2bcb8abae0e050eb5bf973556b2633f2a62c1a7e
[fw/openocd] / src / target / armv7m.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                 *
12  *   oyvind.harboe@zylin.com                                               *
13  *                                                                         *
14  *   Copyright (C) 2018 by Liviu Ionescu                                   *
15  *   <ilg@livius.net>                                                      *
16  *                                                                         *
17  *   Copyright (C) 2019 by Tomas Vanek                                     *
18  *   vanekt@fbl.cz                                                         *
19  *                                                                         *
20  *   This program is free software; you can redistribute it and/or modify  *
21  *   it under the terms of the GNU General Public License as published by  *
22  *   the Free Software Foundation; either version 2 of the License, or     *
23  *   (at your option) any later version.                                   *
24  *                                                                         *
25  *   This program is distributed in the hope that it will be useful,       *
26  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
27  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
28  *   GNU General Public License for more details.                          *
29  *                                                                         *
30  *   You should have received a copy of the GNU General Public License     *
31  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
32  *                                                                         *
33  *   ARMv7-M Architecture, Application Level Reference Manual              *
34  *              ARM DDI 0405C (September 2008)                             *
35  *                                                                         *
36  ***************************************************************************/
37
38 #ifdef HAVE_CONFIG_H
39 #include "config.h"
40 #endif
41
42 #include "breakpoints.h"
43 #include "armv7m.h"
44 #include "algorithm.h"
45 #include "register.h"
46 #include "semihosting_common.h"
47
48 #if 0
49 #define _DEBUG_INSTRUCTION_EXECUTION_
50 #endif
51
52 static const char * const armv7m_exception_strings[] = {
53         "", "Reset", "NMI", "HardFault",
54         "MemManage", "BusFault", "UsageFault", "SecureFault",
55         "RESERVED", "RESERVED", "RESERVED", "SVCall",
56         "DebugMonitor", "RESERVED", "PendSV", "SysTick"
57 };
58
59 /* PSP is used in some thread modes */
60 const int armv7m_psp_reg_map[ARMV7M_NUM_CORE_REGS] = {
61         ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
62         ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
63         ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
64         ARMV7M_R12, ARMV7M_PSP, ARMV7M_R14, ARMV7M_PC,
65         ARMV7M_xPSR,
66 };
67
68 /* MSP is used in handler and some thread modes */
69 const int armv7m_msp_reg_map[ARMV7M_NUM_CORE_REGS] = {
70         ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
71         ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
72         ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
73         ARMV7M_R12, ARMV7M_MSP, ARMV7M_R14, ARMV7M_PC,
74         ARMV7M_xPSR,
75 };
76
77 /*
78  * These registers are not memory-mapped.  The ARMv7-M profile includes
79  * memory mapped registers too, such as for the NVIC (interrupt controller)
80  * and SysTick (timer) modules; those can mostly be treated as peripherals.
81  *
82  * The ARMv6-M profile is almost identical in this respect, except that it
83  * doesn't include basepri or faultmask registers.
84  */
85 static const struct {
86         unsigned id;
87         const char *name;
88         unsigned bits;
89         enum reg_type type;
90         const char *group;
91         const char *feature;
92 } armv7m_regs[] = {
93         { ARMV7M_R0, "r0", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
94         { ARMV7M_R1, "r1", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
95         { ARMV7M_R2, "r2", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
96         { ARMV7M_R3, "r3", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
97         { ARMV7M_R4, "r4", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
98         { ARMV7M_R5, "r5", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
99         { ARMV7M_R6, "r6", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
100         { ARMV7M_R7, "r7", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
101         { ARMV7M_R8, "r8", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
102         { ARMV7M_R9, "r9", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
103         { ARMV7M_R10, "r10", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
104         { ARMV7M_R11, "r11", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
105         { ARMV7M_R12, "r12", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
106         { ARMV7M_R13, "sp", 32, REG_TYPE_DATA_PTR, "general", "org.gnu.gdb.arm.m-profile" },
107         { ARMV7M_R14, "lr", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
108         { ARMV7M_PC, "pc", 32, REG_TYPE_CODE_PTR, "general", "org.gnu.gdb.arm.m-profile" },
109         { ARMV7M_xPSR, "xPSR", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
110
111         { ARMV7M_MSP, "msp", 32, REG_TYPE_DATA_PTR, "system", "org.gnu.gdb.arm.m-system" },
112         { ARMV7M_PSP, "psp", 32, REG_TYPE_DATA_PTR, "system", "org.gnu.gdb.arm.m-system" },
113
114         /* A working register for packing/unpacking special regs, hidden from gdb */
115         { ARMV7M_PMSK_BPRI_FLTMSK_CTRL, "pmsk_bpri_fltmsk_ctrl", 32, REG_TYPE_INT, NULL, NULL },
116
117         /* WARNING: If you use armv7m_write_core_reg() on one of 4 following
118          * special registers, the new data go to ARMV7M_PMSK_BPRI_FLTMSK_CTRL
119          * cache only and are not flushed to CPU HW register.
