smp: replace commands smp_on/smp_off with "smp [on|off]"
[fw/openocd] / src / target / cortex_a.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   Copyright (C) 2010 Ã˜yvind Harboe                                      *
15  *   oyvind.harboe@zylin.com                                               *
16  *                                                                         *
17  *   Copyright (C) ST-Ericsson SA 2011                                     *
18  *   michel.jaouen@stericsson.com : smp minimum support                    *
19  *                                                                         *
20  *   Copyright (C) Broadcom 2012                                           *
21  *   ehunter@broadcom.com : Cortex-R4 support                              *
22  *                                                                         *
23  *   Copyright (C) 2013 Kamal Dasu                                         *
24  *   kdasu.kdev@gmail.com                                                  *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
38  *                                                                         *
39  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
40  *   Cortex-A9(tm) TRM, ARM DDI 0407F                                      *
41  *   Cortex-A4(tm) TRM, ARM DDI 0363E                                      *
42  *   Cortex-A15(tm)TRM, ARM DDI 0438C                                      *
43  *                                                                         *
44  ***************************************************************************/
45
46 #ifdef HAVE_CONFIG_H
47 #include "config.h"
48 #endif
49
50 #include "breakpoints.h"
51 #include "cortex_a.h"
52 #include "register.h"
53 #include "armv7a_mmu.h"
54 #include "target_request.h"
55 #include "target_type.h"
56 #include "arm_opcodes.h"
57 #include "arm_semihosting.h"
58 #include "transport/transport.h"
59 #include "smp.h"
60 #include <helper/time_support.h>
61
62 static int cortex_a_poll(struct target *target);
63 static int cortex_a_debug_entry(struct target *target);
64 static int cortex_a_restore_context(struct target *target, bool bpwp);
65 static int cortex_a_set_breakpoint(struct target *target,
66         struct breakpoint *breakpoint, uint8_t matchmode);
67 static int cortex_a_set_context_breakpoint(struct target *target,
68         struct breakpoint *breakpoint, uint8_t matchmode);
69 static int cortex_a_set_hybrid_breakpoint(struct target *target,
70         struct breakpoint *breakpoint);
71 static int cortex_a_unset_breakpoint(struct target *target,
72         struct breakpoint *breakpoint);
73 static int cortex_a_mmu(struct target *target, int *enabled);
74 static int cortex_a_mmu_modify(struct target *target, int enable);
75 static int cortex_a_virt2phys(struct target *target,
76         target_addr_t virt, target_addr_t *phys);
77 static int cortex_a_read_cpu_memory(struct target *target,
78         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
79
80
81 /*  restore cp15_control_reg at resume */
82 static int cortex_a_restore_cp15_control_reg(struct target *target)
83 {
84         int retval = ERROR_OK;
85         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
86         struct armv7a_common *armv7a = target_to_armv7a(target);
87
88         if (cortex_a->cp15_control_reg != cortex_a->cp15_control_reg_curr) {
89                 cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
90                 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg); */
91                 retval = armv7a->arm.mcr(target, 15,
92                                 0, 0,   /* op1, op2 */
93                                 1, 0,   /* CRn, CRm */
94                                 cortex_a->cp15_control_reg);
95         }
96         return retval;
97 }
98
99 /*
100  * Set up ARM core for memory access.
101  * If !phys_access, switch to SVC mode and make sure MMU is on
102  * If phys_access, switch off mmu
103  */
104 static int cortex_a_prep_memaccess(struct target *target, int phys_access)
105 {
106         struct armv7a_common *armv7a = target_to_armv7a(target);
107         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
108         int mmu_enabled = 0;
109
110         if (phys_access == 0) {
111                 arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
112                 cortex_a_mmu(target, &mmu_enabled);
113                 if (mmu_enabled)
114                         cortex_a_mmu_modify(target, 1);
115                 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
116                         /* overwrite DACR to all-manager */
117                         armv7a->arm.mcr(target, 15,
118                                         0, 0, 3, 0,
119                                         0xFFFFFFFF);
120                 }
121         } else {
122                 cortex_a_mmu(target, &mmu_enabled);
123                 if (mmu_enabled)
124                         cortex_a_mmu_modify(target, 0);
125         }
126         return ERROR_OK;
127 }
128
129 /*
130  * Restore ARM core after memory access.
131  * If !phys_access, switch to previous mode
132  * If phys_access, restore MMU setting
133  */
134 static int cortex_a_post_memaccess(struct target *target, int phys_access)
135 {
136         struct armv7a_common *armv7a = target_to_armv7a(target);
137         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
138
139         if (phys_access == 0) {
140                 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
141                         /* restore */
142                         armv7a->arm.mcr(target, 15,
143                                         0, 0, 3, 0,
144                                         cortex_a->cp15_dacr_reg);
145                 }
146                 arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
147         } else {
148                 int mmu_enabled = 0;
149                 cortex_a_mmu(target, &mmu_enabled);
150                 if (mmu_enabled)
151                         cortex_a_mmu_modify(target, 1);
152         }
153         return ERROR_OK;
154 }
155
156
157 /*  modify cp15_control_reg in order to enable or disable mmu for :
158  *  - virt2phys address conversion
159  *  - read or write memory in phys or virt address */
160 static int cortex_a_mmu_modify(struct target *target, int enable)
161 {
162         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
163         struct armv7a_common *armv7a = target_to_armv7a(target);
164         int retval = ERROR_OK;
165         int need_write = 0;
166
167         if (enable) {
168                 /*  if mmu enabled at target stop and mmu not enable */
169                 if (!(cortex_a->cp15_control_reg & 0x1U)) {
170                         LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
171                         return ERROR_FAIL;
172                 }
173                 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0) {
174                         cortex_a->cp15_control_reg_curr |= 0x1U;
175                         need_write = 1;
176                 }
177         } else {
178                 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0x1U) {
179                         cortex_a->cp15_control_reg_curr &= ~0x1U;
180                         need_write = 1;
181                 }
182         }
183
184         if (need_write) {
185                 LOG_DEBUG("%s, writing cp15 ctrl: %" PRIx32,
186                         enable ? "enable mmu" : "disable mmu",
187                         cortex_a->cp15_control_reg_curr);
188
189                 retval = armv7a->arm.mcr(target, 15,
190                                 0, 0,   /* op1, op2 */
191                                 1, 0,   /* CRn, CRm */
192                                 cortex_a->cp15_control_reg_curr);
193         }
194         return retval;
195 }
196
197 /*
198  * Cortex-A Basic debug access, very low level assumes state is saved
199  */
200 static int cortex_a_init_debug_access(struct target *target)
201 {
202         struct armv7a_common *armv7a = target_to_armv7a(target);
203         uint32_t dscr;
204         int retval;
205
206         /* lock memory-mapped access to debug registers to prevent
207          * software interference */
208         retval = mem_ap_write_u32(armv7a->debug_ap,
209                         armv7a->debug_base + CPUDBG_LOCKACCESS, 0);
210         if (retval != ERROR_OK)
211                 return retval;
212
213         /* Disable cacheline fills and force cache write-through in debug state */
214         retval = mem_ap_write_u32(armv7a->debug_ap,
215                         armv7a->debug_base + CPUDBG_DSCCR, 0);
216         if (retval != ERROR_OK)
217                 return retval;
218
219         /* Disable TLB lookup and refill/eviction in debug state */
220         retval = mem_ap_write_u32(armv7a->debug_ap,
221                         armv7a->debug_base + CPUDBG_DSMCR, 0);
222         if (retval != ERROR_OK)
223                 return retval;
224
225         retval = dap_run(armv7a->debug_ap->dap);
226         if (retval != ERROR_OK)
227                 return retval;
228
229         /* Enabling of instruction execution in debug mode is done in debug_entry code */
230
231         /* Resync breakpoint registers */
232
233         /* Enable halt for breakpoint, watchpoint and vector catch */
234         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
235                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
236         if (retval != ERROR_OK)
237                 return retval;
238         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
239                         armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
240         if (retval != ERROR_OK)
241                 return retval;
242
243         /* Since this is likely called from init or reset, update target state information*/
244         return cortex_a_poll(target);
245 }
246
247 static int cortex_a_wait_instrcmpl(struct target *target, uint32_t *dscr, bool force)
248 {
249         /* Waits until InstrCmpl_l becomes 1, indicating instruction is done.
250          * Writes final value of DSCR into *dscr. Pass force to force always
251          * reading DSCR at least once. */
252         struct armv7a_common *armv7a = target_to_armv7a(target);
253         int64_t then = timeval_ms();
254         while ((*dscr & DSCR_INSTR_COMP) == 0 || force) {
255                 force = false;
256                 int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
257                                 armv7a->debug_base + CPUDBG_DSCR, dscr);
258                 if (retval != ERROR_OK) {
259                         LOG_ERROR("Could not read DSCR register");
260                         return retval;
261                 }
262                 if (timeval_ms() > then + 1000) {
263                         LOG_ERROR("Timeout waiting for InstrCompl=1");
264                         return ERROR_FAIL;
265                 }
266         }
267         return ERROR_OK;
268 }
269
270 /* To reduce needless round-trips, pass in a pointer to the current
271  * DSCR value.  Initialize it to zero if you just need to know the
272  * value on return from this function; or DSCR_INSTR_COMP if you
273  * happen to know that no instruction is pending.
274  */
275 static int cortex_a_exec_opcode(struct target *target,
276         uint32_t opcode, uint32_t *dscr_p)
277 {
278         uint32_t dscr;
279         int retval;
280         struct armv7a_common *armv7a = target_to_armv7a(target);
281
282         dscr = dscr_p ? *dscr_p : 0;
283
284         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
285
286         /* Wait for InstrCompl bit to be set */
287         retval = cortex_a_wait_instrcmpl(target, dscr_p, false);
288         if (retval != ERROR_OK)
289                 return retval;
290
291         retval = mem_ap_write_u32(armv7a->debug_ap,
292                         armv7a->debug_base + CPUDBG_ITR, opcode);
293         if (retval != ERROR_OK)
294                 return retval;
295
296         int64_t then = timeval_ms();
297         do {
298                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
299                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
300                 if (retval != ERROR_OK) {
301                         LOG_ERROR("Could not read DSCR register");
302                         return retval;
303                 }
304                 if (timeval_ms() > then + 1000) {
305                         LOG_ERROR("Timeout waiting for cortex_a_exec_opcode");
306                         return ERROR_FAIL;
307                 }
308         } while ((dscr & DSCR_INSTR_COMP) == 0);        /* Wait for InstrCompl bit to be set */
309
310         if (dscr_p)
311                 *dscr_p = dscr;
312
313         return retval;
314 }
315
316 /* Write to memory mapped registers directly with no cache or mmu handling */
317 static int cortex_a_dap_write_memap_register_u32(struct target *target,
318         uint32_t address,
319         uint32_t value)
320 {
321         int retval;
322         struct armv7a_common *armv7a = target_to_armv7a(target);
323
324         retval = mem_ap_write_atomic_u32(armv7a->debug_ap, address, value);
325
326         return retval;
327 }
328
329 /*
330  * Cortex-A implementation of Debug Programmer's Model
331  *
332  * NOTE the invariant:  these routines return with DSCR_INSTR_COMP set,
333  * so there's no need to poll for it before executing an instruction.
334  *
335  * NOTE that in several of these cases the "stall" mode might be useful.
336  * It'd let us queue a few operations together... prepare/finish might
337  * be the places to enable/disable that mode.
