Rework/update ARM semihosting
[fw/openocd] / src / target / armv7m.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                 *
12  *   oyvind.harboe@zylin.com                                               *
13  *                                                                         *
14  *   Copyright (C) 2018 by Liviu Ionescu                                   *
15  *   <ilg@livius.net>                                                      *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
29  *                                                                         *
30  *   ARMv7-M Architecture, Application Level Reference Manual              *
31  *              ARM DDI 0405C (September 2008)                             *
32  *                                                                         *
33  ***************************************************************************/
34
35 #ifdef HAVE_CONFIG_H
36 #include "config.h"
37 #endif
38
39 #include "breakpoints.h"
40 #include "armv7m.h"
41 #include "algorithm.h"
42 #include "register.h"
43 #include "semihosting_common.h"
44
45 #if 0
46 #define _DEBUG_INSTRUCTION_EXECUTION_
47 #endif
48
49 static const char * const armv7m_exception_strings[] = {
50         "", "Reset", "NMI", "HardFault",
51         "MemManage", "BusFault", "UsageFault", "RESERVED",
52         "RESERVED", "RESERVED", "RESERVED", "SVCall",
53         "DebugMonitor", "RESERVED", "PendSV", "SysTick"
54 };
55
56 /* PSP is used in some thread modes */
57 const int armv7m_psp_reg_map[ARMV7M_NUM_CORE_REGS] = {
58         ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
59         ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
60         ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
61         ARMV7M_R12, ARMV7M_PSP, ARMV7M_R14, ARMV7M_PC,
62         ARMV7M_xPSR,
63 };
64
65 /* MSP is used in handler and some thread modes */
66 const int armv7m_msp_reg_map[ARMV7M_NUM_CORE_REGS] = {
67         ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
68         ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
69         ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
70         ARMV7M_R12, ARMV7M_MSP, ARMV7M_R14, ARMV7M_PC,
71         ARMV7M_xPSR,
72 };
73
74 /*
75  * These registers are not memory-mapped.  The ARMv7-M profile includes
76  * memory mapped registers too, such as for the NVIC (interrupt controller)
77  * and SysTick (timer) modules; those can mostly be treated as peripherals.
78  *
79  * The ARMv6-M profile is almost identical in this respect, except that it
80  * doesn't include basepri or faultmask registers.
81  */
82 static const struct {
83         unsigned id;
84         const char *name;
85         unsigned bits;
86         enum reg_type type;
87         const char *group;
88         const char *feature;
89 } armv7m_regs[] = {
90         { ARMV7M_R0, "r0", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
91         { ARMV7M_R1, "r1", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
92         { ARMV7M_R2, "r2", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
93         { ARMV7M_R3, "r3", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
94         { ARMV7M_R4, "r4", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
95         { ARMV7M_R5, "r5", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
96         { ARMV7M_R6, "r6", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
97         { ARMV7M_R7, "r7", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
98         { ARMV7M_R8, "r8", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
99         { ARMV7M_R9, "r9", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
100         { ARMV7M_R10, "r10", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
101         { ARMV7M_R11, "r11", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
102         { ARMV7M_R12, "r12", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
103         { ARMV7M_R13, "sp", 32, REG_TYPE_DATA_PTR, "general", "org.gnu.gdb.arm.m-profile" },
104         { ARMV7M_R14, "lr", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
105         { ARMV7M_PC, "pc", 32, REG_TYPE_CODE_PTR, "general", "org.gnu.gdb.arm.m-profile" },
106         { ARMV7M_xPSR, "xPSR", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
107
108         { ARMV7M_MSP, "msp", 32, REG_TYPE_DATA_PTR, "system", "org.gnu.gdb.arm.m-system" },
109         { ARMV7M_PSP, "psp", 32, REG_TYPE_DATA_PTR, "system", "org.gnu.gdb.arm.m-system" },
110
111         { ARMV7M_PRIMASK, "primask", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
112         { ARMV7M_BASEPRI, "basepri", 8, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
113         { ARMV7M_FAULTMASK, "faultmask", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
114         { ARMV7M_CONTROL, "control", 2, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
115
116         { ARMV7M_D0, "d0", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
117         { ARMV7M_D1, "d1", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
118         { ARMV7M_D2, "d2", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
119         { ARMV7M_D3, "d3", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
120         { ARMV7M_D4, "d4", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
121         { ARMV7M_D5, "d5", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
122         { ARMV7M_D6, "d6", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
123         { ARMV7M_D7, "d7", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
124         { ARMV7M_D8, "d8", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
125         { ARMV7M_D9, "d9", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
126         { ARMV7M_D10, "d10", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
127         { ARMV7M_D11, "d11", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
128         { ARMV7M_D12, "d12", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
129         { ARMV7M_D13, "d13", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
130         { ARMV7M_D14, "d14", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
131         { ARMV7M_D15, "d15", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
132
133         { ARMV7M_FPSCR, "fpscr", 32, REG_TYPE_INT, "float", "org.gnu.gdb.arm.vfp" },
134 };
135
136 #define ARMV7M_NUM_REGS ARRAY_SIZE(armv7m_regs)
137
138 /**
139  * Restores target context using the cache of core registers set up
140  * by armv7m_build_reg_cache(), calling optional core-specific hooks.