120          * To trigger write to CPU HW register, add
121          *              armv7m_write_core_reg(,,ARMV7M_PMSK_BPRI_FLTMSK_CTRL,);
122          */
123         { ARMV7M_PRIMASK, "primask", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
124         { ARMV7M_BASEPRI, "basepri", 8, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
125         { ARMV7M_FAULTMASK, "faultmask", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
126         { ARMV7M_CONTROL, "control", 3, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
127
128         /* ARMv8-M specific registers */
129         { ARMV8M_MSP_NS, "msp_ns", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
130         { ARMV8M_PSP_NS, "psp_ns", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
131         { ARMV8M_MSP_S, "msp_s", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
132         { ARMV8M_PSP_S, "psp_s", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
133         { ARMV8M_MSPLIM_S, "msplim_s", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
134         { ARMV8M_PSPLIM_S, "psplim_s", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
135         { ARMV8M_MSPLIM_NS, "msplim_ns", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
136         { ARMV8M_PSPLIM_NS, "psplim_ns", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
137
138         { ARMV8M_PMSK_BPRI_FLTMSK_CTRL_S, "pmsk_bpri_fltmsk_ctrl_s", 32, REG_TYPE_INT, NULL, NULL },
139         { ARMV8M_PRIMASK_S, "primask_s", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
140         { ARMV8M_BASEPRI_S, "basepri_s", 8, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
141         { ARMV8M_FAULTMASK_S, "faultmask_s", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
142         { ARMV8M_CONTROL_S, "control_s", 3, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
143
144         { ARMV8M_PMSK_BPRI_FLTMSK_CTRL_NS, "pmsk_bpri_fltmsk_ctrl_ns", 32, REG_TYPE_INT, NULL, NULL },
145         { ARMV8M_PRIMASK_NS, "primask_ns", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
146         { ARMV8M_BASEPRI_NS, "basepri_ns", 8, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
147         { ARMV8M_FAULTMASK_NS, "faultmask_ns", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
148         { ARMV8M_CONTROL_NS, "control_ns", 3, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
149
150         /* FPU registers */
151         { ARMV7M_D0, "d0", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
152         { ARMV7M_D1, "d1", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
153         { ARMV7M_D2, "d2", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
154         { ARMV7M_D3, "d3", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
155         { ARMV7M_D4, "d4", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
156         { ARMV7M_D5, "d5", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
157         { ARMV7M_D6, "d6", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
158         { ARMV7M_D7, "d7", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
159         { ARMV7M_D8, "d8", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
160         { ARMV7M_D9, "d9", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
161         { ARMV7M_D10, "d10", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
162         { ARMV7M_D11, "d11", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
163         { ARMV7M_D12, "d12", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
164         { ARMV7M_D13, "d13", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
165         { ARMV7M_D14, "d14", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
166         { ARMV7M_D15, "d15", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
167
168         { ARMV7M_FPSCR, "fpscr", 32, REG_TYPE_INT, "float", "org.gnu.gdb.arm.vfp" },
169 };
170
171 #define ARMV7M_NUM_REGS ARRAY_SIZE(armv7m_regs)
172
173 /**
174  * Restores target context using the cache of core registers set up
175  * by armv7m_build_reg_cache(), calling optional core-specific hooks.
176  */
177 int armv7m_restore_context(struct target *target)
178 {
179         int i;
180         struct armv7m_common *armv7m = target_to_armv7m(target);
181         struct reg_cache *cache = armv7m->arm.core_cache;
182
183         LOG_DEBUG(" ");
184
185         if (armv7m->pre_restore_context)
186                 armv7m->pre_restore_context(target);
187
188         /* The descending order of register writes is crucial for correct
189          * packing of ARMV7M_PMSK_BPRI_FLTMSK_CTRL!
190          * See also comments in the register table above */
191         for (i = cache->num_regs - 1; i >= 0; i--) {
192                 struct reg *r = &cache->reg_list[i];
193
194                 if (r->exist && r->dirty)
195                         armv7m->arm.write_core_reg(target, r, i, ARM_MODE_ANY, r->value);
196         }
197
198         return ERROR_OK;
199 }
200
201 /* Core state functions */
202
203 /**
204  * Maps ISR number (from xPSR) to name.
205  * Note that while names and meanings for the first sixteen are standardized
206  * (with zero not a true exception), external interrupts are only numbered.
207  * They are assigned by vendors, which generally assign different numbers to
208  * peripherals (such as UART0 or a USB peripheral controller).
209  */
210 const char *armv7m_exception_string(int number)
211 {
212         static char enamebuf[32];
213
214         if ((number < 0) | (number > 511))
215                 return "Invalid exception";
216         if (number < 16)
217                 return armv7m_exception_strings[number];
218         sprintf(enamebuf, "External Interrupt(%i)", number - 16);
219         return enamebuf;
220 }
221
222 static int armv7m_get_core_reg(struct reg *reg)
223 {
224         int retval;
225         struct arm_reg *armv7m_reg = reg->arch_info;
226         struct target *target = armv7m_reg->target;
227         struct arm *arm = target_to_arm(target);
228
229         if (target->state != TARGET_HALTED)
230                 return ERROR_TARGET_NOT_HALTED;
231
232         retval = arm->read_core_reg(target, reg, reg->number, arm->core_mode);
233
234         return retval;
235 }
236
237 static int armv7m_set_core_reg(struct reg *reg, uint8_t *buf)
238 {
239         struct arm_reg *armv7m_reg = reg->arch_info;
240         struct target *target = armv7m_reg->target;
241
242         if (target->state != TARGET_HALTED)
243                 return ERROR_TARGET_NOT_HALTED;
244
245         buf_cpy(buf, reg->value, reg->size);
246         reg->dirty = true;
247         reg->valid = true;
248
249         return ERROR_OK;
250 }
251
252 static uint32_t armv7m_map_id_to_regsel(unsigned int arm_reg_id)
253 {
254         switch (arm_reg_id) {
255         case ARMV7M_R0 ... ARMV7M_R14:
256         case ARMV7M_PC:
257         case ARMV7M_xPSR:
258         case ARMV7M_MSP:
259         case ARMV7M_PSP:
260                 /* NOTE:  we "know" here that the register identifiers
261                  * match the Cortex-M DCRSR.REGSEL selectors values
262                  * for R0..R14, PC, xPSR, MSP, and PSP.
