07644fa093b22dfb1e0d77cbb7da8f923f766739
[fw/openocd] / src / target / cortex_a.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   Copyright (C) 2010 Ã˜yvind Harboe                                      *
15  *   oyvind.harboe@zylin.com                                               *
16  *                                                                         *
17  *   Copyright (C) ST-Ericsson SA 2011                                     *
18  *   michel.jaouen@stericsson.com : smp minimum support                    *
19  *                                                                         *
20  *   Copyright (C) Broadcom 2012                                           *
21  *   ehunter@broadcom.com : Cortex-R4 support                              *
22  *                                                                         *
23  *   Copyright (C) 2013 Kamal Dasu                                         *
24  *   kdasu.kdev@gmail.com                                                  *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
38  *                                                                         *
39  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
40  *   Cortex-A9(tm) TRM, ARM DDI 0407F                                      *
41  *   Cortex-A4(tm) TRM, ARM DDI 0363E                                      *
42  *   Cortex-A15(tm)TRM, ARM DDI 0438C                                      *
43  *                                                                         *
44  ***************************************************************************/
45
46 #ifdef HAVE_CONFIG_H
47 #include "config.h"
48 #endif
49
50 #include "breakpoints.h"
51 #include "cortex_a.h"
52 #include "register.h"
53 #include "armv7a_mmu.h"
54 #include "target_request.h"
55 #include "target_type.h"
56 #include "arm_opcodes.h"
57 #include "arm_semihosting.h"
58 #include "transport/transport.h"
59 #include <helper/time_support.h>
60
61 #define foreach_smp_target(pos, head) \
62         for (pos = head; (pos != NULL); pos = pos->next)
63
64 static int cortex_a_poll(struct target *target);
65 static int cortex_a_debug_entry(struct target *target);
66 static int cortex_a_restore_context(struct target *target, bool bpwp);
67 static int cortex_a_set_breakpoint(struct target *target,
68         struct breakpoint *breakpoint, uint8_t matchmode);
69 static int cortex_a_set_context_breakpoint(struct target *target,
70         struct breakpoint *breakpoint, uint8_t matchmode);
71 static int cortex_a_set_hybrid_breakpoint(struct target *target,
72         struct breakpoint *breakpoint);
73 static int cortex_a_unset_breakpoint(struct target *target,
74         struct breakpoint *breakpoint);
75 static int cortex_a_mmu(struct target *target, int *enabled);
76 static int cortex_a_mmu_modify(struct target *target, int enable);
77 static int cortex_a_virt2phys(struct target *target,
78         target_addr_t virt, target_addr_t *phys);
79 static int cortex_a_read_cpu_memory(struct target *target,
80         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
81
82
83 /*  restore cp15_control_reg at resume */
84 static int cortex_a_restore_cp15_control_reg(struct target *target)
85 {
86         int retval = ERROR_OK;
87         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
88         struct armv7a_common *armv7a = target_to_armv7a(target);
89
90         if (cortex_a->cp15_control_reg != cortex_a->cp15_control_reg_curr) {
91                 cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
92                 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg); */
93                 retval = armv7a->arm.mcr(target, 15,
94                                 0, 0,   /* op1, op2 */
95                                 1, 0,   /* CRn, CRm */
96                                 cortex_a->cp15_control_reg);
97         }
98         return retval;
99 }
100
101 /*
102  * Set up ARM core for memory access.
103  * If !phys_access, switch to SVC mode and make sure MMU is on
104  * If phys_access, switch off mmu
105  */
106 static int cortex_a_prep_memaccess(struct target *target, int phys_access)
107 {
108         struct armv7a_common *armv7a = target_to_armv7a(target);
109         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
110         int mmu_enabled = 0;
111
112         if (phys_access == 0) {
113                 arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
114                 cortex_a_mmu(target, &mmu_enabled);
115                 if (mmu_enabled)
116                         cortex_a_mmu_modify(target, 1);
117                 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
118                         /* overwrite DACR to all-manager */
119                         armv7a->arm.mcr(target, 15,
120                                         0, 0, 3, 0,
121                                         0xFFFFFFFF);
122                 }
123         } else {
124                 cortex_a_mmu(target, &mmu_enabled);
125                 if (mmu_enabled)
126                         cortex_a_mmu_modify(target, 0);
127         }
128         return ERROR_OK;
129 }
130
131 /*
132  * Restore ARM core after memory access.
133  * If !phys_access, switch to previous mode
134  * If phys_access, restore MMU setting
135  */
136 static int cortex_a_post_memaccess(struct target *target, int phys_access)
137 {
138         struct armv7a_common *armv7a = target_to_armv7a(target);
139         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
140
141         if (phys_access == 0) {
142                 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
143                         /* restore */
144                         armv7a->arm.mcr(target, 15,
145                                         0, 0, 3, 0,
146                                         cortex_a->cp15_dacr_reg);
147                 }
148                 arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
149         } else {
150                 int mmu_enabled = 0;
151                 cortex_a_mmu(target, &mmu_enabled);
152                 if (mmu_enabled)
153                         cortex_a_mmu_modify(target, 1);
154         }
155         return ERROR_OK;
156 }
157
158
159 /*  modify cp15_control_reg in order to enable or disable mmu for :
160  *  - virt2phys address conversion
161  *  - read or write memory in phys or virt address */
162 static int cortex_a_mmu_modify(struct target *target, int enable)
163 {
164         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
165         struct armv7a_common *armv7a = target_to_armv7a(target);
166         int retval = ERROR_OK;
167         int need_write = 0;
168
169         if (enable) {
170                 /*  if mmu enabled at target stop and mmu not enable */
171                 if (!(cortex_a->cp15_control_reg & 0x1U)) {
172                         LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
173                         return ERROR_FAIL;
174                 }
175                 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0) {
176                         cortex_a->cp15_control_reg_curr |= 0x1U;
177                         need_write = 1;
178                 }
179         } else {
180                 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0x1U) {
181                         cortex_a->cp15_control_reg_curr &= ~0x1U;
182                         need_write = 1;
183                 }
184         }
185
186         if (need_write) {
187                 LOG_DEBUG("%s, writing cp15 ctrl: %" PRIx32,
188                         enable ? "enable mmu" : "disable mmu",
189                         cortex_a->cp15_control_reg_curr);
190
191                 retval = armv7a->arm.mcr(target, 15,
192                                 0, 0,   /* op1, op2 */
193                                 1, 0,   /* CRn, CRm */
194                                 cortex_a->cp15_control_reg_curr);
195         }
196         return retval;
197 }
198
199 /*
200  * Cortex-A Basic debug access, very low level assumes state is saved
201  */
202 static int cortex_a_init_debug_access(struct target *target)
203 {
204         struct armv7a_common *armv7a = target_to_armv7a(target);
205         uint32_t dscr;
206         int retval;
207
208         /* lock memory-mapped access to debug registers to prevent
209          * software interference */
210         retval = mem_ap_write_u32(armv7a->debug_ap,
211                         armv7a->debug_base + CPUDBG_LOCKACCESS, 0);
212         if (retval != ERROR_OK)
213                 return retval;
214
215         /* Disable cacheline fills and force cache write-through in debug state */
216         retval = mem_ap_write_u32(armv7a->debug_ap,
217                         armv7a->debug_base + CPUDBG_DSCCR, 0);
218         if (retval != ERROR_OK)
219                 return retval;
220
221         /* Disable TLB lookup and refill/eviction in debug state */
222         retval = mem_ap_write_u32(armv7a->debug_ap,
223                         armv7a->debug_base + CPUDBG_DSMCR, 0);
224         if (retval != ERROR_OK)
225                 return retval;
226
227         retval = dap_run(armv7a->debug_ap->dap);
228         if (retval != ERROR_OK)
229                 return retval;
230
231         /* Enabling of instruction execution in debug mode is done in debug_entry code */
232
233         /* Resync breakpoint registers */
234
235         /* Enable halt for breakpoint, watchpoint and vector catch */
236         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
237                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
238         if (retval != ERROR_OK)
239                 return retval;
240         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
241                         armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
242         if (retval != ERROR_OK)
243                 return retval;
244
245         /* Since this is likely called from init or reset, update target state information*/
246         return cortex_a_poll(target);
247 }
248
249 static int cortex_a_wait_instrcmpl(struct target *target, uint32_t *dscr, bool force)
250 {
251         /* Waits until InstrCmpl_l becomes 1, indicating instruction is done.
252          * Writes final value of DSCR into *dscr. Pass force to force always
253          * reading DSCR at least once. */
254         struct armv7a_common *armv7a = target_to_armv7a(target);
255         int64_t then = timeval_ms();
256         while ((*dscr & DSCR_INSTR_COMP) == 0 || force) {
257                 force = false;
258                 int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
259                                 armv7a->debug_base + CPUDBG_DSCR, dscr);
260                 if (retval != ERROR_OK) {
261                         LOG_ERROR("Could not read DSCR register");
262                         return retval;
263                 }
264                 if (timeval_ms() > then + 1000) {
265                         LOG_ERROR("Timeout waiting for InstrCompl=1");
266                         return ERROR_FAIL;
267                 }
268         }
269         return ERROR_OK;
270 }
271
272 /* To reduce needless round-trips, pass in a pointer to the current
273  * DSCR value.  Initialize it to zero if you just need to know the
274  * value on return from this function; or DSCR_INSTR_COMP if you
275  * happen to know that no instruction is pending.
276  */
277 static int cortex_a_exec_opcode(struct target *target,
278         uint32_t opcode, uint32_t *dscr_p)
279 {
280         uint32_t dscr;
281         int retval;
282         struct armv7a_common *armv7a = target_to_armv7a(target);
283
284         dscr = dscr_p ? *dscr_p : 0;
285
286         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
287
288         /* Wait for InstrCompl bit to be set */
289         retval = cortex_a_wait_instrcmpl(target, dscr_p, false);
290         if (retval != ERROR_OK)
291                 return retval;
292
293         retval = mem_ap_write_u32(armv7a->debug_ap,
294                         armv7a->debug_base + CPUDBG_ITR, opcode);
295         if (retval != ERROR_OK)
296                 return retval;
297
298         int64_t then = timeval_ms();
299         do {
300                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
301                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
302                 if (retval != ERROR_OK) {
303                         LOG_ERROR("Could not read DSCR register");
304                         return retval;
305                 }
306                 if (timeval_ms() > then + 1000) {
307                         LOG_ERROR("Timeout waiting for cortex_a_exec_opcode");
308                         return ERROR_FAIL;
309                 }
310         } while ((dscr & DSCR_INSTR_COMP) == 0);        /* Wait for InstrCompl bit to be set */
311
312         if (dscr_p)
313                 *dscr_p = dscr;
314
315         return retval;
316 }
317
318 /* Write to memory mapped registers directly with no cache or mmu handling */
319 static int cortex_a_dap_write_memap_register_u32(struct target *target,
320         uint32_t address,
321         uint32_t value)
322 {
323         int retval;
324         struct armv7a_common *armv7a = target_to_armv7a(target);
325
326         retval = mem_ap_write_atomic_u32(armv7a->debug_ap, address, value);
327
328         return retval;
329 }
330
331 /*
332  * Cortex-A implementation of Debug Programmer's Model
333  *
334  * NOTE the invariant:  these routines return with DSCR_INSTR_COMP set,
335  * so there's no need to poll for it before executing an instruction.
336  *
337  * NOTE that in several of these cases the "stall" mode might be useful.
338  * It'd let us queue a few operations together... prepare/finish might
339  * be the places to enable/disable that mode.