338  */
339
340 static inline struct cortex_a_common *dpm_to_a(struct arm_dpm *dpm)
341 {
342         return container_of(dpm, struct cortex_a_common, armv7a_common.dpm);
343 }
344
345 static int cortex_a_write_dcc(struct cortex_a_common *a, uint32_t data)
346 {
347         LOG_DEBUG("write DCC 0x%08" PRIx32, data);
348         return mem_ap_write_u32(a->armv7a_common.debug_ap,
349                         a->armv7a_common.debug_base + CPUDBG_DTRRX, data);
350 }
351
352 static int cortex_a_read_dcc(struct cortex_a_common *a, uint32_t *data,
353         uint32_t *dscr_p)
354 {
355         uint32_t dscr = DSCR_INSTR_COMP;
356         int retval;
357
358         if (dscr_p)
359                 dscr = *dscr_p;
360
361         /* Wait for DTRRXfull */
362         int64_t then = timeval_ms();
363         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
364                 retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
365                                 a->armv7a_common.debug_base + CPUDBG_DSCR,
366                                 &dscr);
367                 if (retval != ERROR_OK)
368                         return retval;
369                 if (timeval_ms() > then + 1000) {
370                         LOG_ERROR("Timeout waiting for read dcc");
371                         return ERROR_FAIL;
372                 }
373         }
374
375         retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
376                         a->armv7a_common.debug_base + CPUDBG_DTRTX, data);
377         if (retval != ERROR_OK)
378                 return retval;
379         /* LOG_DEBUG("read DCC 0x%08" PRIx32, *data); */
380
381         if (dscr_p)
382                 *dscr_p = dscr;
383
384         return retval;
385 }
386
387 static int cortex_a_dpm_prepare(struct arm_dpm *dpm)
388 {
389         struct cortex_a_common *a = dpm_to_a(dpm);
390         uint32_t dscr;
391         int retval;
392
393         /* set up invariant:  INSTR_COMP is set after ever DPM operation */
394         int64_t then = timeval_ms();
395         for (;; ) {
396                 retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
397                                 a->armv7a_common.debug_base + CPUDBG_DSCR,
398                                 &dscr);
399                 if (retval != ERROR_OK)
400                         return retval;
401                 if ((dscr & DSCR_INSTR_COMP) != 0)
402                         break;
403                 if (timeval_ms() > then + 1000) {
404                         LOG_ERROR("Timeout waiting for dpm prepare");
405                         return ERROR_FAIL;
406                 }
407         }
408
409         /* this "should never happen" ... */
410         if (dscr & DSCR_DTR_RX_FULL) {
411                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
412                 /* Clear DCCRX */
413                 retval = cortex_a_exec_opcode(
414                                 a->armv7a_common.arm.target,
415                                 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
416                                 &dscr);
417                 if (retval != ERROR_OK)
418                         return retval;
419         }
420
421         return retval;
422 }
423
424 static int cortex_a_dpm_finish(struct arm_dpm *dpm)
425 {
426         /* REVISIT what could be done here? */
427         return ERROR_OK;
428 }
429
430 static int cortex_a_instr_write_data_dcc(struct arm_dpm *dpm,
431         uint32_t opcode, uint32_t data)
432 {
433         struct cortex_a_common *a = dpm_to_a(dpm);
434         int retval;
435         uint32_t dscr = DSCR_INSTR_COMP;
436
437         retval = cortex_a_write_dcc(a, data);
438         if (retval != ERROR_OK)
439                 return retval;
440
441         return cortex_a_exec_opcode(
442                         a->armv7a_common.arm.target,
443                         opcode,
444                         &dscr);
445 }
446
447 static int cortex_a_instr_write_data_r0(struct arm_dpm *dpm,
448         uint32_t opcode, uint32_t data)
449 {
450         struct cortex_a_common *a = dpm_to_a(dpm);
451         uint32_t dscr = DSCR_INSTR_COMP;
452         int retval;
453
454         retval = cortex_a_write_dcc(a, data);
455         if (retval != ERROR_OK)
456                 return retval;
457
458         /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
459         retval = cortex_a_exec_opcode(
460                         a->armv7a_common.arm.target,
461                         ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
462                         &dscr);
463         if (retval != ERROR_OK)
464                 return retval;
465
466         /* then the opcode, taking data from R0 */
467         retval = cortex_a_exec_opcode(
468                         a->armv7a_common.arm.target,
469                         opcode,
470                         &dscr);
471
472         return retval;
473 }
474
475 static int cortex_a_instr_cpsr_sync(struct arm_dpm *dpm)
476 {
477         struct target *target = dpm->arm->target;
478         uint32_t dscr = DSCR_INSTR_COMP;
479
480         /* "Prefetch flush" after modifying execution status in CPSR */
481         return cortex_a_exec_opcode(target,
482                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
483                         &dscr);
484 }
485
486 static int cortex_a_instr_read_data_dcc(struct arm_dpm *dpm,
487         uint32_t opcode, uint32_t *data)
488 {
489         struct cortex_a_common *a = dpm_to_a(dpm);
490         int retval;
491         uint32_t dscr = DSCR_INSTR_COMP;
492
493         /* the opcode, writing data to DCC */
494         retval = cortex_a_exec_opcode(
495                         a->armv7a_common.arm.target,
496                         opcode,
497                         &dscr);
498         if (retval != ERROR_OK)
499                 return retval;
500
501         return cortex_a_read_dcc(a, data, &dscr);
502 }
503
504
505 static int cortex_a_instr_read_data_r0(struct arm_dpm *dpm,
506         uint32_t opcode, uint32_t *data)
507 {
508         struct cortex_a_common *a = dpm_to_a(dpm);
509         uint32_t dscr = DSCR_INSTR_COMP;
510         int retval;
511
512         /* the opcode, writing data to R0 */
513         retval = cortex_a_exec_opcode(
514                         a->armv7a_common.arm.target,
515                         opcode,
516                         &dscr);
517         if (retval != ERROR_OK)
518                 return retval;
519
520         /* write R0 to DCC */
521         retval = cortex_a_exec_opcode(
522                         a->armv7a_common.arm.target,
523                         ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
524                         &dscr);
525         if (retval != ERROR_OK)
526                 return retval;
527
528         return cortex_a_read_dcc(a, data, &dscr);
529 }
530
531 static int cortex_a_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
532         uint32_t addr, uint32_t control)
533 {
534         struct cortex_a_common *a = dpm_to_a(dpm);
535         uint32_t vr = a->armv7a_common.debug_base;
536         uint32_t cr = a->armv7a_common.debug_base;
537         int retval;
538
539         switch (index_t) {
540                 case 0 ... 15:  /* breakpoints */
541                         vr += CPUDBG_BVR_BASE;
542                         cr += CPUDBG_BCR_BASE;
543                         break;
544                 case 16 ... 31: /* watchpoints */
545                         vr += CPUDBG_WVR_BASE;
546                         cr += CPUDBG_WCR_BASE;
547                         index_t -= 16;
548                         break;
549                 default:
550                         return ERROR_FAIL;
551         }
552         vr += 4 * index_t;
553         cr += 4 * index_t;
554
555         LOG_DEBUG("A: bpwp enable, vr %08x cr %08x",
556                 (unsigned) vr, (unsigned) cr);
557
558         retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
559                         vr, addr);
560         if (retval != ERROR_OK)
561                 return retval;
562         retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
563                         cr, control);
564         return retval;
565 }
566
567 static int cortex_a_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
568 {
569         struct cortex_a_common *a = dpm_to_a(dpm);
570         uint32_t cr;
571
572         switch (index_t) {
573                 case 0 ... 15:
574                         cr = a->armv7a_common.debug_base + CPUDBG_BCR_BASE;
575                         break;
576                 case 16 ... 31:
577                         cr = a->armv7a_common.debug_base + CPUDBG_WCR_BASE;
578                         index_t -= 16;
579                         break;
580                 default:
581                         return ERROR_FAIL;
582         }
583         cr += 4 * index_t;
584
585         LOG_DEBUG("A: bpwp disable, cr %08x", (unsigned) cr);
586
587         /* clear control register */
588         return cortex_a_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
589 }
590
591 static int cortex_a_dpm_setup(struct cortex_a_common *a, uint32_t didr)
592 {
593         struct arm_dpm *dpm = &a->armv7a_common.dpm;
594         int retval;
595
596         dpm->arm = &a->armv7a_common.arm;
597         dpm->didr = didr;
598
599         dpm->prepare = cortex_a_dpm_prepare;
600         dpm->finish = cortex_a_dpm_finish;
601
602         dpm->instr_write_data_dcc = cortex_a_instr_write_data_dcc;
603         dpm->instr_write_data_r0 = cortex_a_instr_write_data_r0;
604         dpm->instr_cpsr_sync = cortex_a_instr_cpsr_sync;
605
606         dpm->instr_read_data_dcc = cortex_a_instr_read_data_dcc;
607         dpm->instr_read_data_r0 = cortex_a_instr_read_data_r0;
608
609         dpm->bpwp_enable = cortex_a_bpwp_enable;
610         dpm->bpwp_disable = cortex_a_bpwp_disable;
611
612         retval = arm_dpm_setup(dpm);
613         if (retval == ERROR_OK)
614                 retval = arm_dpm_initialize(dpm);
615
616         return retval;
617 }
618 static struct target *get_cortex_a(struct target *target, int32_t coreid)
619 {
620         struct target_list *head;
621         struct target *curr;
622
623         head = target->head;
624         while (head != (struct target_list *)NULL) {
625                 curr = head->target;
626                 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
627                         return curr;
628                 head = head->next;
629         }
630         return target;
631 }
632 static int cortex_a_halt(struct target *target);
633
634 static int cortex_a_halt_smp(struct target *target)
635 {
636         int retval = 0;
637         struct target_list *head;
638         struct target *curr;
639         head = target->head;
640         while (head != (struct target_list *)NULL) {
641                 curr = head->target;
642                 if ((curr != target) && (curr->state != TARGET_HALTED)
643                         && target_was_examined(curr))
644                         retval += cortex_a_halt(curr);
645                 head = head->next;
646         }
647         return retval;
648 }
649
650 static int update_halt_gdb(struct target *target)
651 {
652         struct target *gdb_target = NULL;
653         struct target_list *head;
654         struct target *curr;
655         int retval = 0;
656
657         if (target->gdb_service && target->gdb_service->core[0] == -1) {
658                 target->gdb_service->target = target;
659                 target->gdb_service->core[0] = target->coreid;
660                 retval += cortex_a_halt_smp(target);
661         }
662
663         if (target->gdb_service)
664                 gdb_target = target->gdb_service->target;
665
666         foreach_smp_target(head, target->head) {
667                 curr = head->target;
668                 /* skip calling context */
669                 if (curr == target)
670                         continue;
671                 if (!target_was_examined(curr))
672                         continue;
673                 /* skip targets that were already halted */
674                 if (curr->state == TARGET_HALTED)
675                         continue;
676                 /* Skip gdb_target; it alerts GDB so has to be polled as last one */
677                 if (curr == gdb_target)
678                         continue;
679
680                 /* avoid recursion in cortex_a_poll() */
681                 curr->smp = 0;
682                 cortex_a_poll(curr);
683                 curr->smp = 1;
684         }
685
686         /* after all targets were updated, poll the gdb serving target */
687         if (gdb_target != NULL && gdb_target != target)
688                 cortex_a_poll(gdb_target);
689         return retval;
690 }
691
692 /*
693  * Cortex-A Run control
694  */
695
696 static int cortex_a_poll(struct target *target)
697 {
698         int retval = ERROR_OK;
699         uint32_t dscr;
700         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
701         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
702         enum target_state prev_target_state = target->state;
703         /*  toggle to another core is done by gdb as follow */
704         /*  maint packet J core_id */
705         /*  continue */
706         /*  the next polling trigger an halt event sent to gdb */
707         if ((target->state == TARGET_HALTED) && (target->smp) &&
708                 (target->gdb_service) &&
709                 (target->gdb_service->target == NULL)) {
710                 target->gdb_service->target =
711                         get_cortex_a(target, target->gdb_service->core[1]);
712                 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
713                 return retval;
714         }
715         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
716                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
717         if (retval != ERROR_OK)
718                 return retval;
719         cortex_a->cpudbg_dscr = dscr;
720
721         if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED)) {
722                 if (prev_target_state != TARGET_HALTED) {
723                         /* We have a halting debug event */
724                         LOG_DEBUG("Target halted");
725                         target->state = TARGET_HALTED;
726
727                         retval = cortex_a_debug_entry(target);
728                         if (retval != ERROR_OK)
729                                 return retval;
730
731                         if (target->smp) {
732                                 retval = update_halt_gdb(target);
733                                 if (retval != ERROR_OK)
734                                         return retval;
735                         }
736
737                         if (prev_target_state == TARGET_DEBUG_RUNNING) {
738                                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
739                         } else { /* prev_target_state is RUNNING, UNKNOWN or RESET */
740                                 if (arm_semihosting(target, &retval) != 0)
741                                         return retval;
742
743                                 target_call_event_callbacks(target,
744                                         TARGET_EVENT_HALTED);
745                         }
746                 }
747         } else
748                 target->state = TARGET_RUNNING;
749
750         return retval;
751 }
752
753 static int cortex_a_halt(struct target *target)
754 {
755         int retval = ERROR_OK;
756         uint32_t dscr;
757         struct armv7a_common *armv7a = target_to_armv7a(target);
758
759         /*
760          * Tell the core to be halted by writing DRCR with 0x1
761          * and then wait for the core to be halted.
762          */
763         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
764                         armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
765         if (retval != ERROR_OK)
766                 return retval;
767
768         int64_t then = timeval_ms();
769         for (;; ) {
770                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
771                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
772                 if (retval != ERROR_OK)
773                         return retval;
774                 if ((dscr & DSCR_CORE_HALTED) != 0)
775                         break;
776                 if (timeval_ms() > then + 1000) {
777                         LOG_ERROR("Timeout waiting for halt");
778                         return ERROR_FAIL;
779                 }
780         }
781
782         target->debug_reason = DBG_REASON_DBGRQ;
783
784         return ERROR_OK;
785 }
786
787 static int cortex_a_internal_restore(struct target *target, int current,
788         target_addr_t *address, int handle_breakpoints, int debug_execution)
789 {
790         struct armv7a_common *armv7a = target_to_armv7a(target);
791         struct arm *arm = &armv7a->arm;
792         int retval;
793         uint32_t resume_pc;
794
795         if (!debug_execution)
796                 target_free_all_working_areas(target);
797
798 #if 0
799         if (debug_execution) {
800                 /* Disable interrupts */
801                 /* We disable interrupts in the PRIMASK register instead of
802                  * masking with C_MASKINTS,
803                  * This is probably the same issue as Cortex-M3 Errata 377493:
804                  * C_MASKINTS in parallel with disabled interrupts can cause
805                  * local faults to not be taken. */
806                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
807                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = true;
808                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = true;
809
810                 /* Make sure we are in Thumb mode */
811                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
812                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0,
813                         32) | (1 << 24));
814                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = true;
815                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = true;
816         }
817 #endif
818
819         /* current = 1: continue on current pc, otherwise continue at <address> */
820         resume_pc = buf_get_u32(arm->pc->value, 0, 32);
821         if (!current)
822                 resume_pc = *address;
823         else
824                 *address = resume_pc;
825
826         /* Make sure that the Armv7 gdb thumb fixups does not
827          * kill the return address
828          */
829         switch (arm->core_state) {
830                 case ARM_STATE_ARM:
831                         resume_pc &= 0xFFFFFFFC;
832                         break;
833                 case ARM_STATE_THUMB:
834                 case ARM_STATE_THUMB_EE:
835                         /* When the return address is loaded into PC
836                          * bit 0 must be 1 to stay in Thumb state
837                          */
838                         resume_pc |= 0x1;
839                         break;
840                 case ARM_STATE_JAZELLE:
841                         LOG_ERROR("How do I resume into Jazelle state??");
842                         return ERROR_FAIL;
843                 case ARM_STATE_AARCH64:
844                         LOG_ERROR("Shoudn't be in AARCH64 state");
845                         return ERROR_FAIL;
846         }
847         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
848         buf_set_u32(arm->pc->value, 0, 32, resume_pc);
849         arm->pc->dirty = true;
850         arm->pc->valid = true;
851
852         /* restore dpm_mode at system halt */
853         arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
854         /* called it now before restoring context because it uses cpu
855          * register r0 for restoring cp15 control register */
856         retval = cortex_a_restore_cp15_control_reg(target);
857         if (retval != ERROR_OK)
858                 return retval;
859         retval = cortex_a_restore_context(target, handle_breakpoints);
860         if (retval != ERROR_OK)
861                 return retval;
862         target->debug_reason = DBG_REASON_NOTHALTED;
863         target->state = TARGET_RUNNING;
864
865         /* registers are now invalid */
866         register_cache_invalidate(arm->core_cache);
867
868 #if 0
869         /* the front-end may request us not to handle breakpoints */
870         if (handle_breakpoints) {
871                 /* Single step past breakpoint at current address */
872                 breakpoint = breakpoint_find(target, resume_pc);
873                 if (breakpoint) {
874                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
875                         cortex_m3_unset_breakpoint(target, breakpoint);
876                         cortex_m3_single_step_core(target);
877                         cortex_m3_set_breakpoint(target, breakpoint);
878                 }
879         }
880
881 #endif
882         return retval;
883 }
884
885 static int cortex_a_internal_restart(struct target *target)
886 {
887         struct armv7a_common *armv7a = target_to_armv7a(target);
888         struct arm *arm = &armv7a->arm;
889         int retval;
890         uint32_t dscr;
891         /*
892          * * Restart core and wait for it to be started.  Clear ITRen and sticky
893          * * exception flags: see ARMv7 ARM, C5.9.