263                  */
264                 return arm_reg_id;
265
266         case ARMV7M_PMSK_BPRI_FLTMSK_CTRL:
267                 return ARMV7M_REGSEL_PMSK_BPRI_FLTMSK_CTRL;
268
269         case ARMV8M_MSP_NS...ARMV8M_PSPLIM_NS:
270                 return arm_reg_id - ARMV8M_MSP_NS + ARMV8M_REGSEL_MSP_NS;
271
272         case ARMV8M_PMSK_BPRI_FLTMSK_CTRL_S:
273                 return ARMV8M_REGSEL_PMSK_BPRI_FLTMSK_CTRL_S;
274
275         case ARMV8M_PMSK_BPRI_FLTMSK_CTRL_NS:
276                 return ARMV8M_REGSEL_PMSK_BPRI_FLTMSK_CTRL_NS;
277
278         case ARMV7M_FPSCR:
279                 return ARMV7M_REGSEL_FPSCR;
280
281         case ARMV7M_D0 ... ARMV7M_D15:
282                 return ARMV7M_REGSEL_S0 + 2 * (arm_reg_id - ARMV7M_D0);
283
284         default:
285                 LOG_ERROR("Bad register ID %u", arm_reg_id);
286                 return arm_reg_id;
287         }
288 }
289
290 static bool armv7m_map_reg_packing(unsigned int arm_reg_id,
291                                         unsigned int *reg32_id, uint32_t *offset)
292 {
293
294         switch (arm_reg_id) {
295
296         case ARMV7M_PRIMASK...ARMV7M_CONTROL:
297                 *reg32_id = ARMV7M_PMSK_BPRI_FLTMSK_CTRL;
298                 *offset = arm_reg_id - ARMV7M_PRIMASK;
299                 return true;
300         case ARMV8M_PRIMASK_S...ARMV8M_CONTROL_S:
301                 *reg32_id = ARMV8M_PMSK_BPRI_FLTMSK_CTRL_S;
302                 *offset = arm_reg_id - ARMV8M_PRIMASK_S;
303                 return true;
304         case ARMV8M_PRIMASK_NS...ARMV8M_CONTROL_NS:
305                 *reg32_id = ARMV8M_PMSK_BPRI_FLTMSK_CTRL_NS;
306                 *offset = arm_reg_id - ARMV8M_PRIMASK_NS;
307                 return true;
308
309         default:
310                 return false;
311         }
312
313 }
314
315 static int armv7m_read_core_reg(struct target *target, struct reg *r,
316         int num, enum arm_mode mode)
317 {
318         uint32_t reg_value;
319         int retval;
320         struct armv7m_common *armv7m = target_to_armv7m(target);
321
322         assert(num < (int)armv7m->arm.core_cache->num_regs);
323         assert(num == (int)r->number);
324
325         /* If a code calls read_reg, it expects the cache is no more dirty.
326          * Clear the dirty flag regardless of the later read succeeds or not
327          * to prevent unwanted cache flush after a read error */
328         r->dirty = false;
329
330         if (r->size <= 8) {
331                 /* any 8-bit or shorter register is packed */
332                 uint32_t offset = 0;    /* silence false gcc warning */
333                 unsigned int reg32_id;
334
335                 bool is_packed = armv7m_map_reg_packing(num, &reg32_id, &offset);
336                 assert(is_packed);
337                 struct reg *r32 = &armv7m->arm.core_cache->reg_list[reg32_id];
338
339                 /* Read 32-bit container register if not cached */
340                 if (!r32->valid) {
341                         retval = armv7m_read_core_reg(target, r32, reg32_id, mode);
342                         if (retval != ERROR_OK)
343                                 return retval;
344                 }
345
346                 /* Copy required bits of 32-bit container register */
347                 buf_cpy(r32->value + offset, r->value, r->size);
348
349         } else {
350                 assert(r->size == 32 || r->size == 64);
351
352                 struct arm_reg *armv7m_core_reg = r->arch_info;
353                 uint32_t regsel = armv7m_map_id_to_regsel(armv7m_core_reg->num);
354
355                 retval = armv7m->load_core_reg_u32(target, regsel, &reg_value);
356                 if (retval != ERROR_OK)
357                         return retval;
358                 buf_set_u32(r->value, 0, 32, reg_value);
359
360                 if (r->size == 64) {
361                         retval = armv7m->load_core_reg_u32(target, regsel + 1, &reg_value);
362                         if (retval != ERROR_OK) {
363                                 r->valid = false;
364                                 return retval;
365                         }
366                         buf_set_u32(r->value + 4, 0, 32, reg_value);
367
368                         uint64_t q = buf_get_u64(r->value, 0, 64);
369                         LOG_DEBUG("read %s value 0x%016" PRIx64, r->name, q);
370                 } else {
371                         LOG_DEBUG("read %s value 0x%08" PRIx32, r->name, reg_value);
372                 }
373         }
374
375         r->valid = true;
376
377         return ERROR_OK;
378 }
379
380 static int armv7m_write_core_reg(struct target *target, struct reg *r,
381         int num, enum arm_mode mode, uint8_t *value)
382 {
383         int retval;
384         uint32_t t;
385         struct armv7m_common *armv7m = target_to_armv7m(target);
386
387         assert(num < (int)armv7m->arm.core_cache->num_regs);
388         assert(num == (int)r->number);
389
390         if (value != r->value) {
391                 /* If we are not flushing the cache, store the new value to the cache */
392                 buf_cpy(value, r->value, r->size);
393         }
394
395         if (r->size <= 8) {
396                 /* any 8-bit or shorter register is packed */
397                 uint32_t offset = 0;    /* silence false gcc warning */
398                 unsigned int reg32_id;
399
400                 bool is_packed = armv7m_map_reg_packing(num, &reg32_id, &offset);
401                 assert(is_packed);
402                 struct reg *r32 = &armv7m->arm.core_cache->reg_list[reg32_id];
403
404                 if (!r32->valid) {
405                         /* Before merging with other parts ensure the 32-bit register is valid */
406                         retval = armv7m_read_core_reg(target, r32, reg32_id, mode);
407                         if (retval != ERROR_OK)
408                                 return retval;
409                 }
410
411                 /* Write a part to the 32-bit container register */
412                 buf_cpy(value, r32->value + offset, r->size);
413                 r32->dirty = true;
414
415         } else {
416                 assert(r->size == 32 || r->size == 64);
