target/armv7m: minor fixes of target algo exit point check
[fw/openocd] / src / target / armv7m.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                 *
12  *   oyvind.harboe@zylin.com                                               *
13  *                                                                         *
14  *   Copyright (C) 2018 by Liviu Ionescu                                   *
15  *   <ilg@livius.net>                                                      *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
29  *                                                                         *
30  *   ARMv7-M Architecture, Application Level Reference Manual              *
31  *              ARM DDI 0405C (September 2008)                             *
32  *                                                                         *
33  ***************************************************************************/
34
35 #ifdef HAVE_CONFIG_H
36 #include "config.h"
37 #endif
38
39 #include "breakpoints.h"
40 #include "armv7m.h"
41 #include "algorithm.h"
42 #include "register.h"
43 #include "semihosting_common.h"
44
45 #if 0
46 #define _DEBUG_INSTRUCTION_EXECUTION_
47 #endif
48
49 static const char * const armv7m_exception_strings[] = {
50         "", "Reset", "NMI", "HardFault",
51         "MemManage", "BusFault", "UsageFault", "RESERVED",
52         "RESERVED", "RESERVED", "RESERVED", "SVCall",
53         "DebugMonitor", "RESERVED", "PendSV", "SysTick"
54 };
55
56 /* PSP is used in some thread modes */
57 const int armv7m_psp_reg_map[ARMV7M_NUM_CORE_REGS] = {
58         ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
59         ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
60         ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
61         ARMV7M_R12, ARMV7M_PSP, ARMV7M_R14, ARMV7M_PC,
62         ARMV7M_xPSR,
63 };
64
65 /* MSP is used in handler and some thread modes */
66 const int armv7m_msp_reg_map[ARMV7M_NUM_CORE_REGS] = {
67         ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
68         ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
69         ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
70         ARMV7M_R12, ARMV7M_MSP, ARMV7M_R14, ARMV7M_PC,
71         ARMV7M_xPSR,
72 };
73
74 /*
75  * These registers are not memory-mapped.  The ARMv7-M profile includes
76  * memory mapped registers too, such as for the NVIC (interrupt controller)
77  * and SysTick (timer) modules; those can mostly be treated as peripherals.
78  *
79  * The ARMv6-M profile is almost identical in this respect, except that it
80  * doesn't include basepri or faultmask registers.
81  */
82 static const struct {
83         unsigned id;
84         const char *name;
85         unsigned bits;
86         enum reg_type type;
87         const char *group;
88         const char *feature;
89 } armv7m_regs[] = {
90         { ARMV7M_R0, "r0", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
91         { ARMV7M_R1, "r1", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
92         { ARMV7M_R2, "r2", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
93         { ARMV7M_R3, "r3", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
94         { ARMV7M_R4, "r4", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
95         { ARMV7M_R5, "r5", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
96         { ARMV7M_R6, "r6", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
97         { ARMV7M_R7, "r7", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
98         { ARMV7M_R8, "r8", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
99         { ARMV7M_R9, "r9", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
100         { ARMV7M_R10, "r10", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
101         { ARMV7M_R11, "r11", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
102         { ARMV7M_R12, "r12", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
103         { ARMV7M_R13, "sp", 32, REG_TYPE_DATA_PTR, "general", "org.gnu.gdb.arm.m-profile" },
104         { ARMV7M_R14, "lr", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
105         { ARMV7M_PC, "pc", 32, REG_TYPE_CODE_PTR, "general", "org.gnu.gdb.arm.m-profile" },
106         { ARMV7M_xPSR, "xPSR", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
107
108         { ARMV7M_MSP, "msp", 32, REG_TYPE_DATA_PTR, "system", "org.gnu.gdb.arm.m-system" },
109         { ARMV7M_PSP, "psp", 32, REG_TYPE_DATA_PTR, "system", "org.gnu.gdb.arm.m-system" },
110
111         { ARMV7M_PRIMASK, "primask", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
112         { ARMV7M_BASEPRI, "basepri", 8, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
113         { ARMV7M_FAULTMASK, "faultmask", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
114         { ARMV7M_CONTROL, "control", 2, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
115
116         { ARMV7M_D0, "d0", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
117         { ARMV7M_D1, "d1", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
118         { ARMV7M_D2, "d2", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
119         { ARMV7M_D3, "d3", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
120         { ARMV7M_D4, "d4", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
121         { ARMV7M_D5, "d5", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
122         { ARMV7M_D6, "d6", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
123         { ARMV7M_D7, "d7", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
124         { ARMV7M_D8, "d8", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
125         { ARMV7M_D9, "d9", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
126         { ARMV7M_D10, "d10", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
127         { ARMV7M_D11, "d11", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
128         { ARMV7M_D12, "d12", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
129         { ARMV7M_D13, "d13", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
130         { ARMV7M_D14, "d14", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
131         { ARMV7M_D15, "d15", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
132
133         { ARMV7M_FPSCR, "fpscr", 32, REG_TYPE_INT, "float", "org.gnu.gdb.arm.vfp" },
134 };
135
136 #define ARMV7M_NUM_REGS ARRAY_SIZE(armv7m_regs)
137
138 /**
139  * Restores target context using the cache of core registers set up
140  * by armv7m_build_reg_cache(), calling optional core-specific hooks.