340  */
341
342 static inline struct cortex_a_common *dpm_to_a(struct arm_dpm *dpm)
343 {
344         return container_of(dpm, struct cortex_a_common, armv7a_common.dpm);
345 }
346
347 static int cortex_a_write_dcc(struct cortex_a_common *a, uint32_t data)
348 {
349         LOG_DEBUG("write DCC 0x%08" PRIx32, data);
350         return mem_ap_write_u32(a->armv7a_common.debug_ap,
351                         a->armv7a_common.debug_base + CPUDBG_DTRRX, data);
352 }
353
354 static int cortex_a_read_dcc(struct cortex_a_common *a, uint32_t *data,
355         uint32_t *dscr_p)
356 {
357         uint32_t dscr = DSCR_INSTR_COMP;
358         int retval;
359
360         if (dscr_p)
361                 dscr = *dscr_p;
362
363         /* Wait for DTRRXfull */
364         int64_t then = timeval_ms();
365         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
366                 retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
367                                 a->armv7a_common.debug_base + CPUDBG_DSCR,
368                                 &dscr);
369                 if (retval != ERROR_OK)
370                         return retval;
371                 if (timeval_ms() > then + 1000) {
372                         LOG_ERROR("Timeout waiting for read dcc");
373                         return ERROR_FAIL;
374                 }
375         }
376
377         retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
378                         a->armv7a_common.debug_base + CPUDBG_DTRTX, data);
379         if (retval != ERROR_OK)
380                 return retval;
381         /* LOG_DEBUG("read DCC 0x%08" PRIx32, *data); */
382
383         if (dscr_p)
384                 *dscr_p = dscr;
385
386         return retval;
387 }
388
389 static int cortex_a_dpm_prepare(struct arm_dpm *dpm)
390 {
391         struct cortex_a_common *a = dpm_to_a(dpm);
392         uint32_t dscr;
393         int retval;
394
395         /* set up invariant:  INSTR_COMP is set after ever DPM operation */
396         int64_t then = timeval_ms();
397         for (;; ) {
398                 retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
399                                 a->armv7a_common.debug_base + CPUDBG_DSCR,
400                                 &dscr);
401                 if (retval != ERROR_OK)
402                         return retval;
403                 if ((dscr & DSCR_INSTR_COMP) != 0)
404                         break;
405                 if (timeval_ms() > then + 1000) {
406                         LOG_ERROR("Timeout waiting for dpm prepare");
407                         return ERROR_FAIL;
408                 }
409         }
410
411         /* this "should never happen" ... */
412         if (dscr & DSCR_DTR_RX_FULL) {
413                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
414                 /* Clear DCCRX */
415                 retval = cortex_a_exec_opcode(
416                                 a->armv7a_common.arm.target,
417                                 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
418                                 &dscr);
419                 if (retval != ERROR_OK)
420                         return retval;
421         }
422
423         return retval;
424 }
425
426 static int cortex_a_dpm_finish(struct arm_dpm *dpm)
427 {
428         /* REVISIT what could be done here? */
429         return ERROR_OK;
430 }
431
432 static int cortex_a_instr_write_data_dcc(struct arm_dpm *dpm,
433         uint32_t opcode, uint32_t data)
434 {
435         struct cortex_a_common *a = dpm_to_a(dpm);
436         int retval;
437         uint32_t dscr = DSCR_INSTR_COMP;
438
439         retval = cortex_a_write_dcc(a, data);
440         if (retval != ERROR_OK)
441                 return retval;
442
443         return cortex_a_exec_opcode(
444                         a->armv7a_common.arm.target,
445                         opcode,
446                         &dscr);
447 }
448
449 static int cortex_a_instr_write_data_r0(struct arm_dpm *dpm,
450         uint32_t opcode, uint32_t data)
451 {
452         struct cortex_a_common *a = dpm_to_a(dpm);
453         uint32_t dscr = DSCR_INSTR_COMP;
454         int retval;
455
456         retval = cortex_a_write_dcc(a, data);
457         if (retval != ERROR_OK)
458                 return retval;
459
460         /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
461         retval = cortex_a_exec_opcode(
462                         a->armv7a_common.arm.target,
463                         ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
464                         &dscr);
465         if (retval != ERROR_OK)
466                 return retval;
467
468         /* then the opcode, taking data from R0 */
469         retval = cortex_a_exec_opcode(
470                         a->armv7a_common.arm.target,
471                         opcode,
472                         &dscr);
473
474         return retval;
475 }
476
477 static int cortex_a_instr_cpsr_sync(struct arm_dpm *dpm)
478 {
479         struct target *target = dpm->arm->target;
480         uint32_t dscr = DSCR_INSTR_COMP;
481
482         /* "Prefetch flush" after modifying execution status in CPSR */
483         return cortex_a_exec_opcode(target,
484                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
485                         &dscr);
486 }
487
488 static int cortex_a_instr_read_data_dcc(struct arm_dpm *dpm,
489         uint32_t opcode, uint32_t *data)
490 {
491         struct cortex_a_common *a = dpm_to_a(dpm);
492         int retval;
493         uint32_t dscr = DSCR_INSTR_COMP;
494
495         /* the opcode, writing data to DCC */
496         retval = cortex_a_exec_opcode(
497                         a->armv7a_common.arm.target,
498                         opcode,
499                         &dscr);
500         if (retval != ERROR_OK)
501                 return retval;
502
503         return cortex_a_read_dcc(a, data, &dscr);
504 }
505
506
507 static int cortex_a_instr_read_data_r0(struct arm_dpm *dpm,
508         uint32_t opcode, uint32_t *data)
509 {
510         struct cortex_a_common *a = dpm_to_a(dpm);
511         uint32_t dscr = DSCR_INSTR_COMP;
512         int retval;
513
514         /* the opcode, writing data to R0 */
515         retval = cortex_a_exec_opcode(
516                         a->armv7a_common.arm.target,
517                         opcode,
518                         &dscr);
519         if (retval != ERROR_OK)
520                 return retval;
521
522         /* write R0 to DCC */
523         retval = cortex_a_exec_opcode(
524                         a->armv7a_common.arm.target,
525                         ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
526                         &dscr);
527         if (retval != ERROR_OK)
528                 return retval;
529
530         return cortex_a_read_dcc(a, data, &dscr);
531 }
532
533 static int cortex_a_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
534         uint32_t addr, uint32_t control)
535 {
536         struct cortex_a_common *a = dpm_to_a(dpm);
537         uint32_t vr = a->armv7a_common.debug_base;
538         uint32_t cr = a->armv7a_common.debug_base;
539         int retval;
540
541         switch (index_t) {
542                 case 0 ... 15:  /* breakpoints */
543                         vr += CPUDBG_BVR_BASE;
544                         cr += CPUDBG_BCR_BASE;
545                         break;
546                 case 16 ... 31: /* watchpoints */
547                         vr += CPUDBG_WVR_BASE;
548                         cr += CPUDBG_WCR_BASE;
549                         index_t -= 16;
550                         break;
551                 default:
552                         return ERROR_FAIL;
553         }
554         vr += 4 * index_t;
555         cr += 4 * index_t;
556
557         LOG_DEBUG("A: bpwp enable, vr %08x cr %08x",
558                 (unsigned) vr, (unsigned) cr);
559
560         retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
561                         vr, addr);
562         if (retval != ERROR_OK)
563                 return retval;
564         retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
565                         cr, control);
566         return retval;
567 }
568
569 static int cortex_a_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
570 {
571         struct cortex_a_common *a = dpm_to_a(dpm);
572         uint32_t cr;
573
574         switch (index_t) {
575                 case 0 ... 15:
576                         cr = a->armv7a_common.debug_base + CPUDBG_BCR_BASE;
577                         break;
578                 case 16 ... 31:
579                         cr = a->armv7a_common.debug_base + CPUDBG_WCR_BASE;
580                         index_t -= 16;
581                         break;
582                 default:
583                         return ERROR_FAIL;
584         }
585         cr += 4 * index_t;
586
587         LOG_DEBUG("A: bpwp disable, cr %08x", (unsigned) cr);
588
589         /* clear control register */
590         return cortex_a_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
591 }
592
593 static int cortex_a_dpm_setup(struct cortex_a_common *a, uint32_t didr)
594 {
595         struct arm_dpm *dpm = &a->armv7a_common.dpm;
596         int retval;
597
598         dpm->arm = &a->armv7a_common.arm;
599         dpm->didr = didr;
600
601         dpm->prepare = cortex_a_dpm_prepare;
602         dpm->finish = cortex_a_dpm_finish;
603
604         dpm->instr_write_data_dcc = cortex_a_instr_write_data_dcc;
605         dpm->instr_write_data_r0 = cortex_a_instr_write_data_r0;
606         dpm->instr_cpsr_sync = cortex_a_instr_cpsr_sync;
607
608         dpm->instr_read_data_dcc = cortex_a_instr_read_data_dcc;
609         dpm->instr_read_data_r0 = cortex_a_instr_read_data_r0;
610
611         dpm->bpwp_enable = cortex_a_bpwp_enable;
612         dpm->bpwp_disable = cortex_a_bpwp_disable;
613
614         retval = arm_dpm_setup(dpm);
615         if (retval == ERROR_OK)
616                 retval = arm_dpm_initialize(dpm);
617
618         return retval;
619 }
620 static struct target *get_cortex_a(struct target *target, int32_t coreid)
621 {
622         struct target_list *head;
623         struct target *curr;
624
625         head = target->head;
626         while (head != (struct target_list *)NULL) {
627                 curr = head->target;
628                 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
629                         return curr;
630                 head = head->next;
631         }
632         return target;
633 }
634 static int cortex_a_halt(struct target *target);
635
636 static int cortex_a_halt_smp(struct target *target)
637 {
638         int retval = 0;
639         struct target_list *head;
640         struct target *curr;
641         head = target->head;
642         while (head != (struct target_list *)NULL) {
643                 curr = head->target;
644                 if ((curr != target) && (curr->state != TARGET_HALTED)
645                         && target_was_examined(curr))
646                         retval += cortex_a_halt(curr);
647                 head = head->next;
648         }
649         return retval;
650 }
651
652 static int update_halt_gdb(struct target *target)
653 {
654         struct target *gdb_target = NULL;
655         struct target_list *head;
656         struct target *curr;
657         int retval = 0;
658
659         if (target->gdb_service && target->gdb_service->core[0] == -1) {
660                 target->gdb_service->target = target;
661                 target->gdb_service->core[0] = target->coreid;
662                 retval += cortex_a_halt_smp(target);
663         }
664
665         if (target->gdb_service)
666                 gdb_target = target->gdb_service->target;
667
668         foreach_smp_target(head, target->head) {
669                 curr = head->target;
670                 /* skip calling context */
671                 if (curr == target)
672                         continue;
673                 if (!target_was_examined(curr))
674                         continue;
675                 /* skip targets that were already halted */
676                 if (curr->state == TARGET_HALTED)
677                         continue;
678                 /* Skip gdb_target; it alerts GDB so has to be polled as last one */
679                 if (curr == gdb_target)
680                         continue;
681
682                 /* avoid recursion in cortex_a_poll() */
683                 curr->smp = 0;
684                 cortex_a_poll(curr);
685                 curr->smp = 1;
686         }
687
688         /* after all targets were updated, poll the gdb serving target */
689         if (gdb_target != NULL && gdb_target != target)
690                 cortex_a_poll(gdb_target);
691         return retval;
692 }
693
694 /*
695  * Cortex-A Run control
696  */
697
698 static int cortex_a_poll(struct target *target)
699 {
700         int retval = ERROR_OK;
701         uint32_t dscr;
702         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
703         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
704         enum target_state prev_target_state = target->state;
705         /*  toggle to another core is done by gdb as follow */
706         /*  maint packet J core_id */
707         /*  continue */
708         /*  the next polling trigger an halt event sent to gdb */
709         if ((target->state == TARGET_HALTED) && (target->smp) &&
710                 (target->gdb_service) &&
711                 (target->gdb_service->target == NULL)) {
712                 target->gdb_service->target =
713                         get_cortex_a(target, target->gdb_service->core[1]);
714                 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
715                 return retval;
716         }
717         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
718                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
719         if (retval != ERROR_OK)
720                 return retval;
721         cortex_a->cpudbg_dscr = dscr;
722
723         if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED)) {
724                 if (prev_target_state != TARGET_HALTED) {
725                         /* We have a halting debug event */
726                         LOG_DEBUG("Target halted");
727                         target->state = TARGET_HALTED;
728                         if ((prev_target_state == TARGET_RUNNING)
729                                 || (prev_target_state == TARGET_UNKNOWN)
730                                 || (prev_target_state == TARGET_RESET)) {
731                                 retval = cortex_a_debug_entry(target);
732                                 if (retval != ERROR_OK)
733                                         return retval;
734                                 if (target->smp) {
735                                         retval = update_halt_gdb(target);
736                                         if (retval != ERROR_OK)
737                                                 return retval;
738                                 }
739
740                                 if (arm_semihosting(target, &retval) != 0)
741                                         return retval;
742
743                                 target_call_event_callbacks(target,
744                                         TARGET_EVENT_HALTED);
745                         }
746                         if (prev_target_state == TARGET_DEBUG_RUNNING) {
747                                 LOG_DEBUG(" ");
748
749                                 retval = cortex_a_debug_entry(target);
750                                 if (retval != ERROR_OK)
751                                         return retval;
752                                 if (target->smp) {
753                                         retval = update_halt_gdb(target);
754                                         if (retval != ERROR_OK)
755                                                 return retval;
756                                 }
757
758                                 target_call_event_callbacks(target,
759                                         TARGET_EVENT_DEBUG_HALTED);
760                         }
761                 }
762         } else
763                 target->state = TARGET_RUNNING;
764
765         return retval;
766 }
767
768 static int cortex_a_halt(struct target *target)
769 {
770         int retval = ERROR_OK;
771         uint32_t dscr;
772         struct armv7a_common *armv7a = target_to_armv7a(target);
773
774         /*
775          * Tell the core to be halted by writing DRCR with 0x1
776          * and then wait for the core to be halted.
777          */
778         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
779                         armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
780         if (retval != ERROR_OK)
781                 return retval;
782
783         int64_t then = timeval_ms();
784         for (;; ) {
785                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
786                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
787                 if (retval != ERROR_OK)
788                         return retval;
789                 if ((dscr & DSCR_CORE_HALTED) != 0)
790                         break;
791                 if (timeval_ms() > then + 1000) {
792                         LOG_ERROR("Timeout waiting for halt");
793                         return ERROR_FAIL;
794                 }
795         }
796
797         target->debug_reason = DBG_REASON_DBGRQ;
798
799         return ERROR_OK;
800 }
801
802 static int cortex_a_internal_restore(struct target *target, int current,
803         target_addr_t *address, int handle_breakpoints, int debug_execution)
804 {
805         struct armv7a_common *armv7a = target_to_armv7a(target);
806         struct arm *arm = &armv7a->arm;
807         int retval;
808         uint32_t resume_pc;
809
810         if (!debug_execution)
811                 target_free_all_working_areas(target);
812
813 #if 0
814         if (debug_execution) {
815                 /* Disable interrupts */
816                 /* We disable interrupts in the PRIMASK register instead of
817                  * masking with C_MASKINTS,
818                  * This is probably the same issue as Cortex-M3 Errata 377493:
819                  * C_MASKINTS in parallel with disabled interrupts can cause
820                  * local faults to not be taken. */
821                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
822                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
823                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
824
825                 /* Make sure we are in Thumb mode */
826                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
827                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0,
828                         32) | (1 << 24));
829                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
830                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
831         }
832 #endif
833
834         /* current = 1: continue on current pc, otherwise continue at <address> */
835         resume_pc = buf_get_u32(arm->pc->value, 0, 32);
836         if (!current)
837                 resume_pc = *address;
838         else
839                 *address = resume_pc;
840
841         /* Make sure that the Armv7 gdb thumb fixups does not
842          * kill the return address
843          */
844         switch (arm->core_state) {
845                 case ARM_STATE_ARM:
846                         resume_pc &= 0xFFFFFFFC;
847                         break;
848                 case ARM_STATE_THUMB:
849                 case ARM_STATE_THUMB_EE:
850                         /* When the return address is loaded into PC
851                          * bit 0 must be 1 to stay in Thumb state
852                          */
853                         resume_pc |= 0x1;
854                         break;
855                 case ARM_STATE_JAZELLE:
856                         LOG_ERROR("How do I resume into Jazelle state??");
857                         return ERROR_FAIL;
858                 case ARM_STATE_AARCH64:
859                         LOG_ERROR("Shoudn't be in AARCH64 state");
860                         return ERROR_FAIL;
861         }
862         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
863         buf_set_u32(arm->pc->value, 0, 32, resume_pc);
864         arm->pc->dirty = 1;
865         arm->pc->valid = 1;
866
867         /* restore dpm_mode at system halt */
868         arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
869         /* called it now before restoring context because it uses cpu
870          * register r0 for restoring cp15 control register */
871         retval = cortex_a_restore_cp15_control_reg(target);
872         if (retval != ERROR_OK)
873                 return retval;
874         retval = cortex_a_restore_context(target, handle_breakpoints);
875         if (retval != ERROR_OK)
876                 return retval;
877         target->debug_reason = DBG_REASON_NOTHALTED;
878         target->state = TARGET_RUNNING;
879
880         /* registers are now invalid */
881         register_cache_invalidate(arm->core_cache);
882
883 #if 0
884         /* the front-end may request us not to handle breakpoints */
885         if (handle_breakpoints) {
886                 /* Single step past breakpoint at current address */
887                 breakpoint = breakpoint_find(target, resume_pc);
888                 if (breakpoint) {
889                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
890                         cortex_m3_unset_breakpoint(target, breakpoint);
891                         cortex_m3_single_step_core(target);
892                         cortex_m3_set_breakpoint(target, breakpoint);
893                 }
894         }
895
896 #endif
897         return retval;
898 }
899
900 static int cortex_a_internal_restart(struct target *target)
901 {
902         struct armv7a_common *armv7a = target_to_armv7a(target);
903         struct arm *arm = &armv7a->arm;
904         int retval;
905         uint32_t dscr;
906         /*
907          * * Restart core and wait for it to be started.  Clear ITRen and sticky
908          * * exception flags: see ARMv7 ARM, C5.9.
