */
1712         adapter_deassert_reset();
1713
1714         if (target_was_examined(target)) {
1715                 retval = cortex_a_poll(target);
1716                 if (retval != ERROR_OK)
1717                         return retval;
1718         }
1719
1720         if (target->reset_halt) {
1721                 if (target->state != TARGET_HALTED) {
1722                         LOG_WARNING("%s: ran after reset and before halt ...",
1723                                 target_name(target));
1724                         if (target_was_examined(target)) {
1725                                 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1726                                                 armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
1727                                 if (retval != ERROR_OK)
1728                                         return retval;
1729                         } else
1730                                 target->state = TARGET_UNKNOWN;
1731                 }
1732         }
1733
1734         return ERROR_OK;
1735 }
1736
1737 static int cortex_a_set_dcc_mode(struct target *target, uint32_t mode, uint32_t *dscr)
1738 {
1739         /* Changes the mode of the DCC between non-blocking, stall, and fast mode.
1740          * New desired mode must be in mode. Current value of DSCR must be in
1741          * *dscr, which is updated with new value.
1742          *
1743          * This function elides actually sending the mode-change over the debug
1744          * interface if the mode is already set as desired.
1745          */
1746         uint32_t new_dscr = (*dscr & ~DSCR_EXT_DCC_MASK) | mode;
1747         if (new_dscr != *dscr) {
1748                 struct armv7a_common *armv7a = target_to_armv7a(target);
1749                 int retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1750                                 armv7a->debug_base + CPUDBG_DSCR, new_dscr);
1751                 if (retval == ERROR_OK)
1752                         *dscr = new_dscr;
1753                 return retval;
1754         } else {
1755                 return ERROR_OK;
1756         }
1757 }
1758
1759 static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
1760         uint32_t value, uint32_t *dscr)
1761 {
1762         /* Waits until the specified bit(s) of DSCR take on a specified value. */
1763         struct armv7a_common *armv7a = target_to_armv7a(target);
1764         int64_t then;
1765         int retval;
1766
1767         if ((*dscr & mask) == value)
1768                 return ERROR_OK;
1769
1770         then = timeval_ms();
1771         while (1) {
1772                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1773                                 armv7a->debug_base + CPUDBG_DSCR, dscr);
1774                 if (retval != ERROR_OK) {
1775                         LOG_ERROR("Could not read DSCR register");
1776                         return retval;
1777                 }
1778                 if ((*dscr & mask) == value)
1779                         break;
1780                 if (timeval_ms() > then + 1000) {
1781                         LOG_ERROR("timeout waiting for DSCR bit change");
1782                         return ERROR_FAIL;
1783                 }
1784         }
1785         return ERROR_OK;
1786 }
1787
1788 static int cortex_a_read_copro(struct target *target, uint32_t opcode,
1789         uint32_t *data, uint32_t *dscr)
1790 {
1791         int retval;
1792         struct armv7a_common *armv7a = target_to_armv7a(target);
1793
1794         /* Move from coprocessor to R0. */
1795         retval = cortex_a_exec_opcode(target, opcode, dscr);
1796         if (retval != ERROR_OK)
1797                 return retval;
1798
1799         /* Move from R0 to DTRTX. */
1800         retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0), dscr);
1801         if (retval != ERROR_OK)
1802                 return retval;
1803
1804         /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
1805          * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
1806          * must also check TXfull_l). Most of the time this will be free
1807          * because TXfull_l will be set immediately and cached in dscr. */
1808         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
1809                         DSCR_DTRTX_FULL_LATCHED, dscr);
1810         if (retval != ERROR_OK)
1811                 return retval;
1812
1813         /* Read the value transferred to DTRTX. */
1814         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1815                         armv7a->debug_base + CPUDBG_DTRTX, data);
1816         if (retval != ERROR_OK)
1817                 return retval;
1818
1819         return ERROR_OK;
1820 }
1821
1822 static int cortex_a_read_dfar_dfsr(struct target *target, uint32_t *dfar,
1823         uint32_t *dfsr, uint32_t *dscr)
1824 {
1825         int retval;
1826
1827         if (dfar) {
1828                 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 6, 0, 0), dfar, dscr);
1829                 if (retval != ERROR_OK)
1830                         return retval;
1831         }
1832
1833         if (dfsr) {
1834                 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 5, 0, 0), dfsr, dscr);
1835                 if (retval != ERROR_OK)
1836                         return retval;
1837         }
1838
1839         return ERROR_OK;
1840 }
1841
1842 static int cortex_a_write_copro(struct target *target, uint32_t opcode,
1843         uint32_t data, uint32_t *dscr)
1844 {
1845         int retval;
1846         struct armv7a_common *armv7a = target_to_armv7a(target);
1847
1848         /* Write the value into DTRRX. */
1849         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1850                         armv7a->debug_base + CPUDBG_DTRRX, data);
1851         if (retval != ERROR_OK)
1852                 return retval;
1853
1854         /* Move from DTRRX to R0. */
1855         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), dscr);
1856         if (retval != ERROR_OK)
1857                 return retval;
1858
1859         /* Move from R0 to coprocessor. */
1860         retval = cortex_a_exec_opcode(target, opcode, dscr);
1861         if (retval != ERROR_OK)
1862                 return retval;
1863
1864         /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
1865          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
1866          * check RXfull_l). Most of the time this will be free because RXfull_l
1867          * will be cleared immediately and cached in dscr. */
1868         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
1869         if (retval != ERROR_OK)
1870                 return retval;
1871
1872         return ERROR_OK;
1873 }
1874
1875 static int cortex_a_write_dfar_dfsr(struct target *target, uint32_t dfar,
1876         uint32_t dfsr, uint32_t *dscr)
1877 {
1878         int retval;
1879
1880         retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 6, 0, 0), dfar, dscr);
1881         if (retval != ERROR_OK)
1882                 return retval;
1883
1884         retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 5, 0, 0), dfsr, dscr);
1885         if (retval != ERROR_OK)
1886                 return retval;
1887
1888         return ERROR_OK;
1889 }
1890
1891 static int cortex_a_dfsr_to_error_code(uint32_t dfsr)
1892 {
1893         uint32_t status, upper4;
1894
1895         if (dfsr & (1 << 9)) {
1896                 /* LPAE format. */
1897                 status = dfsr & 0x3f;
1898                 upper4 = status >> 2;
1899                 if (upper4 == 1 || upper4 == 2 || upper4 == 3 || upper4 == 15)
1900                         return ERROR_TARGET_TRANSLATION_FAULT;
1901                 else if (status == 33)
1902                         return ERROR_TARGET_UNALIGNED_ACCESS;
1903                 else
1904                         return ERROR_TARGET_DATA_ABORT;
1905         } else {
1906                 /* Normal format. */
1907                 status = ((dfsr >> 6) & 0x10) | (dfsr & 0xf);
1908                 if (status == 1)
1909                         return ERROR_TARGET_UNALIGNED_ACCESS;
1910                 else if (status == 5 || status == 7 || status == 3 || status == 6 ||
1911                                 status == 9 || status == 11 || status == 13 || status == 15)
1912                         return ERROR_TARGET_TRANSLATION_FAULT;
1913                 else
1914                         return ERROR_TARGET_DATA_ABORT;
1915         }
1916 }
1917
1918 static int cortex_a_write_cpu_memory_slow(struct target *target,
1919         uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
1920 {
1921         /* Writes count objects of size size from *buffer. Old value of DSCR must
1922          * be in *dscr; updated to new value. This is slow because it works for
1923          * non-word-sized objects. Avoid unaligned accesses as they do not work
1924          * on memory address space without "Normal" attribute. If size == 4 and
1925          * the address is aligned, cortex_a_write_cpu_memory_fast should be
1926          * preferred.