417
418                 struct arm_reg *armv7m_core_reg = r->arch_info;
419                 uint32_t regsel = armv7m_map_id_to_regsel(armv7m_core_reg->num);
420
421                 t = buf_get_u32(value, 0, 32);
422                 retval = armv7m->store_core_reg_u32(target, regsel, t);
423                 if (retval != ERROR_OK)
424                         goto out_error;
425
426                 if (r->size == 64) {
427                         t = buf_get_u32(value + 4, 0, 32);
428                         retval = armv7m->store_core_reg_u32(target, regsel + 1, t);
429                         if (retval != ERROR_OK)
430                                 goto out_error;
431
432                         uint64_t q = buf_get_u64(value, 0, 64);
433                         LOG_DEBUG("write %s value 0x%016" PRIx64, r->name, q);
434                 } else {
435                         LOG_DEBUG("write %s value 0x%08" PRIx32, r->name, t);
436                 }
437         }
438
439         r->valid = true;
440         r->dirty = false;
441
442         return ERROR_OK;
443
444 out_error:
445         r->dirty = true;
446         LOG_ERROR("Error setting register %s", r->name);
447         return retval;
448 }
449
450 /**
451  * Returns generic ARM userspace registers to GDB.
452  */
453 int armv7m_get_gdb_reg_list(struct target *target, struct reg **reg_list[],
454                 int *reg_list_size, enum target_register_class reg_class)
455 {
456         struct armv7m_common *armv7m = target_to_armv7m(target);
457         int i, size;
458
459         if (reg_class == REG_CLASS_ALL)
460                 size = armv7m->arm.core_cache->num_regs;
461         else
462                 size = ARMV7M_NUM_CORE_REGS;
463
464         *reg_list = malloc(sizeof(struct reg *) * size);
465         if (*reg_list == NULL)
466                 return ERROR_FAIL;
467
468         for (i = 0; i < size; i++)
469                 (*reg_list)[i] = &armv7m->arm.core_cache->reg_list[i];
470
471         *reg_list_size = size;
472
473         return ERROR_OK;
474 }
475
476 /** Runs a Thumb algorithm in the target. */
477 int armv7m_run_algorithm(struct target *target,
478         int num_mem_params, struct mem_param *mem_params,
479         int num_reg_params, struct reg_param *reg_params,
480         target_addr_t entry_point, target_addr_t exit_point,
481         int timeout_ms, void *arch_info)
482 {
483         int retval;
484
485         retval = armv7m_start_algorithm(target,
486                         num_mem_params, mem_params,
487                         num_reg_params, reg_params,
488                         entry_point, exit_point,
489                         arch_info);
490
491         if (retval == ERROR_OK)
492                 retval = armv7m_wait_algorithm(target,
493                                 num_mem_params, mem_params,
494                                 num_reg_params, reg_params,
495                                 exit_point, timeout_ms,
496                                 arch_info);
497
498         return retval;
499 }
500
501 /** Starts a Thumb algorithm in the target. */
502 int armv7m_start_algorithm(struct target *target,
503         int num_mem_params, struct mem_param *mem_params,
504         int num_reg_params, struct reg_param *reg_params,
505         target_addr_t entry_point, target_addr_t exit_point,
506         void *arch_info)
507 {
508         struct armv7m_common *armv7m = target_to_armv7m(target);
509         struct armv7m_algorithm *armv7m_algorithm_info = arch_info;
510         enum arm_mode core_mode = armv7m->arm.core_mode;
511         int retval = ERROR_OK;
512
513         /* NOTE: armv7m_run_algorithm requires that each algorithm uses a software breakpoint
514          * at the exit point */
515
516         if (armv7m_algorithm_info->common_magic != ARMV7M_COMMON_MAGIC) {
517                 LOG_ERROR("current target isn't an ARMV7M target");
518                 return ERROR_TARGET_INVALID;
519         }
520
521         if (target->state != TARGET_HALTED) {
522                 LOG_WARNING("target not halted");
523                 return ERROR_TARGET_NOT_HALTED;
524         }
525
526         /* Store all non-debug execution registers to armv7m_algorithm_info context */
527         for (unsigned i = 0; i < armv7m->arm.core_cache->num_regs; i++) {
528
529                 armv7m_algorithm_info->context[i] = buf_get_u32(
530                                 armv7m->arm.core_cache->reg_list[i].value,
531                                 0,
532                                 32);
533         }
534
535         for (int i = 0; i < num_mem_params; i++) {
536                 if (mem_params[i].direction == PARAM_IN)
537                         continue;
538                 retval = target_write_buffer(target, mem_params[i].address,
539                                 mem_params[i].size,
540                                 mem_params[i].value);
541                 if (retval != ERROR_OK)
542                         return retval;
543         }
544
545         for (int i = 0; i < num_reg_params; i++) {
546                 if (reg_params[i].direction == PARAM_IN)
547                         continue;
548
549                 struct reg *reg =
550                         register_get_by_name(armv7m->arm.core_cache, reg_params[i].reg_name, 0);
551 /*              uint32_t regvalue; */
552
553                 if (!reg) {
554                         LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
555                         return ERROR_COMMAND_SYNTAX_ERROR;
556                 }
557
558                 if (reg->size != reg_params[i].size) {
559                         LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
560                                 reg_params[i].reg_name);
561                         return ERROR_COMMAND_SYNTAX_ERROR;
562                 }
563
564 /*              regvalue = buf_get_u32(reg_params[i].value, 0, 32); */
565                 armv7m_set_core_reg(reg, reg_params[i].value);
566         }
567
568         {
569                 /*
570                  * Ensure xPSR.T is set to avoid trying to run things in arm
571                  * (non-thumb) mode, which armv7m does not support.