141  */
142 int armv7m_restore_context(struct target *target)
143 {
144         int i;
145         struct armv7m_common *armv7m = target_to_armv7m(target);
146         struct reg_cache *cache = armv7m->arm.core_cache;
147
148         LOG_DEBUG(" ");
149
150         if (armv7m->pre_restore_context)
151                 armv7m->pre_restore_context(target);
152
153         for (i = cache->num_regs - 1; i >= 0; i--) {
154                 if (cache->reg_list[i].dirty) {
155                         armv7m->arm.write_core_reg(target, &cache->reg_list[i], i,
156                                                    ARM_MODE_ANY, cache->reg_list[i].value);
157                 }
158         }
159
160         return ERROR_OK;
161 }
162
163 /* Core state functions */
164
165 /**
166  * Maps ISR number (from xPSR) to name.
167  * Note that while names and meanings for the first sixteen are standardized
168  * (with zero not a true exception), external interrupts are only numbered.
169  * They are assigned by vendors, which generally assign different numbers to
170  * peripherals (such as UART0 or a USB peripheral controller).
171  */
172 const char *armv7m_exception_string(int number)
173 {
174         static char enamebuf[32];
175
176         if ((number < 0) | (number > 511))
177                 return "Invalid exception";
178         if (number < 16)
179                 return armv7m_exception_strings[number];
180         sprintf(enamebuf, "External Interrupt(%i)", number - 16);
181         return enamebuf;
182 }
183
184 static int armv7m_get_core_reg(struct reg *reg)
185 {
186         int retval;
187         struct arm_reg *armv7m_reg = reg->arch_info;
188         struct target *target = armv7m_reg->target;
189         struct arm *arm = target_to_arm(target);
190
191         if (target->state != TARGET_HALTED)
192                 return ERROR_TARGET_NOT_HALTED;
193
194         retval = arm->read_core_reg(target, reg, armv7m_reg->num, arm->core_mode);
195
196         return retval;
197 }
198
199 static int armv7m_set_core_reg(struct reg *reg, uint8_t *buf)
200 {
201         struct arm_reg *armv7m_reg = reg->arch_info;
202         struct target *target = armv7m_reg->target;
203
204         if (target->state != TARGET_HALTED)
205                 return ERROR_TARGET_NOT_HALTED;
206
207         buf_cpy(buf, reg->value, reg->size);
208         reg->dirty = 1;
209         reg->valid = 1;
210
211         return ERROR_OK;
212 }
213
214 static int armv7m_read_core_reg(struct target *target, struct reg *r,
215         int num, enum arm_mode mode)
216 {
217         uint32_t reg_value;
218         int retval;
219         struct arm_reg *armv7m_core_reg;
220         struct armv7m_common *armv7m = target_to_armv7m(target);
221
222         assert(num < (int)armv7m->arm.core_cache->num_regs);
223
224         armv7m_core_reg = armv7m->arm.core_cache->reg_list[num].arch_info;
225
226         if ((armv7m_core_reg->num >= ARMV7M_D0) && (armv7m_core_reg->num <= ARMV7M_D15)) {
227                 /* map D0..D15 to S0..S31 */
228                 size_t regidx = ARMV7M_S0 + 2 * (armv7m_core_reg->num - ARMV7M_D0);
229                 retval = armv7m->load_core_reg_u32(target, regidx, &reg_value);
230                 if (retval != ERROR_OK)
231                         return retval;
232                 buf_set_u32(armv7m->arm.core_cache->reg_list[num].value,
233                             0, 32, reg_value);
234                 retval = armv7m->load_core_reg_u32(target, regidx + 1, &reg_value);
235                 if (retval != ERROR_OK)
236                         return retval;
237                 buf_set_u32(armv7m->arm.core_cache->reg_list[num].value + 4,
238                             0, 32, reg_value);
239         } else {
240                 retval = armv7m->load_core_reg_u32(target,
241                                                    armv7m_core_reg->num, &reg_value);
242                 if (retval != ERROR_OK)
243                         return retval;
244                 buf_set_u32(armv7m->arm.core_cache->reg_list[num].value, 0, 32, reg_value);
245         }
246
247         armv7m->arm.core_cache->reg_list[num].valid = 1;
248         armv7m->arm.core_cache->reg_list[num].dirty = 0;
249
250         return retval;
251 }
252
253 static int armv7m_write_core_reg(struct target *target, struct reg *r,
254         int num, enum arm_mode mode, uint8_t *value)
255 {
256         int retval;
257         struct arm_reg *armv7m_core_reg;
258         struct armv7m_common *armv7m = target_to_armv7m(target);
259
260         assert(num < (int)armv7m->arm.core_cache->num_regs);