1927          * Preconditions:
1928          * - Address is in R0.
1929          * - R0 is marked dirty.
1930          */
1931         struct armv7a_common *armv7a = target_to_armv7a(target);
1932         struct arm *arm = &armv7a->arm;
1933         int retval;
1934
1935         /* Mark register R1 as dirty, to use for transferring data. */
1936         arm_reg_current(arm, 1)->dirty = true;
1937
1938         /* Switch to non-blocking mode if not already in that mode. */
1939         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
1940         if (retval != ERROR_OK)
1941                 return retval;
1942
1943         /* Go through the objects. */
1944         while (count) {
1945                 /* Write the value to store into DTRRX. */
1946                 uint32_t data, opcode;
1947                 if (size == 1)
1948                         data = *buffer;
1949                 else if (size == 2)
1950                         data = target_buffer_get_u16(target, buffer);
1951                 else
1952                         data = target_buffer_get_u32(target, buffer);
1953                 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1954                                 armv7a->debug_base + CPUDBG_DTRRX, data);
1955                 if (retval != ERROR_OK)
1956                         return retval;
1957
1958                 /* Transfer the value from DTRRX to R1. */
1959                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), dscr);
1960                 if (retval != ERROR_OK)
1961                         return retval;
1962
1963                 /* Write the value transferred to R1 into memory. */
1964                 if (size == 1)
1965                         opcode = ARMV4_5_STRB_IP(1, 0);
1966                 else if (size == 2)
1967                         opcode = ARMV4_5_STRH_IP(1, 0);
1968                 else
1969                         opcode = ARMV4_5_STRW_IP(1, 0);
1970                 retval = cortex_a_exec_opcode(target, opcode, dscr);
1971                 if (retval != ERROR_OK)
1972                         return retval;
1973
1974                 /* Check for faults and return early. */
1975                 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
1976                         return ERROR_OK; /* A data fault is not considered a system failure. */
1977
1978                 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture
1979                  * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
1980                  * must also check RXfull_l). Most of the time this will be free
1981                  * because RXfull_l will be cleared immediately and cached in dscr. */
1982                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
1983                 if (retval != ERROR_OK)
1984                         return retval;
1985
1986                 /* Advance. */
1987                 buffer += size;
1988                 --count;
1989         }
1990
1991         return ERROR_OK;
1992 }
1993
1994 static int cortex_a_write_cpu_memory_fast(struct target *target,
1995         uint32_t count, const uint8_t *buffer, uint32_t *dscr)
1996 {
1997         /* Writes count objects of size 4 from *buffer. Old value of DSCR must be
1998          * in *dscr; updated to new value. This is fast but only works for
1999          * word-sized objects at aligned addresses.
2000          * Preconditions:
2001          * - Address is in R0 and must be a multiple of 4.
2002          * - R0 is marked dirty.
2003          */
2004         struct armv7a_common *armv7a = target_to_armv7a(target);
2005         int retval;
2006
2007         /* Switch to fast mode if not already in that mode. */
2008         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2009         if (retval != ERROR_OK)
2010                 return retval;
2011
2012         /* Latch STC instruction. */
2013         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2014                         armv7a->debug_base + CPUDBG_ITR, ARMV4_5_STC(0, 1, 0, 1, 14, 5, 0, 4));
2015         if (retval != ERROR_OK)
2016                 return retval;
2017
2018         /* Transfer all the data and issue all the instructions. */
2019         return mem_ap_write_buf_noincr(armv7a->debug_ap, buffer,
2020                         4, count, armv7a->debug_base + CPUDBG_DTRRX);
2021 }
2022
2023 static int cortex_a_write_cpu_memory(struct target *target,
2024         uint32_t address, uint32_t size,
2025         uint32_t count, const uint8_t *buffer)
2026 {
2027         /* Write memory through the CPU. */
2028         int retval, final_retval;
2029         struct armv7a_common *armv7a = target_to_armv7a(target);
2030         struct arm *arm = &armv7a->arm;
2031         uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2032
2033         LOG_DEBUG("Writing CPU memory address 0x%" PRIx32 " size %"  PRIu32 " count %"  PRIu32,
2034                           address, size, count);
2035         if (target->state != TARGET_HALTED) {
2036                 LOG_WARNING("target not halted");
2037                 return ERROR_TARGET_NOT_HALTED;
2038         }
2039
2040         if (!count)
2041                 return ERROR_OK;
2042
2043         /* Clear any abort. */
2044         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2045                         armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2046         if (retval != ERROR_OK)
2047                 return retval;
2048
2049         /* Read DSCR. */
2050         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2051                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
2052         if (retval != ERROR_OK)
2053                 return retval;
2054
2055         /* Switch to non-blocking mode if not already in that mode. */
2056         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2057         if (retval != ERROR_OK)
2058                 goto out;
2059
2060         /* Mark R0 as dirty. */
2061         arm_reg_current(arm, 0)->dirty = true;
2062
2063         /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2064         retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2065         if (retval != ERROR_OK)
2066                 goto out;
2067
2068         /* Get the memory address into R0. */
2069         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2070                         armv7a->debug_base + CPUDBG_DTRRX, address);
2071         if (retval != ERROR_OK)
2072                 goto out;
2073         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2074         if (retval != ERROR_OK)
2075                 goto out;
2076
2077         if (size == 4 && (address % 4) == 0) {
2078                 /* We are doing a word-aligned transfer, so use fast mode. */
2079                 retval = cortex_a_write_cpu_memory_fast(target, count, buffer, &dscr);
2080         } else {
2081                 /* Use slow path. Adjust size for aligned accesses */
2082                 switch (address % 4) {
2083                         case 1:
2084                         case 3:
2085                                 count *= size;
2086                                 size = 1;
2087                                 break;
2088                         case 2:
2089                                 if (size == 4) {
2090                                         count *= 2;
2091                                         size = 2;
2092                                 }
2093                         case 0:
2094                         default:
2095                                 break;
2096                 }
2097                 retval = cortex_a_write_cpu_memory_slow(target, size, count, buffer, &dscr);
2098         }
2099
2100 out:
2101         final_retval = retval;
2102
2103         /* Switch to non-blocking mode if not already in that mode. */
2104         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2105         if (final_retval == ERROR_OK)
2106                 final_retval = retval;
2107
2108         /* Wait for last issued instruction to complete. */
2109         retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2110         if (final_retval == ERROR_OK)
2111                 final_retval = retval;
2112
2113         /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2114          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2115          * check RXfull_l). Most of the time this will be free because RXfull_l
2116          * will be cleared immediately and cached in dscr. However, don't do this
2117          * if there is fault, because then the instruction might not have completed
2118          * successfully. */
2119         if (!(dscr & DSCR_STICKY_ABORT_PRECISE)) {