894          *
895          * REVISIT: for single stepping, we probably want to
896          * disable IRQs by default, with optional override...
897          */
898
899         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
900                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
901         if (retval != ERROR_OK)
902                 return retval;
903
904         if ((dscr & DSCR_INSTR_COMP) == 0)
905                 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
906
907         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
908                         armv7a->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
909         if (retval != ERROR_OK)
910                 return retval;
911
912         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
913                         armv7a->debug_base + CPUDBG_DRCR, DRCR_RESTART |
914                         DRCR_CLEAR_EXCEPTIONS);
915         if (retval != ERROR_OK)
916                 return retval;
917
918         int64_t then = timeval_ms();
919         for (;; ) {
920                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
921                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
922                 if (retval != ERROR_OK)
923                         return retval;
924                 if ((dscr & DSCR_CORE_RESTARTED) != 0)
925                         break;
926                 if (timeval_ms() > then + 1000) {
927                         LOG_ERROR("Timeout waiting for resume");
928                         return ERROR_FAIL;
929                 }
930         }
931
932         target->debug_reason = DBG_REASON_NOTHALTED;
933         target->state = TARGET_RUNNING;
934
935         /* registers are now invalid */
936         register_cache_invalidate(arm->core_cache);
937
938         return ERROR_OK;
939 }
940
941 static int cortex_a_restore_smp(struct target *target, int handle_breakpoints)
942 {
943         int retval = 0;
944         struct target_list *head;
945         struct target *curr;
946         target_addr_t address;
947         head = target->head;
948         while (head != (struct target_list *)NULL) {
949                 curr = head->target;
950                 if ((curr != target) && (curr->state != TARGET_RUNNING)
951                         && target_was_examined(curr)) {
952                         /*  resume current address , not in step mode */
953                         retval += cortex_a_internal_restore(curr, 1, &address,
954                                         handle_breakpoints, 0);
955                         retval += cortex_a_internal_restart(curr);
956                 }
957                 head = head->next;
958
959         }
960         return retval;
961 }
962
963 static int cortex_a_resume(struct target *target, int current,
964         target_addr_t address, int handle_breakpoints, int debug_execution)
965 {
966         int retval = 0;
967         /* dummy resume for smp toggle in order to reduce gdb impact  */
968         if ((target->smp) && (target->gdb_service->core[1] != -1)) {
969                 /*   simulate a start and halt of target */
970                 target->gdb_service->target = NULL;
971                 target->gdb_service->core[0] = target->gdb_service->core[1];
972                 /*  fake resume at next poll we play the  target core[1], see poll*/
973                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
974                 return 0;
975         }
976         cortex_a_internal_restore(target, current, &address, handle_breakpoints, debug_execution);
977         if (target->smp) {
978                 target->gdb_service->core[0] = -1;
979                 retval = cortex_a_restore_smp(target, handle_breakpoints);
980                 if (retval != ERROR_OK)
981                         return retval;
982         }
983         cortex_a_internal_restart(target);
984
985         if (!debug_execution) {
986                 target->state = TARGET_RUNNING;
987                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
988                 LOG_DEBUG("target resumed at " TARGET_ADDR_FMT, address);
989         } else {
990                 target->state = TARGET_DEBUG_RUNNING;
991                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
992                 LOG_DEBUG("target debug resumed at " TARGET_ADDR_FMT, address);
993         }
994
995         return ERROR_OK;
996 }
997
998 static int cortex_a_debug_entry(struct target *target)
999 {
1000         uint32_t dscr;
1001         int retval = ERROR_OK;
1002         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1003         struct armv7a_common *armv7a = target_to_armv7a(target);
1004         struct arm *arm = &armv7a->arm;
1005
1006         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a->cpudbg_dscr);
1007
1008         /* REVISIT surely we should not re-read DSCR !! */
1009         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1010                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
1011         if (retval != ERROR_OK)
1012                 return retval;
1013
1014         /* REVISIT see A TRM 12.11.4 steps 2..3 -- make sure that any
1015          * imprecise data aborts get discarded by issuing a Data
1016          * Synchronization Barrier:  ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1017          */
1018
1019         /* Enable the ITR execution once we are in debug mode */
1020         dscr |= DSCR_ITR_EN;
1021         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1022                         armv7a->debug_base + CPUDBG_DSCR, dscr);
1023         if (retval != ERROR_OK)
1024                 return retval;
1025
1026         /* Examine debug reason */
1027         arm_dpm_report_dscr(&armv7a->dpm, cortex_a->cpudbg_dscr);
1028
1029         /* save address of instruction that triggered the watchpoint? */
1030         if (target->debug_reason == DBG_REASON_WATCHPOINT) {
1031                 uint32_t wfar;
1032
1033                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1034                                 armv7a->debug_base + CPUDBG_WFAR,
1035                                 &wfar);
1036                 if (retval != ERROR_OK)
1037                         return retval;
1038                 arm_dpm_report_wfar(&armv7a->dpm, wfar);
1039         }
1040
1041         /* First load register accessible through core debug port */
1042         retval = arm_dpm_read_current_registers(&armv7a->dpm);
1043         if (retval != ERROR_OK)
1044                 return retval;
1045
1046         if (arm->spsr) {
1047                 /* read SPSR */
1048                 retval = arm_dpm_read_reg(&armv7a->dpm, arm->spsr, 17);
1049                 if (retval != ERROR_OK)
1050                         return retval;
1051         }
1052
1053 #if 0
1054 /* TODO, Move this */
1055         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
1056         cortex_a_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
1057         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
1058
1059         cortex_a_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
1060         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
1061
1062         cortex_a_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
1063         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
1064 #endif
1065
1066         /* Are we in an exception handler */
1067 /*      armv4_5->exception_number = 0; */
1068         if (armv7a->post_debug_entry) {
1069                 retval = armv7a->post_debug_entry(target);
1070                 if (retval != ERROR_OK)
1071                         return retval;
1072         }
1073
1074         return retval;
1075 }
1076
1077 static int cortex_a_post_debug_entry(struct target *target)
1078 {
1079         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1080         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1081         int retval;
1082
1083         /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1084         retval = armv7a->arm.mrc(target, 15,
1085                         0, 0,   /* op1, op2 */
1086                         1, 0,   /* CRn, CRm */
1087                         &cortex_a->cp15_control_reg);
1088         if (retval != ERROR_OK)
1089                 return retval;
1090         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg);
1091         cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
1092
1093         if (!armv7a->is_armv7r)
1094                 armv7a_read_ttbcr(target);
1095
1096         if (armv7a->armv7a_mmu.armv7a_cache.info == -1)
1097                 armv7a_identify_cache(target);
1098
1099         if (armv7a->is_armv7r) {
1100                 armv7a->armv7a_mmu.mmu_enabled = 0;
1101         } else {
1102                 armv7a->armv7a_mmu.mmu_enabled =
1103                         (cortex_a->cp15_control_reg & 0x1U) ? 1 : 0;
1104         }
1105         armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled =
1106                 (cortex_a->cp15_control_reg & 0x4U) ? 1 : 0;
1107         armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled =
1108                 (cortex_a->cp15_control_reg & 0x1000U) ? 1 : 0;
1109         cortex_a->curr_mode = armv7a->arm.core_mode;
1110
1111         /* switch to SVC mode to read DACR */
1112         arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
1113         armv7a->arm.mrc(target, 15,
1114                         0, 0, 3, 0,
1115                         &cortex_a->cp15_dacr_reg);
1116
1117         LOG_DEBUG("cp15_dacr_reg: %8.8" PRIx32,
1118                         cortex_a->cp15_dacr_reg);
1119
1120         arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
1121         return ERROR_OK;
1122 }
1123
1124 int cortex_a_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
1125 {
1126         struct armv7a_common *armv7a = target_to_armv7a(target);
1127         uint32_t dscr;
1128
1129         /* Read DSCR */
1130         int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1131                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
1132         if (ERROR_OK != retval)
1133                 return retval;
1134
1135         /* clear bitfield */
1136         dscr &= ~bit_mask;
1137         /* put new value */
1138         dscr |= value & bit_mask;
1139
1140         /* write new DSCR */
1141         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1142                         armv7a->debug_base + CPUDBG_DSCR, dscr);
1143         return retval;
1144 }
1145
1146 static int cortex_a_step(struct target *target, int current, target_addr_t address,
1147         int handle_breakpoints)
1148 {
1149         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1150         struct armv7a_common *armv7a = target_to_armv7a(target);
1151         struct arm *arm = &armv7a->arm;
1152         struct breakpoint *breakpoint = NULL;
1153         struct breakpoint stepbreakpoint;
1154         struct reg *r;
1155         int retval;
1156
1157         if (target->state != TARGET_HALTED) {
1158                 LOG_WARNING("target not halted");
1159                 return ERROR_TARGET_NOT_HALTED;
1160         }
1161
1162         /* current = 1: continue on current pc, otherwise continue at <address> */
1163         r = arm->pc;
1164         if (!current)
1165                 buf_set_u32(r->value, 0, 32, address);
1166         else
1167                 address = buf_get_u32(r->value, 0, 32);
1168
1169         /* The front-end may request us not to handle breakpoints.
1170          * But since Cortex-A uses breakpoint for single step,
1171          * we MUST handle breakpoints.