141  */
142 int armv7m_restore_context(struct target *target)
143 {
144         int i;
145         struct armv7m_common *armv7m = target_to_armv7m(target);
146         struct reg_cache *cache = armv7m->arm.core_cache;
147
148         LOG_DEBUG(" ");
149
150         if (armv7m->pre_restore_context)
151                 armv7m->pre_restore_context(target);
152
153         for (i = cache->num_regs - 1; i >= 0; i--) {
154                 if (cache->reg_list[i].dirty) {
155                         armv7m->arm.write_core_reg(target, &cache->reg_list[i], i,
156                                                    ARM_MODE_ANY, cache->reg_list[i].value);
157                 }
158         }
159
160         return ERROR_OK;
161 }
162
163 /* Core state functions */
164
165 /**
166  * Maps ISR number (from xPSR) to name.
167  * Note that while names and meanings for the first sixteen are standardized
168  * (with zero not a true exception), external interrupts are only numbered.
169  * They are assigned by vendors, which generally assign different numbers to
170  * peripherals (such as UART0 or a USB peripheral controller).
171  */
172 const char *armv7m_exception_string(int number)
173 {
174         static char enamebuf[32];
175
176         if ((number < 0) | (number > 511))
177                 return "Invalid exception";
178         if (number < 16)
179                 return armv7m_exception_strings[number];
180         sprintf(enamebuf, "External Interrupt(%i)", number - 16);
181         return enamebuf;
182 }
183
184 static int armv7m_get_core_reg(struct reg *reg)
185 {
186         int retval;
187         struct arm_reg *armv7m_reg = reg->arch_info;
188         struct target *target = armv7m_reg->target;
189         struct arm *arm = target_to_arm(target);
190
191         if (target->state != TARGET_HALTED)
192                 return ERROR_TARGET_NOT_HALTED;
193
194         retval = arm->read_core_reg(target, reg, reg->number, arm->core_mode);
195
196         return retval;
197 }
198
199 static int armv7m_set_core_reg(struct reg *reg, uint8_t *buf)
200 {
201         struct arm_reg *armv7m_reg = reg->arch_info;
202         struct target *target = armv7m_reg->target;
203
204         if (target->state != TARGET_HALTED)
205                 return ERROR_TARGET_NOT_HALTED;
206
207         buf_cpy(buf, reg->value, reg->size);
208         reg->dirty = true;
209         reg->valid = true;
210
211         return ERROR_OK;
212 }
213
214 static int armv7m_read_core_reg(struct target *target, struct reg *r,
215         int num, enum arm_mode mode)
216 {
217         uint32_t reg_value;
218         int retval;
219         struct arm_reg *armv7m_core_reg;
220         struct armv7m_common *armv7m = target_to_armv7m(target);
221
222         assert(num < (int)armv7m->arm.core_cache->num_regs);
223
224         armv7m_core_reg = armv7m->arm.core_cache->reg_list[num].arch_info;
225
226         if ((armv7m_core_reg->num >= ARMV7M_D0) && (armv7m_core_reg->num <= ARMV7M_D15)) {
227                 /* map D0..D15 to S0..S31 */
228                 size_t regidx = ARMV7M_S0 + 2 * (armv7m_core_reg->num - ARMV7M_D0);
229                 retval = armv7m->load_core_reg_u32(target, regidx, &reg_value);
230                 if (retval != ERROR_OK)
231                         return retval;
232                 buf_set_u32(armv7m->arm.core_cache->reg_list[num].value,
233                             0, 32, reg_value);
234                 retval = armv7m->load_core_reg_u32(target, regidx + 1, &reg_value);
235                 if (retval != ERROR_OK)
236                         return retval;
237                 buf_set_u32(armv7m->arm.core_cache->reg_list[num].value + 4,
238                             0, 32, reg_value);
239         } else {
240                 retval = armv7m->load_core_reg_u32(target,
241                                                    armv7m_core_reg->num, &reg_value);
242                 if (retval != ERROR_OK)
243                         return retval;
244                 buf_set_u32(armv7m->arm.core_cache->reg_list[num].value, 0, 32, reg_value);
245         }
246
247         armv7m->arm.core_cache->reg_list[num].valid = true;
248         armv7m->arm.core_cache->reg_list[num].dirty = false;
249
250         return retval;
251 }
252
253 static int armv7m_write_core_reg(struct target *target, struct reg *r,
254         int num, enum arm_mode mode, uint8_t *value)
255 {
256         int retval;
257         struct arm_reg *armv7m_core_reg;
258         struct armv7m_common *armv7m = target_to_armv7m(target);
259
260         assert(num < (int)armv7m->arm.core_cache->num_regs);
261
262         armv7m_core_reg = armv7m->arm.core_cache->reg_list[num].arch_info;
263
264         if ((armv7m_core_reg->num >= ARMV7M_D0) && (armv7m_core_reg->num <= ARMV7M_D15)) {