261
262         armv7m_core_reg = armv7m->arm.core_cache->reg_list[num].arch_info;
263
264         if ((armv7m_core_reg->num >= ARMV7M_D0) && (armv7m_core_reg->num <= ARMV7M_D15)) {
265                 /* map D0..D15 to S0..S31 */
266                 size_t regidx = ARMV7M_S0 + 2 * (armv7m_core_reg->num - ARMV7M_D0);
267
268                 uint32_t t = buf_get_u32(value, 0, 32);
269                 retval = armv7m->store_core_reg_u32(target, regidx, t);
270                 if (retval != ERROR_OK)
271                         goto out_error;
272
273                 t = buf_get_u32(value + 4, 0, 32);
274                 retval = armv7m->store_core_reg_u32(target, regidx + 1, t);
275                 if (retval != ERROR_OK)
276                         goto out_error;
277         } else {
278                 uint32_t t = buf_get_u32(value, 0, 32);
279
280                 LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", num, t);
281                 retval = armv7m->store_core_reg_u32(target, armv7m_core_reg->num, t);
282                 if (retval != ERROR_OK)
283                         goto out_error;
284         }
285
286         armv7m->arm.core_cache->reg_list[num].valid = 1;
287         armv7m->arm.core_cache->reg_list[num].dirty = 0;
288
289         return ERROR_OK;
290
291 out_error:
292         LOG_ERROR("Error setting register");
293         armv7m->arm.core_cache->reg_list[num].dirty = armv7m->arm.core_cache->reg_list[num].valid;
294         return ERROR_JTAG_DEVICE_ERROR;
295 }
296
297 /**
298  * Returns generic ARM userspace registers to GDB.
299  */
300 int armv7m_get_gdb_reg_list(struct target *target, struct reg **reg_list[],
301                 int *reg_list_size, enum target_register_class reg_class)
302 {
303         struct armv7m_common *armv7m = target_to_armv7m(target);
304         int i;
305
306         if (reg_class == REG_CLASS_ALL)
307                 *reg_list_size = armv7m->arm.core_cache->num_regs;
308         else
309                 *reg_list_size = ARMV7M_NUM_CORE_REGS;
310
311         *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
312         if (*reg_list == NULL)
313                 return ERROR_FAIL;
314
315         for (i = 0; i < *reg_list_size; i++)
316                 (*reg_list)[i] = &armv7m->arm.core_cache->reg_list[i];
317
318         return ERROR_OK;
319 }
320
321 /** Runs a Thumb algorithm in the target. */
322 int armv7m_run_algorithm(struct target *target,
323         int num_mem_params, struct mem_param *mem_params,
324         int num_reg_params, struct reg_param *reg_params,
325         target_addr_t entry_point, target_addr_t exit_point,
326         int timeout_ms, void *arch_info)
327 {
328         int retval;
329
330         retval = armv7m_start_algorithm(target,
331                         num_mem_params, mem_params,
332                         num_reg_params, reg_params,
333                         entry_point, exit_point,
334                         arch_info);
335
336         if (retval == ERROR_OK)
337                 retval = armv7m_wait_algorithm(target,
338                                 num_mem_params, mem_params,
339                                 num_reg_params, reg_params,
340                                 exit_point, timeout_ms,
341                                 arch_info);
342
343         return retval;
344 }
345
346 /** Starts a Thumb algorithm in the target. */
347 int armv7m_start_algorithm(struct target *target,
348         int num_mem_params, struct mem_param *mem_params,
349         int num_reg_params, struct reg_param *reg_params,
350         target_addr_t entry_point, target_addr_t exit_point,
351         void *arch_info)
352 {
353         struct armv7m_common *armv7m = target_to_armv7m(target);
354         struct armv7m_algorithm *armv7m_algorithm_info = arch_info;
355         enum arm_mode core_mode = armv7m->arm.core_mode;
356         int retval = ERROR_OK;
357
358         /* NOTE: armv7m_run_algorithm requires that each algorithm uses a software breakpoint
359          * at the exit point */
360
361         if (armv7m_algorithm_info->common_magic != ARMV7M_COMMON_MAGIC) {
362                 LOG_ERROR("current target isn't an ARMV7M target");
363                 return ERROR_TARGET_INVALID;
364         }
365
366         if (target->state != TARGET_HALTED) {
367                 LOG_WARNING("target not halted");
368                 return ERROR_TARGET_NOT_HALTED;
369         }
370
371         /* refresh core register cache
372          * Not needed if core register cache is always consistent with target process state */