1172          */
1173         handle_breakpoints = 1;
1174         if (handle_breakpoints) {
1175                 breakpoint = breakpoint_find(target, address);
1176                 if (breakpoint)
1177                         cortex_a_unset_breakpoint(target, breakpoint);
1178         }
1179
1180         /* Setup single step breakpoint */
1181         stepbreakpoint.address = address;
1182         stepbreakpoint.asid = 0;
1183         stepbreakpoint.length = (arm->core_state == ARM_STATE_THUMB)
1184                 ? 2 : 4;
1185         stepbreakpoint.type = BKPT_HARD;
1186         stepbreakpoint.set = 0;
1187
1188         /* Disable interrupts during single step if requested */
1189         if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1190                 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, DSCR_INT_DIS);
1191                 if (ERROR_OK != retval)
1192                         return retval;
1193         }
1194
1195         /* Break on IVA mismatch */
1196         cortex_a_set_breakpoint(target, &stepbreakpoint, 0x04);
1197
1198         target->debug_reason = DBG_REASON_SINGLESTEP;
1199
1200         retval = cortex_a_resume(target, 1, address, 0, 0);
1201         if (retval != ERROR_OK)
1202                 return retval;
1203
1204         int64_t then = timeval_ms();
1205         while (target->state != TARGET_HALTED) {
1206                 retval = cortex_a_poll(target);
1207                 if (retval != ERROR_OK)
1208                         return retval;
1209                 if (timeval_ms() > then + 1000) {
1210                         LOG_ERROR("timeout waiting for target halt");
1211                         return ERROR_FAIL;
1212                 }
1213         }
1214
1215         cortex_a_unset_breakpoint(target, &stepbreakpoint);
1216
1217         /* Re-enable interrupts if they were disabled */
1218         if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1219                 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, 0);
1220                 if (ERROR_OK != retval)
1221                         return retval;
1222         }
1223
1224
1225         target->debug_reason = DBG_REASON_BREAKPOINT;
1226
1227         if (breakpoint)
1228                 cortex_a_set_breakpoint(target, breakpoint, 0);
1229
1230         if (target->state != TARGET_HALTED)
1231                 LOG_DEBUG("target stepped");
1232
1233         return ERROR_OK;
1234 }
1235
1236 static int cortex_a_restore_context(struct target *target, bool bpwp)
1237 {
1238         struct armv7a_common *armv7a = target_to_armv7a(target);
1239
1240         LOG_DEBUG(" ");
1241
1242         if (armv7a->pre_restore_context)
1243                 armv7a->pre_restore_context(target);
1244
1245         return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1246 }
1247
1248 /*
1249  * Cortex-A Breakpoint and watchpoint functions
1250  */
1251
1252 /* Setup hardware Breakpoint Register Pair */
1253 static int cortex_a_set_breakpoint(struct target *target,
1254         struct breakpoint *breakpoint, uint8_t matchmode)
1255 {
1256         int retval;
1257         int brp_i = 0;
1258         uint32_t control;
1259         uint8_t byte_addr_select = 0x0F;
1260         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1261         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1262         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1263
1264         if (breakpoint->set) {
1265                 LOG_WARNING("breakpoint already set");
1266                 return ERROR_OK;
1267         }
1268
1269         if (breakpoint->type == BKPT_HARD) {
1270                 while (brp_list[brp_i].used && (brp_i < cortex_a->brp_num))
1271                         brp_i++;
1272                 if (brp_i >= cortex_a->brp_num) {
1273                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1274                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1275                 }
1276                 breakpoint->set = brp_i + 1;
1277                 if (breakpoint->length == 2)
1278                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1279                 control = ((matchmode & 0x7) << 20)
1280                         | (byte_addr_select << 5)
1281                         | (3 << 1) | 1;
1282                 brp_list[brp_i].used = 1;
1283                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1284                 brp_list[brp_i].control = control;
1285                 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1286                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1287                                 brp_list[brp_i].value);
1288                 if (retval != ERROR_OK)
1289                         return retval;
1290                 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1291                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1292                                 brp_list[brp_i].control);
1293                 if (retval != ERROR_OK)
1294                         return retval;
1295                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1296                         brp_list[brp_i].control,
1297                         brp_list[brp_i].value);
1298         } else if (breakpoint->type == BKPT_SOFT) {
1299                 uint8_t code[4];
1300                 /* length == 2: Thumb breakpoint */
1301                 if (breakpoint->length == 2)
1302                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1303                 else
1304                 /* length == 3: Thumb-2 breakpoint, actual encoding is
1305                  * a regular Thumb BKPT instruction but we replace a
1306                  * 32bit Thumb-2 instruction, so fix-up the breakpoint
1307                  * length
1308                  */
1309                 if (breakpoint->length == 3) {
1310                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1311                         breakpoint->length = 4;
1312                 } else
1313                         /* length == 4, normal ARM breakpoint */
1314                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1315
1316                 retval = target_read_memory(target,
1317                                 breakpoint->address & 0xFFFFFFFE,
1318                                 breakpoint->length, 1,
1319                                 breakpoint->orig_instr);
1320                 if (retval != ERROR_OK)
1321                         return retval;
1322
1323                 /* make sure data cache is cleaned & invalidated down to PoC */
1324                 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1325                         armv7a_cache_flush_virt(target, breakpoint->address,
1326                                                 breakpoint->length);
1327                 }
1328
1329                 retval = target_write_memory(target,
1330                                 breakpoint->address & 0xFFFFFFFE,
1331                                 breakpoint->length, 1, code);
1332                 if (retval != ERROR_OK)
1333                         return retval;
1334
1335                 /* update i-cache at breakpoint location */
1336                 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1337                                         breakpoint->length);
1338                 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1339                                                  breakpoint->length);
1340
1341                 breakpoint->set = 0x11; /* Any nice value but 0 */
1342         }
1343
1344         return ERROR_OK;
1345 }
1346
1347 static int cortex_a_set_context_breakpoint(struct target *target,
1348         struct breakpoint *breakpoint, uint8_t matchmode)
1349 {
1350         int retval = ERROR_FAIL;
1351         int brp_i = 0;
1352         uint32_t control;
1353         uint8_t byte_addr_select = 0x0F;
1354         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1355         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1356         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1357
1358         if (breakpoint->set) {
1359                 LOG_WARNING("breakpoint already set");
1360                 return retval;
1361         }
1362         /*check available context BRPs*/
1363         while ((brp_list[brp_i].used ||
1364                 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < cortex_a->brp_num))
1365                 brp_i++;
1366
1367         if (brp_i >= cortex_a->brp_num) {
1368                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1369                 return ERROR_FAIL;
1370         }
1371
1372         breakpoint->set = brp_i + 1;
1373         control = ((matchmode & 0x7) << 20)
1374                 | (byte_addr_select << 5)
1375                 | (3 << 1) | 1;
1376         brp_list[brp_i].used = 1;
1377         brp_list[brp_i].value = (breakpoint->asid);
1378         brp_list[brp_i].control = control;
1379         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1380                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1381                         brp_list[brp_i].value);
1382         if (retval != ERROR_OK)
1383                 return retval;
1384         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1385                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1386                         brp_list[brp_i].control);
1387         if (retval != ERROR_OK)
1388                 return retval;
1389         LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1390                 brp_list[brp_i].control,
1391                 brp_list[brp_i].value);
1392         return ERROR_OK;
1393
1394 }
1395
1396 static int cortex_a_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1397 {
1398         int retval = ERROR_FAIL;
1399         int brp_1 = 0;  /* holds the contextID pair */
1400         int brp_2 = 0;  /* holds the IVA pair */
1401         uint32_t control_CTX, control_IVA;
1402         uint8_t CTX_byte_addr_select = 0x0F;
1403         uint8_t IVA_byte_addr_select = 0x0F;
1404         uint8_t CTX_machmode = 0x03;
1405         uint8_t IVA_machmode = 0x01;
1406         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1407         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1408         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1409
1410         if (breakpoint->set) {
1411                 LOG_WARNING("breakpoint already set");
1412                 return retval;
1413         }
1414         /*check available context BRPs*/
1415         while ((brp_list[brp_1].used ||
1416                 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < cortex_a->brp_num))
1417                 brp_1++;
1418
1419         printf("brp(CTX) found num: %d\n", brp_1);
1420         if (brp_1 >= cortex_a->brp_num) {
1421                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1422                 return ERROR_FAIL;
1423         }
1424
1425         while ((brp_list[brp_2].used ||
1426                 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < cortex_a->brp_num))
1427                 brp_2++;
1428
1429         printf("brp(IVA) found num: %d\n", brp_2);
1430         if (brp_2 >= cortex_a->brp_num) {
1431                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1432                 return ERROR_FAIL;
1433         }
1434
1435         breakpoint->set = brp_1 + 1;
1436         breakpoint->linked_BRP = brp_2;
1437         control_CTX = ((CTX_machmode & 0x7) << 20)
1438                 | (brp_2 << 16)
1439                 | (0 << 14)
1440                 | (CTX_byte_addr_select << 5)
1441                 | (3 << 1) | 1;
1442         brp_list[brp_1].used = 1;
1443         brp_list[brp_1].value = (breakpoint->asid);
1444         brp_list[brp_1].control = control_CTX;
1445         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1446                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_1].BRPn,
1447                         brp_list[brp_1].value);
1448         if (retval != ERROR_OK)
1449                 return retval;
1450         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1451                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_1].BRPn,
1452                         brp_list[brp_1].control);
1453         if (retval != ERROR_OK)
1454                 return retval;
1455
1456         control_IVA = ((IVA_machmode & 0x7) << 20)
1457                 | (brp_1 << 16)
1458                 | (IVA_byte_addr_select << 5)
1459                 | (3 << 1) | 1;
1460         brp_list[brp_2].used = 1;
1461         brp_list[brp_2].value = (breakpoint->address & 0xFFFFFFFC);
1462         brp_list[brp_2].control = control_IVA;
1463         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1464                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_2].BRPn,
1465                         brp_list[brp_2].value);
1466         if (retval != ERROR_OK)
1467                 return retval;
1468         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1469                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_2].BRPn,
1470                         brp_list[brp_2].control);
1471         if (retval != ERROR_OK)
1472                 return retval;
1473
1474         return ERROR_OK;
1475 }
1476
1477 static int cortex_a_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1478 {
1479         int retval;
1480         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1481         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1482         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1483
1484         if (!breakpoint->set) {
1485                 LOG_WARNING("breakpoint not set");
1486                 return ERROR_OK;
1487         }
1488
1489         if (breakpoint->type == BKPT_HARD) {
1490                 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1491                         int brp_i = breakpoint->set - 1;
1492                         int brp_j = breakpoint->linked_BRP;
1493                         if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1494                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1495                                 return ERROR_OK;
1496                         }
1497                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1498                                 brp_list[brp_i].control, brp_list[brp_i].value);
1499                         brp_list[brp_i].used = 0;
1500                         brp_list[brp_i].value = 0;
1501                         brp_list[brp_i].control = 0;
1502                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1503                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1504                                         brp_list[brp_i].control);
1505                         if (retval != ERROR_OK)
1506                                 return retval;
1507                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1508                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1509                                         brp_list[brp_i].value);
1510                         if (retval != ERROR_OK)
1511                                 return retval;
1512                         if ((brp_j < 0) || (brp_j >= cortex_a->brp_num)) {
1513                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1514                                 return ERROR_OK;
1515                         }
1516                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_j,
1517                                 brp_list[brp_j].control, brp_list[brp_j].value);
1518                         brp_list[brp_j].used = 0;
1519                         brp_list[brp_j].value = 0;
1520                         brp_list[brp_j].control = 0;
1521                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1522                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_j].BRPn,
1523                                         brp_list[brp_j].control);
1524                         if (retval != ERROR_OK)
1525                                 return retval;
1526                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1527                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_j].BRPn,
1528                                         brp_list[brp_j].value);
1529                         if (retval != ERROR_OK)
1530                                 return retval;
1531                         breakpoint->linked_BRP = 0;
1532                         breakpoint->set = 0;
1533                         return ERROR_OK;
1534
1535                 } else {
1536                         int brp_i = breakpoint->set - 1;
1537                         if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1538                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1539                                 return ERROR_OK;
1540                         }
1541                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1542                                 brp_list[brp_i].control, brp_list[brp_i].value);
1543                         brp_list[brp_i].used = 0;
1544                         brp_list[brp_i].value = 0;
1545                         brp_list[brp_i].control = 0;
1546                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1547                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1548                                         brp_list[brp_i].control);
1549                         if (retval != ERROR_OK)
1550                                 return retval;
1551                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1552                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1553                                         brp_list[brp_i].value);
1554                         if (retval != ERROR_OK)
1555                                 return retval;
1556                         breakpoint->set = 0;
1557                         return ERROR_OK;
1558                 }
1559         } else {
1560
1561                 /* make sure data cache is cleaned & invalidated down to PoC */
1562                 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1563                         armv7a_cache_flush_virt(target, breakpoint->address,
1564                                                 breakpoint->length);
1565                 }
1566
1567                 /* restore original instruction (kept in target endianness) */
1568                 if (breakpoint->length == 4) {
1569                         retval = target_write_memory(target,
1570                                         breakpoint->address & 0xFFFFFFFE,
1571                                         4, 1, breakpoint->orig_instr);
1572                         if (retval != ERROR_OK)
1573                                 return retval;
1574                 } else {
1575                         retval = target_write_memory(target,
1576                                         breakpoint->address & 0xFFFFFFFE,
1577                                         2, 1, breakpoint->orig_instr);
1578                         if (retval != ERROR_OK)
1579                                 return retval;
1580                 }
1581
1582                 /* update i-cache at breakpoint location */
1583                 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1584                                                  breakpoint->length);
1585                 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1586                                                  breakpoint->length);
1587         }
1588         breakpoint->set = 0;
1589
1590         return ERROR_OK;
1591 }
1592
1593 static int cortex_a_add_breakpoint(struct target *target,
1594         struct breakpoint *breakpoint)
1595 {
1596         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1597
1598         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1599                 LOG_INFO("no hardware breakpoint available");
1600                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1601         }
1602
1603         if (breakpoint->type == BKPT_HARD)
1604                 cortex_a->brp_num_available--;
1605
1606         return cortex_a_set_breakpoint(target, breakpoint, 0x00);       /* Exact match */
1607 }
1608
1609 static int cortex_a_add_context_breakpoint(struct target *target,
1610         struct breakpoint *breakpoint)
1611 {
1612         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1613
1614         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1615                 LOG_INFO("no hardware breakpoint available");
1616                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1617         }
1618
1619         if (breakpoint->type == BKPT_HARD)
1620                 cortex_a->brp_num_available--;
1621
1622         return cortex_a_set_context_breakpoint(target, breakpoint, 0x02);       /* asid match */
1623 }
1624
1625 static int cortex_a_add_hybrid_breakpoint(struct target *target,
1626         struct breakpoint *breakpoint)
1627 {
1628         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1629
1630         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1631                 LOG_INFO("no hardware breakpoint available");
1632                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1633         }
1634
1635         if (breakpoint->type == BKPT_HARD)
1636                 cortex_a->brp_num_available--;
1637
1638         return cortex_a_set_hybrid_breakpoint(target, breakpoint);      /* ??? */
1639 }
1640
1641
1642 static int cortex_a_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1643 {
1644         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1645
1646 #if 0
1647 /* It is perfectly possible to remove breakpoints while the target is running */
1648         if (target->state != TARGET_HALTED) {
1649                 LOG_WARNING("target not halted");
1650                 return ERROR_TARGET_NOT_HALTED;
1651         }
1652 #endif
1653
1654         if (breakpoint->set) {
1655                 cortex_a_unset_breakpoint(target, breakpoint);
1656                 if (breakpoint->type == BKPT_HARD)
1657                         cortex_a->brp_num_available++;
1658         }
1659
1660
1661         return ERROR_OK;
1662 }
1663
1664 /*
1665  * Cortex-A Reset functions
1666  */
1667
1668 static int cortex_a_assert_reset(struct target *target)
1669 {
1670         struct armv7a_common *armv7a = target_to_armv7a(target);
1671
1672         LOG_DEBUG(" ");
1673
1674         /* FIXME when halt is requested, make it work somehow... */
1675
1676         /* This function can be called in "target not examined" state */
1677
1678         /* Issue some kind of warm reset. */
1679         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1680                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1681         else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1682                 /* REVISIT handle "pulls" cases, if there's
1683                  * hardware that needs them to work.