265                 /* map D0..D15 to S0..S31 */
266                 size_t regidx = ARMV7M_S0 + 2 * (armv7m_core_reg->num - ARMV7M_D0);
267
268                 uint32_t t = buf_get_u32(value, 0, 32);
269                 retval = armv7m->store_core_reg_u32(target, regidx, t);
270                 if (retval != ERROR_OK)
271                         goto out_error;
272
273                 t = buf_get_u32(value + 4, 0, 32);
274                 retval = armv7m->store_core_reg_u32(target, regidx + 1, t);
275                 if (retval != ERROR_OK)
276                         goto out_error;
277         } else {
278                 uint32_t t = buf_get_u32(value, 0, 32);
279
280                 LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", num, t);
281                 retval = armv7m->store_core_reg_u32(target, armv7m_core_reg->num, t);
282                 if (retval != ERROR_OK)
283                         goto out_error;
284         }
285
286         armv7m->arm.core_cache->reg_list[num].valid = true;
287         armv7m->arm.core_cache->reg_list[num].dirty = false;
288
289         return ERROR_OK;
290
291 out_error:
292         LOG_ERROR("Error setting register");
293         armv7m->arm.core_cache->reg_list[num].dirty = armv7m->arm.core_cache->reg_list[num].valid;
294         return ERROR_JTAG_DEVICE_ERROR;
295 }
296
297 /**
298  * Returns generic ARM userspace registers to GDB.
299  */
300 int armv7m_get_gdb_reg_list(struct target *target, struct reg **reg_list[],
301                 int *reg_list_size, enum target_register_class reg_class)
302 {
303         struct armv7m_common *armv7m = target_to_armv7m(target);
304         int i;
305
306         if (reg_class == REG_CLASS_ALL)
307                 *reg_list_size = armv7m->arm.core_cache->num_regs;
308         else
309                 *reg_list_size = ARMV7M_NUM_CORE_REGS;
310
311         *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
312         if (*reg_list == NULL)
313                 return ERROR_FAIL;
314
315         for (i = 0; i < *reg_list_size; i++)
316                 (*reg_list)[i] = &armv7m->arm.core_cache->reg_list[i];
317
318         return ERROR_OK;
319 }
320
321 /** Runs a Thumb algorithm in the target. */
322 int armv7m_run_algorithm(struct target *target,
323         int num_mem_params, struct mem_param *mem_params,
324         int num_reg_params, struct reg_param *reg_params,
325         target_addr_t entry_point, target_addr_t exit_point,
326         int timeout_ms, void *arch_info)
327 {
328         int retval;
329
330         retval = armv7m_start_algorithm(target,
331                         num_mem_params, mem_params,
332                         num_reg_params, reg_params,
333                         entry_point, exit_point,
334                         arch_info);
335
336         if (retval == ERROR_OK)
337                 retval = armv7m_wait_algorithm(target,
338                                 num_mem_params, mem_params,
339                                 num_reg_params, reg_params,
340                                 exit_point, timeout_ms,
341                                 arch_info);
342
343         return retval;
344 }
345
346 /** Starts a Thumb algorithm in the target. */
347 int armv7m_start_algorithm(struct target *target,
348         int num_mem_params, struct mem_param *mem_params,
349         int num_reg_params, struct reg_param *reg_params,
350         target_addr_t entry_point, target_addr_t exit_point,
351         void *arch_info)
352 {
353         struct armv7m_common *armv7m = target_to_armv7m(target);
354         struct armv7m_algorithm *armv7m_algorithm_info = arch_info;
355         enum arm_mode core_mode = armv7m->arm.core_mode;
356         int retval = ERROR_OK;
357
358         /* NOTE: armv7m_run_algorithm requires that each algorithm uses a software breakpoint
359          * at the exit point */
360
361         if (armv7m_algorithm_info->common_magic != ARMV7M_COMMON_MAGIC) {
362                 LOG_ERROR("current target isn't an ARMV7M target");
363                 return ERROR_TARGET_INVALID;
364         }
365
366         if (target->state != TARGET_HALTED) {
367                 LOG_WARNING("target not halted");
368                 return ERROR_TARGET_NOT_HALTED;
369         }
370
371         /* refresh core register cache
372          * Not needed if core register cache is always consistent with target process state */
373         for (unsigned i = 0; i < armv7m->arm.core_cache->num_regs; i++) {
374
375                 armv7m_algorithm_info->context[i] = buf_get_u32(
376                                 armv7m->arm.core_cache->reg_list[i].value,
377                                 0,
378                                 32);