2120                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, &dscr);
2121                 if (retval != ERROR_OK)
2122                         return retval;
2123         }
2124
2125         /* If there were any sticky abort flags, clear them. */
2126         if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2127                 fault_dscr = dscr;
2128                 mem_ap_write_atomic_u32(armv7a->debug_ap,
2129                                 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2130                 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2131         } else {
2132                 fault_dscr = 0;
2133         }
2134
2135         /* Handle synchronous data faults. */
2136         if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2137                 if (final_retval == ERROR_OK) {
2138                         /* Final return value will reflect cause of fault. */
2139                         retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2140                         if (retval == ERROR_OK) {
2141                                 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2142                                 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2143                         } else
2144                                 final_retval = retval;
2145                 }
2146                 /* Fault destroyed DFAR/DFSR; restore them. */
2147                 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2148                 if (retval != ERROR_OK)
2149                         LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2150         }
2151
2152         /* Handle asynchronous data faults. */
2153         if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2154                 if (final_retval == ERROR_OK)
2155                         /* No other error has been recorded so far, so keep this one. */
2156                         final_retval = ERROR_TARGET_DATA_ABORT;
2157         }
2158
2159         /* If the DCC is nonempty, clear it. */
2160         if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2161                 uint32_t dummy;
2162                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2163                                 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2164                 if (final_retval == ERROR_OK)
2165                         final_retval = retval;
2166         }
2167         if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2168                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2169                 if (final_retval == ERROR_OK)
2170                         final_retval = retval;
2171         }
2172
2173         /* Done. */
2174         return final_retval;
2175 }
2176
2177 static int cortex_a_read_cpu_memory_slow(struct target *target,
2178         uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
2179 {
2180         /* Reads count objects of size size into *buffer. Old value of DSCR must be
2181          * in *dscr; updated to new value. This is slow because it works for
2182          * non-word-sized objects. Avoid unaligned accesses as they do not work
2183          * on memory address space without "Normal" attribute. If size == 4 and
2184          * the address is aligned, cortex_a_read_cpu_memory_fast should be
2185          * preferred.
2186          * Preconditions:
2187          * - Address is in R0.
2188          * - R0 is marked dirty.
2189          */
2190         struct armv7a_common *armv7a = target_to_armv7a(target);
2191         struct arm *arm = &armv7a->arm;
2192         int retval;
2193
2194         /* Mark register R1 as dirty, to use for transferring data. */
2195         arm_reg_current(arm, 1)->dirty = true;
2196
2197         /* Switch to non-blocking mode if not already in that mode. */
2198         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2199         if (retval != ERROR_OK)
2200                 return retval;
2201
2202         /* Go through the objects. */
2203         while (count) {
2204                 /* Issue a load of the appropriate size to R1. */
2205                 uint32_t opcode, data;
2206                 if (size == 1)
2207                         opcode = ARMV4_5_LDRB_IP(1, 0);
2208                 else if (size == 2)
2209                         opcode = ARMV4_5_LDRH_IP(1, 0);
2210                 else
2211                         opcode = ARMV4_5_LDRW_IP(1, 0);
2212                 retval = cortex_a_exec_opcode(target, opcode, dscr);
2213                 if (retval != ERROR_OK)
2214                         return retval;
2215
2216                 /* Issue a write of R1 to DTRTX. */
2217                 retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 1, 0, 5, 0), dscr);
2218                 if (retval != ERROR_OK)
2219                         return retval;
2220
2221                 /* Check for faults and return early. */
2222                 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2223                         return ERROR_OK; /* A data fault is not considered a system failure. */
2224
2225                 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
2226                  * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2227                  * must also check TXfull_l). Most of the time this will be free
2228                  * because TXfull_l will be set immediately and cached in dscr. */
2229                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2230                                 DSCR_DTRTX_FULL_LATCHED, dscr);
2231                 if (retval != ERROR_OK)
2232                         return retval;
2233
2234                 /* Read the value transferred to DTRTX into the buffer. */
2235                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2236                                 armv7a->debug_base + CPUDBG_DTRTX, &data);
2237                 if (retval != ERROR_OK)
2238                         return retval;
2239                 if (size == 1)
2240                         *buffer = (uint8_t) data;
2241                 else if (size == 2)
2242                         target_buffer_set_u16(target, buffer, (uint16_t) data);
2243                 else
2244                         target_buffer_set_u32(target, buffer, data);
2245
2246                 /* Advance. */
2247                 buffer += size;
2248                 --count;
2249         }
2250
2251         return ERROR_OK;
2252 }
2253
2254 static int cortex_a_read_cpu_memory_fast(struct target *target,
2255         uint32_t count, uint8_t *buffer, uint32_t *dscr)
2256 {
2257         /* Reads count objects of size 4 into *buffer. Old value of DSCR must be in
2258          * *dscr; updated to new value. This is fast but only works for word-sized
2259          * objects at aligned addresses.
2260          * Preconditions:
2261          * - Address is in R0 and must be a multiple of 4.
2262          * - R0 is marked dirty.
2263          */
2264         struct armv7a_common *armv7a = target_to_armv7a(target);
2265         uint32_t u32;
2266         int retval;
2267
2268         /* Switch to non-blocking mode if not already in that mode. */
2269         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2270         if (retval != ERROR_OK)
2271                 return retval;
2272
2273         /* Issue the LDC instruction via a write to ITR. */
2274         retval = cortex_a_exec_opcode(target, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4), dscr);
2275         if (retval != ERROR_OK)
2276                 return retval;
2277
2278         count--;
2279
2280         if (count > 0) {
2281                 /* Switch to fast mode if not already in that mode. */
2282                 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2283                 if (retval != ERROR_OK)
2284                         return retval;
2285
2286                 /* Latch LDC instruction. */
2287                 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2288                                 armv7a->debug_base + CPUDBG_ITR, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4));
2289                 if (retval != ERROR_OK)
2290                         return retval;
2291
2292                 /* Read the value transferred to DTRTX into the buffer. Due to fast
2293                  * mode rules, this blocks until the instruction finishes executing and
2294                  * then reissues the read instruction to read the next word from
2295                  * memory. The last read of DTRTX in this call reads the second-to-last
2296                  * word from memory and issues the read instruction for the last word.