1684                  */
1685
1686                 /*
1687                  * FIXME: fix reset when transport is SWD. This is a temporary
1688                  * work-around for release v0.10 that is not intended to stay!
1689                  */
1690                 if (transport_is_swd() ||
1691                                 (target->reset_halt && (jtag_get_reset_config() & RESET_SRST_NO_GATING)))
1692                         jtag_add_reset(0, 1);
1693
1694         } else {
1695                 LOG_ERROR("%s: how to reset?", target_name(target));
1696                 return ERROR_FAIL;
1697         }
1698
1699         /* registers are now invalid */
1700         if (target_was_examined(target))
1701                 register_cache_invalidate(armv7a->arm.core_cache);
1702
1703         target->state = TARGET_RESET;
1704
1705         return ERROR_OK;
1706 }
1707
1708 static int cortex_a_deassert_reset(struct target *target)
1709 {
1710         int retval;
1711
1712         LOG_DEBUG(" ");
1713
1714         /* be certain SRST is off */
1715         jtag_add_reset(0, 0);
1716
1717         if (target_was_examined(target)) {
1718                 retval = cortex_a_poll(target);
1719                 if (retval != ERROR_OK)
1720                         return retval;
1721         }
1722
1723         if (target->reset_halt) {
1724                 if (target->state != TARGET_HALTED) {
1725                         LOG_WARNING("%s: ran after reset and before halt ...",
1726                                 target_name(target));
1727                         if (target_was_examined(target)) {
1728                                 retval = target_halt(target);
1729                                 if (retval != ERROR_OK)
1730                                         return retval;
1731                         } else
1732                                 target->state = TARGET_UNKNOWN;
1733                 }
1734         }
1735
1736         return ERROR_OK;
1737 }
1738
1739 static int cortex_a_set_dcc_mode(struct target *target, uint32_t mode, uint32_t *dscr)
1740 {
1741         /* Changes the mode of the DCC between non-blocking, stall, and fast mode.
1742          * New desired mode must be in mode. Current value of DSCR must be in
1743          * *dscr, which is updated with new value.
1744          *
1745          * This function elides actually sending the mode-change over the debug
1746          * interface if the mode is already set as desired.
1747          */
1748         uint32_t new_dscr = (*dscr & ~DSCR_EXT_DCC_MASK) | mode;
1749         if (new_dscr != *dscr) {
1750                 struct armv7a_common *armv7a = target_to_armv7a(target);
1751                 int retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1752                                 armv7a->debug_base + CPUDBG_DSCR, new_dscr);
1753                 if (retval == ERROR_OK)
1754                         *dscr = new_dscr;
1755                 return retval;
1756         } else {
1757                 return ERROR_OK;
1758         }
1759 }
1760
1761 static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
1762         uint32_t value, uint32_t *dscr)
1763 {
1764         /* Waits until the specified bit(s) of DSCR take on a specified value. */
1765         struct armv7a_common *armv7a = target_to_armv7a(target);
1766         int64_t then = timeval_ms();
1767         int retval;
1768
1769         while ((*dscr & mask) != value) {
1770                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1771                                 armv7a->debug_base + CPUDBG_DSCR, dscr);
1772                 if (retval != ERROR_OK)
1773                         return retval;
1774                 if (timeval_ms() > then + 1000) {
1775                         LOG_ERROR("timeout waiting for DSCR bit change");
1776                         return ERROR_FAIL;
1777                 }
1778         }
1779         return ERROR_OK;
1780 }
1781
1782 static int cortex_a_read_copro(struct target *target, uint32_t opcode,
1783         uint32_t *data, uint32_t *dscr)
1784 {
1785         int retval;
1786         struct armv7a_common *armv7a = target_to_armv7a(target);
1787
1788         /* Move from coprocessor to R0. */
1789         retval = cortex_a_exec_opcode(target, opcode, dscr);
1790         if (retval != ERROR_OK)
1791                 return retval;
1792
1793         /* Move from R0 to DTRTX. */
1794         retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0), dscr);
1795         if (retval != ERROR_OK)
1796                 return retval;
1797
1798         /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
1799          * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
1800          * must also check TXfull_l). Most of the time this will be free
1801          * because TXfull_l will be set immediately and cached in dscr. */
1802         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
1803                         DSCR_DTRTX_FULL_LATCHED, dscr);
1804         if (retval != ERROR_OK)
1805                 return retval;
1806
1807         /* Read the value transferred to DTRTX. */
1808         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1809                         armv7a->debug_base + CPUDBG_DTRTX, data);
1810         if (retval != ERROR_OK)
1811                 return retval;
1812
1813         return ERROR_OK;
1814 }
1815
1816 static int cortex_a_read_dfar_dfsr(struct target *target, uint32_t *dfar,
1817         uint32_t *dfsr, uint32_t *dscr)
1818 {
1819         int retval;
1820
1821         if (dfar) {
1822                 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 6, 0, 0), dfar, dscr);
1823                 if (retval != ERROR_OK)
1824                         return retval;
1825         }
1826
1827         if (dfsr) {
1828                 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 5, 0, 0), dfsr, dscr);
1829                 if (retval != ERROR_OK)
1830                         return retval;
1831         }
1832
1833         return ERROR_OK;
1834 }
1835
1836 static int cortex_a_write_copro(struct target *target, uint32_t opcode,
1837         uint32_t data, uint32_t *dscr)
1838 {
1839         int retval;
1840         struct armv7a_common *armv7a = target_to_armv7a(target);
1841
1842         /* Write the value into DTRRX. */
1843         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1844                         armv7a->debug_base + CPUDBG_DTRRX, data);
1845         if (retval != ERROR_OK)
1846                 return retval;
1847
1848         /* Move from DTRRX to R0. */
1849         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), dscr);
1850         if (retval != ERROR_OK)
1851                 return retval;
1852
1853         /* Move from R0 to coprocessor. */
1854         retval = cortex_a_exec_opcode(target, opcode, dscr);
1855         if (retval != ERROR_OK)
1856                 return retval;
1857
1858         /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
1859          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
1860          * check RXfull_l). Most of the time this will be free because RXfull_l
1861          * will be cleared immediately and cached in dscr. */
1862         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
1863         if (retval != ERROR_OK)
1864                 return retval;
1865
1866         return ERROR_OK;
1867 }
1868
1869 static int cortex_a_write_dfar_dfsr(struct target *target, uint32_t dfar,
1870         uint32_t dfsr, uint32_t *dscr)
1871 {
1872         int retval;
1873
1874         retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 6, 0, 0), dfar, dscr);
1875         if (retval != ERROR_OK)
1876                 return retval;
1877
1878         retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 5, 0, 0), dfsr, dscr);
1879         if (retval != ERROR_OK)
1880                 return retval;
1881
1882         return ERROR_OK;
1883 }
1884
1885 static int cortex_a_dfsr_to_error_code(uint32_t dfsr)
1886 {
1887         uint32_t status, upper4;
1888
1889         if (dfsr & (1 << 9)) {
1890                 /* LPAE format. */
1891                 status = dfsr & 0x3f;
1892                 upper4 = status >> 2;
1893                 if (upper4 == 1 || upper4 == 2 || upper4 == 3 || upper4 == 15)
1894                         return ERROR_TARGET_TRANSLATION_FAULT;
1895                 else if (status == 33)
1896                         return ERROR_TARGET_UNALIGNED_ACCESS;
1897                 else
1898                         return ERROR_TARGET_DATA_ABORT;
1899         } else {
1900                 /* Normal format. */
1901                 status = ((dfsr >> 6) & 0x10) | (dfsr & 0xf);
1902                 if (status == 1)
1903                         return ERROR_TARGET_UNALIGNED_ACCESS;
1904                 else if (status == 5 || status == 7 || status == 3 || status == 6 ||
1905                                 status == 9 || status == 11 || status == 13 || status == 15)
1906                         return ERROR_TARGET_TRANSLATION_FAULT;
1907                 else
1908                         return ERROR_TARGET_DATA_ABORT;
1909         }
1910 }
1911
1912 static int cortex_a_write_cpu_memory_slow(struct target *target,
1913         uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
1914 {
1915         /* Writes count objects of size size from *buffer. Old value of DSCR must
1916          * be in *dscr; updated to new value. This is slow because it works for
1917          * non-word-sized objects and (maybe) unaligned accesses. If size == 4 and
1918          * the address is aligned, cortex_a_write_cpu_memory_fast should be
1919          * preferred.
1920          * Preconditions:
1921          * - Address is in R0.
1922          * - R0 is marked dirty.
1923          */
1924         struct armv7a_common *armv7a = target_to_armv7a(target);
1925         struct arm *arm = &armv7a->arm;
1926         int retval;
1927
1928         /* Mark register R1 as dirty, to use for transferring data. */
1929         arm_reg_current(arm, 1)->dirty = true;
1930
1931         /* Switch to non-blocking mode if not already in that mode. */
1932         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
1933         if (retval != ERROR_OK)
1934                 return retval;
1935
1936         /* Go through the objects. */
1937         while (count) {
1938                 /* Write the value to store into DTRRX. */
1939                 uint32_t data, opcode;
1940                 if (size == 1)
1941                         data = *buffer;
1942                 else if (size == 2)
1943                         data = target_buffer_get_u16(target, buffer);
1944                 else
1945                         data = target_buffer_get_u32(target, buffer);
1946                 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1947                                 armv7a->debug_base + CPUDBG_DTRRX, data);
1948                 if (retval != ERROR_OK)
1949                         return retval;
1950
1951                 /* Transfer the value from DTRRX to R1. */
1952                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), dscr);
1953                 if (retval != ERROR_OK)
1954                         return retval;
1955
1956                 /* Write the value transferred to R1 into memory. */
1957                 if (size == 1)
1958                         opcode = ARMV4_5_STRB_IP(1, 0);
1959                 else if (size == 2)
1960                         opcode = ARMV4_5_STRH_IP(1, 0);
1961                 else
1962                         opcode = ARMV4_5_STRW_IP(1, 0);
1963                 retval = cortex_a_exec_opcode(target, opcode, dscr);
1964                 if (retval != ERROR_OK)
1965                         return retval;
1966
1967                 /* Check for faults and return early. */
1968                 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
1969                         return ERROR_OK; /* A data fault is not considered a system failure. */
1970
1971                 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture
1972                  * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
1973                  * must also check RXfull_l). Most of the time this will be free
1974                  * because RXfull_l will be cleared immediately and cached in dscr. */
1975                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
1976                 if (retval != ERROR_OK)
1977                         return retval;
1978
1979                 /* Advance. */
1980                 buffer += size;
1981                 --count;
1982         }
1983
1984         return ERROR_OK;
1985 }
1986
1987 static int cortex_a_write_cpu_memory_fast(struct target *target,
1988         uint32_t count, const uint8_t *buffer, uint32_t *dscr)
1989 {
1990         /* Writes count objects of size 4 from *buffer. Old value of DSCR must be
1991          * in *dscr; updated to new value. This is fast but only works for
1992          * word-sized objects at aligned addresses.
1993          * Preconditions:
1994          * - Address is in R0 and must be a multiple of 4.
1995          * - R0 is marked dirty.