379         }
380
381         for (int i = 0; i < num_mem_params; i++) {
382                 if (mem_params[i].direction == PARAM_IN)
383                         continue;
384                 retval = target_write_buffer(target, mem_params[i].address,
385                                 mem_params[i].size,
386                                 mem_params[i].value);
387                 if (retval != ERROR_OK)
388                         return retval;
389         }
390
391         for (int i = 0; i < num_reg_params; i++) {
392                 if (reg_params[i].direction == PARAM_IN)
393                         continue;
394
395                 struct reg *reg =
396                         register_get_by_name(armv7m->arm.core_cache, reg_params[i].reg_name, 0);
397 /*              uint32_t regvalue; */
398
399                 if (!reg) {
400                         LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
401                         return ERROR_COMMAND_SYNTAX_ERROR;
402                 }
403
404                 if (reg->size != reg_params[i].size) {
405                         LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
406                                 reg_params[i].reg_name);
407                         return ERROR_COMMAND_SYNTAX_ERROR;
408                 }
409
410 /*              regvalue = buf_get_u32(reg_params[i].value, 0, 32); */
411                 armv7m_set_core_reg(reg, reg_params[i].value);
412         }
413
414         {
415                 /*
416                  * Ensure xPSR.T is set to avoid trying to run things in arm
417                  * (non-thumb) mode, which armv7m does not support.
418                  *
419                  * We do this by setting the entirety of xPSR, which should
420                  * remove all the unknowns about xPSR state.
421                  *
422                  * Because xPSR.T is populated on reset from the vector table,
423                  * it might be 0 if the vector table has "bad" data in it.
424                  */
425                 struct reg *reg = &armv7m->arm.core_cache->reg_list[ARMV7M_xPSR];
426                 buf_set_u32(reg->value, 0, 32, 0x01000000);
427                 reg->valid = true;
428                 reg->dirty = true;
429         }
430
431         if (armv7m_algorithm_info->core_mode != ARM_MODE_ANY &&
432                         armv7m_algorithm_info->core_mode != core_mode) {
433
434                 /* we cannot set ARM_MODE_HANDLER, so use ARM_MODE_THREAD instead */
435                 if (armv7m_algorithm_info->core_mode == ARM_MODE_HANDLER) {
436                         armv7m_algorithm_info->core_mode = ARM_MODE_THREAD;
437                         LOG_INFO("ARM_MODE_HANDLER not currently supported, using ARM_MODE_THREAD instead");
438                 }
439
440                 LOG_DEBUG("setting core_mode: 0x%2.2x", armv7m_algorithm_info->core_mode);
441                 buf_set_u32(armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].value,
442                         0, 1, armv7m_algorithm_info->core_mode);
443                 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].dirty = true;
444                 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].valid = true;
445         }
446
447         /* save previous core mode */
448         armv7m_algorithm_info->core_mode = core_mode;
449
450         retval = target_resume(target, 0, entry_point, 1, 1);
451
452         return retval;
453 }
454
455 /** Waits for an algorithm in the target. */
456 int armv7m_wait_algorithm(struct target *target,
457         int num_mem_params, struct mem_param *mem_params,
458         int num_reg_params, struct reg_param *reg_params,
459         target_addr_t exit_point, int timeout_ms,
460         void *arch_info)
461 {
462         struct armv7m_common *armv7m = target_to_armv7m(target);
463         struct armv7m_algorithm *armv7m_algorithm_info = arch_info;
464         int retval = ERROR_OK;
465
466         /* NOTE: armv7m_run_algorithm requires that each algorithm uses a software breakpoint
467          * at the exit point */
468
469         if (armv7m_algorithm_info->common_magic != ARMV7M_COMMON_MAGIC) {
470                 LOG_ERROR("current target isn't an ARMV7M target");
471                 return ERROR_TARGET_INVALID;
472         }
473
474         retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
475         /* If the target fails to halt due to the breakpoint, force a halt */
476         if (retval != ERROR_OK || target->state != TARGET_HALTED) {
477                 retval = target_halt(target);
478                 if (retval != ERROR_OK)
479                         return retval;
480                 retval = target_wait_state(target, TARGET_HALTED, 500);