909          *
910          * REVISIT: for single stepping, we probably want to
911          * disable IRQs by default, with optional override...
912          */
913
914         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
915                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
916         if (retval != ERROR_OK)
917                 return retval;
918
919         if ((dscr & DSCR_INSTR_COMP) == 0)
920                 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
921
922         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
923                         armv7a->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
924         if (retval != ERROR_OK)
925                 return retval;
926
927         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
928                         armv7a->debug_base + CPUDBG_DRCR, DRCR_RESTART |
929                         DRCR_CLEAR_EXCEPTIONS);
930         if (retval != ERROR_OK)
931                 return retval;
932
933         int64_t then = timeval_ms();
934         for (;; ) {
935                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
936                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
937                 if (retval != ERROR_OK)
938                         return retval;
939                 if ((dscr & DSCR_CORE_RESTARTED) != 0)
940                         break;
941                 if (timeval_ms() > then + 1000) {
942                         LOG_ERROR("Timeout waiting for resume");
943                         return ERROR_FAIL;
944                 }
945         }
946
947         target->debug_reason = DBG_REASON_NOTHALTED;
948         target->state = TARGET_RUNNING;
949
950         /* registers are now invalid */
951         register_cache_invalidate(arm->core_cache);
952
953         return ERROR_OK;
954 }
955
956 static int cortex_a_restore_smp(struct target *target, int handle_breakpoints)
957 {
958         int retval = 0;
959         struct target_list *head;
960         struct target *curr;
961         target_addr_t address;
962         head = target->head;
963         while (head != (struct target_list *)NULL) {
964                 curr = head->target;
965                 if ((curr != target) && (curr->state != TARGET_RUNNING)
966                         && target_was_examined(curr)) {
967                         /*  resume current address , not in step mode */
968                         retval += cortex_a_internal_restore(curr, 1, &address,
969                                         handle_breakpoints, 0);
970                         retval += cortex_a_internal_restart(curr);
971                 }
972                 head = head->next;
973
974         }
975         return retval;
976 }
977
978 static int cortex_a_resume(struct target *target, int current,
979         target_addr_t address, int handle_breakpoints, int debug_execution)
980 {
981         int retval = 0;
982         /* dummy resume for smp toggle in order to reduce gdb impact  */
983         if ((target->smp) && (target->gdb_service->core[1] != -1)) {
984                 /*   simulate a start and halt of target */
985                 target->gdb_service->target = NULL;
986                 target->gdb_service->core[0] = target->gdb_service->core[1];
987                 /*  fake resume at next poll we play the  target core[1], see poll*/
988                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
989                 return 0;
990         }
991         cortex_a_internal_restore(target, current, &address, handle_breakpoints, debug_execution);
992         if (target->smp) {
993                 target->gdb_service->core[0] = -1;
994                 retval = cortex_a_restore_smp(target, handle_breakpoints);
995                 if (retval != ERROR_OK)
996                         return retval;
997         }
998         cortex_a_internal_restart(target);
999
1000         if (!debug_execution) {
1001                 target->state = TARGET_RUNNING;
1002                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1003                 LOG_DEBUG("target resumed at " TARGET_ADDR_FMT, address);
1004         } else {
1005                 target->state = TARGET_DEBUG_RUNNING;
1006                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
1007                 LOG_DEBUG("target debug resumed at " TARGET_ADDR_FMT, address);
1008         }
1009
1010         return ERROR_OK;
1011 }
1012
1013 static int cortex_a_debug_entry(struct target *target)
1014 {
1015         uint32_t dscr;
1016         int retval = ERROR_OK;
1017         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1018         struct armv7a_common *armv7a = target_to_armv7a(target);
1019         struct arm *arm = &armv7a->arm;
1020
1021         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a->cpudbg_dscr);
1022
1023         /* REVISIT surely we should not re-read DSCR !! */
1024         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1025                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
1026         if (retval != ERROR_OK)
1027                 return retval;
1028
1029         /* REVISIT see A TRM 12.11.4 steps 2..3 -- make sure that any
1030          * imprecise data aborts get discarded by issuing a Data
1031          * Synchronization Barrier:  ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1032          */
1033
1034         /* Enable the ITR execution once we are in debug mode */
1035         dscr |= DSCR_ITR_EN;
1036         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1037                         armv7a->debug_base + CPUDBG_DSCR, dscr);
1038         if (retval != ERROR_OK)
1039                 return retval;
1040
1041         /* Examine debug reason */
1042         arm_dpm_report_dscr(&armv7a->dpm, cortex_a->cpudbg_dscr);
1043
1044         /* save address of instruction that triggered the watchpoint? */
1045         if (target->debug_reason == DBG_REASON_WATCHPOINT) {
1046                 uint32_t wfar;
1047
1048                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1049                                 armv7a->debug_base + CPUDBG_WFAR,
1050                                 &wfar);
1051                 if (retval != ERROR_OK)
1052                         return retval;
1053                 arm_dpm_report_wfar(&armv7a->dpm, wfar);
1054         }
1055
1056         /* First load register accessible through core debug port */
1057         retval = arm_dpm_read_current_registers(&armv7a->dpm);
1058         if (retval != ERROR_OK)
1059                 return retval;
1060
1061         if (arm->spsr) {
1062                 /* read SPSR */
1063                 retval = arm_dpm_read_reg(&armv7a->dpm, arm->spsr, 17);
1064                 if (retval != ERROR_OK)
1065                         return retval;
1066         }
1067
1068 #if 0
1069 /* TODO, Move this */
1070         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
1071         cortex_a_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
1072         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
1073
1074         cortex_a_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
1075         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
1076
1077         cortex_a_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
1078         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
1079 #endif
1080
1081         /* Are we in an exception handler */
1082 /*      armv4_5->exception_number = 0; */
1083         if (armv7a->post_debug_entry) {
1084                 retval = armv7a->post_debug_entry(target);
1085                 if (retval != ERROR_OK)
1086                         return retval;
1087         }
1088
1089         return retval;
1090 }
1091
1092 static int cortex_a_post_debug_entry(struct target *target)
1093 {
1094         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1095         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1096         int retval;
1097
1098         /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1099         retval = armv7a->arm.mrc(target, 15,
1100                         0, 0,   /* op1, op2 */
1101                         1, 0,   /* CRn, CRm */
1102                         &cortex_a->cp15_control_reg);
1103         if (retval != ERROR_OK)
1104                 return retval;
1105         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg);
1106         cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
1107
1108         if (!armv7a->is_armv7r)
1109                 armv7a_read_ttbcr(target);
1110
1111         if (armv7a->armv7a_mmu.armv7a_cache.info == -1)
1112                 armv7a_identify_cache(target);
1113
1114         if (armv7a->is_armv7r) {
1115                 armv7a->armv7a_mmu.mmu_enabled = 0;
1116         } else {
1117                 armv7a->armv7a_mmu.mmu_enabled =
1118                         (cortex_a->cp15_control_reg & 0x1U) ? 1 : 0;
1119         }
1120         armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled =
1121                 (cortex_a->cp15_control_reg & 0x4U) ? 1 : 0;
1122         armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled =
1123                 (cortex_a->cp15_control_reg & 0x1000U) ? 1 : 0;
1124         cortex_a->curr_mode = armv7a->arm.core_mode;
1125
1126         /* switch to SVC mode to read DACR */
1127         arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
1128         armv7a->arm.mrc(target, 15,
1129                         0, 0, 3, 0,
1130                         &cortex_a->cp15_dacr_reg);
1131
1132         LOG_DEBUG("cp15_dacr_reg: %8.8" PRIx32,
1133                         cortex_a->cp15_dacr_reg);
1134
1135         arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
1136         return ERROR_OK;
1137 }
1138
1139 int cortex_a_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
1140 {
1141         struct armv7a_common *armv7a = target_to_armv7a(target);
1142         uint32_t dscr;
1143
1144         /* Read DSCR */
1145         int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1146                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
1147         if (ERROR_OK != retval)
1148                 return retval;
1149
1150         /* clear bitfield */
1151         dscr &= ~bit_mask;
1152         /* put new value */
1153         dscr |= value & bit_mask;
1154
1155         /* write new DSCR */
1156         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1157                         armv7a->debug_base + CPUDBG_DSCR, dscr);
1158         return retval;
1159 }
1160
1161 static int cortex_a_step(struct target *target, int current, target_addr_t address,
1162         int handle_breakpoints)
1163 {
1164         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1165         struct armv7a_common *armv7a = target_to_armv7a(target);
1166         struct arm *arm = &armv7a->arm;
1167         struct breakpoint *breakpoint = NULL;
1168         struct breakpoint stepbreakpoint;
1169         struct reg *r;
1170         int retval;
1171
1172         if (target->state != TARGET_HALTED) {
1173                 LOG_WARNING("target not halted");
1174                 return ERROR_TARGET_NOT_HALTED;
1175         }
1176
1177         /* current = 1: continue on current pc, otherwise continue at <address> */
1178         r = arm->pc;
1179         if (!current)
1180                 buf_set_u32(r->value, 0, 32, address);
1181         else
1182                 address = buf_get_u32(r->value, 0, 32);
1183
1184         /* The front-end may request us not to handle breakpoints.
1185          * But since Cortex-A uses breakpoint for single step,
1186          * we MUST handle breakpoints.