2297                  */
2298                 retval = mem_ap_read_buf_noincr(armv7a->debug_ap, buffer,
2299                                 4, count, armv7a->debug_base + CPUDBG_DTRTX);
2300                 if (retval != ERROR_OK)
2301                         return retval;
2302
2303                 /* Advance. */
2304                 buffer += count * 4;
2305         }
2306
2307         /* Wait for last issued instruction to complete. */
2308         retval = cortex_a_wait_instrcmpl(target, dscr, false);
2309         if (retval != ERROR_OK)
2310                 return retval;
2311
2312         /* Switch to non-blocking mode if not already in that mode. */
2313         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2314         if (retval != ERROR_OK)
2315                 return retval;
2316
2317         /* Check for faults and return early. */
2318         if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2319                 return ERROR_OK; /* A data fault is not considered a system failure. */
2320
2321         /* Wait until DTRTX is full (according to ARMv7-A/-R architecture manual
2322          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2323          * check TXfull_l). Most of the time this will be free because TXfull_l
2324          * will be set immediately and cached in dscr. */
2325         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2326                         DSCR_DTRTX_FULL_LATCHED, dscr);
2327         if (retval != ERROR_OK)
2328                 return retval;
2329
2330         /* Read the value transferred to DTRTX into the buffer. This is the last
2331          * word. */
2332         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2333                         armv7a->debug_base + CPUDBG_DTRTX, &u32);
2334         if (retval != ERROR_OK)
2335                 return retval;
2336         target_buffer_set_u32(target, buffer, u32);
2337
2338         return ERROR_OK;
2339 }
2340
2341 static int cortex_a_read_cpu_memory(struct target *target,
2342         uint32_t address, uint32_t size,
2343         uint32_t count, uint8_t *buffer)
2344 {
2345         /* Read memory through the CPU. */
2346         int retval, final_retval;
2347         struct armv7a_common *armv7a = target_to_armv7a(target);
2348         struct arm *arm = &armv7a->arm;
2349         uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2350
2351         LOG_DEBUG("Reading CPU memory address 0x%" PRIx32 " size %"  PRIu32 " count %"  PRIu32,
2352                           address, size, count);
2353         if (target->state != TARGET_HALTED) {
2354                 LOG_WARNING("target not halted");
2355                 return ERROR_TARGET_NOT_HALTED;
2356         }
2357
2358         if (!count)
2359                 return ERROR_OK;
2360
2361         /* Clear any abort. */
2362         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2363                         armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2364         if (retval != ERROR_OK)
2365                 return retval;
2366
2367         /* Read DSCR */
2368         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2369                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
2370         if (retval != ERROR_OK)
2371                 return retval;
2372
2373         /* Switch to non-blocking mode if not already in that mode. */
2374         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2375         if (retval != ERROR_OK)
2376                 goto out;
2377
2378         /* Mark R0 as dirty. */
2379         arm_reg_current(arm, 0)->dirty = true;
2380
2381         /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2382         retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2383         if (retval != ERROR_OK)
2384                 goto out;
2385
2386         /* Get the memory address into R0. */
2387         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2388                         armv7a->debug_base + CPUDBG_DTRRX, address);
2389         if (retval != ERROR_OK)
2390                 goto out;
2391         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2392         if (retval != ERROR_OK)
2393                 goto out;
2394
2395         if (size == 4 && (address % 4) == 0) {
2396                 /* We are doing a word-aligned transfer, so use fast mode. */
2397                 retval = cortex_a_read_cpu_memory_fast(target, count, buffer, &dscr);
2398         } else {
2399                 /* Use slow path. Adjust size for aligned accesses */
2400                 switch (address % 4) {
2401                         case 1:
2402                         case 3:
2403                                 count *= size;
2404                                 size = 1;
2405                                 break;
2406                         case 2:
2407                                 if (size == 4) {
2408                                         count *= 2;
2409                                         size = 2;
2410                                 }
2411                                 break;
2412                         case 0:
2413                         default:
2414                                 break;
2415                 }
2416                 retval = cortex_a_read_cpu_memory_slow(target, size, count, buffer, &dscr);
2417         }
2418
2419 out:
2420         final_retval = retval;
2421
2422         /* Switch to non-blocking mode if not already in that mode. */
2423         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2424         if (final_retval == ERROR_OK)
2425                 final_retval = retval;
2426
2427         /* Wait for last issued instruction to complete. */
2428         retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2429         if (final_retval == ERROR_OK)
2430                 final_retval = retval;
2431
2432         /* If there were any sticky abort flags, clear them. */
2433         if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2434                 fault_dscr = dscr;
2435                 mem_ap_write_atomic_u32(armv7a->debug_ap,
2436                                 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2437                 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2438         } else {
2439                 fault_dscr = 0;
2440         }
2441
2442         /* Handle synchronous data faults. */
2443         if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2444                 if (final_retval == ERROR_OK) {
2445                         /* Final return value will reflect cause of fault. */
2446                         retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2447                         if (retval == ERROR_OK) {
2448                                 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2449                                 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2450                         } else
2451                                 final_retval = retval;
2452                 }
2453                 /* Fault destroyed DFAR/DFSR; restore them. */
2454                 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2455                 if (retval != ERROR_OK)
2456                         LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2457         }
2458
2459         /* Handle asynchronous data faults. */
2460         if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2461                 if (final_retval == ERROR_OK)
2462                         /* No other error has been recorded so far, so keep this one. */
2463                         final_retval = ERROR_TARGET_DATA_ABORT;
2464         }
2465
2466         /* If the DCC is nonempty, clear it. */
2467         if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2468                 uint32_t dummy;
2469                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2470                                 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2471                 if (final_retval == ERROR_OK)
2472                         final_retval = retval;
2473         }
2474         if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2475                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2476                 if (final_retval == ERROR_OK)
2477                         final_retval = retval;
2478         }
2479
2480         /* Done. */
2481         return final_retval;
2482 }
2483
2484
2485 /*
2486  * Cortex-A Memory access
2487  *
2488  * This is same Cortex-M3 but we must also use the correct
2489  * ap number for every access.