481                 if (retval != ERROR_OK)
482                         return retval;
483                 return ERROR_TARGET_TIMEOUT;
484         }
485
486         if (exit_point) {
487                 /* PC value has been cached in cortex_m_debug_entry() */
488                 uint32_t pc = buf_get_u32(armv7m->arm.pc->value, 0, 32);
489                 if (pc != exit_point) {
490                         LOG_DEBUG("failed algorithm halted at 0x%" PRIx32 ", expected 0x%" TARGET_PRIxADDR,
491                                           pc, exit_point);
492                         return ERROR_TARGET_ALGO_EXIT;
493                 }
494         }
495
496         /* Read memory values to mem_params[] */
497         for (int i = 0; i < num_mem_params; i++) {
498                 if (mem_params[i].direction != PARAM_OUT) {
499                         retval = target_read_buffer(target, mem_params[i].address,
500                                         mem_params[i].size,
501                                         mem_params[i].value);
502                         if (retval != ERROR_OK)
503                                 return retval;
504                 }
505         }
506
507         /* Copy core register values to reg_params[] */
508         for (int i = 0; i < num_reg_params; i++) {
509                 if (reg_params[i].direction != PARAM_OUT) {
510                         struct reg *reg = register_get_by_name(armv7m->arm.core_cache,
511                                         reg_params[i].reg_name,
512                                         0);
513
514                         if (!reg) {
515                                 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
516                                 return ERROR_COMMAND_SYNTAX_ERROR;
517                         }
518
519                         if (reg->size != reg_params[i].size) {
520                                 LOG_ERROR(
521                                         "BUG: register '%s' size doesn't match reg_params[i].size",
522                                         reg_params[i].reg_name);
523                                 return ERROR_COMMAND_SYNTAX_ERROR;
524                         }
525
526                         buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
527                 }
528         }
529
530         for (int i = armv7m->arm.core_cache->num_regs - 1; i >= 0; i--) {
531                 uint32_t regvalue;
532                 regvalue = buf_get_u32(armv7m->arm.core_cache->reg_list[i].value, 0, 32);
533                 if (regvalue != armv7m_algorithm_info->context[i]) {
534                         LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32,
535                                         armv7m->arm.core_cache->reg_list[i].name,
536                                 armv7m_algorithm_info->context[i]);
537                         buf_set_u32(armv7m->arm.core_cache->reg_list[i].value,
538                                 0, 32, armv7m_algorithm_info->context[i]);
539                         armv7m->arm.core_cache->reg_list[i].valid = true;
540                         armv7m->arm.core_cache->reg_list[i].dirty = true;
541                 }
542         }
543
544         /* restore previous core mode */
545         if (armv7m_algorithm_info->core_mode != armv7m->arm.core_mode) {
546                 LOG_DEBUG("restoring core_mode: 0x%2.2x", armv7m_algorithm_info->core_mode);
547                 buf_set_u32(armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].value,
548                         0, 1, armv7m_algorithm_info->core_mode);
549                 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].dirty = true;
550                 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].valid = true;
551         }
552
553         armv7m->arm.core_mode = armv7m_algorithm_info->core_mode;
554
555         return retval;
556 }
557
558 /** Logs summary of ARMv7-M state for a halted target. */
559 int armv7m_arch_state(struct target *target)
560 {
561         struct armv7m_common *armv7m = target_to_armv7m(target);
562         struct arm *arm = &armv7m->arm;
563         uint32_t ctrl, sp;
564
565         /* avoid filling log waiting for fileio reply */
566         if (target->semihosting && target->semihosting->hit_fileio)
567                 return ERROR_OK;
568
569         ctrl = buf_get_u32(arm->core_cache->reg_list[ARMV7M_CONTROL].value, 0, 32);
570         sp = buf_get_u32(arm->core_cache->reg_list[ARMV7M_R13].value, 0, 32);
571
572         LOG_USER("target halted due to %s, current mode: %s %s\n"
573                 "xPSR: %#8.8" PRIx32 " pc: %#8.8" PRIx32 " %csp: %#8.8" PRIx32 "%s%s",
574                 debug_reason_name(target),