1996          */
1997         struct armv7a_common *armv7a = target_to_armv7a(target);
1998         int retval;
1999
2000         /* Switch to fast mode if not already in that mode. */
2001         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2002         if (retval != ERROR_OK)
2003                 return retval;
2004
2005         /* Latch STC instruction. */
2006         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2007                         armv7a->debug_base + CPUDBG_ITR, ARMV4_5_STC(0, 1, 0, 1, 14, 5, 0, 4));
2008         if (retval != ERROR_OK)
2009                 return retval;
2010
2011         /* Transfer all the data and issue all the instructions. */
2012         return mem_ap_write_buf_noincr(armv7a->debug_ap, buffer,
2013                         4, count, armv7a->debug_base + CPUDBG_DTRRX);
2014 }
2015
2016 static int cortex_a_write_cpu_memory(struct target *target,
2017         uint32_t address, uint32_t size,
2018         uint32_t count, const uint8_t *buffer)
2019 {
2020         /* Write memory through the CPU. */
2021         int retval, final_retval;
2022         struct armv7a_common *armv7a = target_to_armv7a(target);
2023         struct arm *arm = &armv7a->arm;
2024         uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2025
2026         LOG_DEBUG("Writing CPU memory address 0x%" PRIx32 " size %"  PRIu32 " count %"  PRIu32,
2027                           address, size, count);
2028         if (target->state != TARGET_HALTED) {
2029                 LOG_WARNING("target not halted");
2030                 return ERROR_TARGET_NOT_HALTED;
2031         }
2032
2033         if (!count)
2034                 return ERROR_OK;
2035
2036         /* Clear any abort. */
2037         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2038                         armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2039         if (retval != ERROR_OK)
2040                 return retval;
2041
2042         /* Read DSCR. */
2043         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2044                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
2045         if (retval != ERROR_OK)
2046                 return retval;
2047
2048         /* Switch to non-blocking mode if not already in that mode. */
2049         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2050         if (retval != ERROR_OK)
2051                 goto out;
2052
2053         /* Mark R0 as dirty. */
2054         arm_reg_current(arm, 0)->dirty = true;
2055
2056         /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2057         retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2058         if (retval != ERROR_OK)
2059                 goto out;
2060
2061         /* Get the memory address into R0. */
2062         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2063                         armv7a->debug_base + CPUDBG_DTRRX, address);
2064         if (retval != ERROR_OK)
2065                 goto out;
2066         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2067         if (retval != ERROR_OK)
2068                 goto out;
2069
2070         if (size == 4 && (address % 4) == 0) {
2071                 /* We are doing a word-aligned transfer, so use fast mode. */
2072                 retval = cortex_a_write_cpu_memory_fast(target, count, buffer, &dscr);
2073         } else {
2074                 /* Use slow path. */
2075                 retval = cortex_a_write_cpu_memory_slow(target, size, count, buffer, &dscr);
2076         }
2077
2078 out:
2079         final_retval = retval;
2080
2081         /* Switch to non-blocking mode if not already in that mode. */
2082         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2083         if (final_retval == ERROR_OK)
2084                 final_retval = retval;
2085
2086         /* Wait for last issued instruction to complete. */
2087         retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2088         if (final_retval == ERROR_OK)
2089                 final_retval = retval;
2090
2091         /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2092          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2093          * check RXfull_l). Most of the time this will be free because RXfull_l
2094          * will be cleared immediately and cached in dscr. However, don't do this
2095          * if there is fault, because then the instruction might not have completed
2096          * successfully. */
2097         if (!(dscr & DSCR_STICKY_ABORT_PRECISE)) {
2098                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, &dscr);
2099                 if (retval != ERROR_OK)
2100                         return retval;
2101         }
2102
2103         /* If there were any sticky abort flags, clear them. */
2104         if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2105                 fault_dscr = dscr;
2106                 mem_ap_write_atomic_u32(armv7a->debug_ap,
2107                                 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2108                 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2109         } else {
2110                 fault_dscr = 0;
2111         }
2112
2113         /* Handle synchronous data faults. */
2114         if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2115                 if (final_retval == ERROR_OK) {
2116                         /* Final return value will reflect cause of fault. */
2117                         retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2118                         if (retval == ERROR_OK) {
2119                                 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2120                                 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2121                         } else
2122                                 final_retval = retval;
2123                 }
2124                 /* Fault destroyed DFAR/DFSR; restore them. */
2125                 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2126                 if (retval != ERROR_OK)
2127                         LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2128         }
2129
2130         /* Handle asynchronous data faults. */
2131         if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2132                 if (final_retval == ERROR_OK)
2133                         /* No other error has been recorded so far, so keep this one. */
2134                         final_retval = ERROR_TARGET_DATA_ABORT;
2135         }
2136
2137         /* If the DCC is nonempty, clear it. */
2138         if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2139                 uint32_t dummy;
2140                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2141                                 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2142                 if (final_retval == ERROR_OK)
2143                         final_retval = retval;
2144         }
2145         if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2146                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2147                 if (final_retval == ERROR_OK)
2148                         final_retval = retval;
2149         }
2150
2151         /* Done. */
2152         return final_retval;
2153 }
2154
2155 static int cortex_a_read_cpu_memory_slow(struct target *target,
2156         uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
2157 {
2158         /* Reads count objects of size size into *buffer. Old value of DSCR must be
2159          * in *dscr; updated to new value. This is slow because it works for
2160          * non-word-sized objects and (maybe) unaligned accesses. If size == 4 and
2161          * the address is aligned, cortex_a_read_cpu_memory_fast should be
2162          * preferred.
2163          * Preconditions:
2164          * - Address is in R0.
2165          * - R0 is marked dirty.
2166          */
2167         struct armv7a_common *armv7a = target_to_armv7a(target);
2168         struct arm *arm = &armv7a->arm;
2169         int retval;
2170
2171         /* Mark register R1 as dirty, to use for transferring data. */
2172         arm_reg_current(arm, 1)->dirty = true;
2173
2174         /* Switch to non-blocking mode if not already in that mode. */
2175         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2176         if (retval != ERROR_OK)
2177                 return retval;
2178
2179         /* Go through the objects. */
2180         while (count) {
2181                 /* Issue a load of the appropriate size to R1. */
2182                 uint32_t opcode, data;
2183                 if (size == 1)
2184                         opcode = ARMV4_5_LDRB_IP(1, 0);
2185                 else if (size == 2)
2186                         opcode = ARMV4_5_LDRH_IP(1, 0);
2187                 else
2188                         opcode = ARMV4_5_LDRW_IP(1, 0);
2189                 retval = cortex_a_exec_opcode(target, opcode, dscr);
2190                 if (retval != ERROR_OK)
2191                         return retval;
2192
2193                 /* Issue a write of R1 to DTRTX. */
2194                 retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 1, 0, 5, 0), dscr);
2195                 if (retval != ERROR_OK)
2196                         return retval;
2197
2198                 /* Check for faults and return early. */
2199                 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2200                         return ERROR_OK; /* A data fault is not considered a system failure. */
2201
2202                 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
2203                  * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2204                  * must also check TXfull_l). Most of the time this will be free
2205                  * because TXfull_l will be set immediately and cached in dscr. */
2206                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2207                                 DSCR_DTRTX_FULL_LATCHED, dscr);
2208                 if (retval != ERROR_OK)
2209                         return retval;
2210
2211                 /* Read the value transferred to DTRTX into the buffer. */
2212                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2213                                 armv7a->debug_base + CPUDBG_DTRTX, &data);
2214                 if (retval != ERROR_OK)
2215                         return retval;
2216                 if (size == 1)
2217                         *buffer = (uint8_t) data;
2218                 else if (size == 2)
2219                         target_buffer_set_u16(target, buffer, (uint16_t) data);
2220                 else
2221                         target_buffer_set_u32(target, buffer, data);
2222
2223                 /* Advance. */
2224                 buffer += size;
2225                 --count;
2226         }
2227
2228         return ERROR_OK;
2229 }
2230
2231 static int cortex_a_read_cpu_memory_fast(struct target *target,
2232         uint32_t count, uint8_t *buffer, uint32_t *dscr)
2233 {
2234         /* Reads count objects of size 4 into *buffer. Old value of DSCR must be in
2235          * *dscr; updated to new value. This is fast but only works for word-sized
2236          * objects at aligned addresses.
2237          * Preconditions:
2238          * - Address is in R0 and must be a multiple of 4.
2239          * - R0 is marked dirty.
2240          */
2241         struct armv7a_common *armv7a = target_to_armv7a(target);
2242         uint32_t u32;
2243         int retval;
2244
2245         /* Switch to non-blocking mode if not already in that mode. */
2246         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2247         if (retval != ERROR_OK)
2248                 return retval;
2249
2250         /* Issue the LDC instruction via a write to ITR. */
2251         retval = cortex_a_exec_opcode(target, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4), dscr);
2252         if (retval != ERROR_OK)
2253                 return retval;
2254
2255         count--;
2256
2257         if (count > 0) {
2258                 /* Switch to fast mode if not already in that mode. */
2259                 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2260                 if (retval != ERROR_OK)
2261                         return retval;
2262
2263                 /* Latch LDC instruction. */
2264                 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2265                                 armv7a->debug_base + CPUDBG_ITR, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4));
2266                 if (retval != ERROR_OK)
2267                         return retval;
2268
2269                 /* Read the value transferred to DTRTX into the buffer. Due to fast
2270                  * mode rules, this blocks until the instruction finishes executing and
2271                  * then reissues the read instruction to read the next word from
2272                  * memory. The last read of DTRTX in this call reads the second-to-last
2273                  * word from memory and issues the read instruction for the last word.
2274                  */
2275                 retval = mem_ap_read_buf_noincr(armv7a->debug_ap, buffer,
2276                                 4, count, armv7a->debug_base + CPUDBG_DTRTX);
2277                 if (retval != ERROR_OK)
2278                         return retval;
2279
2280                 /* Advance. */
2281                 buffer += count * 4;
2282         }
2283
2284         /* Wait for last issued instruction to complete. */
2285         retval = cortex_a_wait_instrcmpl(target, dscr, false);
2286         if (retval != ERROR_OK)
2287                 return retval;
2288
2289         /* Switch to non-blocking mode if not already in that mode. */
2290         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2291         if (retval != ERROR_OK)
2292                 return retval;
2293
2294         /* Check for faults and return early. */
2295         if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2296                 return ERROR_OK; /* A data fault is not considered a system failure. */
2297
2298         /* Wait until DTRTX is full (according to ARMv7-A/-R architecture manual
2299          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2300          * check TXfull_l). Most of the time this will be free because TXfull_l
2301          * will be set immediately and cached in dscr. */
2302         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2303                         DSCR_DTRTX_FULL_LATCHED, dscr);
2304         if (retval != ERROR_OK)
2305                 return retval;
2306
2307         /* Read the value transferred to DTRTX into the buffer. This is the last
2308          * word. */
2309         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2310                         armv7a->debug_base + CPUDBG_DTRTX, &u32);
2311         if (retval != ERROR_OK)
2312                 return retval;
2313         target_buffer_set_u32(target, buffer, u32);
2314
2315         return ERROR_OK;
2316 }
2317
2318 static int cortex_a_read_cpu_memory(struct target *target,
2319         uint32_t address, uint32_t size,
2320         uint32_t count, uint8_t *buffer)
2321 {
2322         /* Read memory through the CPU. */
2323         int retval, final_retval;
2324         struct armv7a_common *armv7a = target_to_armv7a(target);
2325         struct arm *arm = &armv7a->arm;
2326         uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2327
2328         LOG_DEBUG("Reading CPU memory address 0x%" PRIx32 " size %"  PRIu32 " count %"  PRIu32,
2329                           address, size, count);
2330         if (target->state != TARGET_HALTED) {
2331                 LOG_WARNING("target not halted");
2332                 return ERROR_TARGET_NOT_HALTED;
2333         }
2334
2335         if (!count)
2336                 return ERROR_OK;
2337
2338         /* Clear any abort. */
2339         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2340                         armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2341         if (retval != ERROR_OK)
2342                 return retval;
2343
2344         /* Read DSCR */
2345         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2346                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
2347         if (retval != ERROR_OK)
2348                 return retval;
2349
2350         /* Switch to non-blocking mode if not already in that mode. */
2351         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2352         if (retval != ERROR_OK)
2353                 goto out;
2354
2355         /* Mark R0 as dirty. */
2356         arm_reg_current(arm, 0)->dirty = true;
2357
2358         /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2359         retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2360         if (retval != ERROR_OK)
2361                 goto out;
2362
2363         /* Get the memory address into R0. */
2364         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2365                         armv7a->debug_base + CPUDBG_DTRRX, address);
2366         if (retval != ERROR_OK)
2367                 goto out;
2368         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2369         if (retval != ERROR_OK)
2370                 goto out;
2371
2372         if (size == 4 && (address % 4) == 0) {
2373                 /* We are doing a word-aligned transfer, so use fast mode. */
2374                 retval = cortex_a_read_cpu_memory_fast(target, count, buffer, &dscr);
2375         } else {
2376                 /* Use slow path. */
2377                 retval = cortex_a_read_cpu_memory_slow(target, size, count, buffer, &dscr);
2378         }
2379
2380 out:
2381         final_retval = retval;
2382
2383         /* Switch to non-blocking mode if not already in that mode. */
2384         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2385         if (final_retval == ERROR_OK)
2386                 final_retval = retval;
2387
2388         /* Wait for last issued instruction to complete. */
2389         retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2390         if (final_retval == ERROR_OK)
2391                 final_retval = retval;
2392
2393         /* If there were any sticky abort flags, clear them. */
2394         if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2395                 fault_dscr = dscr;
2396                 mem_ap_write_atomic_u32(armv7a->debug_ap,
2397                                 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2398                 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2399         } else {
2400                 fault_dscr = 0;
2401         }
2402
2403         /* Handle synchronous data faults. */
2404         if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2405                 if (final_retval == ERROR_OK) {
2406                         /* Final return value will reflect cause of fault. */
2407                         retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2408                         if (retval == ERROR_OK) {
2409                                 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2410                                 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2411                         } else
2412                                 final_retval = retval;
2413                 }
2414                 /* Fault destroyed DFAR/DFSR; restore them. */
2415                 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2416                 if (retval != ERROR_OK)
2417                         LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2418         }
2419
2420         /* Handle asynchronous data faults. */
2421         if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2422                 if (final_retval == ERROR_OK)
2423                         /* No other error has been recorded so far, so keep this one. */
2424                         final_retval = ERROR_TARGET_DATA_ABORT;
2425         }
2426
2427         /* If the DCC is nonempty, clear it. */
2428         if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2429                 uint32_t dummy;
2430                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2431                                 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2432                 if (final_retval == ERROR_OK)
2433                         final_retval = retval;
2434         }
2435         if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2436                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2437                 if (final_retval == ERROR_OK)
2438                         final_retval = retval;
2439         }
2440
2441         /* Done. */
2442         return final_retval;
2443 }
2444
2445
2446 /*
2447  * Cortex-A Memory access
2448  *
2449  * This is same Cortex-M3 but we must also use the correct
2450  * ap number for every access.