2490  */
2491
2492 static int cortex_a_read_phys_memory(struct target *target,
2493         target_addr_t address, uint32_t size,
2494         uint32_t count, uint8_t *buffer)
2495 {
2496         int retval;
2497
2498         if (!count || !buffer)
2499                 return ERROR_COMMAND_SYNTAX_ERROR;
2500
2501         LOG_DEBUG("Reading memory at real address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2502                 address, size, count);
2503
2504         /* read memory through the CPU */
2505         cortex_a_prep_memaccess(target, 1);
2506         retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2507         cortex_a_post_memaccess(target, 1);
2508
2509         return retval;
2510 }
2511
2512 static int cortex_a_read_memory(struct target *target, target_addr_t address,
2513         uint32_t size, uint32_t count, uint8_t *buffer)
2514 {
2515         int retval;
2516
2517         /* cortex_a handles unaligned memory access */
2518         LOG_DEBUG("Reading memory at address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2519                 address, size, count);
2520
2521         cortex_a_prep_memaccess(target, 0);
2522         retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2523         cortex_a_post_memaccess(target, 0);
2524
2525         return retval;
2526 }
2527
2528 static int cortex_a_write_phys_memory(struct target *target,
2529         target_addr_t address, uint32_t size,
2530         uint32_t count, const uint8_t *buffer)
2531 {
2532         int retval;
2533
2534         if (!count || !buffer)
2535                 return ERROR_COMMAND_SYNTAX_ERROR;
2536
2537         LOG_DEBUG("Writing memory to real address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2538                 address, size, count);
2539
2540         /* write memory through the CPU */
2541         cortex_a_prep_memaccess(target, 1);
2542         retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2543         cortex_a_post_memaccess(target, 1);
2544
2545         return retval;
2546 }
2547
2548 static int cortex_a_write_memory(struct target *target, target_addr_t address,
2549         uint32_t size, uint32_t count, const uint8_t *buffer)
2550 {
2551         int retval;
2552
2553         /* cortex_a handles unaligned memory access */
2554         LOG_DEBUG("Writing memory at address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2555                 address, size, count);
2556
2557         /* memory writes bypass the caches, must flush before writing */
2558         armv7a_cache_auto_flush_on_write(target, address, size * count);
2559
2560         cortex_a_prep_memaccess(target, 0);
2561         retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2562         cortex_a_post_memaccess(target, 0);
2563         return retval;
2564 }
2565
2566 static int cortex_a_read_buffer(struct target *target, target_addr_t address,
2567                                 uint32_t count, uint8_t *buffer)
2568 {
2569         uint32_t size;
2570
2571         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2572          * will have something to do with the size we leave to it. */
2573         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2574                 if (address & size) {
2575                         int retval = target_read_memory(target, address, size, 1, buffer);
2576                         if (retval != ERROR_OK)
2577                                 return retval;
2578                         address += size;
2579                         count -= size;
2580                         buffer += size;
2581                 }
2582         }
2583
2584         /* Read the data with as large access size as possible. */
2585         for (; size > 0; size /= 2) {
2586                 uint32_t aligned = count - count % size;
2587                 if (aligned > 0) {
2588                         int retval = target_read_memory(target, address, size, aligned / size, buffer);
2589                         if (retval != ERROR_OK)
2590                                 return retval;
2591                         address += aligned;
2592                         count -= aligned;
2593                         buffer += aligned;
2594                 }
2595         }
2596
2597         return ERROR_OK;
2598 }
2599
2600 static int cortex_a_write_buffer(struct target *target, target_addr_t address,
2601                                  uint32_t count, const uint8_t *buffer)
2602 {
2603         uint32_t size;
2604
2605         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2606          * will have something to do with the size we leave to it. */
2607         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2608                 if (address & size) {
2609                         int retval = target_write_memory(target, address, size, 1, buffer);
2610                         if (retval != ERROR_OK)
2611                                 return retval;
2612                         address += size;
2613                         count -= size;
2614                         buffer += size;
2615                 }
2616         }
2617
2618         /* Write the data with as large access size as possible. */
2619         for (; size > 0; size /= 2) {
2620                 uint32_t aligned = count - count % size;
2621                 if (aligned > 0) {
2622                         int retval = target_write_memory(target, address, size, aligned / size, buffer);
2623                         if (retval != ERROR_OK)
2624                                 return retval;
2625                         address += aligned;
2626                         count -= aligned;
2627                         buffer += aligned;
2628                 }
2629         }
2630
2631         return ERROR_OK;
2632 }
2633
2634 static int cortex_a_handle_target_request(void *priv)
2635 {
2636         struct target *target = priv;
2637         struct armv7a_common *armv7a = target_to_armv7a(target);
2638         int retval;
2639
2640         if (!target_was_examined(target))
2641                 return ERROR_OK;
2642         if (!target->dbg_msg_enabled)
2643                 return ERROR_OK;
2644
2645         if (target->state == TARGET_RUNNING) {
2646                 uint32_t request;
2647                 uint32_t dscr;
2648                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2649                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2650
2651                 /* check if we have data */
2652                 int64_t then = timeval_ms();
2653                 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2654                         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2655                                         armv7a->debug_base + CPUDBG_DTRTX, &request);
2656                         if (retval == ERROR_OK) {
2657                                 target_request(target, request);
2658                                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2659                                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2660                         }
2661                         if (timeval_ms() > then + 1000) {
2662                                 LOG_ERROR("Timeout waiting for dtr tx full");
2663                                 return ERROR_FAIL;
2664                         }
2665                 }
2666         }
2667
2668         return ERROR_OK;
2669 }
2670
2671 /*
2672  * Cortex-A target information and configuration
2673  */
2674
2675 static int cortex_a_examine_first(struct target *target)
2676 {
2677         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
2678         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2679         struct adiv5_dap *swjdp = armv7a->arm.dap;
2680
2681         int i;
2682         int retval = ERROR_OK;
2683         uint32_t didr, cpuid, dbg_osreg, dbg_idpfr1;
2684