575                 arm_mode_name(arm->core_mode),
576                 armv7m_exception_string(armv7m->exception_number),
577                 buf_get_u32(arm->cpsr->value, 0, 32),
578                 buf_get_u32(arm->pc->value, 0, 32),
579                 (ctrl & 0x02) ? 'p' : 'm',
580                 sp,
581                 (target->semihosting && target->semihosting->is_active) ? ", semihosting" : "",
582                 (target->semihosting && target->semihosting->is_fileio) ? " fileio" : "");
583
584         return ERROR_OK;
585 }
586
587 static const struct reg_arch_type armv7m_reg_type = {
588         .get = armv7m_get_core_reg,
589         .set = armv7m_set_core_reg,
590 };
591
592 /** Builds cache of architecturally defined registers.  */
593 struct reg_cache *armv7m_build_reg_cache(struct target *target)
594 {
595         struct armv7m_common *armv7m = target_to_armv7m(target);
596         struct arm *arm = &armv7m->arm;
597         int num_regs = ARMV7M_NUM_REGS;
598         struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
599         struct reg_cache *cache = malloc(sizeof(struct reg_cache));
600         struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
601         struct arm_reg *arch_info = calloc(num_regs, sizeof(struct arm_reg));
602         struct reg_feature *feature;
603         int i;
604
605         /* Build the process context cache */
606         cache->name = "arm v7m registers";
607         cache->next = NULL;
608         cache->reg_list = reg_list;
609         cache->num_regs = num_regs;
610         (*cache_p) = cache;
611
612         for (i = 0; i < num_regs; i++) {
613                 arch_info[i].num = armv7m_regs[i].id;
614                 arch_info[i].target = target;
615                 arch_info[i].arm = arm;
616
617                 reg_list[i].name = armv7m_regs[i].name;
618                 reg_list[i].size = armv7m_regs[i].bits;
619                 size_t storage_size = DIV_ROUND_UP(armv7m_regs[i].bits, 8);
620                 if (storage_size < 4)
621                         storage_size = 4;
622                 reg_list[i].value = calloc(1, storage_size);
623                 reg_list[i].dirty = false;
624                 reg_list[i].valid = false;
625                 reg_list[i].type = &armv7m_reg_type;
626                 reg_list[i].arch_info = &arch_info[i];
627
628                 reg_list[i].group = armv7m_regs[i].group;
629                 reg_list[i].number = i;
630                 reg_list[i].exist = true;
631                 reg_list[i].caller_save = true; /* gdb defaults to true */
632
633                 feature = calloc(1, sizeof(struct reg_feature));
634                 if (feature) {
635                         feature->name = armv7m_regs[i].feature;
636                         reg_list[i].feature = feature;
637                 } else
638                         LOG_ERROR("unable to allocate feature list");
639
640                 reg_list[i].reg_data_type = calloc(1, sizeof(struct reg_data_type));
641                 if (reg_list[i].reg_data_type)
642                         reg_list[i].reg_data_type->type = armv7m_regs[i].type;
643                 else
644                         LOG_ERROR("unable to allocate reg type list");
645         }
646
647         arm->cpsr = reg_list + ARMV7M_xPSR;
648         arm->pc = reg_list + ARMV7M_PC;
649         arm->core_cache = cache;
650
651         return cache;
652 }
653
654 void armv7m_free_reg_cache(struct target *target)
655 {
656         struct armv7m_common *armv7m = target_to_armv7m(target);
657         struct arm *arm = &armv7m->arm;
658         struct reg_cache *cache;
659         struct reg *reg;
660         unsigned int i;
661
662         cache = arm->core_cache;
663
664         if (!cache)
665                 return;
666
667         for (i = 0; i < cache->num_regs; i++) {
668                 reg = &cache->reg_list[i];
669
670                 free(reg->feature);
671                 free(reg->reg_data_type);
672                 free(reg->value);
673         }
674
675         free(cache->reg_list[0].arch_info);
676         free(cache->reg_list);
677         free(cache);
678
679         arm->core_cache = NULL;
680 }
681
682 static int armv7m_setup_semihosting(struct target *target, int enable)
683 {
684         /* nothing todo for armv7m */
685         return ERROR_OK;
686 }
687
688 /** Sets up target as a generic ARMv7-M core */
689 int armv7m_init_arch_info(struct target *target, struct armv7m_common *armv7m)
690 {
691         struct arm *arm = &armv7m->arm;
692
693         armv7m->common_magic = ARMV7M_COMMON_MAGIC;
694         armv7m->fp_feature = FP_NONE;
695         armv7m->trace_config.trace_bus_id = 1;
696         /* Enable stimulus port #0 by default */