1187          */
1188         handle_breakpoints = 1;
1189         if (handle_breakpoints) {
1190                 breakpoint = breakpoint_find(target, address);
1191                 if (breakpoint)
1192                         cortex_a_unset_breakpoint(target, breakpoint);
1193         }
1194
1195         /* Setup single step breakpoint */
1196         stepbreakpoint.address = address;
1197         stepbreakpoint.asid = 0;
1198         stepbreakpoint.length = (arm->core_state == ARM_STATE_THUMB)
1199                 ? 2 : 4;
1200         stepbreakpoint.type = BKPT_HARD;
1201         stepbreakpoint.set = 0;
1202
1203         /* Disable interrupts during single step if requested */
1204         if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1205                 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, DSCR_INT_DIS);
1206                 if (ERROR_OK != retval)
1207                         return retval;
1208         }
1209
1210         /* Break on IVA mismatch */
1211         cortex_a_set_breakpoint(target, &stepbreakpoint, 0x04);
1212
1213         target->debug_reason = DBG_REASON_SINGLESTEP;
1214
1215         retval = cortex_a_resume(target, 1, address, 0, 0);
1216         if (retval != ERROR_OK)
1217                 return retval;
1218
1219         int64_t then = timeval_ms();
1220         while (target->state != TARGET_HALTED) {
1221                 retval = cortex_a_poll(target);
1222                 if (retval != ERROR_OK)
1223                         return retval;
1224                 if (timeval_ms() > then + 1000) {
1225                         LOG_ERROR("timeout waiting for target halt");
1226                         return ERROR_FAIL;
1227                 }
1228         }
1229
1230         cortex_a_unset_breakpoint(target, &stepbreakpoint);
1231
1232         /* Re-enable interrupts if they were disabled */
1233         if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1234                 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, 0);
1235                 if (ERROR_OK != retval)
1236                         return retval;
1237         }
1238
1239
1240         target->debug_reason = DBG_REASON_BREAKPOINT;
1241
1242         if (breakpoint)
1243                 cortex_a_set_breakpoint(target, breakpoint, 0);
1244
1245         if (target->state != TARGET_HALTED)
1246                 LOG_DEBUG("target stepped");
1247
1248         return ERROR_OK;
1249 }
1250
1251 static int cortex_a_restore_context(struct target *target, bool bpwp)
1252 {
1253         struct armv7a_common *armv7a = target_to_armv7a(target);
1254
1255         LOG_DEBUG(" ");
1256
1257         if (armv7a->pre_restore_context)
1258                 armv7a->pre_restore_context(target);
1259
1260         return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1261 }
1262
1263 /*
1264  * Cortex-A Breakpoint and watchpoint functions
1265  */
1266
1267 /* Setup hardware Breakpoint Register Pair */
1268 static int cortex_a_set_breakpoint(struct target *target,
1269         struct breakpoint *breakpoint, uint8_t matchmode)
1270 {
1271         int retval;
1272         int brp_i = 0;
1273         uint32_t control;
1274         uint8_t byte_addr_select = 0x0F;
1275         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1276         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1277         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1278
1279         if (breakpoint->set) {
1280                 LOG_WARNING("breakpoint already set");
1281                 return ERROR_OK;
1282         }
1283
1284         if (breakpoint->type == BKPT_HARD) {
1285                 while (brp_list[brp_i].used && (brp_i < cortex_a->brp_num))
1286                         brp_i++;
1287                 if (brp_i >= cortex_a->brp_num) {
1288                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1289                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1290                 }
1291                 breakpoint->set = brp_i + 1;
1292                 if (breakpoint->length == 2)
1293                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1294                 control = ((matchmode & 0x7) << 20)
1295                         | (byte_addr_select << 5)
1296                         | (3 << 1) | 1;
1297                 brp_list[brp_i].used = 1;
1298                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1299                 brp_list[brp_i].control = control;
1300                 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1301                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1302                                 brp_list[brp_i].value);
1303                 if (retval != ERROR_OK)
1304                         return retval;
1305                 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1306                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1307                                 brp_list[brp_i].control);
1308                 if (retval != ERROR_OK)
1309                         return retval;
1310                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1311                         brp_list[brp_i].control,
1312                         brp_list[brp_i].value);
1313         } else if (breakpoint->type == BKPT_SOFT) {
1314                 uint8_t code[4];
1315                 /* length == 2: Thumb breakpoint */
1316                 if (breakpoint->length == 2)
1317                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1318                 else
1319                 /* length == 3: Thumb-2 breakpoint, actual encoding is
1320                  * a regular Thumb BKPT instruction but we replace a
1321                  * 32bit Thumb-2 instruction, so fix-up the breakpoint
1322                  * length
1323                  */
1324                 if (breakpoint->length == 3) {
1325                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1326                         breakpoint->length = 4;
1327                 } else
1328                         /* length == 4, normal ARM breakpoint */
1329                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1330
1331                 retval = target_read_memory(target,
1332                                 breakpoint->address & 0xFFFFFFFE,
1333                                 breakpoint->length, 1,
1334                                 breakpoint->orig_instr);
1335                 if (retval != ERROR_OK)
1336                         return retval;
1337
1338                 /* make sure data cache is cleaned & invalidated down to PoC */
1339                 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1340                         armv7a_cache_flush_virt(target, breakpoint->address,
1341                                                 breakpoint->length);
1342                 }
1343
1344                 retval = target_write_memory(target,
1345                                 breakpoint->address & 0xFFFFFFFE,
1346                                 breakpoint->length, 1, code);
1347                 if (retval != ERROR_OK)
1348                         return retval;
1349
1350                 /* update i-cache at breakpoint location */
1351                 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1352                                         breakpoint->length);
1353                 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1354                                                  breakpoint->length);
1355
1356                 breakpoint->set = 0x11; /* Any nice value but 0 */
1357         }
1358
1359         return ERROR_OK;
1360 }
1361
1362 static int cortex_a_set_context_breakpoint(struct target *target,
1363         struct breakpoint *breakpoint, uint8_t matchmode)
1364 {
1365         int retval = ERROR_FAIL;
1366         int brp_i = 0;
1367         uint32_t control;
1368         uint8_t byte_addr_select = 0x0F;
1369         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1370         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1371         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1372
1373         if (breakpoint->set) {
1374                 LOG_WARNING("breakpoint already set");
1375                 return retval;
1376         }
1377         /*check available context BRPs*/
1378         while ((brp_list[brp_i].used ||
1379                 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < cortex_a->brp_num))
1380                 brp_i++;
1381
1382         if (brp_i >= cortex_a->brp_num) {
1383                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1384                 return ERROR_FAIL;
1385         }
1386
1387         breakpoint->set = brp_i + 1;
1388         control = ((matchmode & 0x7) << 20)
1389                 | (byte_addr_select << 5)
1390                 | (3 << 1) | 1;
1391         brp_list[brp_i].used = 1;
1392         brp_list[brp_i].value = (breakpoint->asid);
1393         brp_list[brp_i].control = control;
1394         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1395                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1396                         brp_list[brp_i].value);
1397         if (retval != ERROR_OK)
1398                 return retval;
1399         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1400                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1401                         brp_list[brp_i].control);
1402         if (retval != ERROR_OK)
1403                 return retval;
1404         LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1405                 brp_list[brp_i].control,
1406                 brp_list[brp_i].value);
1407         return ERROR_OK;
1408
1409 }
1410
1411 static int cortex_a_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1412 {
1413         int retval = ERROR_FAIL;
1414         int brp_1 = 0;  /* holds the contextID pair */
1415         int brp_2 = 0;  /* holds the IVA pair */
1416         uint32_t control_CTX, control_IVA;
1417         uint8_t CTX_byte_addr_select = 0x0F;
1418         uint8_t IVA_byte_addr_select = 0x0F;
1419         uint8_t CTX_machmode = 0x03;
1420         uint8_t IVA_machmode = 0x01;
1421         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1422         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1423         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1424
1425         if (breakpoint->set) {
1426                 LOG_WARNING("breakpoint already set");
1427                 return retval;
1428         }
1429         /*check available context BRPs*/
1430         while ((brp_list[brp_1].used ||
1431                 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < cortex_a->brp_num))
1432                 brp_1++;
1433
1434         printf("brp(CTX) found num: %d\n", brp_1);
1435         if (brp_1 >= cortex_a->brp_num) {
1436                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1437                 return ERROR_FAIL;
1438         }
1439
1440         while ((brp_list[brp_2].used ||
1441                 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < cortex_a->brp_num))
1442                 brp_2++;
1443
1444         printf("brp(IVA) found num: %d\n", brp_2);
1445         if (brp_2 >= cortex_a->brp_num) {
1446                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1447                 return ERROR_FAIL;
1448         }
1449
1450         breakpoint->set = brp_1 + 1;
1451         breakpoint->linked_BRP = brp_2;
1452         control_CTX = ((CTX_machmode & 0x7) << 20)
1453                 | (brp_2 << 16)
1454                 | (0 << 14)
1455                 | (CTX_byte_addr_select << 5)
1456                 | (3 << 1) | 1;
1457         brp_list[brp_1].used = 1;
1458         brp_list[brp_1].value = (breakpoint->asid);
1459         brp_list[brp_1].control = control_CTX;
1460         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1461                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_1].BRPn,
1462                         brp_list[brp_1].value);
1463         if (retval != ERROR_OK)
1464                 return retval;
1465         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1466                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_1].BRPn,
1467                         brp_list[brp_1].control);
1468         if (retval != ERROR_OK)
1469                 return retval;
1470
1471         control_IVA = ((IVA_machmode & 0x7) << 20)
1472                 | (brp_1 << 16)
1473                 | (IVA_byte_addr_select << 5)
1474                 | (3 << 1) | 1;
1475         brp_list[brp_2].used = 1;
1476         brp_list[brp_2].value = (breakpoint->address & 0xFFFFFFFC);
1477         brp_list[brp_2].control = control_IVA;
1478         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1479                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_2].BRPn,
1480                         brp_list[brp_2].value);
1481         if (retval != ERROR_OK)
1482                 return retval;
1483         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1484                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_2].BRPn,
1485                         brp_list[brp_2].control);
1486         if (retval != ERROR_OK)
1487                 return retval;
1488
1489         return ERROR_OK;
1490 }
1491
1492 static int cortex_a_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1493 {
1494         int retval;
1495         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1496         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1497         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1498
1499         if (!breakpoint->set) {
1500                 LOG_WARNING("breakpoint not set");
1501                 return ERROR_OK;
1502         }
1503
1504         if (breakpoint->type == BKPT_HARD) {
1505                 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1506                         int brp_i = breakpoint->set - 1;
1507                         int brp_j = breakpoint->linked_BRP;
1508                         if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1509                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1510                                 return ERROR_OK;
1511                         }
1512                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1513                                 brp_list[brp_i].control, brp_list[brp_i].value);
1514                         brp_list[brp_i].used = 0;
1515                         brp_list[brp_i].value = 0;
1516                         brp_list[brp_i].control = 0;
1517                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1518                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1519                                         brp_list[brp_i].control);
1520                         if (retval != ERROR_OK)
1521                                 return retval;
1522                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1523                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1524                                         brp_list[brp_i].value);
1525                         if (retval != ERROR_OK)
1526                                 return retval;
1527                         if ((brp_j < 0) || (brp_j >= cortex_a->brp_num)) {
1528                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1529                                 return ERROR_OK;
1530                         }
1531                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_j,
1532                                 brp_list[brp_j].control, brp_list[brp_j].value);
1533                         brp_list[brp_j].used = 0;
1534                         brp_list[brp_j].value = 0;
1535                         brp_list[brp_j].control = 0;
1536                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1537                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_j].BRPn,
1538                                         brp_list[brp_j].control);
1539                         if (retval != ERROR_OK)
1540                                 return retval;
1541                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1542                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_j].BRPn,
1543                                         brp_list[brp_j].value);
1544                         if (retval != ERROR_OK)
1545                                 return retval;
1546                         breakpoint->linked_BRP = 0;
1547                         breakpoint->set = 0;
1548                         return ERROR_OK;
1549
1550                 } else {
1551                         int brp_i = breakpoint->set - 1;
1552                         if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1553                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1554                                 return ERROR_OK;
1555                         }
1556                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1557                                 brp_list[brp_i].control, brp_list[brp_i].value);
1558                         brp_list[brp_i].used = 0;
1559                         brp_list[brp_i].value = 0;
1560                         brp_list[brp_i].control = 0;
1561                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1562                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1563                                         brp_list[brp_i].control);
1564                         if (retval != ERROR_OK)
1565                                 return retval;
1566                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1567                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1568                                         brp_list[brp_i].value);
1569                         if (retval != ERROR_OK)
1570                                 return retval;
1571                         breakpoint->set = 0;
1572                         return ERROR_OK;
1573                 }
1574         } else {
1575
1576                 /* make sure data cache is cleaned & invalidated down to PoC */
1577                 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1578                         armv7a_cache_flush_virt(target, breakpoint->address,
1579                                                 breakpoint->length);
1580                 }
1581
1582                 /* restore original instruction (kept in target endianness) */
1583                 if (breakpoint->length == 4) {
1584                         retval = target_write_memory(target,
1585                                         breakpoint->address & 0xFFFFFFFE,
1586                                         4, 1, breakpoint->orig_instr);
1587                         if (retval != ERROR_OK)
1588                                 return retval;
1589                 } else {
1590                         retval = target_write_memory(target,
1591                                         breakpoint->address & 0xFFFFFFFE,
1592                                         2, 1, breakpoint->orig_instr);
1593                         if (retval != ERROR_OK)
1594                                 return retval;
1595                 }
1596
1597                 /* update i-cache at breakpoint location */
1598                 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1599                                                  breakpoint->length);
1600                 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1601                                                  breakpoint->length);
1602         }
1603         breakpoint->set = 0;
1604
1605         return ERROR_OK;
1606 }
1607
1608 static int cortex_a_add_breakpoint(struct target *target,
1609         struct breakpoint *breakpoint)
1610 {
1611         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1612
1613         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1614                 LOG_INFO("no hardware breakpoint available");
1615                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1616         }
1617
1618         if (breakpoint->type == BKPT_HARD)
1619                 cortex_a->brp_num_available--;
1620
1621         return cortex_a_set_breakpoint(target, breakpoint, 0x00);       /* Exact match */
1622 }
1623
1624 static int cortex_a_add_context_breakpoint(struct target *target,
1625         struct breakpoint *breakpoint)
1626 {
1627         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1628
1629         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1630                 LOG_INFO("no hardware breakpoint available");
1631                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1632         }
1633
1634         if (breakpoint->type == BKPT_HARD)
1635                 cortex_a->brp_num_available--;
1636
1637         return cortex_a_set_context_breakpoint(target, breakpoint, 0x02);       /* asid match */
1638 }
1639
1640 static int cortex_a_add_hybrid_breakpoint(struct target *target,
1641         struct breakpoint *breakpoint)
1642 {
1643         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1644
1645         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1646                 LOG_INFO("no hardware breakpoint available");
1647                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1648         }
1649
1650         if (breakpoint->type == BKPT_HARD)
1651                 cortex_a->brp_num_available--;
1652
1653         return cortex_a_set_hybrid_breakpoint(target, breakpoint);      /* ??? */
1654 }
1655
1656
1657 static int cortex_a_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1658 {
1659         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1660
1661 #if 0
1662 /* It is perfectly possible to remove breakpoints while the target is running */
1663         if (target->state != TARGET_HALTED) {
1664                 LOG_WARNING("target not halted");
1665                 return ERROR_TARGET_NOT_HALTED;
1666         }
1667 #endif
1668
1669         if (breakpoint->set) {
1670                 cortex_a_unset_breakpoint(target, breakpoint);
1671                 if (breakpoint->type == BKPT_HARD)
1672                         cortex_a->brp_num_available++;
1673         }
1674
1675
1676         return ERROR_OK;
1677 }
1678
1679 /*
1680  * Cortex-A Reset functions
1681  */
1682
1683 static int cortex_a_assert_reset(struct target *target)
1684 {
1685         struct armv7a_common *armv7a = target_to_armv7a(target);
1686
1687         LOG_DEBUG(" ");
1688
1689         /* FIXME when halt is requested, make it work somehow... */
1690
1691         /* This function can be called in "target not examined" state */
1692
1693         /* Issue some kind of warm reset. */
1694         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1695                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1696         else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1697                 /* REVISIT handle "pulls" cases, if there's
1698                  * hardware that needs them to work.