2685         /* Search for the APB-AP - it is needed for access to debug registers */
2686         retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv7a->debug_ap);
2687         if (retval != ERROR_OK) {
2688                 LOG_ERROR("Could not find APB-AP for debug access");
2689                 return retval;
2690         }
2691
2692         retval = mem_ap_init(armv7a->debug_ap);
2693         if (retval != ERROR_OK) {
2694                 LOG_ERROR("Could not initialize the APB-AP");
2695                 return retval;
2696         }
2697
2698         armv7a->debug_ap->memaccess_tck = 80;
2699
2700         if (!target->dbgbase_set) {
2701                 uint32_t dbgbase;
2702                 /* Get ROM Table base */
2703                 uint32_t apid;
2704                 int32_t coreidx = target->coreid;
2705                 LOG_DEBUG("%s's dbgbase is not set, trying to detect using the ROM table",
2706                           target->cmd_name);
2707                 retval = dap_get_debugbase(armv7a->debug_ap, &dbgbase, &apid);
2708                 if (retval != ERROR_OK)
2709                         return retval;
2710                 /* Lookup 0x15 -- Processor DAP */
2711                 retval = dap_lookup_cs_component(armv7a->debug_ap, dbgbase, 0x15,
2712                                 &armv7a->debug_base, &coreidx);
2713                 if (retval != ERROR_OK) {
2714                         LOG_ERROR("Can't detect %s's dbgbase from the ROM table; you need to specify it explicitly.",
2715                                   target->cmd_name);
2716                         return retval;
2717                 }
2718                 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32,
2719                           target->coreid, armv7a->debug_base);
2720         } else
2721                 armv7a->debug_base = target->dbgbase;
2722
2723         if ((armv7a->debug_base & (1UL<<31)) == 0)
2724                 LOG_WARNING("Debug base address for target %s has bit 31 set to 0. Access to debug registers will likely fail!\n"
2725                             "Please fix the target configuration.", target_name(target));
2726
2727         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2728                         armv7a->debug_base + CPUDBG_DIDR, &didr);
2729         if (retval != ERROR_OK) {
2730                 LOG_DEBUG("Examine %s failed", "DIDR");
2731                 return retval;
2732         }
2733
2734         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2735                         armv7a->debug_base + CPUDBG_CPUID, &cpuid);
2736         if (retval != ERROR_OK) {
2737                 LOG_DEBUG("Examine %s failed", "CPUID");
2738                 return retval;
2739         }
2740
2741         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
2742         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
2743
2744         cortex_a->didr = didr;
2745         cortex_a->cpuid = cpuid;
2746
2747         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2748                                     armv7a->debug_base + CPUDBG_PRSR, &dbg_osreg);
2749         if (retval != ERROR_OK)
2750                 return retval;
2751         LOG_DEBUG("target->coreid %" PRId32 " DBGPRSR  0x%" PRIx32, target->coreid, dbg_osreg);
2752
2753         if ((dbg_osreg & PRSR_POWERUP_STATUS) == 0) {
2754                 LOG_ERROR("target->coreid %" PRId32 " powered down!", target->coreid);
2755                 target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
2756                 return ERROR_TARGET_INIT_FAILED;
2757         }
2758
2759         if (dbg_osreg & PRSR_STICKY_RESET_STATUS)
2760                 LOG_DEBUG("target->coreid %" PRId32 " was reset!", target->coreid);
2761
2762         /* Read DBGOSLSR and check if OSLK is implemented */
2763         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2764                                 armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
2765         if (retval != ERROR_OK)
2766                 return retval;
2767         LOG_DEBUG("target->coreid %" PRId32 " DBGOSLSR 0x%" PRIx32, target->coreid, dbg_osreg);
2768
2769         /* check if OS Lock is implemented */
2770         if ((dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM0 || (dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM1) {
2771                 /* check if OS Lock is set */
2772                 if (dbg_osreg & OSLSR_OSLK) {
2773                         LOG_DEBUG("target->coreid %" PRId32 " OSLock set! Trying to unlock", target->coreid);
2774
2775                         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2776                                                         armv7a->debug_base + CPUDBG_OSLAR,
2777                                                         0);
2778                         if (retval == ERROR_OK)
2779                                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2780                                                         armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
2781
2782                         /* if we fail to access the register or cannot reset the OSLK bit, bail out */
2783                         if (retval != ERROR_OK || (dbg_osreg & OSLSR_OSLK) != 0) {
2784                                 LOG_ERROR("target->coreid %" PRId32 " OSLock sticky, core not powered?",
2785                                                 target->coreid);
2786                                 target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
2787                                 return ERROR_TARGET_INIT_FAILED;
2788                         }
2789                 }
2790         }
2791
2792         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2793                                  armv7a->debug_base + CPUDBG_ID_PFR1, &dbg_idpfr1);
2794         if (retval != ERROR_OK)
2795                 return retval;
2796
2797         if (dbg_idpfr1 & 0x000000f0) {
2798                 LOG_DEBUG("target->coreid %" PRId32 " has security extensions",
2799                                 target->coreid);
2800                 armv7a->arm.core_type = ARM_CORE_TYPE_SEC_EXT;
2801         }
2802         if (dbg_idpfr1 & 0x0000f000) {
2803                 LOG_DEBUG("target->coreid %" PRId32 " has virtualization extensions",
2804                                 target->coreid);
2805                 /*
2806                  * overwrite and simplify the checks.
2807                  * virtualization extensions require implementation of security extension
2808                  */
2809                 armv7a->arm.core_type = ARM_CORE_TYPE_VIRT_EXT;
2810         }
2811
2812         /* Avoid recreating the registers cache */
2813         if (!target_was_examined(target)) {
2814                 retval = cortex_a_dpm_setup(cortex_a, didr);
2815                 if (retval != ERROR_OK)
2816                         return retval;
2817         }
2818
2819         /* Setup Breakpoint Register Pairs */
2820         cortex_a->brp_num = ((didr >> 24) & 0x0F) + 1;
2821         cortex_a->brp_num_context = ((didr >> 20) & 0x0F) + 1;
2822         cortex_a->brp_num_available = cortex_a->brp_num;
2823         free(cortex_a->brp_list);
2824         cortex_a->brp_list = calloc(cortex_a->brp_num, sizeof(struct cortex_a_brp));
2825 /*      cortex_a->brb_enabled = ????; */
2826         for (i = 0; i < cortex_a->brp_num; i++) {
2827                 cortex_a->brp_list[i].used = 0;
2828                 if (i < (cortex_a->brp_num-cortex_a->brp_num_context))
2829                         cortex_a->brp_list[i].type = BRP_NORMAL;
2830                 else
2831                         cortex_a->brp_list[i].type = BRP_CONTEXT;
2832                 cortex_a->brp_list[i].value = 0;
2833                 cortex_a->brp_list[i].control = 0;
2834                 cortex_a->brp_list[i].BRPn = i;
2835         }
2836
2837         LOG_DEBUG("Configured %i hw breakpoints", cortex_a->brp_num);