373         for (unsigned i = 0; i < armv7m->arm.core_cache->num_regs; i++) {
374
375                 armv7m_algorithm_info->context[i] = buf_get_u32(
376                                 armv7m->arm.core_cache->reg_list[i].value,
377                                 0,
378                                 32);
379         }
380
381         for (int i = 0; i < num_mem_params; i++) {
382                 /* TODO: Write only out params */
383                 retval = target_write_buffer(target, mem_params[i].address,
384                                 mem_params[i].size,
385                                 mem_params[i].value);
386                 if (retval != ERROR_OK)
387                         return retval;
388         }
389
390         for (int i = 0; i < num_reg_params; i++) {
391                 struct reg *reg =
392                         register_get_by_name(armv7m->arm.core_cache, reg_params[i].reg_name, 0);
393 /*              uint32_t regvalue; */
394
395                 if (!reg) {
396                         LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
397                         return ERROR_COMMAND_SYNTAX_ERROR;
398                 }
399
400                 if (reg->size != reg_params[i].size) {
401                         LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
402                                 reg_params[i].reg_name);
403                         return ERROR_COMMAND_SYNTAX_ERROR;
404                 }
405
406 /*              regvalue = buf_get_u32(reg_params[i].value, 0, 32); */
407                 armv7m_set_core_reg(reg, reg_params[i].value);
408         }
409
410         if (armv7m_algorithm_info->core_mode != ARM_MODE_ANY &&
411                         armv7m_algorithm_info->core_mode != core_mode) {
412
413                 /* we cannot set ARM_MODE_HANDLER, so use ARM_MODE_THREAD instead */
414                 if (armv7m_algorithm_info->core_mode == ARM_MODE_HANDLER) {
415                         armv7m_algorithm_info->core_mode = ARM_MODE_THREAD;
416                         LOG_INFO("ARM_MODE_HANDLER not currently supported, using ARM_MODE_THREAD instead");
417                 }
418
419                 LOG_DEBUG("setting core_mode: 0x%2.2x", armv7m_algorithm_info->core_mode);
420                 buf_set_u32(armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].value,
421                         0, 1, armv7m_algorithm_info->core_mode);
422                 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].dirty = 1;
423                 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].valid = 1;
424         }
425
426         /* save previous core mode */
427         armv7m_algorithm_info->core_mode = core_mode;
428
429         retval = target_resume(target, 0, entry_point, 1, 1);
430
431         return retval;
432 }
433
434 /** Waits for an algorithm in the target. */
435 int armv7m_wait_algorithm(struct target *target,
436         int num_mem_params, struct mem_param *mem_params,
437         int num_reg_params, struct reg_param *reg_params,
438         target_addr_t exit_point, int timeout_ms,
439         void *arch_info)
440 {
441         struct armv7m_common *armv7m = target_to_armv7m(target);
442         struct armv7m_algorithm *armv7m_algorithm_info = arch_info;
443         int retval = ERROR_OK;
444         uint32_t pc;
445
446         /* NOTE: armv7m_run_algorithm requires that each algorithm uses a software breakpoint
447          * at the exit point */
448
449         if (armv7m_algorithm_info->common_magic != ARMV7M_COMMON_MAGIC) {
450                 LOG_ERROR("current target isn't an ARMV7M target");
451                 return ERROR_TARGET_INVALID;
452         }
453
454         retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
455         /* If the target fails to halt due to the breakpoint, force a halt */
456         if (retval != ERROR_OK || target->state != TARGET_HALTED) {
457                 retval = target_halt(target);
458                 if (retval != ERROR_OK)
459                         return retval;
460                 retval = target_wait_state(target, TARGET_HALTED, 500);
461                 if (retval != ERROR_OK)
462                         return retval;
463                 return ERROR_TARGET_TIMEOUT;
464         }
465
466         armv7m->load_core_reg_u32(target, 15, &pc);
467         if (exit_point && (pc != exit_point)) {
468                 LOG_DEBUG("failed algorithm halted at 0x%" PRIx32 ", expected 0x%" TARGET_PRIxADDR,
469                         pc,