572                  *
573                  * We do this by setting the entirety of xPSR, which should
574                  * remove all the unknowns about xPSR state.
575                  *
576                  * Because xPSR.T is populated on reset from the vector table,
577                  * it might be 0 if the vector table has "bad" data in it.
578                  */
579                 struct reg *reg = &armv7m->arm.core_cache->reg_list[ARMV7M_xPSR];
580                 buf_set_u32(reg->value, 0, 32, 0x01000000);
581                 reg->valid = true;
582                 reg->dirty = true;
583         }
584
585         if (armv7m_algorithm_info->core_mode != ARM_MODE_ANY &&
586                         armv7m_algorithm_info->core_mode != core_mode) {
587
588                 /* we cannot set ARM_MODE_HANDLER, so use ARM_MODE_THREAD instead */
589                 if (armv7m_algorithm_info->core_mode == ARM_MODE_HANDLER) {
590                         armv7m_algorithm_info->core_mode = ARM_MODE_THREAD;
591                         LOG_INFO("ARM_MODE_HANDLER not currently supported, using ARM_MODE_THREAD instead");
592                 }
593
594                 LOG_DEBUG("setting core_mode: 0x%2.2x", armv7m_algorithm_info->core_mode);
595                 buf_set_u32(armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].value,
596                         0, 1, armv7m_algorithm_info->core_mode);
597                 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].dirty = true;
598                 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].valid = true;
599         }
600
601         /* save previous core mode */
602         armv7m_algorithm_info->core_mode = core_mode;
603
604         retval = target_resume(target, 0, entry_point, 1, 1);
605
606         return retval;
607 }
608
609 /** Waits for an algorithm in the target. */
610 int armv7m_wait_algorithm(struct target *target,
611         int num_mem_params, struct mem_param *mem_params,
612         int num_reg_params, struct reg_param *reg_params,
613         target_addr_t exit_point, int timeout_ms,
614         void *arch_info)
615 {
616         struct armv7m_common *armv7m = target_to_armv7m(target);
617         struct armv7m_algorithm *armv7m_algorithm_info = arch_info;
618         int retval = ERROR_OK;
619
620         /* NOTE: armv7m_run_algorithm requires that each algorithm uses a software breakpoint
621          * at the exit point */
622
623         if (armv7m_algorithm_info->common_magic != ARMV7M_COMMON_MAGIC) {
624                 LOG_ERROR("current target isn't an ARMV7M target");
625                 return ERROR_TARGET_INVALID;
626         }
627
628         retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
629         /* If the target fails to halt due to the breakpoint, force a halt */
630         if (retval != ERROR_OK || target->state != TARGET_HALTED) {
631                 retval = target_halt(target);
632                 if (retval != ERROR_OK)
633                         return retval;
634                 retval = target_wait_state(target, TARGET_HALTED, 500);
635                 if (retval != ERROR_OK)
636                         return retval;
637                 return ERROR_TARGET_TIMEOUT;
638         }
639
640         if (exit_point) {
641                 /* PC value has been cached in cortex_m_debug_entry() */
642                 uint32_t pc = buf_get_u32(armv7m->arm.pc->value, 0, 32);
643                 if (pc != exit_point) {
644                         LOG_DEBUG("failed algorithm halted at 0x%" PRIx32 ", expected 0x%" TARGET_PRIxADDR,
645                                           pc, exit_point);
646                         return ERROR_TARGET_ALGO_EXIT;
647                 }
648         }
649
650         /* Read memory values to mem_params[] */
651         for (int i = 0; i < num_mem_params; i++) {
652                 if (mem_params[i].direction != PARAM_OUT) {
653                         retval = target_read_buffer(target, mem_params[i].address,
654                                         mem_params[i].size,
655                                         mem_params[i].value);
656                         if (retval != ERROR_OK)
657                                 return retval;
658                 }
659         }
660
661         /* Copy core register values to reg_params[] */
662         for (int i = 0; i < num_reg_params; i++) {
663                 if (reg_params[i].direction != PARAM_OUT) {
664                         struct reg *reg = register_get_by_name(armv7m->arm.core_cache,
665                                         reg_params[i].reg_name,
666                                         0);
667
668                         if (!reg) {
669                                 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
670                                 return ERROR_COMMAND_SYNTAX_ERROR;
671                         }
672
673                         if (reg->size != reg_params[i].size) {
674                                 LOG_ERROR(
675                                         "BUG: register '%s' size doesn't match reg_params[i].size",
676                                         reg_params[i].reg_name);
677                                 return ERROR_COMMAND_SYNTAX_ERROR;
678                         }
679
680                         buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
681                 }
682         }
683
684         for (int i = armv7m->arm.core_cache->num_regs - 1; i >= 0; i--) {
685                 uint32_t regvalue;