2838
2839         /* select debug_ap as default */
2840         swjdp->apsel = armv7a->debug_ap->ap_num;
2841
2842         target_set_examined(target);
2843         return ERROR_OK;
2844 }
2845
2846 static int cortex_a_examine(struct target *target)
2847 {
2848         int retval = ERROR_OK;
2849
2850         /* Reestablish communication after target reset */
2851         retval = cortex_a_examine_first(target);
2852
2853         /* Configure core debug access */
2854         if (retval == ERROR_OK)
2855                 retval = cortex_a_init_debug_access(target);
2856
2857         return retval;
2858 }
2859
2860 /*
2861  *      Cortex-A target creation and initialization
2862  */
2863
2864 static int cortex_a_init_target(struct command_context *cmd_ctx,
2865         struct target *target)
2866 {
2867         /* examine_first() does a bunch of this */
2868         arm_semihosting_init(target);
2869         return ERROR_OK;
2870 }
2871
2872 static int cortex_a_init_arch_info(struct target *target,
2873         struct cortex_a_common *cortex_a, struct adiv5_dap *dap)
2874 {
2875         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2876
2877         /* Setup struct cortex_a_common */
2878         cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
2879         armv7a->arm.dap = dap;
2880
2881         /* register arch-specific functions */
2882         armv7a->examine_debug_reason = NULL;
2883
2884         armv7a->post_debug_entry = cortex_a_post_debug_entry;
2885
2886         armv7a->pre_restore_context = NULL;
2887
2888         armv7a->armv7a_mmu.read_physical_memory = cortex_a_read_phys_memory;
2889
2890
2891 /*      arm7_9->handle_target_request = cortex_a_handle_target_request; */
2892
2893         /* REVISIT v7a setup should be in a v7a-specific routine */
2894         armv7a_init_arch_info(target, armv7a);
2895         target_register_timer_callback(cortex_a_handle_target_request, 1,
2896                 TARGET_TIMER_TYPE_PERIODIC, target);
2897
2898         return ERROR_OK;
2899 }
2900
2901 static int cortex_a_target_create(struct target *target, Jim_Interp *interp)
2902 {
2903         struct cortex_a_common *cortex_a;
2904         struct adiv5_private_config *pc;
2905
2906         if (target->private_config == NULL)
2907                 return ERROR_FAIL;
2908
2909         pc = (struct adiv5_private_config *)target->private_config;
2910
2911         cortex_a = calloc(1, sizeof(struct cortex_a_common));
2912         if (cortex_a == NULL) {
2913                 LOG_ERROR("Out of memory");
2914                 return ERROR_FAIL;
2915         }
2916         cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
2917         cortex_a->armv7a_common.is_armv7r = false;
2918         cortex_a->armv7a_common.arm.arm_vfp_version = ARM_VFP_V3;
2919
2920         return cortex_a_init_arch_info(target, cortex_a, pc->dap);
2921 }
2922
2923 static int cortex_r4_target_create(struct target *target, Jim_Interp *interp)
2924 {
2925         struct cortex_a_common *cortex_a;
2926         struct adiv5_private_config *pc;
2927
2928         pc = (struct adiv5_private_config *)target->private_config;
2929         if (adiv5_verify_config(pc) != ERROR_OK)
2930                 return ERROR_FAIL;
2931
2932         cortex_a = calloc(1, sizeof(struct cortex_a_common));
2933         if (cortex_a == NULL) {
2934                 LOG_ERROR("Out of memory");
2935                 return ERROR_FAIL;
2936         }
2937         cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
2938         cortex_a->armv7a_common.is_armv7r = true;
2939
2940         return cortex_a_init_arch_info(target, cortex_a, pc->dap);
2941 }
2942
2943 static void cortex_a_deinit_target(struct target *target)
2944 {
2945         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
2946         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2947         struct arm_dpm *dpm = &armv7a->dpm;
2948         uint32_t dscr;
2949         int retval;
2950
2951         if (target_was_examined(target)) {
2952                 /* Disable halt for breakpoint, watchpoint and vector catch */
2953                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2954                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2955                 if (retval == ERROR_OK)
2956                         mem_ap_write_atomic_u32(armv7a->debug_ap,
2957                                         armv7a->debug_base + CPUDBG_DSCR,
2958                                         dscr & ~DSCR_HALT_DBG_MODE);
2959         }
2960
2961         free(cortex_a->brp_list);
2962         arm_free_reg_cache(dpm->arm);
2963         free(dpm->dbp);
2964         free(dpm->dwp);
2965         free(target->private_config);
2966         free(cortex_a);
2967 }
2968
2969 static int cortex_a_mmu(struct target *target, int *enabled)
2970 {
2971         struct armv7a_common *armv7a = target_to_armv7a(target);
2972
2973         if (target->state != TARGET_HALTED) {
2974                 LOG_ERROR("%s: target not halted", __func__);
2975                 return ERROR_TARGET_INVALID;
2976         }
2977
2978         if (armv7a->is_armv7r)
2979                 *enabled = 0;
2980         else
2981                 *enabled = target_to_cortex_a(target)->armv7a_common.armv7a_mmu.mmu_enabled;
2982
2983         return ERROR_OK;
2984 }
2985
2986 static int cortex_a_virt2phys(struct target *target,
2987         target_addr_t virt, target_addr_t *phys)
2988 {
2989         int retval;
2990         int mmu_enabled = 0;
2991
2992         /*
2993          * If the MMU was not enabled at debug entry, there is no
2994          * way of knowing if there was ever a valid configuration
2995          * for it and thus it's not safe to enable it. In this case,
2996          * just return the virtual address as physical.
2997          */
2998         cortex_a_mmu(target, &mmu_enabled);
2999         if (!mmu_enabled) {
3000                 *phys = virt;
3001                 return ERROR_OK;
3002         }
3003
3004         /* mmu must be enable in order to get a correct translation */
3005         retval = cortex_a_mmu_modify(target, 1);
3006         if (retval != ERROR_OK)
3007                 return retval;
3008         return armv7a_mmu_translate_va_pa(target, (uint32_t)virt,
3009                                                     phys, 1);
3010 }
3011
3012 COMMAND_HANDLER(cortex_a_handle_cache_info_command)
3013 {
3014         struct target *target = get_current_target(CMD_CTX);
3015         struct armv7a_common *armv7a = target_to_armv7a(target);
3016
3017         return armv7a_handle_cache_info_command(CMD,
3018                         &armv7a->armv7a_mmu.armv7a_cache);
3019 }
3020
3021
3022 COMMAND_HANDLER(cortex_a_handle_dbginit_command)
3023 {
3024         struct target *target = get_current_target(CMD_CTX);
3025         if (!target_was_examined(target)) {
3026                 LOG_ERROR("target not examined yet");
3027                 return ERROR_FAIL;
3028         }
3029
3030         return cortex_a_init_debug_access(target);
3031 }
3032
3033 COMMAND_HANDLER(handle_cortex_a_mask_interrupts_command)
3034 {
3035         struct target *target = get_current_target(CMD_CTX);
3036         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3037
3038         static const Jim_Nvp nvp_maskisr_modes[] = {
3039                 { .name = "off", .value = CORTEX_A_ISRMASK_OFF },
3040                 { .name = "on", .value = CORTEX_A_ISRMASK_ON },
3041                 { .name = NULL, .value = -1 },
3042         };
3043         const Jim_Nvp *n;
3044
3045         if (CMD_ARGC > 0) {
3046                 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
3047                 if (n->name == NULL) {
3048                         LOG_ERROR("Unknown parameter: %s - should be off or on", CMD_ARGV[0]);
3049                         return ERROR_COMMAND_SYNTAX_ERROR;
3050                 }
3051