2451  */
2452
2453 static int cortex_a_read_phys_memory(struct target *target,
2454         target_addr_t address, uint32_t size,
2455         uint32_t count, uint8_t *buffer)
2456 {
2457         int retval;
2458
2459         if (!count || !buffer)
2460                 return ERROR_COMMAND_SYNTAX_ERROR;
2461
2462         LOG_DEBUG("Reading memory at real address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2463                 address, size, count);
2464
2465         /* read memory through the CPU */
2466         cortex_a_prep_memaccess(target, 1);
2467         retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2468         cortex_a_post_memaccess(target, 1);
2469
2470         return retval;
2471 }
2472
2473 static int cortex_a_read_memory(struct target *target, target_addr_t address,
2474         uint32_t size, uint32_t count, uint8_t *buffer)
2475 {
2476         int retval;
2477
2478         /* cortex_a handles unaligned memory access */
2479         LOG_DEBUG("Reading memory at address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2480                 address, size, count);
2481
2482         cortex_a_prep_memaccess(target, 0);
2483         retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2484         cortex_a_post_memaccess(target, 0);
2485
2486         return retval;
2487 }
2488
2489 static int cortex_a_write_phys_memory(struct target *target,
2490         target_addr_t address, uint32_t size,
2491         uint32_t count, const uint8_t *buffer)
2492 {
2493         int retval;
2494
2495         if (!count || !buffer)
2496                 return ERROR_COMMAND_SYNTAX_ERROR;
2497
2498         LOG_DEBUG("Writing memory to real address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2499                 address, size, count);
2500
2501         /* write memory through the CPU */
2502         cortex_a_prep_memaccess(target, 1);
2503         retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2504         cortex_a_post_memaccess(target, 1);
2505
2506         return retval;
2507 }
2508
2509 static int cortex_a_write_memory(struct target *target, target_addr_t address,
2510         uint32_t size, uint32_t count, const uint8_t *buffer)
2511 {
2512         int retval;
2513
2514         /* cortex_a handles unaligned memory access */
2515         LOG_DEBUG("Writing memory at address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2516                 address, size, count);
2517
2518         /* memory writes bypass the caches, must flush before writing */
2519         armv7a_cache_auto_flush_on_write(target, address, size * count);
2520
2521         cortex_a_prep_memaccess(target, 0);
2522         retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2523         cortex_a_post_memaccess(target, 0);
2524         return retval;
2525 }
2526
2527 static int cortex_a_read_buffer(struct target *target, target_addr_t address,
2528                                 uint32_t count, uint8_t *buffer)
2529 {
2530         uint32_t size;
2531
2532         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2533          * will have something to do with the size we leave to it. */
2534         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2535                 if (address & size) {
2536                         int retval = target_read_memory(target, address, size, 1, buffer);
2537                         if (retval != ERROR_OK)
2538                                 return retval;
2539                         address += size;
2540                         count -= size;
2541                         buffer += size;
2542                 }
2543         }
2544
2545         /* Read the data with as large access size as possible. */
2546         for (; size > 0; size /= 2) {
2547                 uint32_t aligned = count - count % size;
2548                 if (aligned > 0) {
2549                         int retval = target_read_memory(target, address, size, aligned / size, buffer);
2550                         if (retval != ERROR_OK)
2551                                 return retval;
2552                         address += aligned;
2553                         count -= aligned;
2554                         buffer += aligned;
2555                 }
2556         }
2557
2558         return ERROR_OK;
2559 }
2560
2561 static int cortex_a_write_buffer(struct target *target, target_addr_t address,
2562                                  uint32_t count, const uint8_t *buffer)
2563 {
2564         uint32_t size;
2565
2566         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2567          * will have something to do with the size we leave to it. */
2568         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2569                 if (address & size) {
2570                         int retval = target_write_memory(target, address, size, 1, buffer);
2571                         if (retval != ERROR_OK)
2572                                 return retval;
2573                         address += size;
2574                         count -= size;
2575                         buffer += size;
2576                 }
2577         }
2578
2579         /* Write the data with as large access size as possible. */
2580         for (; size > 0; size /= 2) {
2581                 uint32_t aligned = count - count % size;
2582                 if (aligned > 0) {
2583                         int retval = target_write_memory(target, address, size, aligned / size, buffer);
2584                         if (retval != ERROR_OK)
2585                                 return retval;
2586                         address += aligned;
2587                         count -= aligned;
2588                         buffer += aligned;
2589                 }
2590         }
2591
2592         return ERROR_OK;
2593 }
2594
2595 static int cortex_a_handle_target_request(void *priv)
2596 {
2597         struct target *target = priv;
2598         struct armv7a_common *armv7a = target_to_armv7a(target);
2599         int retval;
2600
2601         if (!target_was_examined(target))
2602                 return ERROR_OK;
2603         if (!target->dbg_msg_enabled)
2604                 return ERROR_OK;
2605
2606         if (target->state == TARGET_RUNNING) {
2607                 uint32_t request;
2608                 uint32_t dscr;
2609                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2610                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2611
2612                 /* check if we have data */
2613                 int64_t then = timeval_ms();
2614                 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2615                         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2616                                         armv7a->debug_base + CPUDBG_DTRTX, &request);
2617                         if (retval == ERROR_OK) {
2618                                 target_request(target, request);
2619                                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2620                                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2621                         }
2622                         if (timeval_ms() > then + 1000) {
2623                                 LOG_ERROR("Timeout waiting for dtr tx full");
2624                                 return ERROR_FAIL;
2625                         }
2626                 }
2627         }
2628
2629         return ERROR_OK;
2630 }
2631
2632 /*
2633  * Cortex-A target information and configuration
2634  */
2635
2636 static int cortex_a_examine_first(struct target *target)
2637 {
2638         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
2639         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2640         struct adiv5_dap *swjdp = armv7a->arm.dap;
2641
2642         int i;
2643         int retval = ERROR_OK;
2644         uint32_t didr, cpuid, dbg_osreg;
2645
2646         /* Search for the APB-AP - it is needed for access to debug registers */
2647         retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv7a->debug_ap);
2648         if (retval != ERROR_OK) {
2649                 LOG_ERROR("Could not find APB-AP for debug access");
2650                 return retval;
2651         }
2652
2653         retval = mem_ap_init(armv7a->debug_ap);
2654         if (retval != ERROR_OK) {
2655                 LOG_ERROR("Could not initialize the APB-AP");
2656                 return retval;
2657         }
2658
2659         armv7a->debug_ap->memaccess_tck = 80;
2660
2661         if (!target->dbgbase_set) {
2662                 uint32_t dbgbase;
2663                 /* Get ROM Table base */
2664                 uint32_t apid;
2665                 int32_t coreidx = target->coreid;
2666                 LOG_DEBUG("%s's dbgbase is not set, trying to detect using the ROM table",
2667                           target->cmd_name);
2668                 retval = dap_get_debugbase(armv7a->debug_ap, &dbgbase, &apid);
2669                 if (retval != ERROR_OK)
2670                         return retval;
2671                 /* Lookup 0x15 -- Processor DAP */
2672                 retval = dap_lookup_cs_component(armv7a->debug_ap, dbgbase, 0x15,
2673                                 &armv7a->debug_base, &coreidx);
2674                 if (retval != ERROR_OK) {
2675                         LOG_ERROR("Can't detect %s's dbgbase from the ROM table; you need to specify it explicitly.",
2676                                   target->cmd_name);
2677                         return retval;
2678                 }
2679                 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32,
2680                           target->coreid, armv7a->debug_base);
2681         } else
2682                 armv7a->debug_base = target->dbgbase;
2683
2684         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2685                         armv7a->debug_base + CPUDBG_DIDR, &didr);
2686         if (retval != ERROR_OK) {
2687                 LOG_DEBUG("Examine %s failed", "DIDR");
2688                 return retval;
2689         }
2690
2691         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2692                         armv7a->debug_base + CPUDBG_CPUID, &cpuid);
2693         if (retval != ERROR_OK) {
2694                 LOG_DEBUG("Examine %s failed", "CPUID");
2695                 return retval;
2696         }
2697
2698         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
2699         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
2700
2701         cortex_a->didr = didr;
2702         cortex_a->cpuid = cpuid;
2703
2704         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2705                                     armv7a->debug_base + CPUDBG_PRSR, &dbg_osreg);
2706         if (retval != ERROR_OK)
2707                 return retval;
2708         LOG_DEBUG("target->coreid %" PRId32 " DBGPRSR  0x%" PRIx32, target->coreid, dbg_osreg);
2709
2710         if ((dbg_osreg & PRSR_POWERUP_STATUS) == 0) {
2711                 LOG_ERROR("target->coreid %" PRId32 " powered down!", target->coreid);
2712                 target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
2713                 return ERROR_TARGET_INIT_FAILED;
2714         }
2715
2716         if (dbg_osreg & PRSR_STICKY_RESET_STATUS)
2717                 LOG_DEBUG("target->coreid %" PRId32 " was reset!", target->coreid);
2718
2719         /* Read DBGOSLSR and check if OSLK is implemented */
2720         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2721                                 armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
2722         if (retval != ERROR_OK)
2723                 return retval;
2724         LOG_DEBUG("target->coreid %" PRId32 " DBGOSLSR 0x%" PRIx32, target->coreid, dbg_osreg);
2725
2726         /* check if OS Lock is implemented */
2727         if ((dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM0 || (dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM1) {
2728                 /* check if OS Lock is set */
2729                 if (dbg_osreg & OSLSR_OSLK) {
2730                         LOG_DEBUG("target->coreid %" PRId32 " OSLock set! Trying to unlock", target->coreid);
2731
2732                         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2733                                                         armv7a->debug_base + CPUDBG_OSLAR,
2734                                                         0);
2735                         if (retval == ERROR_OK)
2736                                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2737                                                         armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
2738
2739                         /* if we fail to access the register or cannot reset the OSLK bit, bail out */
2740                         if (retval != ERROR_OK || (dbg_osreg & OSLSR_OSLK) != 0) {
2741                                 LOG_ERROR("target->coreid %" PRId32 " OSLock sticky, core not powered?",
2742                                                 target->coreid);
2743                                 target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
2744                                 return ERROR_TARGET_INIT_FAILED;
2745                         }
2746                 }
2747         }
2748
2749         armv7a->arm.core_type = ARM_MODE_MON;
2750
2751         /* Avoid recreating the registers cache */
2752         if (!target_was_examined(target)) {
2753                 retval = cortex_a_dpm_setup(cortex_a, didr);
2754                 if (retval != ERROR_OK)
2755                         return retval;
2756         }
2757
2758         /* Setup Breakpoint Register Pairs */
2759         cortex_a->brp_num = ((didr >> 24) & 0x0F) + 1;
2760         cortex_a->brp_num_context = ((didr >> 20) & 0x0F) + 1;
2761         cortex_a->brp_num_available = cortex_a->brp_num;
2762         free(cortex_a->brp_list);
2763         cortex_a->brp_list = calloc(cortex_a->brp_num, sizeof(struct cortex_a_brp));
2764 /*      cortex_a->brb_enabled = ????; */
2765         for (i = 0; i < cortex_a->brp_num; i++) {
2766                 cortex_a->brp_list[i].used = 0;
2767                 if (i < (cortex_a->brp_num-cortex_a->brp_num_context))
2768                         cortex_a->brp_list[i].type = BRP_NORMAL;
2769                 else
2770                         cortex_a->brp_list[i].type = BRP_CONTEXT;
2771                 cortex_a->brp_list[i].value = 0;
2772                 cortex_a->brp_list[i].control = 0;
2773                 cortex_a->brp_list[i].BRPn = i;
2774         }
2775
2776         LOG_DEBUG("Configured %i hw breakpoints", cortex_a->brp_num);
2777
2778         /* select debug_ap as default */
2779         swjdp->apsel = armv7a->debug_ap->ap_num;
2780
2781         target_set_examined(target);
2782         return ERROR_OK;
2783 }
2784
2785 static int cortex_a_examine(struct target *target)
2786 {
2787         int retval = ERROR_OK;
2788
2789         /* Reestablish communication after target reset */
2790         retval = cortex_a_examine_first(target);
2791
2792         /* Configure core debug access */
2793         if (retval == ERROR_OK)
2794                 retval = cortex_a_init_debug_access(target);
2795
2796         return retval;
2797 }
2798
2799 /*
2800  *      Cortex-A target creation and initialization
2801  */
2802
2803 static int cortex_a_init_target(struct command_context *cmd_ctx,
2804         struct target *target)
2805 {
2806         /* examine_first() does a bunch of this */
2807         arm_semihosting_init(target);
2808         return ERROR_OK;
2809 }
2810
2811 static int cortex_a_init_arch_info(struct target *target,
2812         struct cortex_a_common *cortex_a, struct adiv5_dap *dap)
2813 {
2814         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2815
2816         /* Setup struct cortex_a_common */
2817         cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
2818         armv7a->arm.dap = dap;
2819
2820         /* register arch-specific functions */
2821         armv7a->examine_debug_reason = NULL;
2822
2823         armv7a->post_debug_entry = cortex_a_post_debug_entry;
2824
2825         armv7a->pre_restore_context = NULL;
2826
2827         armv7a->armv7a_mmu.read_physical_memory = cortex_a_read_phys_memory;
2828
2829
2830 /*      arm7_9->handle_target_request = cortex_a_handle_target_request; */
2831
2832         /* REVISIT v7a setup should be in a v7a-specific routine */
2833         armv7a_init_arch_info(target, armv7a);
2834         target_register_timer_callback(cortex_a_handle_target_request, 1,
2835                 TARGET_TIMER_TYPE_PERIODIC, target);
2836
2837         return ERROR_OK;
2838 }
2839
2840 static int cortex_a_target_create(struct target *target, Jim_Interp *interp)
2841 {
2842         struct cortex_a_common *cortex_a;
2843         struct adiv5_private_config *pc;
2844
2845         if (target->private_config == NULL)
2846                 return ERROR_FAIL;
2847
2848         pc = (struct adiv5_private_config *)target->private_config;
2849
2850         cortex_a = calloc(1, sizeof(struct cortex_a_common));
2851         if (cortex_a == NULL) {
2852                 LOG_ERROR("Out of memory");
2853                 return ERROR_FAIL;
2854         }
2855         cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
2856         cortex_a->armv7a_common.is_armv7r = false;
2857         cortex_a->armv7a_common.arm.arm_vfp_version = ARM_VFP_V3;
2858
2859         return cortex_a_init_arch_info(target, cortex_a, pc->dap);
2860 }
2861
2862 static int cortex_r4_target_create(struct target *target, Jim_Interp *interp)
2863 {
2864         struct cortex_a_common *cortex_a;
2865         struct adiv5_private_config *pc;
2866
2867         pc = (struct adiv5_private_config *)target->private_config;
2868         if (adiv5_verify_config(pc) != ERROR_OK)
2869                 return ERROR_FAIL;
2870
2871         cortex_a = calloc(1, sizeof(struct cortex_a_common));
2872         if (cortex_a == NULL) {
2873                 LOG_ERROR("Out of memory");
2874                 return ERROR_FAIL;
2875         }
2876         cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
2877         cortex_a->armv7a_common.is_armv7r = true;
2878
2879         return cortex_a_init_arch_info(target, cortex_a, pc->dap);
2880 }
2881
2882 static void cortex_a_deinit_target(struct target *target)
2883 {
2884         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
2885         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2886         struct arm_dpm *dpm = &armv7a->dpm;
2887         uint32_t dscr;
2888         int retval;
2889
2890         if (target_was_examined(target)) {
2891                 /* Disable halt for breakpoint, watchpoint and vector catch */
2892                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2893                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2894                 if (retval == ERROR_OK)
2895                         mem_ap_write_atomic_u32(armv7a->debug_ap,
2896                                         armv7a->debug_base + CPUDBG_DSCR,
2897                                         dscr & ~DSCR_HALT_DBG_MODE);
2898         }
2899
2900         free(cortex_a->brp_list);
2901         free(dpm->dbp);
2902         free(dpm->dwp);
2903         free(target->private_config);
2904         free(cortex_a);
2905 }
2906
2907 static int cortex_a_mmu(struct target *target, int *enabled)
2908 {
2909         struct armv7a_common *armv7a = target_to_armv7a(target);
2910
2911         if (target->state != TARGET_HALTED) {
2912                 LOG_ERROR("%s: target not halted", __func__);
2913                 return ERROR_TARGET_INVALID;
2914         }
2915
2916         if (armv7a->is_armv7r)
2917                 *enabled = 0;
2918         else
2919                 *enabled = target_to_cortex_a(target)->armv7a_common.armv7a_mmu.mmu_enabled;
2920
2921         return ERROR_OK;
2922 }
2923
2924 static int cortex_a_virt2phys(struct target *target,
2925         target_addr_t virt, target_addr_t *phys)
2926 {
2927         int retval;
2928         int mmu_enabled = 0;
2929
2930         /*
2931          * If the MMU was not enabled at debug entry, there is no
2932          * way of knowing if there was ever a valid configuration
2933          * for it and thus it's not safe to enable it. In this case,
2934          * just return the virtual address as physical.