470                         exit_point);
471                 return ERROR_TARGET_TIMEOUT;
472         }
473
474         /* Read memory values to mem_params[] */
475         for (int i = 0; i < num_mem_params; i++) {
476                 if (mem_params[i].direction != PARAM_OUT) {
477                         retval = target_read_buffer(target, mem_params[i].address,
478                                         mem_params[i].size,
479                                         mem_params[i].value);
480                         if (retval != ERROR_OK)
481                                 return retval;
482                 }
483         }
484
485         /* Copy core register values to reg_params[] */
486         for (int i = 0; i < num_reg_params; i++) {
487                 if (reg_params[i].direction != PARAM_OUT) {
488                         struct reg *reg = register_get_by_name(armv7m->arm.core_cache,
489                                         reg_params[i].reg_name,
490                                         0);
491
492                         if (!reg) {
493                                 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
494                                 return ERROR_COMMAND_SYNTAX_ERROR;
495                         }
496
497                         if (reg->size != reg_params[i].size) {
498                                 LOG_ERROR(
499                                         "BUG: register '%s' size doesn't match reg_params[i].size",
500                                         reg_params[i].reg_name);
501                                 return ERROR_COMMAND_SYNTAX_ERROR;
502                         }
503
504                         buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
505                 }
506         }
507
508         for (int i = armv7m->arm.core_cache->num_regs - 1; i >= 0; i--) {
509                 uint32_t regvalue;
510                 regvalue = buf_get_u32(armv7m->arm.core_cache->reg_list[i].value, 0, 32);
511                 if (regvalue != armv7m_algorithm_info->context[i]) {
512                         LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32,
513                                         armv7m->arm.core_cache->reg_list[i].name,
514                                 armv7m_algorithm_info->context[i]);
515                         buf_set_u32(armv7m->arm.core_cache->reg_list[i].value,
516                                 0, 32, armv7m_algorithm_info->context[i]);
517                         armv7m->arm.core_cache->reg_list[i].valid = 1;
518                         armv7m->arm.core_cache->reg_list[i].dirty = 1;
519                 }
520         }
521
522         /* restore previous core mode */
523         if (armv7m_algorithm_info->core_mode != armv7m->arm.core_mode) {
524                 LOG_DEBUG("restoring core_mode: 0x%2.2x", armv7m_algorithm_info->core_mode);
525                 buf_set_u32(armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].value,
526                         0, 1, armv7m_algorithm_info->core_mode);
527                 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].dirty = 1;
528                 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].valid = 1;
529         }
530
531         armv7m->arm.core_mode = armv7m_algorithm_info->core_mode;
532
533         return retval;
534 }
535
536 /** Logs summary of ARMv7-M state for a halted target. */
537 int armv7m_arch_state(struct target *target)
538 {
539         struct armv7m_common *armv7m = target_to_armv7m(target);
540         struct arm *arm = &armv7m->arm;
541         uint32_t ctrl, sp;
542
543         /* avoid filling log waiting for fileio reply */
544         if (target->semihosting->hit_fileio)
545                 return ERROR_OK;
546
547         ctrl = buf_get_u32(arm->core_cache->reg_list[ARMV7M_CONTROL].value, 0, 32);
548         sp = buf_get_u32(arm->core_cache->reg_list[ARMV7M_R13].value, 0, 32);
549
550         LOG_USER("target halted due to %s, current mode: %s %s\n"
551                 "xPSR: %#8.8" PRIx32 " pc: %#8.8" PRIx32 " %csp: %#8.8" PRIx32 "%s%s",
552                 debug_reason_name(target),
553                 arm_mode_name(arm->core_mode),
554                 armv7m_exception_string(armv7m->exception_number),
555                 buf_get_u32(arm->cpsr->value, 0, 32),
556                 buf_get_u32(arm->pc->value, 0, 32),
557                 (ctrl & 0x02) ? 'p' : 'm',
558                 sp,
559                 target->semihosting->is_active ? ", semihosting" : "",
560                 target->semihosting->is_fileio ? " fileio" : "");
561