1699                  */
1700
1701                 /*
1702                  * FIXME: fix reset when transport is SWD. This is a temporary
1703                  * work-around for release v0.10 that is not intended to stay!
1704                  */
1705                 if (transport_is_swd() ||
1706                                 (target->reset_halt && (jtag_get_reset_config() & RESET_SRST_NO_GATING)))
1707                         jtag_add_reset(0, 1);
1708
1709         } else {
1710                 LOG_ERROR("%s: how to reset?", target_name(target));
1711                 return ERROR_FAIL;
1712         }
1713
1714         /* registers are now invalid */
1715         if (target_was_examined(target))
1716                 register_cache_invalidate(armv7a->arm.core_cache);
1717
1718         target->state = TARGET_RESET;
1719
1720         return ERROR_OK;
1721 }
1722
1723 static int cortex_a_deassert_reset(struct target *target)
1724 {
1725         int retval;
1726
1727         LOG_DEBUG(" ");
1728
1729         /* be certain SRST is off */
1730         jtag_add_reset(0, 0);
1731
1732         if (target_was_examined(target)) {
1733                 retval = cortex_a_poll(target);
1734                 if (retval != ERROR_OK)
1735                         return retval;
1736         }
1737
1738         if (target->reset_halt) {
1739                 if (target->state != TARGET_HALTED) {
1740                         LOG_WARNING("%s: ran after reset and before halt ...",
1741                                 target_name(target));
1742                         if (target_was_examined(target)) {
1743                                 retval = target_halt(target);
1744                                 if (retval != ERROR_OK)
1745                                         return retval;
1746                         } else
1747                                 target->state = TARGET_UNKNOWN;
1748                 }
1749         }
1750
1751         return ERROR_OK;
1752 }
1753
1754 static int cortex_a_set_dcc_mode(struct target *target, uint32_t mode, uint32_t *dscr)
1755 {
1756         /* Changes the mode of the DCC between non-blocking, stall, and fast mode.
1757          * New desired mode must be in mode. Current value of DSCR must be in
1758          * *dscr, which is updated with new value.
1759          *
1760          * This function elides actually sending the mode-change over the debug
1761          * interface if the mode is already set as desired.
1762          */
1763         uint32_t new_dscr = (*dscr & ~DSCR_EXT_DCC_MASK) | mode;
1764         if (new_dscr != *dscr) {
1765                 struct armv7a_common *armv7a = target_to_armv7a(target);
1766                 int retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1767                                 armv7a->debug_base + CPUDBG_DSCR, new_dscr);
1768                 if (retval == ERROR_OK)
1769                         *dscr = new_dscr;
1770                 return retval;
1771         } else {
1772                 return ERROR_OK;
1773         }
1774 }
1775
1776 static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
1777         uint32_t value, uint32_t *dscr)
1778 {
1779         /* Waits until the specified bit(s) of DSCR take on a specified value. */
1780         struct armv7a_common *armv7a = target_to_armv7a(target);
1781         int64_t then = timeval_ms();
1782         int retval;
1783
1784         while ((*dscr & mask) != value) {
1785                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1786                                 armv7a->debug_base + CPUDBG_DSCR, dscr);
1787                 if (retval != ERROR_OK)
1788                         return retval;
1789                 if (timeval_ms() > then + 1000) {
1790                         LOG_ERROR("timeout waiting for DSCR bit change");
1791                         return ERROR_FAIL;
1792                 }
1793         }
1794         return ERROR_OK;
1795 }
1796
1797 static int cortex_a_read_copro(struct target *target, uint32_t opcode,
1798         uint32_t *data, uint32_t *dscr)
1799 {
1800         int retval;
1801         struct armv7a_common *armv7a = target_to_armv7a(target);
1802
1803         /* Move from coprocessor to R0. */
1804         retval = cortex_a_exec_opcode(target, opcode, dscr);
1805         if (retval != ERROR_OK)
1806                 return retval;
1807
1808         /* Move from R0 to DTRTX. */
1809         retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0), dscr);
1810         if (retval != ERROR_OK)
1811                 return retval;
1812
1813         /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
1814          * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
1815          * must also check TXfull_l). Most of the time this will be free
1816          * because TXfull_l will be set immediately and cached in dscr. */
1817         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
1818                         DSCR_DTRTX_FULL_LATCHED, dscr);
1819         if (retval != ERROR_OK)
1820                 return retval;
1821
1822         /* Read the value transferred to DTRTX. */
1823         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1824                         armv7a->debug_base + CPUDBG_DTRTX, data);
1825         if (retval != ERROR_OK)
1826                 return retval;
1827
1828         return ERROR_OK;
1829 }
1830
1831 static int cortex_a_read_dfar_dfsr(struct target *target, uint32_t *dfar,
1832         uint32_t *dfsr, uint32_t *dscr)
1833 {
1834         int retval;
1835
1836         if (dfar) {
1837                 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 6, 0, 0), dfar, dscr);
1838                 if (retval != ERROR_OK)
1839                         return retval;
1840         }
1841
1842         if (dfsr) {
1843                 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 5, 0, 0), dfsr, dscr);
1844                 if (retval != ERROR_OK)
1845                         return retval;
1846         }
1847
1848         return ERROR_OK;
1849 }
1850
1851 static int cortex_a_write_copro(struct target *target, uint32_t opcode,
1852         uint32_t data, uint32_t *dscr)
1853 {
1854         int retval;
1855         struct armv7a_common *armv7a = target_to_armv7a(target);
1856
1857         /* Write the value into DTRRX. */
1858         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1859                         armv7a->debug_base + CPUDBG_DTRRX, data);
1860         if (retval != ERROR_OK)
1861                 return retval;
1862
1863         /* Move from DTRRX to R0. */
1864         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), dscr);
1865         if (retval != ERROR_OK)
1866                 return retval;
1867
1868         /* Move from R0 to coprocessor. */
1869         retval = cortex_a_exec_opcode(target, opcode, dscr);
1870         if (retval != ERROR_OK)
1871                 return retval;
1872
1873         /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
1874          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
1875          * check RXfull_l). Most of the time this will be free because RXfull_l
1876          * will be cleared immediately and cached in dscr. */
1877         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
1878         if (retval != ERROR_OK)
1879                 return retval;
1880
1881         return ERROR_OK;
1882 }
1883
1884 static int cortex_a_write_dfar_dfsr(struct target *target, uint32_t dfar,
1885         uint32_t dfsr, uint32_t *dscr)
1886 {
1887         int retval;
1888
1889         retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 6, 0, 0), dfar, dscr);
1890         if (retval != ERROR_OK)
1891                 return retval;
1892
1893         retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 5, 0, 0), dfsr, dscr);
1894         if (retval != ERROR_OK)
1895                 return retval;
1896
1897         return ERROR_OK;
1898 }
1899
1900 static int cortex_a_dfsr_to_error_code(uint32_t dfsr)
1901 {
1902         uint32_t status, upper4;
1903
1904         if (dfsr & (1 << 9)) {
1905                 /* LPAE format. */
1906                 status = dfsr & 0x3f;
1907                 upper4 = status >> 2;
1908                 if (upper4 == 1 || upper4 == 2 || upper4 == 3 || upper4 == 15)
1909                         return ERROR_TARGET_TRANSLATION_FAULT;
1910                 else if (status == 33)
1911                         return ERROR_TARGET_UNALIGNED_ACCESS;
1912                 else
1913                         return ERROR_TARGET_DATA_ABORT;
1914         } else {
1915                 /* Normal format. */
1916                 status = ((dfsr >> 6) & 0x10) | (dfsr & 0xf);
1917                 if (status == 1)
1918                         return ERROR_TARGET_UNALIGNED_ACCESS;
1919                 else if (status == 5 || status == 7 || status == 3 || status == 6 ||
1920                                 status == 9 || status == 11 || status == 13 || status == 15)
1921                         return ERROR_TARGET_TRANSLATION_FAULT;
1922                 else
1923                         return ERROR_TARGET_DATA_ABORT;
1924         }
1925 }
1926
1927 static int cortex_a_write_cpu_memory_slow(struct target *target,
1928         uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
1929 {
1930         /* Writes count objects of size size from *buffer. Old value of DSCR must
1931          * be in *dscr; updated to new value. This is slow because it works for
1932          * non-word-sized objects and (maybe) unaligned accesses. If size == 4 and
1933          * the address is aligned, cortex_a_write_cpu_memory_fast should be
1934          * preferred.
1935          * Preconditions:
1936          * - Address is in R0.
1937          * - R0 is marked dirty.
1938          */
1939         struct armv7a_common *armv7a = target_to_armv7a(target);
1940         struct arm *arm = &armv7a->arm;
1941         int retval;
1942
1943         /* Mark register R1 as dirty, to use for transferring data. */
1944         arm_reg_current(arm, 1)->dirty = true;
1945
1946         /* Switch to non-blocking mode if not already in that mode. */
1947         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
1948         if (retval != ERROR_OK)
1949                 return retval;
1950
1951         /* Go through the objects. */
1952         while (count) {
1953                 /* Write the value to store into DTRRX. */
1954                 uint32_t data, opcode;
1955                 if (size == 1)
1956                         data = *buffer;
1957                 else if (size == 2)
1958                         data = target_buffer_get_u16(target, buffer);
1959                 else
1960                         data = target_buffer_get_u32(target, buffer);
1961                 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1962                                 armv7a->debug_base + CPUDBG_DTRRX, data);
1963                 if (retval != ERROR_OK)
1964                         return retval;
1965
1966                 /* Transfer the value from DTRRX to R1. */
1967                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), dscr);
1968                 if (retval != ERROR_OK)
1969                         return retval;
1970
1971                 /* Write the value transferred to R1 into memory. */
1972                 if (size == 1)
1973                         opcode = ARMV4_5_STRB_IP(1, 0);
1974                 else if (size == 2)
1975                         opcode = ARMV4_5_STRH_IP(1, 0);
1976                 else
1977                         opcode = ARMV4_5_STRW_IP(1, 0);
1978                 retval = cortex_a_exec_opcode(target, opcode, dscr);
1979                 if (retval != ERROR_OK)
1980                         return retval;
1981
1982                 /* Check for faults and return early. */
1983                 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
1984                         return ERROR_OK; /* A data fault is not considered a system failure. */
1985
1986                 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture
1987                  * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
1988                  * must also check RXfull_l). Most of the time this will be free
1989                  * because RXfull_l will be cleared immediately and cached in dscr. */
1990                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
1991                 if (retval != ERROR_OK)
1992                         return retval;
1993
1994                 /* Advance. */
1995                 buffer += size;
1996                 --count;
1997         }
1998
1999         return ERROR_OK;
2000 }
2001
2002 static int cortex_a_write_cpu_memory_fast(struct target *target,
2003         uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2004 {
2005         /* Writes count objects of size 4 from *buffer. Old value of DSCR must be
2006          * in *dscr; updated to new value. This is fast but only works for
2007          * word-sized objects at aligned addresses.
2008          * Preconditions:
2009          * - Address is in R0 and must be a multiple of 4.
2010          * - R0 is marked dirty.
2011          */
2012         struct armv7a_common *armv7a = target_to_armv7a(target);
2013         int retval;
2014
2015         /* Switch to fast mode if not already in that mode. */
2016         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2017         if (retval != ERROR_OK)
2018                 return retval;
2019
2020         /* Latch STC instruction. */
2021         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2022                         armv7a->debug_base + CPUDBG_ITR, ARMV4_5_STC(0, 1, 0, 1, 14, 5, 0, 4));
2023         if (retval != ERROR_OK)
2024                 return retval;
2025
2026         /* Transfer all the data and issue all the instructions. */
2027         return mem_ap_write_buf_noincr(armv7a->debug_ap, buffer,
2028                         4, count, armv7a->debug_base + CPUDBG_DTRRX);
2029 }
2030
2031 static int cortex_a_write_cpu_memory(struct target *target,
2032         uint32_t address, uint32_t size,
2033         uint32_t count, const uint8_t *buffer)
2034 {
2035         /* Write memory through the CPU. */
2036         int retval, final_retval;
2037         struct armv7a_common *armv7a = target_to_armv7a(target);
2038         struct arm *arm = &armv7a->arm;
2039         uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2040
2041         LOG_DEBUG("Writing CPU memory address 0x%" PRIx32 " size %"  PRIu32 " count %"  PRIu32,
2042                           address, size, count);
2043         if (target->state != TARGET_HALTED) {
2044                 LOG_WARNING("target not halted");
2045                 return ERROR_TARGET_NOT_HALTED;
2046         }
2047
2048         if (!count)
2049                 return ERROR_OK;
2050
2051         /* Clear any abort. */
2052         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2053                         armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2054         if (retval != ERROR_OK)
2055                 return retval;
2056
2057         /* Read DSCR. */
2058         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2059                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
2060         if (retval != ERROR_OK)
2061                 return retval;
2062
2063         /* Switch to non-blocking mode if not already in that mode. */
2064         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2065         if (retval != ERROR_OK)
2066                 goto out;
2067
2068         /* Mark R0 as dirty. */
2069         arm_reg_current(arm, 0)->dirty = true;
2070
2071         /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2072         retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2073         if (retval != ERROR_OK)
2074                 goto out;
2075
2076         /* Get the memory address into R0. */
2077         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2078                         armv7a->debug_base + CPUDBG_DTRRX, address);
2079         if (retval != ERROR_OK)
2080                 goto out;
2081         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2082         if (retval != ERROR_OK)
2083                 goto out;
2084
2085         if (size == 4 && (address % 4) == 0) {
2086                 /* We are doing a word-aligned transfer, so use fast mode. */
2087                 retval = cortex_a_write_cpu_memory_fast(target, count, buffer, &dscr);
2088         } else {
2089                 /* Use slow path. */
2090                 retval = cortex_a_write_cpu_memory_slow(target, size, count, buffer, &dscr);
2091         }
2092
2093 out:
2094         final_retval = retval;
2095
2096         /* Switch to non-blocking mode if not already in that mode. */
2097         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2098         if (final_retval == ERROR_OK)
2099                 final_retval = retval;
2100
2101         /* Wait for last issued instruction to complete. */
2102         retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2103         if (final_retval == ERROR_OK)
2104                 final_retval = retval;
2105
2106         /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2107          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2108          * check RXfull_l). Most of the time this will be free because RXfull_l
2109          * will be cleared immediately and cached in dscr. However, don't do this
2110          * if there is fault, because then the instruction might not have completed
2111          * successfully. */
2112         if (!(dscr & DSCR_STICKY_ABORT_PRECISE)) {
2113                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, &dscr);
2114                 if (retval != ERROR_OK)
2115                         return retval;
2116         }
2117
2118         /* If there were any sticky abort flags, clear them. */
2119         if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2120                 fault_dscr = dscr;
2121                 mem_ap_write_atomic_u32(armv7a->debug_ap,
2122                                 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2123                 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2124         } else {
2125                 fault_dscr = 0;
2126         }
2127
2128         /* Handle synchronous data faults. */
2129         if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2130                 if (final_retval == ERROR_OK) {
2131                         /* Final return value will reflect cause of fault. */
2132                         retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2133                         if (retval == ERROR_OK) {
2134                                 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2135                                 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2136                         } else
2137                                 final_retval = retval;
2138                 }
2139                 /* Fault destroyed DFAR/DFSR; restore them. */
2140                 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2141                 if (retval != ERROR_OK)
2142                         LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2143         }
2144
2145         /* Handle asynchronous data faults. */
2146         if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2147                 if (final_retval == ERROR_OK)
2148                         /* No other error has been recorded so far, so keep this one. */
2149                         final_retval = ERROR_TARGET_DATA_ABORT;
2150         }
2151
2152         /* If the DCC is nonempty, clear it. */
2153         if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2154                 uint32_t dummy;
2155                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2156                                 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2157                 if (final_retval == ERROR_OK)
2158                         final_retval = retval;
2159         }
2160         if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2161                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2162                 if (final_retval == ERROR_OK)
2163                         final_retval = retval;
2164         }
2165
2166         /* Done. */
2167         return final_retval;
2168 }
2169
2170 static int cortex_a_read_cpu_memory_slow(struct target *target,
2171         uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
2172 {
2173         /* Reads count objects of size size into *buffer. Old value of DSCR must be
2174          * in *dscr; updated to new value. This is slow because it works for
2175          * non-word-sized objects and (maybe) unaligned accesses. If size == 4 and
2176          * the address is aligned, cortex_a_read_cpu_memory_fast should be
2177          * preferred.