2935          */
2936         cortex_a_mmu(target, &mmu_enabled);
2937         if (!mmu_enabled) {
2938                 *phys = virt;
2939                 return ERROR_OK;
2940         }
2941
2942         /* mmu must be enable in order to get a correct translation */
2943         retval = cortex_a_mmu_modify(target, 1);
2944         if (retval != ERROR_OK)
2945                 return retval;
2946         return armv7a_mmu_translate_va_pa(target, (uint32_t)virt,
2947                                                     (uint32_t *)phys, 1);
2948 }
2949
2950 COMMAND_HANDLER(cortex_a_handle_cache_info_command)
2951 {
2952         struct target *target = get_current_target(CMD_CTX);
2953         struct armv7a_common *armv7a = target_to_armv7a(target);
2954
2955         return armv7a_handle_cache_info_command(CMD_CTX,
2956                         &armv7a->armv7a_mmu.armv7a_cache);
2957 }
2958
2959
2960 COMMAND_HANDLER(cortex_a_handle_dbginit_command)
2961 {
2962         struct target *target = get_current_target(CMD_CTX);
2963         if (!target_was_examined(target)) {
2964                 LOG_ERROR("target not examined yet");
2965                 return ERROR_FAIL;
2966         }
2967
2968         return cortex_a_init_debug_access(target);
2969 }
2970
2971 COMMAND_HANDLER(cortex_a_handle_smp_gdb_command)
2972 {
2973         struct target *target = get_current_target(CMD_CTX);
2974         int retval = ERROR_OK;
2975         struct target_list *head;
2976         head = target->head;
2977         if (head != (struct target_list *)NULL) {
2978                 if (CMD_ARGC == 1) {
2979                         int coreid = 0;
2980                         COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], coreid);
2981                         if (ERROR_OK != retval)
2982                                 return retval;
2983                         target->gdb_service->core[1] = coreid;
2984
2985                 }
2986                 command_print(CMD_CTX, "gdb coreid  %" PRId32 " -> %" PRId32, target->gdb_service->core[0]
2987                         , target->gdb_service->core[1]);
2988         }
2989         return ERROR_OK;
2990 }
2991
2992 COMMAND_HANDLER(handle_cortex_a_mask_interrupts_command)
2993 {
2994         struct target *target = get_current_target(CMD_CTX);
2995         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
2996
2997         static const Jim_Nvp nvp_maskisr_modes[] = {
2998                 { .name = "off", .value = CORTEX_A_ISRMASK_OFF },
2999                 { .name = "on", .value = CORTEX_A_ISRMASK_ON },
3000                 { .name = NULL, .value = -1 },
3001         };
3002         const Jim_Nvp *n;
3003
3004         if (CMD_ARGC > 0) {
3005                 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
3006                 if (n->name == NULL) {
3007                         LOG_ERROR("Unknown parameter: %s - should be off or on", CMD_ARGV[0]);
3008                         return ERROR_COMMAND_SYNTAX_ERROR;
3009                 }
3010
3011                 cortex_a->isrmasking_mode = n->value;
3012         }
3013
3014         n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_a->isrmasking_mode);
3015         command_print(CMD_CTX, "cortex_a interrupt mask %s", n->name);
3016
3017         return ERROR_OK;
3018 }
3019
3020 COMMAND_HANDLER(handle_cortex_a_dacrfixup_command)
3021 {
3022         struct target *target = get_current_target(CMD_CTX);
3023         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3024
3025         static const Jim_Nvp nvp_dacrfixup_modes[] = {
3026                 { .name = "off", .value = CORTEX_A_DACRFIXUP_OFF },
3027                 { .name = "on", .value = CORTEX_A_DACRFIXUP_ON },
3028                 { .name = NULL, .value = -1 },
3029         };
3030         const Jim_Nvp *n;
3031
3032         if (CMD_ARGC > 0) {
3033                 n = Jim_Nvp_name2value_simple(nvp_dacrfixup_modes, CMD_ARGV[0]);
3034                 if (n->name == NULL)
3035                         return ERROR_COMMAND_SYNTAX_ERROR;
3036                 cortex_a->dacrfixup_mode = n->value;
3037
3038         }
3039
3040         n = Jim_Nvp_value2name_simple(nvp_dacrfixup_modes, cortex_a->dacrfixup_mode);
3041         command_print(CMD_CTX, "cortex_a domain access control fixup %s", n->name);
3042
3043         return ERROR_OK;
3044 }
3045
3046 static const struct command_registration cortex_a_exec_command_handlers[] = {
3047         {
3048                 .name = "cache_info",
3049                 .handler = cortex_a_handle_cache_info_command,
3050                 .mode = COMMAND_EXEC,
3051                 .help = "display information about target caches",
3052                 .usage = "",
3053         },
3054         {
3055                 .name = "dbginit",
3056                 .handler = cortex_a_handle_dbginit_command,
3057                 .mode = COMMAND_EXEC,
3058                 .help = "Initialize core debug",
3059                 .usage = "",
3060         },
3061         {
3062                 .name = "smp_gdb",
3063                 .handler = cortex_a_handle_smp_gdb_command,
3064                 .mode = COMMAND_EXEC,
3065                 .help = "display/fix current core played to gdb",
3066                 .usage = "",
3067         },
3068         {
3069                 .name = "maskisr",
3070                 .handler = handle_cortex_a_mask_interrupts_command,
3071                 .mode = COMMAND_ANY,
3072                 .help = "mask cortex_a interrupts",
3073                 .usage = "['on'|'off']",
3074         },
3075         {
3076                 .name = "dacrfixup",
3077                 .handler = handle_cortex_a_dacrfixup_command,
3078                 .mode = COMMAND_ANY,
3079                 .help = "set domain access control (DACR) to all-manager "
3080                         "on memory access",
3081                 .usage = "['on'|'off']",
3082         },
3083         {
3084                 .chain = armv7a_mmu_command_handlers,
3085         },
3086         {
3087                 .chain = smp_command_handlers,
3088         },
3089
3090         COMMAND_REGISTRATION_DONE
3091 };
3092 static const struct command_registration cortex_a_command_handlers[] = {
3093         {
3094                 .chain = arm_command_handlers,
3095         },
3096         {
3097                 .chain = armv7a_command_handlers,
3098         },
3099         {
3100                 .name = "cortex_a",
3101                 .mode = COMMAND_ANY,
3102                 .help = "Cortex-A command group",
3103                 .usage = "",
3104                 .chain = cortex_a_exec_command_handlers,
3105         },
3106         COMMAND_REGISTRATION_DONE
3107 };
3108
3109 struct target_type cortexa_target = {
3110         .name = "cortex_a",
3111         .deprecated_name = "cortex_a8",
3112
3113         .poll = cortex_a_poll,
3114         .arch_state = armv7a_arch_state,
3115
3116         .halt = cortex_a_halt,
3117         .resume = cortex_a_resume,
3118         .step = cortex_a_step,
3119
3120         .assert_reset = cortex_a_assert_reset,
3121         .deassert_reset = cortex_a_deassert_reset,
3122
3123         /* REVISIT allow exporting VFP3 registers ... */
3124         .get_gdb_arch = arm_get_gdb_arch,
3125         .get_gdb_reg_list = arm_get_gdb_reg_list,
3126
3127         .read_memory = cortex_a_read_memory,
3128         .write_memory = cortex_a_write_memory,
3129
3130         .read_buffer = cortex_a_read_buffer,
3131         .write_buffer = cortex_a_write_buffer,
3132
3133         .checksum_memory = arm_checksum_memory,
3134         .blank_check_memory = arm_blank_check_memory,
3135
3136         .run_algorithm = armv4_5_run_algorithm,
3137
3138         .add_breakpoint = cortex_a_add_breakpoint,
3139         .add_context_breakpoint = cortex_a_add_context_breakpoint,
3140         .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3141         .remove_breakpoint = cortex_a_remove_breakpoint,
3142         .add_watchpoint = NULL,
3143         .remove_watchpoint = NULL,
3144
3145         .commands = cortex_a_command_handlers,
3146         .target_create = cortex_a_target_create,
3147         .target_jim_configure = adiv5_jim_configure,
3148         .init_target = cortex_a_init_target,
3149         .examine = cortex_a_examine,
3150         .deinit_target = cortex_a_deinit_target,
3151
3152         .read_phys_memory = cortex_a_read_phys_memory,
3153         .write_phys_memory = cortex_a_write_phys_memory,
3154         .mmu = cortex_a_mmu,
3155         .virt2phys = cortex_a_virt2phys,
3156 };
3157
3158 static const struct command_registration cortex_r4_exec_command_handlers[] = {
3159         {
3160                 .name = "dbginit",
3161                 .handler = cortex_a_handle_dbginit_command,
3162                 .mode = COMMAND_EXEC,
3163                 .help = "Initialize core debug",
3164                 .usage = "",
3165         },
3166         {
3167                 .name = "maskisr",
3168                 .handler = handle_cortex_a_mask_interrupts_command,
3169                 .mode = COMMAND_EXEC,
3170                 .help = "mask cortex_r4 interrupts",
3171                 .usage = "['on'|'off']",
3172         },
3173
3174         COMMAND_REGISTRATION_DONE
3175 };
3176 static const struct command_registration cortex_r4_command_handlers[] = {
3177         {
3178                 .chain = arm_command_handlers,
3179         },
3180         {
3181                 .name = "cortex_r4",
3182                 .mode = COMMAND_ANY,
3183                 .help = "Cortex-R4 command group",
3184                 .usage = "",
3185                 .chain = cortex_r4_exec_command_handlers,
3186         },
3187         COMMAND_REGISTRATION_DONE
3188 };
3189
3190 struct target_type cortexr4_target = {
3191         .name = "cortex_r4",
3192
3193         .poll = cortex_a_poll,
3194         .arch_state = armv7a_arch_state,
3195
3196         .halt = cortex_a_halt,
3197         .resume = cortex_a_resume,
3198         .step = cortex_a_step,
3199
3200         .assert_reset = cortex_a_assert_reset,
3201         .deassert_reset = cortex_a_deassert_reset,
3202
3203         /* REVISIT allow exporting VFP3 registers ... */
3204         .get_gdb_arch = arm_get_gdb_arch,
3205         .get_gdb_reg_list = arm_get_gdb_reg_list,
3206
3207         .read_memory = cortex_a_read_phys_memory,
3208         .write_memory = cortex_a_write_phys_memory,
3209
3210         .checksum_memory = arm_checksum_memory,
3211         .blank_check_memory = arm_blank_check_memory,
3212
3213         .run_algorithm = armv4_5_run_algorithm,
3214
3215         .add_breakpoint = cortex_a_add_breakpoint,
3216         .add_context_breakpoint = cortex_a_add_context_breakpoint,
3217         .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3218         .remove_breakpoint = cortex_a_remove_breakpoint,
3219         .add_watchpoint = NULL,
3220         .remove_watchpoint = NULL,
3221
3222         .commands = cortex_r4_command_handlers,
3223         .target_create = cortex_r4_target_create,
3224         .target_jim_configure = adiv5_jim_configure,
3225         .init_target = cortex_a_init_target,
3226         .examine = cortex_a_examine,
3227         .deinit_target = cortex_a_deinit_target,
3228 };