562         return ERROR_OK;
563 }
564
565 static const struct reg_arch_type armv7m_reg_type = {
566         .get = armv7m_get_core_reg,
567         .set = armv7m_set_core_reg,
568 };
569
570 /** Builds cache of architecturally defined registers.  */
571 struct reg_cache *armv7m_build_reg_cache(struct target *target)
572 {
573         struct armv7m_common *armv7m = target_to_armv7m(target);
574         struct arm *arm = &armv7m->arm;
575         int num_regs = ARMV7M_NUM_REGS;
576         struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
577         struct reg_cache *cache = malloc(sizeof(struct reg_cache));
578         struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
579         struct arm_reg *arch_info = calloc(num_regs, sizeof(struct arm_reg));
580         struct reg_feature *feature;
581         int i;
582
583         /* Build the process context cache */
584         cache->name = "arm v7m registers";
585         cache->next = NULL;
586         cache->reg_list = reg_list;
587         cache->num_regs = num_regs;
588         (*cache_p) = cache;
589
590         for (i = 0; i < num_regs; i++) {
591                 arch_info[i].num = armv7m_regs[i].id;
592                 arch_info[i].target = target;
593                 arch_info[i].arm = arm;
594
595                 reg_list[i].name = armv7m_regs[i].name;
596                 reg_list[i].size = armv7m_regs[i].bits;
597                 size_t storage_size = DIV_ROUND_UP(armv7m_regs[i].bits, 8);
598                 if (storage_size < 4)
599                         storage_size = 4;
600                 reg_list[i].value = calloc(1, storage_size);
601                 reg_list[i].dirty = 0;
602                 reg_list[i].valid = 0;
603                 reg_list[i].type = &armv7m_reg_type;
604                 reg_list[i].arch_info = &arch_info[i];
605
606                 reg_list[i].group = armv7m_regs[i].group;
607                 reg_list[i].number = i;
608                 reg_list[i].exist = true;
609                 reg_list[i].caller_save = true; /* gdb defaults to true */
610
611                 feature = calloc(1, sizeof(struct reg_feature));
612                 if (feature) {
613                         feature->name = armv7m_regs[i].feature;
614                         reg_list[i].feature = feature;
615                 } else
616                         LOG_ERROR("unable to allocate feature list");
617
618                 reg_list[i].reg_data_type = calloc(1, sizeof(struct reg_data_type));
619                 if (reg_list[i].reg_data_type)
620                         reg_list[i].reg_data_type->type = armv7m_regs[i].type;
621                 else
622                         LOG_ERROR("unable to allocate reg type list");
623         }
624
625         arm->cpsr = reg_list + ARMV7M_xPSR;
626         arm->pc = reg_list + ARMV7M_PC;
627         arm->core_cache = cache;
628
629         return cache;
630 }
631
632 void armv7m_free_reg_cache(struct target *target)
633 {
634         struct armv7m_common *armv7m = target_to_armv7m(target);
635         struct arm *arm = &armv7m->arm;
636         struct reg_cache *cache;
637         struct reg *reg;
638         unsigned int i;
639
640         cache = arm->core_cache;
641
642         if (!cache)
643                 return;
644
645         for (i = 0; i < cache->num_regs; i++) {
646                 reg = &cache->reg_list[i];
647
648                 free(reg->feature);
649                 free(reg->reg_data_type);
650                 free(reg->value);
651         }
652
653         free(cache->reg_list[0].arch_info);
654         free(cache->reg_list);
655         free(cache);
656
657         arm->core_cache = NULL;
658 }
659
660 static int armv7m_setup_semihosting(struct target *target, int enable)
661 {
662         /* nothing todo for armv7m */
663         return ERROR_OK;
664 }
665
666 /** Sets up target as a generic ARMv7-M core */
667 int armv7m_init_arch_info(struct target *target, struct armv7m_common *armv7m)
668 {
669         struct arm *arm = &armv7m->arm;
670
671         armv7m->common_magic = ARMV7M_COMMON_MAGIC;
672         armv7m->fp_feature = FP_NONE;
673         armv7m->trace_config.trace_bus_id = 1;
674         /* Enable stimulus port #0 by default */
675         armv7m->trace_config.itm_ter[0] = 1;
676
677         arm->core_type = ARM_MODE_THREAD;
678         arm->arch_info = armv7m;
679         arm->setup_semihosting = armv7m_setup_semihosting;
680
681         arm->read_core_reg = armv7m_read_core_reg;
682         arm->write_core_reg = armv7m_write_core_reg;
683
684         return arm_init_arch_info(target, arm);