2178          * Preconditions:
2179          * - Address is in R0.
2180          * - R0 is marked dirty.
2181          */
2182         struct armv7a_common *armv7a = target_to_armv7a(target);
2183         struct arm *arm = &armv7a->arm;
2184         int retval;
2185
2186         /* Mark register R1 as dirty, to use for transferring data. */
2187         arm_reg_current(arm, 1)->dirty = true;
2188
2189         /* Switch to non-blocking mode if not already in that mode. */
2190         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2191         if (retval != ERROR_OK)
2192                 return retval;
2193
2194         /* Go through the objects. */
2195         while (count) {
2196                 /* Issue a load of the appropriate size to R1. */
2197                 uint32_t opcode, data;
2198                 if (size == 1)
2199                         opcode = ARMV4_5_LDRB_IP(1, 0);
2200                 else if (size == 2)
2201                         opcode = ARMV4_5_LDRH_IP(1, 0);
2202                 else
2203                         opcode = ARMV4_5_LDRW_IP(1, 0);
2204                 retval = cortex_a_exec_opcode(target, opcode, dscr);
2205                 if (retval != ERROR_OK)
2206                         return retval;
2207
2208                 /* Issue a write of R1 to DTRTX. */
2209                 retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 1, 0, 5, 0), dscr);
2210                 if (retval != ERROR_OK)
2211                         return retval;
2212
2213                 /* Check for faults and return early. */
2214                 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2215                         return ERROR_OK; /* A data fault is not considered a system failure. */
2216
2217                 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
2218                  * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2219                  * must also check TXfull_l). Most of the time this will be free
2220                  * because TXfull_l will be set immediately and cached in dscr. */
2221                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2222                                 DSCR_DTRTX_FULL_LATCHED, dscr);
2223                 if (retval != ERROR_OK)
2224                         return retval;
2225
2226                 /* Read the value transferred to DTRTX into the buffer. */
2227                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2228                                 armv7a->debug_base + CPUDBG_DTRTX, &data);
2229                 if (retval != ERROR_OK)
2230                         return retval;
2231                 if (size == 1)
2232                         *buffer = (uint8_t) data;
2233                 else if (size == 2)
2234                         target_buffer_set_u16(target, buffer, (uint16_t) data);
2235                 else
2236                         target_buffer_set_u32(target, buffer, data);
2237
2238                 /* Advance. */
2239                 buffer += size;
2240                 --count;
2241         }
2242
2243         return ERROR_OK;
2244 }
2245
2246 static int cortex_a_read_cpu_memory_fast(struct target *target,
2247         uint32_t count, uint8_t *buffer, uint32_t *dscr)
2248 {
2249         /* Reads count objects of size 4 into *buffer. Old value of DSCR must be in
2250          * *dscr; updated to new value. This is fast but only works for word-sized
2251          * objects at aligned addresses.
2252          * Preconditions:
2253          * - Address is in R0 and must be a multiple of 4.
2254          * - R0 is marked dirty.
2255          */
2256         struct armv7a_common *armv7a = target_to_armv7a(target);
2257         uint32_t u32;
2258         int retval;
2259
2260         /* Switch to non-blocking mode if not already in that mode. */
2261         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2262         if (retval != ERROR_OK)
2263                 return retval;
2264
2265         /* Issue the LDC instruction via a write to ITR. */
2266         retval = cortex_a_exec_opcode(target, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4), dscr);
2267         if (retval != ERROR_OK)
2268                 return retval;
2269
2270         count--;
2271
2272         if (count > 0) {
2273                 /* Switch to fast mode if not already in that mode. */
2274                 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2275                 if (retval != ERROR_OK)
2276                         return retval;
2277
2278                 /* Latch LDC instruction. */
2279                 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2280                                 armv7a->debug_base + CPUDBG_ITR, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4));
2281                 if (retval != ERROR_OK)
2282                         return retval;
2283
2284                 /* Read the value transferred to DTRTX into the buffer. Due to fast
2285                  * mode rules, this blocks until the instruction finishes executing and
2286                  * then reissues the read instruction to read the next word from
2287                  * memory. The last read of DTRTX in this call reads the second-to-last
2288                  * word from memory and issues the read instruction for the last word.
2289                  */
2290                 retval = mem_ap_read_buf_noincr(armv7a->debug_ap, buffer,
2291                                 4, count, armv7a->debug_base + CPUDBG_DTRTX);
2292                 if (retval != ERROR_OK)
2293                         return retval;
2294
2295                 /* Advance. */
2296                 buffer += count * 4;
2297         }
2298
2299         /* Wait for last issued instruction to complete. */
2300         retval = cortex_a_wait_instrcmpl(target, dscr, false);
2301         if (retval != ERROR_OK)
2302                 return retval;
2303
2304         /* Switch to non-blocking mode if not already in that mode. */
2305         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2306         if (retval != ERROR_OK)
2307                 return retval;
2308
2309         /* Check for faults and return early. */
2310         if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2311                 return ERROR_OK; /* A data fault is not considered a system failure. */
2312
2313         /* Wait until DTRTX is full (according to ARMv7-A/-R architecture manual
2314          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2315          * check TXfull_l). Most of the time this will be free because TXfull_l
2316          * will be set immediately and cached in dscr. */
2317         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2318                         DSCR_DTRTX_FULL_LATCHED, dscr);
2319         if (retval != ERROR_OK)
2320                 return retval;
2321
2322         /* Read the value transferred to DTRTX into the buffer. This is the last
2323          * word. */
2324         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2325                         armv7a->debug_base + CPUDBG_DTRTX, &u32);
2326         if (retval != ERROR_OK)
2327                 return retval;
2328         target_buffer_set_u32(target, buffer, u32);
2329
2330         return ERROR_OK;
2331 }
2332
2333 static int cortex_a_read_cpu_memory(struct target *target,
2334         uint32_t address, uint32_t size,
2335         uint32_t count, uint8_t *buffer)
2336 {
2337         /* Read memory through the CPU. */
2338         int retval, final_retval;
2339         struct armv7a_common *armv7a = target_to_armv7a(target);
2340         struct arm *arm = &armv7a->arm;
2341         uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2342
2343         LOG_DEBUG("Reading CPU memory address 0x%" PRIx32 " size %"  PRIu32 " count %"  PRIu32,
2344                           address, size, count);
2345         if (target->state != TARGET_HALTED) {
2346                 LOG_WARNING("target not halted");
2347                 return ERROR_TARGET_NOT_HALTED;
2348         }
2349
2350         if (!count)
2351                 return ERROR_OK;
2352
2353         /* Clear any abort. */
2354         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2355                         armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2356         if (retval != ERROR_OK)
2357                 return retval;
2358
2359         /* Read DSCR */
2360         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2361                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
2362         if (retval != ERROR_OK)
2363                 return retval;
2364
2365         /* Switch to non-blocking mode if not already in that mode. */
2366         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2367         if (retval != ERROR_OK)
2368                 goto out;
2369
2370         /* Mark R0 as dirty. */
2371         arm_reg_current(arm, 0)->dirty = true;
2372
2373         /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2374         retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2375         if (retval != ERROR_OK)
2376                 goto out;
2377
2378         /* Get the memory address into R0. */
2379         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2380                         armv7a->debug_base + CPUDBG_DTRRX, address);
2381         if (retval != ERROR_OK)
2382                 goto out;
2383         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2384         if (retval != ERROR_OK)
2385                 goto out;
2386
2387         if (size == 4 && (address % 4) == 0) {
2388                 /* We are doing a word-aligned transfer, so use fast mode. */
2389                 retval = cortex_a_read_cpu_memory_fast(target, count, buffer, &dscr);
2390         } else {
2391                 /* Use slow path. */
2392                 retval = cortex_a_read_cpu_memory_slow(target, size, count, buffer, &dscr);
2393         }
2394
2395 out:
2396         final_retval = retval;
2397
2398         /* Switch to non-blocking mode if not already in that mode. */
2399         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2400         if (final_retval == ERROR_OK)
2401                 final_retval = retval;
2402
2403         /* Wait for last issued instruction to complete. */
2404         retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2405         if (final_retval == ERROR_OK)
2406                 final_retval = retval;
2407
2408         /* If there were any sticky abort flags, clear them. */
2409         if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2410                 fault_dscr = dscr;
2411                 mem_ap_write_atomic_u32(armv7a->debug_ap,
2412                                 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2413                 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2414         } else {
2415                 fault_dscr = 0;
2416         }
2417
2418         /* Handle synchronous data faults. */
2419         if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2420                 if (final_retval == ERROR_OK) {
2421                         /* Final return value will reflect cause of fault. */
2422                         retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2423                         if (retval == ERROR_OK) {
2424                                 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2425                                 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2426                         } else
2427                                 final_retval = retval;
2428                 }
2429                 /* Fault destroyed DFAR/DFSR; restore them. */
2430                 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2431                 if (retval != ERROR_OK)
2432                         LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2433         }
2434
2435         /* Handle asynchronous data faults. */
2436         if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2437                 if (final_retval == ERROR_OK)
2438                         /* No other error has been recorded so far, so keep this one. */
2439                         final_retval = ERROR_TARGET_DATA_ABORT;
2440         }
2441
2442         /* If the DCC is nonempty, clear it. */
2443         if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2444                 uint32_t dummy;
2445                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2446                                 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2447                 if (final_retval == ERROR_OK)
2448                         final_retval = retval;
2449         }
2450         if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2451                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2452                 if (final_retval == ERROR_OK)
2453                         final_retval = retval;
2454         }
2455
2456         /* Done. */
2457         return final_retval;
2458 }
2459
2460
2461 /*
2462  * Cortex-A Memory access
2463  *
2464  * This is same Cortex-M3 but we must also use the correct
2465  * ap number for every access.