686                 regvalue = buf_get_u32(armv7m->arm.core_cache->reg_list[i].value, 0, 32);
687                 if (regvalue != armv7m_algorithm_info->context[i]) {
688                         LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32,
689                                         armv7m->arm.core_cache->reg_list[i].name,
690                                 armv7m_algorithm_info->context[i]);
691                         buf_set_u32(armv7m->arm.core_cache->reg_list[i].value,
692                                 0, 32, armv7m_algorithm_info->context[i]);
693                         armv7m->arm.core_cache->reg_list[i].valid = true;
694                         armv7m->arm.core_cache->reg_list[i].dirty = true;
695                 }
696         }
697
698         /* restore previous core mode */
699         if (armv7m_algorithm_info->core_mode != armv7m->arm.core_mode) {
700                 LOG_DEBUG("restoring core_mode: 0x%2.2x", armv7m_algorithm_info->core_mode);
701                 buf_set_u32(armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].value,
702                         0, 1, armv7m_algorithm_info->core_mode);
703                 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].dirty = true;
704                 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].valid = true;
705         }
706
707         armv7m->arm.core_mode = armv7m_algorithm_info->core_mode;
708
709         return retval;
710 }
711
712 /** Logs summary of ARMv7-M state for a halted target. */
713 int armv7m_arch_state(struct target *target)
714 {
715         struct armv7m_common *armv7m = target_to_armv7m(target);
716         struct arm *arm = &armv7m->arm;
717         uint32_t ctrl, sp;
718
719         /* avoid filling log waiting for fileio reply */
720         if (target->semihosting && target->semihosting->hit_fileio)
721                 return ERROR_OK;
722
723         ctrl = buf_get_u32(arm->core_cache->reg_list[ARMV7M_CONTROL].value, 0, 32);
724         sp = buf_get_u32(arm->core_cache->reg_list[ARMV7M_R13].value, 0, 32);
725
726         LOG_USER("target halted due to %s, current mode: %s %s\n"
727                 "xPSR: %#8.8" PRIx32 " pc: %#8.8" PRIx32 " %csp: %#8.8" PRIx32 "%s%s",
728                 debug_reason_name(target),
729                 arm_mode_name(arm->core_mode),
730                 armv7m_exception_string(armv7m->exception_number),
731                 buf_get_u32(arm->cpsr->value, 0, 32),
732                 buf_get_u32(arm->pc->value, 0, 32),
733                 (ctrl & 0x02) ? 'p' : 'm',
734                 sp,
735                 (target->semihosting && target->semihosting->is_active) ? ", semihosting" : "",
736                 (target->semihosting && target->semihosting->is_fileio) ? " fileio" : "");
737
738         return ERROR_OK;
739 }
740
741 static const struct reg_arch_type armv7m_reg_type = {
742         .get = armv7m_get_core_reg,
743         .set = armv7m_set_core_reg,
744 };
745
746 /** Builds cache of architecturally defined registers.  */
747 struct reg_cache *armv7m_build_reg_cache(struct target *target)
748 {
749         struct armv7m_common *armv7m = target_to_armv7m(target);
750         struct arm *arm = &armv7m->arm;
751         int num_regs = ARMV7M_NUM_REGS;
752         struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
753         struct reg_cache *cache = malloc(sizeof(struct reg_cache));
754         struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
755         struct arm_reg *arch_info = calloc(num_regs, sizeof(struct arm_reg));
756         struct reg_feature *feature;
757         int i;
758
759         /* Build the process context cache */
760         cache->name = "arm v7m registers";
761         cache->next = NULL;
762         cache->reg_list = reg_list;
763         cache->num_regs = num_regs;
764         (*cache_p) = cache;
765
766         for (i = 0; i < num_regs; i++) {
767                 arch_info[i].num = armv7m_regs[i].id;
768                 arch_info[i].target = target;
769                 arch_info[i].arm = arm;
770
771                 reg_list[i].name = armv7m_regs[i].name;
772                 reg_list[i].size = armv7m_regs[i].bits;
773                 reg_list[i].value = arch_info[i].value;
774                 reg_list[i].dirty = false;
775                 reg_list[i].valid = false;
776                 reg_list[i].hidden = (i == ARMV7M_PMSK_BPRI_FLTMSK_CTRL ||
777                                 i == ARMV8M_PMSK_BPRI_FLTMSK_CTRL_NS || i == ARMV8M_PMSK_BPRI_FLTMSK_CTRL_S);
778                 reg_list[i].type = &armv7m_reg_type;
779                 reg_list[i].arch_info = &arch_info[i];
780
781                 reg_list[i].group = armv7m_regs[i].group;
782                 reg_list[i].number = i;
783                 reg_list[i].exist = true;
784                 reg_list[i].caller_save = true; /* gdb defaults to true */
785
786                 if (reg_list[i].hidden)
787                         continue;
788
789                 feature = calloc(1, sizeof(struct reg_feature));
790                 if (feature) {
791                         feature->name = armv7m_regs[i].feature;
792                         reg_list[i].feature = feature;
793                 } else
794                         LOG_ERROR("unable to allocate feature list");
795
796                 reg_list[i].reg_data_type = calloc(1, sizeof(struct reg_data_type));
797                 if (reg_list[i].reg_data_type)
798                         reg_list[i].reg_data_type->type = armv7m_regs[i].type;
799                 else