697         armv7m->trace_config.itm_ter[0] = 1;
698
699         arm->core_type = ARM_CORE_TYPE_M_PROFILE;
700         arm->arch_info = armv7m;
701         arm->setup_semihosting = armv7m_setup_semihosting;
702
703         arm->read_core_reg = armv7m_read_core_reg;
704         arm->write_core_reg = armv7m_write_core_reg;
705
706         return arm_init_arch_info(target, arm);
707 }
708
709 /** Generates a CRC32 checksum of a memory region. */
710 int armv7m_checksum_memory(struct target *target,
711         target_addr_t address, uint32_t count, uint32_t *checksum)
712 {
713         struct working_area *crc_algorithm;
714         struct armv7m_algorithm armv7m_info;
715         struct reg_param reg_params[2];
716         int retval;
717
718         static const uint8_t cortex_m_crc_code[] = {
719 #include "../../contrib/loaders/checksum/armv7m_crc.inc"
720         };
721
722         retval = target_alloc_working_area(target, sizeof(cortex_m_crc_code), &crc_algorithm);
723         if (retval != ERROR_OK)
724                 return retval;
725
726         retval = target_write_buffer(target, crc_algorithm->address,
727                         sizeof(cortex_m_crc_code), (uint8_t *)cortex_m_crc_code);
728         if (retval != ERROR_OK)
729                 goto cleanup;
730
731         armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
732         armv7m_info.core_mode = ARM_MODE_THREAD;
733
734         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
735         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
736
737         buf_set_u32(reg_params[0].value, 0, 32, address);
738         buf_set_u32(reg_params[1].value, 0, 32, count);
739
740         int timeout = 20000 * (1 + (count / (1024 * 1024)));
741
742         retval = target_run_algorithm(target, 0, NULL, 2, reg_params, crc_algorithm->address,
743                         crc_algorithm->address + (sizeof(cortex_m_crc_code) - 6),
744                         timeout, &armv7m_info);
745
746         if (retval == ERROR_OK)
747                 *checksum = buf_get_u32(reg_params[0].value, 0, 32);
748         else
749                 LOG_ERROR("error executing cortex_m crc algorithm");
750
751         destroy_reg_param(&reg_params[0]);
752         destroy_reg_param(&reg_params[1]);
753
754 cleanup:
755         target_free_working_area(target, crc_algorithm);
756
757         return retval;
758 }
759
760 /** Checks an array of memory regions whether they are erased. */
761 int armv7m_blank_check_memory(struct target *target,
762         struct target_memory_check_block *blocks, int num_blocks, uint8_t erased_value)
763 {
764         struct working_area *erase_check_algorithm;
765         struct working_area *erase_check_params;
766         struct reg_param reg_params[2];
767         struct armv7m_algorithm armv7m_info;
768         int retval;
769
770         static bool timed_out;
771
772         static const uint8_t erase_check_code[] = {
773 #include "../../contrib/loaders/erase_check/armv7m_erase_check.inc"
774         };
775
776         const uint32_t code_size = sizeof(erase_check_code);
777
778         /* make sure we have a working area */
779         if (target_alloc_working_area(target, code_size,
780                 &erase_check_algorithm) != ERROR_OK)
781                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
782
783         retval = target_write_buffer(target, erase_check_algorithm->address,
784                         code_size, erase_check_code);
785         if (retval != ERROR_OK)
786                 goto cleanup1;
787
788         /* prepare blocks array for algo */
789         struct algo_block {
790                 union {
791                         uint32_t size;
792                         uint32_t result;
793                 };
794                 uint32_t address;
795         };
796
797         uint32_t avail = target_get_working_area_avail(target);
798         int blocks_to_check = avail / sizeof(struct algo_block) - 1;
799         if (num_blocks < blocks_to_check)
800                 blocks_to_check = num_blocks;
801
802         struct algo_block *params = malloc((blocks_to_check+1)*sizeof(struct algo_block));
803         if (params == NULL) {
804                 retval = ERROR_FAIL;
805                 goto cleanup1;
806         }
807
808         int i;
809         uint32_t total_size = 0;
810         for (i = 0; i < blocks_to_check; i++) {
811                 total_size += blocks[i].size;
812                 target_buffer_set_u32(target, (uint8_t *)&(params[i].size),
813                                                 blocks[i].size / sizeof(uint32_t));
814                 target_buffer_set_u32(target, (uint8_t *)&(params[i].address),
815                                                 blocks[i].address);