685 }
686
687 /** Generates a CRC32 checksum of a memory region. */
688 int armv7m_checksum_memory(struct target *target,
689         target_addr_t address, uint32_t count, uint32_t *checksum)
690 {
691         struct working_area *crc_algorithm;
692         struct armv7m_algorithm armv7m_info;
693         struct reg_param reg_params[2];
694         int retval;
695
696         static const uint8_t cortex_m_crc_code[] = {
697 #include "../../contrib/loaders/checksum/armv7m_crc.inc"
698         };
699
700         retval = target_alloc_working_area(target, sizeof(cortex_m_crc_code), &crc_algorithm);
701         if (retval != ERROR_OK)
702                 return retval;
703
704         retval = target_write_buffer(target, crc_algorithm->address,
705                         sizeof(cortex_m_crc_code), (uint8_t *)cortex_m_crc_code);
706         if (retval != ERROR_OK)
707                 goto cleanup;
708
709         armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
710         armv7m_info.core_mode = ARM_MODE_THREAD;
711
712         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
713         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
714
715         buf_set_u32(reg_params[0].value, 0, 32, address);
716         buf_set_u32(reg_params[1].value, 0, 32, count);
717
718         int timeout = 20000 * (1 + (count / (1024 * 1024)));
719
720         retval = target_run_algorithm(target, 0, NULL, 2, reg_params, crc_algorithm->address,
721                         crc_algorithm->address + (sizeof(cortex_m_crc_code) - 6),
722                         timeout, &armv7m_info);
723
724         if (retval == ERROR_OK)
725                 *checksum = buf_get_u32(reg_params[0].value, 0, 32);
726         else
727                 LOG_ERROR("error executing cortex_m crc algorithm");
728
729         destroy_reg_param(&reg_params[0]);
730         destroy_reg_param(&reg_params[1]);
731
732 cleanup:
733         target_free_working_area(target, crc_algorithm);
734
735         return retval;
736 }
737
738 /** Checks an array of memory regions whether they are erased. */
739 int armv7m_blank_check_memory(struct target *target,
740         struct target_memory_check_block *blocks, int num_blocks, uint8_t erased_value)
741 {
742         struct working_area *erase_check_algorithm;
743         struct working_area *erase_check_params;
744         struct reg_param reg_params[2];
745         struct armv7m_algorithm armv7m_info;
746         int retval;
747
748         static bool timed_out;
749
750         static const uint8_t erase_check_code[] = {
751 #include "../../contrib/loaders/erase_check/armv7m_erase_check.inc"
752         };
753
754         const uint32_t code_size = sizeof(erase_check_code);
755
756         /* make sure we have a working area */
757         if (target_alloc_working_area(target, code_size,
758                 &erase_check_algorithm) != ERROR_OK)
759                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
760
761         retval = target_write_buffer(target, erase_check_algorithm->address,
762                         code_size, erase_check_code);
763         if (retval != ERROR_OK)
764                 goto cleanup1;
765
766         /* prepare blocks array for algo */
767         struct algo_block {
768                 union {
769                         uint32_t size;
770                         uint32_t result;
771                 };
772                 uint32_t address;
773         };
774
775         uint32_t avail = target_get_working_area_avail(target);
776         int blocks_to_check = avail / sizeof(struct algo_block) - 1;
777         if (num_blocks < blocks_to_check)
778                 blocks_to_check = num_blocks;
779
780         struct algo_block *params = malloc((blocks_to_check+1)*sizeof(struct algo_block));
781         if (params == NULL) {
782                 retval = ERROR_FAIL;
783                 goto cleanup1;
784         }
785
786         int i;
787         uint32_t total_size = 0;
788         for (i = 0; i < blocks_to_check; i++) {
789                 total_size += blocks[i].size;
790                 target_buffer_set_u32(target, (uint8_t *)&(params[i].size),
791                                                 blocks[i].size / sizeof(uint32_t));
792                 target_buffer_set_u32(target, (uint8_t *)&(params[i].address),
793                                                 blocks[i].address);
794         }
795         target_buffer_set_u32(target, (uint8_t *)&(params[blocks_to_check].size), 0);
796
797         uint32_t param_size = (blocks_to_check + 1) * sizeof(struct algo_block);