800                         LOG_ERROR("unable to allocate reg type list");
801         }
802
803         arm->cpsr = reg_list + ARMV7M_xPSR;
804         arm->pc = reg_list + ARMV7M_PC;
805         arm->core_cache = cache;
806
807         return cache;
808 }
809
810 void armv7m_free_reg_cache(struct target *target)
811 {
812         struct armv7m_common *armv7m = target_to_armv7m(target);
813         struct arm *arm = &armv7m->arm;
814         struct reg_cache *cache;
815         struct reg *reg;
816         unsigned int i;
817
818         cache = arm->core_cache;
819
820         if (!cache)
821                 return;
822
823         for (i = 0; i < cache->num_regs; i++) {
824                 reg = &cache->reg_list[i];
825
826                 free(reg->feature);
827                 free(reg->reg_data_type);
828         }
829
830         free(cache->reg_list[0].arch_info);
831         free(cache->reg_list);
832         free(cache);
833
834         arm->core_cache = NULL;
835 }
836
837 static int armv7m_setup_semihosting(struct target *target, int enable)
838 {
839         /* nothing todo for armv7m */
840         return ERROR_OK;
841 }
842
843 /** Sets up target as a generic ARMv7-M core */
844 int armv7m_init_arch_info(struct target *target, struct armv7m_common *armv7m)
845 {
846         struct arm *arm = &armv7m->arm;
847
848         armv7m->common_magic = ARMV7M_COMMON_MAGIC;
849         armv7m->fp_feature = FP_NONE;
850         armv7m->trace_config.trace_bus_id = 1;
851         /* Enable stimulus port #0 by default */
852         armv7m->trace_config.itm_ter[0] = 1;
853
854         arm->core_type = ARM_CORE_TYPE_M_PROFILE;
855         arm->arch_info = armv7m;
856         arm->setup_semihosting = armv7m_setup_semihosting;
857
858         arm->read_core_reg = armv7m_read_core_reg;
859         arm->write_core_reg = armv7m_write_core_reg;
860
861         return arm_init_arch_info(target, arm);
862 }
863
864 /** Generates a CRC32 checksum of a memory region. */
865 int armv7m_checksum_memory(struct target *target,
866         target_addr_t address, uint32_t count, uint32_t *checksum)
867 {
868         struct working_area *crc_algorithm;
869         struct armv7m_algorithm armv7m_info;
870         struct reg_param reg_params[2];
871         int retval;
872
873         static const uint8_t cortex_m_crc_code[] = {
874 #include "../../contrib/loaders/checksum/armv7m_crc.inc"
875         };
876
877         retval = target_alloc_working_area(target, sizeof(cortex_m_crc_code), &crc_algorithm);
878         if (retval != ERROR_OK)
879                 return retval;
880
881         retval = target_write_buffer(target, crc_algorithm->address,
882                         sizeof(cortex_m_crc_code), (uint8_t *)cortex_m_crc_code);
883         if (retval != ERROR_OK)
884                 goto cleanup;
885
886         armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
887         armv7m_info.core_mode = ARM_MODE_THREAD;
888
889         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
890         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
891
892         buf_set_u32(reg_params[0].value, 0, 32, address);
893         buf_set_u32(reg_params[1].value, 0, 32, count);
894
895         int timeout = 20000 * (1 + (count / (1024 * 1024)));
896
897         retval = target_run_algorithm(target, 0, NULL, 2, reg_params, crc_algorithm->address,
898                         crc_algorithm->address + (sizeof(cortex_m_crc_code) - 6),
899                         timeout, &armv7m_info);
900
901         if (retval == ERROR_OK)
902                 *checksum = buf_get_u32(reg_params[0].value, 0, 32);
903         else
904                 LOG_ERROR("error executing cortex_m crc algorithm");
905
906         destroy_reg_param(&reg_params[0]);
907         destroy_reg_param(&reg_params[1]);
908
909 cleanup:
910         target_free_working_area(target, crc_algorithm);
911
912         return retval;
913 }
914
915 /** Checks an array of memory regions whether they are erased. */
916 int armv7m_blank_check_memory(struct target *target,
917         struct target_memory_check_block *blocks, int num_blocks, uint8_t erased_value)
918 {
919         struct working_area *erase_check_algorithm;
920         struct working_area *erase_check_params;
921         struct reg_param reg_params[2];
922         struct armv7m_algorithm armv7m_info;
923         int retval;
924
925         static bool timed_out;
926
927         static const uint8_t erase_check_code[] = {
928 #include "../../contrib/loaders/erase_check/armv7m_erase_check.inc"
929         };
930
931         const uint32_t code_size = sizeof(erase_check_code);
932
933         /* make sure we have a working area */
934         if (target_alloc_working_area(target, code_size,
935                 &erase_check_algorithm) != ERROR_OK)
936                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
937
938         retval = target_write_buffer(target, erase_check_algorithm->address,
939                         code_size, erase_check_code);
940         if (retval != ERROR_OK)
941                 goto cleanup1;
942
943         /* prepare blocks array for algo */
944         struct algo_block {
945                 union {
946                         uint32_t size;
947                         uint32_t result;
948                 };
949                 uint32_t address;
950         };
951
952         uint32_t avail = target_get_working_area_avail(target);
953         int blocks_to_check = avail / sizeof(struct algo_block) - 1;
954         if (num_blocks < blocks_to_check)