2466  */
2467
2468 static int cortex_a_read_phys_memory(struct target *target,
2469         target_addr_t address, uint32_t size,
2470         uint32_t count, uint8_t *buffer)
2471 {
2472         int retval;
2473
2474         if (!count || !buffer)
2475                 return ERROR_COMMAND_SYNTAX_ERROR;
2476
2477         LOG_DEBUG("Reading memory at real address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2478                 address, size, count);
2479
2480         /* read memory through the CPU */
2481         cortex_a_prep_memaccess(target, 1);
2482         retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2483         cortex_a_post_memaccess(target, 1);
2484
2485         return retval;
2486 }
2487
2488 static int cortex_a_read_memory(struct target *target, target_addr_t address,
2489         uint32_t size, uint32_t count, uint8_t *buffer)
2490 {
2491         int retval;
2492
2493         /* cortex_a handles unaligned memory access */
2494         LOG_DEBUG("Reading memory at address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2495                 address, size, count);
2496
2497         cortex_a_prep_memaccess(target, 0);
2498         retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2499         cortex_a_post_memaccess(target, 0);
2500
2501         return retval;
2502 }
2503
2504 static int cortex_a_write_phys_memory(struct target *target,
2505         target_addr_t address, uint32_t size,
2506         uint32_t count, const uint8_t *buffer)
2507 {
2508         int retval;
2509
2510         if (!count || !buffer)
2511                 return ERROR_COMMAND_SYNTAX_ERROR;
2512
2513         LOG_DEBUG("Writing memory to real address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2514                 address, size, count);
2515
2516         /* write memory through the CPU */
2517         cortex_a_prep_memaccess(target, 1);
2518         retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2519         cortex_a_post_memaccess(target, 1);
2520
2521         return retval;
2522 }
2523
2524 static int cortex_a_write_memory(struct target *target, target_addr_t address,
2525         uint32_t size, uint32_t count, const uint8_t *buffer)
2526 {
2527         int retval;
2528
2529         /* cortex_a handles unaligned memory access */
2530         LOG_DEBUG("Writing memory at address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2531                 address, size, count);
2532
2533         /* memory writes bypass the caches, must flush before writing */
2534         armv7a_cache_auto_flush_on_write(target, address, size * count);
2535
2536         cortex_a_prep_memaccess(target, 0);
2537         retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2538         cortex_a_post_memaccess(target, 0);
2539         return retval;
2540 }
2541
2542 static int cortex_a_read_buffer(struct target *target, target_addr_t address,
2543                                 uint32_t count, uint8_t *buffer)
2544 {
2545         uint32_t size;
2546
2547         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2548          * will have something to do with the size we leave to it. */
2549         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2550                 if (address & size) {
2551                         int retval = target_read_memory(target, address, size, 1, buffer);
2552                         if (retval != ERROR_OK)
2553                                 return retval;
2554                         address += size;
2555                         count -= size;
2556                         buffer += size;
2557                 }
2558         }
2559
2560         /* Read the data with as large access size as possible. */
2561         for (; size > 0; size /= 2) {
2562                 uint32_t aligned = count - count % size;
2563                 if (aligned > 0) {
2564                         int retval = target_read_memory(target, address, size, aligned / size, buffer);
2565                         if (retval != ERROR_OK)
2566                                 return retval;
2567                         address += aligned;
2568                         count -= aligned;
2569                         buffer += aligned;
2570                 }
2571         }
2572
2573         return ERROR_OK;
2574 }
2575
2576 static int cortex_a_write_buffer(struct target *target, target_addr_t address,
2577                                  uint32_t count, const uint8_t *buffer)
2578 {
2579         uint32_t size;
2580
2581         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2582          * will have something to do with the size we leave to it. */
2583         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2584                 if (address & size) {
2585                         int retval = target_write_memory(target, address, size, 1, buffer);
2586                         if (retval != ERROR_OK)
2587                                 return retval;
2588                         address += size;
2589                         count -= size;
2590                         buffer += size;
2591                 }
2592         }
2593
2594         /* Write the data with as large access size as possible. */
2595         for (; size > 0; size /= 2) {
2596                 uint32_t aligned = count - count % size;
2597                 if (aligned > 0) {
2598                         int retval = target_write_memory(target, address, size, aligned / size, buffer);
2599                         if (retval != ERROR_OK)
2600                                 return retval;
2601                         address += aligned;
2602                         count -= aligned;
2603                         buffer += aligned;
2604                 }
2605         }
2606
2607         return ERROR_OK;
2608 }
2609
2610 static int cortex_a_handle_target_request(void *priv)
2611 {
2612         struct target *target = priv;
2613         struct armv7a_common *armv7a = target_to_armv7a(target);
2614         int retval;
2615
2616         if (!target_was_examined(target))
2617                 return ERROR_OK;
2618         if (!target->dbg_msg_enabled)
2619                 return ERROR_OK;
2620
2621         if (target->state == TARGET_RUNNING) {
2622                 uint32_t request;
2623                 uint32_t dscr;
2624                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2625                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2626
2627                 /* check if we have data */
2628                 int64_t then = timeval_ms();
2629                 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2630                         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2631                                         armv7a->debug_base + CPUDBG_DTRTX, &request);
2632                         if (retval == ERROR_OK) {
2633                                 target_request(target, request);
2634                                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2635                                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2636                         }
2637                         if (timeval_ms() > then + 1000) {
2638                                 LOG_ERROR("Timeout waiting for dtr tx full");
2639                                 return ERROR_FAIL;
2640                         }
2641                 }
2642         }
2643
2644         return ERROR_OK;
2645 }
2646
2647 /*
2648  * Cortex-A target information and configuration
2649  */
2650
2651 static int cortex_a_examine_first(struct target *target)
2652 {
2653         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
2654         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2655         struct adiv5_dap *swjdp = armv7a->arm.dap;
2656
2657         int i;
2658         int retval = ERROR_OK;
2659         uint32_t didr, cpuid, dbg_osreg;
2660
2661         /* Search for the APB-AP - it is needed for access to debug registers */
2662         retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv7a->debug_ap);
2663         if (retval != ERROR_OK) {
2664                 LOG_ERROR("Could not find APB-AP for debug access");
2665                 return retval;
2666         }
2667
2668         retval = mem_ap_init(armv7a->debug_ap);
2669         if (retval != ERROR_OK) {
2670                 LOG_ERROR("Could not initialize the APB-AP");
2671                 return retval;
2672         }
2673
2674         armv7a->debug_ap->memaccess_tck = 80;
2675
2676         if (!target->dbgbase_set) {
2677                 uint32_t dbgbase;
2678                 /* Get ROM Table base */
2679                 uint32_t apid;
2680                 int32_t coreidx = target->coreid;
2681                 LOG_DEBUG("%s's dbgbase is not set, trying to detect using the ROM table",
2682                           target->cmd_name);
2683                 retval = dap_get_debugbase(armv7a->debug_ap, &dbgbase, &apid);
2684                 if (retval != ERROR_OK)
2685                         return retval;
2686                 /* Lookup 0x15 -- Processor DAP */
2687                 retval = dap_lookup_cs_component(armv7a->debug_ap, dbgbase, 0x15,
2688                                 &armv7a->debug_base, &coreidx);
2689                 if (retval != ERROR_OK) {
2690                         LOG_ERROR("Can't detect %s's dbgbase from the ROM table; you need to specify it explicitly.",
2691                                   target->cmd_name);
2692                         return retval;
2693                 }
2694                 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32,
2695                           target->coreid, armv7a->debug_base);
2696         } else
2697                 armv7a->debug_base = target->dbgbase;
2698
2699         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2700                         armv7a->debug_base + CPUDBG_DIDR, &didr);
2701         if (retval != ERROR_OK) {
2702                 LOG_DEBUG("Examine %s failed", "DIDR");
2703                 return retval;
2704         }
2705
2706         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2707                         armv7a->debug_base + CPUDBG_CPUID, &cpuid);
2708         if (retval != ERROR_OK) {
2709                 LOG_DEBUG("Examine %s failed", "CPUID");
2710                 return retval;
2711         }
2712
2713         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
2714         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
2715
2716         cortex_a->didr = didr;
2717         cortex_a->cpuid = cpuid;
2718
2719         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2720                                     armv7a->debug_base + CPUDBG_PRSR, &dbg_osreg);
2721         if (retval != ERROR_OK)
2722                 return retval;
2723         LOG_DEBUG("target->coreid %" PRId32 " DBGPRSR  0x%" PRIx32, target->coreid, dbg_osreg);
2724
2725         if ((dbg_osreg & PRSR_POWERUP_STATUS) == 0) {
2726                 LOG_ERROR("target->coreid %" PRId32 " powered down!", target->coreid);
2727                 target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
2728                 return ERROR_TARGET_INIT_FAILED;
2729         }
2730
2731         if (dbg_osreg & PRSR_STICKY_RESET_STATUS)
2732                 LOG_DEBUG("target->coreid %" PRId32 " was reset!", target->coreid);
2733
2734         /* Read DBGOSLSR and check if OSLK is implemented */
2735         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2736                                 armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
2737         if (retval != ERROR_OK)
2738                 return retval;
2739         LOG_DEBUG("target->coreid %" PRId32 " DBGOSLSR 0x%" PRIx32, target->coreid, dbg_osreg);
2740
2741         /* check if OS Lock is implemented */
2742         if ((dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM0 || (dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM1) {
2743                 /* check if OS Lock is set */
2744                 if (dbg_osreg & OSLSR_OSLK) {
2745                         LOG_DEBUG("target->coreid %" PRId32 " OSLock set! Trying to unlock", target->coreid);
2746
2747                         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2748                                                         armv7a->debug_base + CPUDBG_OSLAR,
2749                                                         0);
2750                         if (retval == ERROR_OK)
2751                                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2752                                                         armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
2753
2754                         /* if we fail to access the register or cannot reset the OSLK bit, bail out */
2755                         if (retval != ERROR_OK || (dbg_osreg & OSLSR_OSLK) != 0) {
2756                                 LOG_ERROR("target->coreid %" PRId32 " OSLock sticky, core not powered?",
2757                                                 target->coreid);
2758                                 target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
2759                                 return ERROR_TARGET_INIT_FAILED;
2760                         }
2761                 }
2762         }
2763
2764         armv7a->arm.core_type = ARM_MODE_MON;
2765
2766         /* Avoid recreating the registers cache */
2767         if (!target_was_examined(target)) {
2768                 retval = cortex_a_dpm_setup(cortex_a, didr);
2769                 if (retval != ERROR_OK)
2770                         return retval;
2771         }
2772
2773         /* Setup Breakpoint Register Pairs */
2774         cortex_a->brp_num = ((didr >> 24) & 0x0F) + 1;
2775         cortex_a->brp_num_context = ((didr >> 20) & 0x0F) + 1;
2776         cortex_a->brp_num_available = cortex_a->brp_num;
2777         free(cortex_a->brp_list);
2778         cortex_a->brp_list = calloc(cortex_a->brp_num, sizeof(struct cortex_a_brp));
2779 /*      cortex_a->brb_enabled = ????; */
2780         for (i = 0; i < cortex_a->brp_num; i++) {
2781                 cortex_a->brp_list[i].used = 0;
2782                 if (i < (cortex_a->brp_num-cortex_a->brp_num_context))
2783                         cortex_a->brp_list[i].type = BRP_NORMAL;
2784                 else
2785                         cortex_a->brp_list[i].type = BRP_CONTEXT;
2786                 cortex_a->brp_list[i].value = 0;
2787                 cortex_a->brp_list[i].control = 0;
2788                 cortex_a->brp_list[i].BRPn = i;
2789         }
2790
2791         LOG_DEBUG("Configured %i hw breakpoints", cortex_a->brp_num);
2792
2793         /* select debug_ap as default */
2794         swjdp->apsel = armv7a->debug_ap->ap_num;
2795
2796         target_set_examined(target);
2797         return ERROR_OK;
2798 }
2799
2800 static int cortex_a_examine(struct target *target)
2801 {
2802         int retval = ERROR_OK;
2803
2804         /* Reestablish communication after target reset */
2805         retval = cortex_a_examine_first(target);
2806
2807         /* Configure core debug access */
2808         if (retval == ERROR_OK)
2809                 retval = cortex_a_init_debug_access(target);
2810
2811         return retval;
2812 }
2813
2814 /*
2815  *      Cortex-A target creation and initialization
2816  */
2817
2818 static int cortex_a_init_target(struct command_context *cmd_ctx,
2819         struct target *target)
2820 {
2821         /* examine_first() does a bunch of this */
2822         arm_semihosting_init(target);
2823         return ERROR_OK;
2824 }
2825
2826 static int cortex_a_init_arch_info(struct target *target,
2827         struct cortex_a_common *cortex_a, struct adiv5_dap *dap)
2828 {
2829         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2830
2831         /* Setup struct cortex_a_common */
2832         cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
2833         armv7a->arm.dap = dap;
2834
2835         /* register arch-specific functions */
2836         armv7a->examine_debug_reason = NULL;
2837
2838         armv7a->post_debug_entry = cortex_a_post_debug_entry;
2839
2840         armv7a->pre_restore_context = NULL;
2841
2842         armv7a->armv7a_mmu.read_physical_memory = cortex_a_read_phys_memory;
2843
2844
2845 /*      arm7_9->handle_target_request = cortex_a_handle_target_request; */
2846
2847         /* REVISIT v7a setup should be in a v7a-specific routine */
2848         armv7a_init_arch_info(target, armv7a);
2849         target_register_timer_callback(cortex_a_handle_target_request, 1, 1, target);
2850
2851         return ERROR_OK;
2852 }
2853
2854 static int cortex_a_target_create(struct target *target, Jim_Interp *interp)
2855 {
2856         struct cortex_a_common *cortex_a = calloc(1, sizeof(struct cortex_a_common));
2857         cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
2858         struct adiv5_private_config *pc;
2859
2860         if (target->private_config == NULL)
2861                 return ERROR_FAIL;
2862
2863         pc = (struct adiv5_private_config *)target->private_config;
2864
2865         cortex_a->armv7a_common.is_armv7r = false;
2866
2867         cortex_a->armv7a_common.arm.arm_vfp_version = ARM_VFP_V3;
2868
2869         return cortex_a_init_arch_info(target, cortex_a, pc->dap);
2870 }
2871
2872 static int cortex_r4_target_create(struct target *target, Jim_Interp *interp)
2873 {
2874         struct cortex_a_common *cortex_a = calloc(1, sizeof(struct cortex_a_common));
2875         cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
2876         struct adiv5_private_config *pc;
2877
2878         pc = (struct adiv5_private_config *)target->private_config;
2879         if (adiv5_verify_config(pc) != ERROR_OK)
2880                 return ERROR_FAIL;
2881
2882         cortex_a->armv7a_common.is_armv7r = true;
2883
2884         return cortex_a_init_arch_info(target, cortex_a, pc->dap);
2885 }
2886
2887 static void cortex_a_deinit_target(struct target *target)
2888 {
2889         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
2890         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2891         struct arm_dpm *dpm = &armv7a->dpm;
2892         uint32_t dscr;
2893         int retval;
2894
2895         if (target_was_examined(target)) {
2896                 /* Disable halt for breakpoint, watchpoint and vector catch */
2897                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2898                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2899                 if (retval == ERROR_OK)
2900                         mem_ap_write_atomic_u32(armv7a->debug_ap,
2901                                         armv7a->debug_base + CPUDBG_DSCR,
2902                                         dscr & ~DSCR_HALT_DBG_MODE);
2903         }
2904
2905         free(cortex_a->brp_list);
2906         free(dpm->dbp);
2907         free(dpm->dwp);
2908         free(target->private_config);
2909         free(cortex_a);
2910 }
2911
2912 static int cortex_a_mmu(struct target *target, int *enabled)
2913 {
2914         struct armv7a_common *armv7a = target_to_armv7a(target);
2915
2916         if (target->state != TARGET_HALTED) {
2917                 LOG_ERROR("%s: target not halted", __func__);
2918                 return ERROR_TARGET_INVALID;
2919         }
2920
2921         if (armv7a->is_armv7r)
2922                 *enabled = 0;
2923         else
2924                 *enabled = target_to_cortex_a(target)->armv7a_common.armv7a_mmu.mmu_enabled;
2925
2926         return ERROR_OK;
2927 }
2928
2929 static int cortex_a_virt2phys(struct target *target,
2930         target_addr_t virt, target_addr_t *phys)
2931 {
2932         int retval;
2933         int mmu_enabled = 0;
2934
2935         /*
2936          * If the MMU was not enabled at debug entry, there is no
2937          * way of knowing if there was ever a valid configuration
2938          * for it and thus it's not safe to enable it. In this case,
2939          * just return the virtual address as physical.