816         }
817         target_buffer_set_u32(target, (uint8_t *)&(params[blocks_to_check].size), 0);
818
819         uint32_t param_size = (blocks_to_check + 1) * sizeof(struct algo_block);
820         if (target_alloc_working_area(target, param_size,
821                         &erase_check_params) != ERROR_OK) {
822                 retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
823                 goto cleanup2;
824         }
825
826         retval = target_write_buffer(target, erase_check_params->address,
827                                 param_size, (uint8_t *)params);
828         if (retval != ERROR_OK)
829                 goto cleanup3;
830
831         uint32_t erased_word = erased_value | (erased_value << 8)
832                                | (erased_value << 16) | (erased_value << 24);
833
834         LOG_DEBUG("Starting erase check of %d blocks, parameters@"
835                  TARGET_ADDR_FMT, blocks_to_check, erase_check_params->address);
836
837         armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
838         armv7m_info.core_mode = ARM_MODE_THREAD;
839
840         init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
841         buf_set_u32(reg_params[0].value, 0, 32, erase_check_params->address);
842
843         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
844         buf_set_u32(reg_params[1].value, 0, 32, erased_word);
845
846         /* assume CPU clk at least 1 MHz */
847         int timeout = (timed_out ? 30000 : 2000) + total_size * 3 / 1000;
848
849         retval = target_run_algorithm(target,
850                                 0, NULL,
851                                 ARRAY_SIZE(reg_params), reg_params,
852                                 erase_check_algorithm->address,
853                                 erase_check_algorithm->address + (code_size - 2),
854                                 timeout,
855                                 &armv7m_info);
856
857         timed_out = retval == ERROR_TARGET_TIMEOUT;
858         if (retval != ERROR_OK && !timed_out)
859                 goto cleanup4;
860
861         retval = target_read_buffer(target, erase_check_params->address,
862                                 param_size, (uint8_t *)params);
863         if (retval != ERROR_OK)
864                 goto cleanup4;
865
866         for (i = 0; i < blocks_to_check; i++) {
867                 uint32_t result = target_buffer_get_u32(target,
868                                         (uint8_t *)&(params[i].result));
869                 if (result != 0 && result != 1)
870                         break;
871
872                 blocks[i].result = result;
873         }
874         if (i && timed_out)
875                 LOG_INFO("Slow CPU clock: %d blocks checked, %d remain. Continuing...", i, num_blocks-i);
876
877         retval = i;             /* return number of blocks really checked */
878
879 cleanup4:
880         destroy_reg_param(&reg_params[0]);
881         destroy_reg_param(&reg_params[1]);
882
883 cleanup3:
884         target_free_working_area(target, erase_check_params);
885 cleanup2:
886         free(params);
887 cleanup1:
888         target_free_working_area(target, erase_check_algorithm);
889
890         return retval;
891 }
892
893 int armv7m_maybe_skip_bkpt_inst(struct target *target, bool *inst_found)
894 {
895         struct armv7m_common *armv7m = target_to_armv7m(target);
896         struct reg *r = armv7m->arm.pc;
897         bool result = false;
898
899
900         /* if we halted last time due to a bkpt instruction
901          * then we have to manually step over it, otherwise
902          * the core will break again */
903
904         if (target->debug_reason == DBG_REASON_BREAKPOINT) {
905                 uint16_t op;
906                 uint32_t pc = buf_get_u32(r->value, 0, 32);
907
908                 pc &= ~1;
909                 if (target_read_u16(target, pc, &op) == ERROR_OK) {
910                         if ((op & 0xFF00) == 0xBE00) {
911                                 pc = buf_get_u32(r->value, 0, 32) + 2;
912                                 buf_set_u32(r->value, 0, 32, pc);
913                                 r->dirty = true;
914                                 r->valid = true;
915                                 result = true;
916                                 LOG_DEBUG("Skipping over BKPT instruction");
917                         }
918                 }
919         }
920
921         if (inst_found)
922                 *inst_found = result;
923
924         return ERROR_OK;
925 }
926
927 const struct command_registration armv7m_command_handlers[] = {
928         {
929                 .chain = arm_command_handlers,
930         },
931         COMMAND_REGISTRATION_DONE
932 };