955                 blocks_to_check = num_blocks;
956
957         struct algo_block *params = malloc((blocks_to_check+1)*sizeof(struct algo_block));
958         if (params == NULL) {
959                 retval = ERROR_FAIL;
960                 goto cleanup1;
961         }
962
963         int i;
964         uint32_t total_size = 0;
965         for (i = 0; i < blocks_to_check; i++) {
966                 total_size += blocks[i].size;
967                 target_buffer_set_u32(target, (uint8_t *)&(params[i].size),
968                                                 blocks[i].size / sizeof(uint32_t));
969                 target_buffer_set_u32(target, (uint8_t *)&(params[i].address),
970                                                 blocks[i].address);
971         }
972         target_buffer_set_u32(target, (uint8_t *)&(params[blocks_to_check].size), 0);
973
974         uint32_t param_size = (blocks_to_check + 1) * sizeof(struct algo_block);
975         if (target_alloc_working_area(target, param_size,
976                         &erase_check_params) != ERROR_OK) {
977                 retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
978                 goto cleanup2;
979         }
980
981         retval = target_write_buffer(target, erase_check_params->address,
982                                 param_size, (uint8_t *)params);
983         if (retval != ERROR_OK)
984                 goto cleanup3;
985
986         uint32_t erased_word = erased_value | (erased_value << 8)
987                                | (erased_value << 16) | (erased_value << 24);
988
989         LOG_DEBUG("Starting erase check of %d blocks, parameters@"
990                  TARGET_ADDR_FMT, blocks_to_check, erase_check_params->address);
991
992         armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
993         armv7m_info.core_mode = ARM_MODE_THREAD;
994
995         init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
996         buf_set_u32(reg_params[0].value, 0, 32, erase_check_params->address);
997
998         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
999         buf_set_u32(reg_params[1].value, 0, 32, erased_word);
1000
1001         /* assume CPU clk at least 1 MHz */
1002         int timeout = (timed_out ? 30000 : 2000) + total_size * 3 / 1000;
1003
1004         retval = target_run_algorithm(target,
1005                                 0, NULL,
1006                                 ARRAY_SIZE(reg_params), reg_params,
1007                                 erase_check_algorithm->address,
1008                                 erase_check_algorithm->address + (code_size - 2),
1009                                 timeout,
1010                                 &armv7m_info);
1011
1012         timed_out = retval == ERROR_TARGET_TIMEOUT;
1013         if (retval != ERROR_OK && !timed_out)
1014                 goto cleanup4;
1015
1016         retval = target_read_buffer(target, erase_check_params->address,
1017                                 param_size, (uint8_t *)params);
1018         if (retval != ERROR_OK)
1019                 goto cleanup4;
1020
1021         for (i = 0; i < blocks_to_check; i++) {
1022                 uint32_t result = target_buffer_get_u32(target,
1023                                         (uint8_t *)&(params[i].result));
1024                 if (result != 0 && result != 1)
1025                         break;
1026
1027                 blocks[i].result = result;
1028         }
1029         if (i && timed_out)
1030                 LOG_INFO("Slow CPU clock: %d blocks checked, %d remain. Continuing...", i, num_blocks-i);
1031
1032         retval = i;             /* return number of blocks really checked */
1033
1034 cleanup4:
1035         destroy_reg_param(&reg_params[0]);
1036         destroy_reg_param(&reg_params[1]);
1037
1038 cleanup3:
1039         target_free_working_area(target, erase_check_params);
1040 cleanup2:
1041         free(params);
1042 cleanup1:
1043         target_free_working_area(target, erase_check_algorithm);
1044
1045         return retval;
1046 }
1047
1048 int armv7m_maybe_skip_bkpt_inst(struct target *target, bool *inst_found)
1049 {
1050         struct armv7m_common *armv7m = target_to_armv7m(target);
1051         struct reg *r = armv7m->arm.pc;
1052         bool result = false;
1053
1054
1055         /* if we halted last time due to a bkpt instruction
1056          * then we have to manually step over it, otherwise
1057          * the core will break again */
1058
1059         if (target->debug_reason == DBG_REASON_BREAKPOINT) {
1060                 uint16_t op;
1061                 uint32_t pc = buf_get_u32(r->value, 0, 32);
1062
1063                 pc &= ~1;
1064                 if (target_read_u16(target, pc, &op) == ERROR_OK) {
1065                         if ((op & 0xFF00) == 0xBE00) {
1066                                 pc = buf_get_u32(r->value, 0, 32) + 2;
1067                                 buf_set_u32(r->value, 0, 32, pc);
1068                                 r->dirty = true;
1069                                 r->valid = true;
1070                                 result = true;
1071                                 LOG_DEBUG("Skipping over BKPT instruction");
1072                         }
1073                 }
1074         }
1075
1076         if (inst_found)
1077                 *inst_found = result;
1078
1079         return ERROR_OK;
1080 }
1081
1082 const struct command_registration armv7m_command_handlers[] = {
1083         {
1084                 .chain = arm_command_handlers,
1085         },
1086         COMMAND_REGISTRATION_DONE
1087 };