2940          */
2941         cortex_a_mmu(target, &mmu_enabled);
2942         if (!mmu_enabled) {
2943                 *phys = virt;
2944                 return ERROR_OK;
2945         }
2946
2947         /* mmu must be enable in order to get a correct translation */
2948         retval = cortex_a_mmu_modify(target, 1);
2949         if (retval != ERROR_OK)
2950                 return retval;
2951         return armv7a_mmu_translate_va_pa(target, (uint32_t)virt,
2952                                                     (uint32_t *)phys, 1);
2953 }
2954
2955 COMMAND_HANDLER(cortex_a_handle_cache_info_command)
2956 {
2957         struct target *target = get_current_target(CMD_CTX);
2958         struct armv7a_common *armv7a = target_to_armv7a(target);
2959
2960         return armv7a_handle_cache_info_command(CMD_CTX,
2961                         &armv7a->armv7a_mmu.armv7a_cache);
2962 }
2963
2964
2965 COMMAND_HANDLER(cortex_a_handle_dbginit_command)
2966 {
2967         struct target *target = get_current_target(CMD_CTX);
2968         if (!target_was_examined(target)) {
2969                 LOG_ERROR("target not examined yet");
2970                 return ERROR_FAIL;
2971         }
2972
2973         return cortex_a_init_debug_access(target);
2974 }
2975 COMMAND_HANDLER(cortex_a_handle_smp_off_command)
2976 {
2977         struct target *target = get_current_target(CMD_CTX);
2978         /* check target is an smp target */
2979         struct target_list *head;
2980         struct target *curr;
2981         head = target->head;
2982         target->smp = 0;
2983         if (head != (struct target_list *)NULL) {
2984                 while (head != (struct target_list *)NULL) {
2985                         curr = head->target;
2986                         curr->smp = 0;
2987                         head = head->next;
2988                 }
2989                 /*  fixes the target display to the debugger */
2990                 target->gdb_service->target = target;
2991         }
2992         return ERROR_OK;
2993 }
2994
2995 COMMAND_HANDLER(cortex_a_handle_smp_on_command)
2996 {
2997         struct target *target = get_current_target(CMD_CTX);
2998         struct target_list *head;
2999         struct target *curr;
3000         head = target->head;
3001         if (head != (struct target_list *)NULL) {
3002                 target->smp = 1;
3003                 while (head != (struct target_list *)NULL) {
3004                         curr = head->target;
3005                         curr->smp = 1;
3006                         head = head->next;
3007                 }
3008         }
3009         return ERROR_OK;
3010 }
3011
3012 COMMAND_HANDLER(cortex_a_handle_smp_gdb_command)
3013 {
3014         struct target *target = get_current_target(CMD_CTX);
3015         int retval = ERROR_OK;
3016         struct target_list *head;
3017         head = target->head;
3018         if (head != (struct target_list *)NULL) {
3019                 if (CMD_ARGC == 1) {
3020                         int coreid = 0;
3021                         COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], coreid);
3022                         if (ERROR_OK != retval)
3023                                 return retval;
3024                         target->gdb_service->core[1] = coreid;
3025
3026                 }
3027                 command_print(CMD_CTX, "gdb coreid  %" PRId32 " -> %" PRId32, target->gdb_service->core[0]
3028                         , target->gdb_service->core[1]);
3029         }
3030         return ERROR_OK;
3031 }
3032
3033 COMMAND_HANDLER(handle_cortex_a_mask_interrupts_command)
3034 {
3035         struct target *target = get_current_target(CMD_CTX);
3036         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3037
3038         static const Jim_Nvp nvp_maskisr_modes[] = {
3039                 { .name = "off", .value = CORTEX_A_ISRMASK_OFF },
3040                 { .name = "on", .value = CORTEX_A_ISRMASK_ON },
3041                 { .name = NULL, .value = -1 },
3042         };
3043         const Jim_Nvp *n;
3044
3045         if (CMD_ARGC > 0) {
3046                 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
3047                 if (n->name == NULL) {
3048                         LOG_ERROR("Unknown parameter: %s - should be off or on", CMD_ARGV[0]);
3049                         return ERROR_COMMAND_SYNTAX_ERROR;
3050                 }
3051
3052                 cortex_a->isrmasking_mode = n->value;
3053         }
3054
3055         n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_a->isrmasking_mode);
3056         command_print(CMD_CTX, "cortex_a interrupt mask %s", n->name);
3057
3058         return ERROR_OK;
3059 }
3060
3061 COMMAND_HANDLER(handle_cortex_a_dacrfixup_command)
3062 {
3063         struct target *target = get_current_target(CMD_CTX);
3064         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3065
3066         static const Jim_Nvp nvp_dacrfixup_modes[] = {
3067                 { .name = "off", .value = CORTEX_A_DACRFIXUP_OFF },
3068                 { .name = "on", .value = CORTEX_A_DACRFIXUP_ON },
3069                 { .name = NULL, .value = -1 },
3070         };
3071         const Jim_Nvp *n;
3072
3073         if (CMD_ARGC > 0) {
3074                 n = Jim_Nvp_name2value_simple(nvp_dacrfixup_modes, CMD_ARGV[0]);
3075                 if (n->name == NULL)
3076                         return ERROR_COMMAND_SYNTAX_ERROR;
3077                 cortex_a->dacrfixup_mode = n->value;
3078
3079         }
3080
3081         n = Jim_Nvp_value2name_simple(nvp_dacrfixup_modes, cortex_a->dacrfixup_mode);
3082         command_print(CMD_CTX, "cortex_a domain access control fixup %s", n->name);
3083
3084         return ERROR_OK;
3085 }
3086
3087 static const struct command_registration cortex_a_exec_command_handlers[] = {
3088         {
3089                 .name = "cache_info",
3090                 .handler = cortex_a_handle_cache_info_command,
3091                 .mode = COMMAND_EXEC,
3092                 .help = "display information about target caches",
3093                 .usage = "",
3094         },
3095         {
3096                 .name = "dbginit",
3097                 .handler = cortex_a_handle_dbginit_command,
3098                 .mode = COMMAND_EXEC,
3099                 .help = "Initialize core debug",
3100                 .usage = "",
3101         },
3102         {   .name = "smp_off",
3103             .handler = cortex_a_handle_smp_off_command,
3104             .mode = COMMAND_EXEC,
3105             .help = "Stop smp handling",
3106             .usage = "",},
3107         {
3108                 .name = "smp_on",
3109                 .handler = cortex_a_handle_smp_on_command,
3110                 .mode = COMMAND_EXEC,
3111                 .help = "Restart smp handling",
3112                 .usage = "",
3113         },
3114         {
3115                 .name = "smp_gdb",
3116                 .handler = cortex_a_handle_smp_gdb_command,
3117                 .mode = COMMAND_EXEC,
3118                 .help = "display/fix current core played to gdb",
3119                 .usage = "",
3120         },
3121         {
3122                 .name = "maskisr",
3123                 .handler = handle_cortex_a_mask_interrupts_command,
3124                 .mode = COMMAND_ANY,
3125                 .help = "mask cortex_a interrupts",
3126                 .usage = "['on'|'off']",
3127         },
3128         {
3129                 .name = "dacrfixup",
3130                 .handler = handle_cortex_a_dacrfixup_command,
3131                 .mode = COMMAND_ANY,
3132                 .help = "set domain access control (DACR) to all-manager "
3133                         "on memory access",
3134                 .usage = "['on'|'off']",
3135         },
3136         {
3137                 .chain = armv7a_mmu_command_handlers,
3138         },
3139
3140         COMMAND_REGISTRATION_DONE
3141 };
3142 static const struct command_registration cortex_a_command_handlers[] = {
3143         {
3144                 .chain = arm_command_handlers,
3145         },
3146         {
3147                 .chain = armv7a_command_handlers,
3148         },
3149         {
3150                 .name = "cortex_a",
3151                 .mode = COMMAND_ANY,
3152                 .help = "Cortex-A command group",
3153                 .usage = "",
3154                 .chain = cortex_a_exec_command_handlers,
3155         },
3156         COMMAND_REGISTRATION_DONE
3157 };
3158
3159 struct target_type cortexa_target = {
3160         .name = "cortex_a",
3161         .deprecated_name = "cortex_a8",
3162
3163         .poll = cortex_a_poll,
3164         .arch_state = armv7a_arch_state,
3165
3166         .halt = cortex_a_halt,
3167         .resume = cortex_a_resume,
3168         .step = cortex_a_step,
3169
3170         .assert_reset = cortex_a_assert_reset,
3171         .deassert_reset = cortex_a_deassert_reset,
3172
3173         /* REVISIT allow exporting VFP3 registers ... */
3174         .get_gdb_arch = arm_get_gdb_arch,
3175         .get_gdb_reg_list = arm_get_gdb_reg_list,
3176
3177         .read_memory = cortex_a_read_memory,
3178         .write_memory = cortex_a_write_memory,
3179
3180         .read_buffer = cortex_a_read_buffer,
3181         .write_buffer = cortex_a_write_buffer,
3182
3183         .checksum_memory = arm_checksum_memory,
3184         .blank_check_memory = arm_blank_check_memory,
3185
3186         .run_algorithm = armv4_5_run_algorithm,
3187
3188         .add_breakpoint = cortex_a_add_breakpoint,
3189         .add_context_breakpoint = cortex_a_add_context_breakpoint,
3190         .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3191         .remove_breakpoint = cortex_a_remove_breakpoint,
3192         .add_watchpoint = NULL,
3193         .remove_watchpoint = NULL,
3194
3195         .commands = cortex_a_command_handlers,
3196         .target_create = cortex_a_target_create,
3197         .target_jim_configure = adiv5_jim_configure,
3198         .init_target = cortex_a_init_target,
3199         .examine = cortex_a_examine,
3200         .deinit_target = cortex_a_deinit_target,
3201
3202         .read_phys_memory = cortex_a_read_phys_memory,
3203         .write_phys_memory = cortex_a_write_phys_memory,
3204         .mmu = cortex_a_mmu,
3205         .virt2phys = cortex_a_virt2phys,
3206 };
3207
3208 static const struct command_registration cortex_r4_exec_command_handlers[] = {
3209         {
3210                 .name = "dbginit",
3211                 .handler = cortex_a_handle_dbginit_command,
3212                 .mode = COMMAND_EXEC,
3213                 .help = "Initialize core debug",
3214                 .usage = "",
3215         },
3216         {
3217                 .name = "maskisr",
3218                 .handler = handle_cortex_a_mask_interrupts_command,
3219                 .mode = COMMAND_EXEC,
3220                 .help = "mask cortex_r4 interrupts",
3221                 .usage = "['on'|'off']",
3222         },
3223
3224         COMMAND_REGISTRATION_DONE
3225 };
3226 static const struct command_registration cortex_r4_command_handlers[] = {
3227         {
3228                 .chain = arm_command_handlers,
3229         },
3230         {
3231                 .name = "cortex_r4",
3232                 .mode = COMMAND_ANY,
3233                 .help = "Cortex-R4 command group",
3234                 .usage = "",
3235                 .chain = cortex_r4_exec_command_handlers,
3236         },
3237         COMMAND_REGISTRATION_DONE
3238 };
3239
3240 struct target_type cortexr4_target = {
3241         .name = "cortex_r4",
3242
3243         .poll = cortex_a_poll,
3244         .arch_state = armv7a_arch_state,
3245
3246         .halt = cortex_a_halt,
3247         .resume = cortex_a_resume,
3248         .step = cortex_a_step,
3249
3250         .assert_reset = cortex_a_assert_reset,
3251         .deassert_reset = cortex_a_deassert_reset,
3252
3253         /* REVISIT allow exporting VFP3 registers ... */
3254         .get_gdb_arch = arm_get_gdb_arch,
3255         .get_gdb_reg_list = arm_get_gdb_reg_list,
3256
3257         .read_memory = cortex_a_read_phys_memory,
3258         .write_memory = cortex_a_write_phys_memory,
3259
3260         .checksum_memory = arm_checksum_memory,
3261         .blank_check_memory = arm_blank_check_memory,
3262
3263         .run_algorithm = armv4_5_run_algorithm,
3264
3265         .add_breakpoint = cortex_a_add_breakpoint,
3266         .add_context_breakpoint = cortex_a_add_context_breakpoint,
3267         .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3268         .remove_breakpoint = cortex_a_remove_breakpoint,
3269         .add_watchpoint = NULL,
3270         .remove_watchpoint = NULL,
3271
3272         .commands = cortex_r4_command_handlers,
3273         .target_create = cortex_r4_target_create,
3274         .target_jim_configure = adiv5_jim_configure,
3275         .init_target = cortex_a_init_target,
3276         .examine = cortex_a_examine,
3277         .deinit_target = cortex_a_deinit_target,
3278 };