798         if (target_alloc_working_area(target, param_size,
799                         &erase_check_params) != ERROR_OK) {
800                 retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
801                 goto cleanup2;
802         }
803
804         retval = target_write_buffer(target, erase_check_params->address,
805                                 param_size, (uint8_t *)params);
806         if (retval != ERROR_OK)
807                 goto cleanup3;
808
809         uint32_t erased_word = erased_value | (erased_value << 8)
810                                | (erased_value << 16) | (erased_value << 24);
811
812         LOG_DEBUG("Starting erase check of %d blocks, parameters@"
813                  TARGET_ADDR_FMT, blocks_to_check, erase_check_params->address);
814
815         armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
816         armv7m_info.core_mode = ARM_MODE_THREAD;
817
818         init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
819         buf_set_u32(reg_params[0].value, 0, 32, erase_check_params->address);
820
821         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
822         buf_set_u32(reg_params[1].value, 0, 32, erased_word);
823
824         /* assume CPU clk at least 1 MHz */
825         int timeout = (timed_out ? 30000 : 2000) + total_size * 3 / 1000;
826
827         retval = target_run_algorithm(target,
828                                 0, NULL,
829                                 ARRAY_SIZE(reg_params), reg_params,
830                                 erase_check_algorithm->address,
831                                 erase_check_algorithm->address + (code_size - 2),
832                                 timeout,
833                                 &armv7m_info);
834
835         timed_out = retval == ERROR_TARGET_TIMEOUT;
836         if (retval != ERROR_OK && !timed_out)
837                 goto cleanup4;
838
839         retval = target_read_buffer(target, erase_check_params->address,
840                                 param_size, (uint8_t *)params);
841         if (retval != ERROR_OK)
842                 goto cleanup4;
843
844         for (i = 0; i < blocks_to_check; i++) {
845                 uint32_t result = target_buffer_get_u32(target,
846                                         (uint8_t *)&(params[i].result));
847                 if (result != 0 && result != 1)
848                         break;
849
850                 blocks[i].result = result;
851         }
852         if (i && timed_out)
853                 LOG_INFO("Slow CPU clock: %d blocks checked, %d remain. Continuing...", i, num_blocks-i);
854
855         retval = i;             /* return number of blocks really checked */
856
857 cleanup4:
858         destroy_reg_param(&reg_params[0]);
859         destroy_reg_param(&reg_params[1]);
860
861 cleanup3:
862         target_free_working_area(target, erase_check_params);
863 cleanup2:
864         free(params);
865 cleanup1:
866         target_free_working_area(target, erase_check_algorithm);
867
868         return retval;
869 }
870
871 int armv7m_maybe_skip_bkpt_inst(struct target *target, bool *inst_found)
872 {
873         struct armv7m_common *armv7m = target_to_armv7m(target);
874         struct reg *r = armv7m->arm.pc;
875         bool result = false;
876
877
878         /* if we halted last time due to a bkpt instruction
879          * then we have to manually step over it, otherwise
880          * the core will break again */
881
882         if (target->debug_reason == DBG_REASON_BREAKPOINT) {
883                 uint16_t op;
884                 uint32_t pc = buf_get_u32(r->value, 0, 32);
885
886                 pc &= ~1;
887                 if (target_read_u16(target, pc, &op) == ERROR_OK) {
888                         if ((op & 0xFF00) == 0xBE00) {
889                                 pc = buf_get_u32(r->value, 0, 32) + 2;
890                                 buf_set_u32(r->value, 0, 32, pc);
891                                 r->dirty = true;
892                                 r->valid = true;
893                                 result = true;
894                                 LOG_DEBUG("Skipping over BKPT instruction");
895                         }
896                 }
897         }
898
899         if (inst_found)
900                 *inst_found = result;
901
902         return ERROR_OK;
903 }
904
905 const struct command_registration armv7m_command_handlers[] = {
906         {
907                 .chain = arm_command_handlers,
908         },
909         COMMAND_REGISTRATION_DONE
910 };