3052                 cortex_a->isrmasking_mode = n->value;
3053         }
3054
3055         n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_a->isrmasking_mode);
3056         command_print(CMD, "cortex_a interrupt mask %s", n->name);
3057
3058         return ERROR_OK;
3059 }
3060
3061 COMMAND_HANDLER(handle_cortex_a_dacrfixup_command)
3062 {
3063         struct target *target = get_current_target(CMD_CTX);
3064         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3065
3066         static const Jim_Nvp nvp_dacrfixup_modes[] = {
3067                 { .name = "off", .value = CORTEX_A_DACRFIXUP_OFF },
3068                 { .name = "on", .value = CORTEX_A_DACRFIXUP_ON },
3069                 { .name = NULL, .value = -1 },
3070         };
3071         const Jim_Nvp *n;
3072
3073         if (CMD_ARGC > 0) {
3074                 n = Jim_Nvp_name2value_simple(nvp_dacrfixup_modes, CMD_ARGV[0]);
3075                 if (n->name == NULL)
3076                         return ERROR_COMMAND_SYNTAX_ERROR;
3077                 cortex_a->dacrfixup_mode = n->value;
3078
3079         }
3080
3081         n = Jim_Nvp_value2name_simple(nvp_dacrfixup_modes, cortex_a->dacrfixup_mode);
3082         command_print(CMD, "cortex_a domain access control fixup %s", n->name);
3083
3084         return ERROR_OK;
3085 }
3086
3087 static const struct command_registration cortex_a_exec_command_handlers[] = {
3088         {
3089                 .name = "cache_info",
3090                 .handler = cortex_a_handle_cache_info_command,
3091                 .mode = COMMAND_EXEC,
3092                 .help = "display information about target caches",
3093                 .usage = "",
3094         },
3095         {
3096                 .name = "dbginit",
3097                 .handler = cortex_a_handle_dbginit_command,
3098                 .mode = COMMAND_EXEC,
3099                 .help = "Initialize core debug",
3100                 .usage = "",
3101         },
3102         {
3103                 .name = "maskisr",
3104                 .handler = handle_cortex_a_mask_interrupts_command,
3105                 .mode = COMMAND_ANY,
3106                 .help = "mask cortex_a interrupts",
3107                 .usage = "['on'|'off']",
3108         },
3109         {
3110                 .name = "dacrfixup",
3111                 .handler = handle_cortex_a_dacrfixup_command,
3112                 .mode = COMMAND_ANY,
3113                 .help = "set domain access control (DACR) to all-manager "
3114                         "on memory access",
3115                 .usage = "['on'|'off']",
3116         },
3117         {
3118                 .chain = armv7a_mmu_command_handlers,
3119         },
3120         {
3121                 .chain = smp_command_handlers,
3122         },
3123
3124         COMMAND_REGISTRATION_DONE
3125 };
3126 static const struct command_registration cortex_a_command_handlers[] = {
3127         {
3128                 .chain = arm_command_handlers,
3129         },
3130         {
3131                 .chain = armv7a_command_handlers,
3132         },
3133         {
3134                 .name = "cortex_a",
3135                 .mode = COMMAND_ANY,
3136                 .help = "Cortex-A command group",
3137                 .usage = "",
3138                 .chain = cortex_a_exec_command_handlers,
3139         },
3140         COMMAND_REGISTRATION_DONE
3141 };
3142
3143 struct target_type cortexa_target = {
3144         .name = "cortex_a",
3145         .deprecated_name = "cortex_a8",
3146
3147         .poll = cortex_a_poll,
3148         .arch_state = armv7a_arch_state,
3149
3150         .halt = cortex_a_halt,
3151         .resume = cortex_a_resume,
3152         .step = cortex_a_step,
3153
3154         .assert_reset = cortex_a_assert_reset,
3155         .deassert_reset = cortex_a_deassert_reset,
3156
3157         /* REVISIT allow exporting VFP3 registers ... */
3158         .get_gdb_arch = arm_get_gdb_arch,
3159         .get_gdb_reg_list = arm_get_gdb_reg_list,
3160
3161         .read_memory = cortex_a_read_memory,
3162         .write_memory = cortex_a_write_memory,
3163
3164         .read_buffer = cortex_a_read_buffer,
3165         .write_buffer = cortex_a_write_buffer,
3166
3167         .checksum_memory = arm_checksum_memory,
3168         .blank_check_memory = arm_blank_check_memory,
3169
3170         .run_algorithm = armv4_5_run_algorithm,
3171
3172         .add_breakpoint = cortex_a_add_breakpoint,
3173         .add_context_breakpoint = cortex_a_add_context_breakpoint,
3174         .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3175         .remove_breakpoint = cortex_a_remove_breakpoint,
3176         .add_watchpoint = NULL,
3177         .remove_watchpoint = NULL,
3178
3179         .commands = cortex_a_command_handlers,
3180         .target_create = cortex_a_target_create,
3181         .target_jim_configure = adiv5_jim_configure,
3182         .init_target = cortex_a_init_target,
3183         .examine = cortex_a_examine,
3184         .deinit_target = cortex_a_deinit_target,
3185
3186         .read_phys_memory = cortex_a_read_phys_memory,
3187         .write_phys_memory = cortex_a_write_phys_memory,
3188         .mmu = cortex_a_mmu,
3189         .virt2phys = cortex_a_virt2phys,
3190 };
3191
3192 static const struct command_registration cortex_r4_exec_command_handlers[] = {
3193         {
3194                 .name = "dbginit",
3195                 .handler = cortex_a_handle_dbginit_command,
3196                 .mode = COMMAND_EXEC,
3197                 .help = "Initialize core debug",
3198                 .usage = "",
3199         },
3200         {
3201                 .name = "maskisr",
3202                 .handler = handle_cortex_a_mask_interrupts_command,
3203                 .mode = COMMAND_EXEC,
3204                 .help = "mask cortex_r4 interrupts",
3205                 .usage = "['on'|'off']",
3206         },
3207
3208         COMMAND_REGISTRATION_DONE
3209 };
3210 static const struct command_registration cortex_r4_command_handlers[] = {
3211         {
3212                 .chain = arm_command_handlers,
3213         },
3214         {
3215                 .name = "cortex_r4",
3216                 .mode = COMMAND_ANY,
3217                 .help = "Cortex-R4 command group",
3218                 .usage = "",
3219                 .chain = cortex_r4_exec_command_handlers,
3220         },
3221         COMMAND_REGISTRATION_DONE
3222 };
3223
3224 struct target_type cortexr4_target = {
3225         .name = "cortex_r4",
3226
3227         .poll = cortex_a_poll,
3228         .arch_state = armv7a_arch_state,
3229
3230         .halt = cortex_a_halt,
3231         .resume = cortex_a_resume,
3232         .step = cortex_a_step,
3233
3234         .assert_reset = cortex_a_assert_reset,
3235         .deassert_reset = cortex_a_deassert_reset,
3236
3237         /* REVISIT allow exporting VFP3 registers ... */
3238         .get_gdb_arch = arm_get_gdb_arch,
3239         .get_gdb_reg_list = arm_get_gdb_reg_list,
3240
3241         .read_memory = cortex_a_read_phys_memory,
3242         .write_memory = cortex_a_write_phys_memory,
3243
3244         .checksum_memory = arm_checksum_memory,
3245         .blank_check_memory = arm_blank_check_memory,
3246
3247         .run_algorithm = armv4_5_run_algorithm,
3248
3249         .add_breakpoint = cortex_a_add_breakpoint,
3250         .add_context_breakpoint = cortex_a_add_context_breakpoint,
3251         .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3252         .remove_breakpoint = cortex_a_remove_breakpoint,
3253         .add_watchpoint = NULL,
3254         .remove_watchpoint = NULL,
3255
3256         .commands = cortex_r4_command_handlers,
3257         .target_create = cortex_r4_target_create,
3258         .target_jim_configure = adiv5_jim_configure,
3259         .init_target = cortex_a_init_target,
3260         .examine = cortex_a_examine,
3261         .deinit_target = cortex_a_deinit_target,
3262 };