target/armv7m: use arch_info[i].value instead of allocated memory
[fw/openocd] / src / target / armv7m.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                 *
12  *   oyvind.harboe@zylin.com                                               *
13  *                                                                         *
14  *   Copyright (C) 2018 by Liviu Ionescu                                   *
15  *   <ilg@livius.net>                                                      *
16  *                                                                         *
17  *   Copyright (C) 2019 by Tomas Vanek                                     *
18  *   vanekt@fbl.cz                                                         *
19  *                                                                         *
20  *   This program is free software; you can redistribute it and/or modify  *
21  *   it under the terms of the GNU General Public License as published by  *
22  *   the Free Software Foundation; either version 2 of the License, or     *
23  *   (at your option) any later version.                                   *
24  *                                                                         *
25  *   This program is distributed in the hope that it will be useful,       *
26  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
27  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
28  *   GNU General Public License for more details.                          *
29  *                                                                         *
30  *   You should have received a copy of the GNU General Public License     *
31  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
32  *                                                                         *
33  *   ARMv7-M Architecture, Application Level Reference Manual              *
34  *              ARM DDI 0405C (September 2008)                             *
35  *                                                                         *
36  ***************************************************************************/
37
38 #ifdef HAVE_CONFIG_H
39 #include "config.h"
40 #endif
41
42 #include "breakpoints.h"
43 #include "armv7m.h"
44 #include "algorithm.h"
45 #include "register.h"
46 #include "semihosting_common.h"
47
48 #if 0
49 #define _DEBUG_INSTRUCTION_EXECUTION_
50 #endif
51
52 static const char * const armv7m_exception_strings[] = {
53         "", "Reset", "NMI", "HardFault",
54         "MemManage", "BusFault", "UsageFault", "SecureFault",
55         "RESERVED", "RESERVED", "RESERVED", "SVCall",
56         "DebugMonitor", "RESERVED", "PendSV", "SysTick"
57 };
58
59 /* PSP is used in some thread modes */
60 const int armv7m_psp_reg_map[ARMV7M_NUM_CORE_REGS] = {
61         ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
62         ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
63         ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
64         ARMV7M_R12, ARMV7M_PSP, ARMV7M_R14, ARMV7M_PC,
65         ARMV7M_xPSR,
66 };
67
68 /* MSP is used in handler and some thread modes */
69 const int armv7m_msp_reg_map[ARMV7M_NUM_CORE_REGS] = {
70         ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
71         ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
72         ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
73         ARMV7M_R12, ARMV7M_MSP, ARMV7M_R14, ARMV7M_PC,
74         ARMV7M_xPSR,
75 };
76
77 /*
78  * These registers are not memory-mapped.  The ARMv7-M profile includes
79  * memory mapped registers too, such as for the NVIC (interrupt controller)
80  * and SysTick (timer) modules; those can mostly be treated as peripherals.
81  *
82  * The ARMv6-M profile is almost identical in this respect, except that it
83  * doesn't include basepri or faultmask registers.
84  */
85 static const struct {
86         unsigned id;
87         const char *name;
88         unsigned bits;
89         enum reg_type type;
90         const char *group;
91         const char *feature;
92 } armv7m_regs[] = {
93         { ARMV7M_R0, "r0", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
94         { ARMV7M_R1, "r1", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
95         { ARMV7M_R2, "r2", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
96         { ARMV7M_R3, "r3", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
97         { ARMV7M_R4, "r4", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
98         { ARMV7M_R5, "r5", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
99         { ARMV7M_R6, "r6", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
100         { ARMV7M_R7, "r7", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
101         { ARMV7M_R8, "r8", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
102         { ARMV7M_R9, "r9", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
103         { ARMV7M_R10, "r10", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
104         { ARMV7M_R11, "r11", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
105         { ARMV7M_R12, "r12", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
106         { ARMV7M_R13, "sp", 32, REG_TYPE_DATA_PTR, "general", "org.gnu.gdb.arm.m-profile" },
107         { ARMV7M_R14, "lr", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
108         { ARMV7M_PC, "pc", 32, REG_TYPE_CODE_PTR, "general", "org.gnu.gdb.arm.m-profile" },
109         { ARMV7M_xPSR, "xPSR", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
110
111         { ARMV7M_MSP, "msp", 32, REG_TYPE_DATA_PTR, "system", "org.gnu.gdb.arm.m-system" },
112         { ARMV7M_PSP, "psp", 32, REG_TYPE_DATA_PTR, "system", "org.gnu.gdb.arm.m-system" },
113
114         /* A working register for packing/unpacking special regs, hidden from gdb */
115         { ARMV7M_PMSK_BPRI_FLTMSK_CTRL, "pmsk_bpri_fltmsk_ctrl", 32, REG_TYPE_INT, NULL, NULL },
116
117         /* WARNING: If you use armv7m_write_core_reg() on one of 4 following
118          * special registers, the new data go to ARMV7M_PMSK_BPRI_FLTMSK_CTRL
119          * cache only and are not flushed to CPU HW register.
120          * To trigger write to CPU HW register, add
121          *              armv7m_write_core_reg(,,ARMV7M_PMSK_BPRI_FLTMSK_CTRL,);
122          */
123         { ARMV7M_PRIMASK, "primask", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
124         { ARMV7M_BASEPRI, "basepri", 8, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
125         { ARMV7M_FAULTMASK, "faultmask", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
126         { ARMV7M_CONTROL, "control", 3, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
127
128         { ARMV7M_D0, "d0", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
129         { ARMV7M_D1, "d1", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
130         { ARMV7M_D2, "d2", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
131         { ARMV7M_D3, "d3", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
132         { ARMV7M_D4, "d4", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
133         { ARMV7M_D5, "d5", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
134         { ARMV7M_D6, "d6", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
135         { ARMV7M_D7, "d7", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
136         { ARMV7M_D8, "d8", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
137         { ARMV7M_D9, "d9", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
138         { ARMV7M_D10, "d10", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
139         { ARMV7M_D11, "d11", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
140         { ARMV7M_D12, "d12", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
141         { ARMV7M_D13, "d13", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
142         { ARMV7M_D14, "d14", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
143         { ARMV7M_D15, "d15", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
144
145         { ARMV7M_FPSCR, "fpscr", 32, REG_TYPE_INT, "float", "org.gnu.gdb.arm.vfp" },
146 };
147
148 #define ARMV7M_NUM_REGS ARRAY_SIZE(armv7m_regs)
149
150 /**
151  * Restores target context using the cache of core registers set up
152  * by armv7m_build_reg_cache(), calling optional core-specific hooks.
153  */
154 int armv7m_restore_context(struct target *target)
155 {
156         int i;
157         struct armv7m_common *armv7m = target_to_armv7m(target);
158         struct reg_cache *cache = armv7m->arm.core_cache;
159
160         LOG_DEBUG(" ");
161
162         if (armv7m->pre_restore_context)
163                 armv7m->pre_restore_context(target);
164
165         /* The descending order of register writes is crucial for correct
166          * packing of ARMV7M_PMSK_BPRI_FLTMSK_CTRL!
167          * See also comments in the register table above */
168         for (i = cache->num_regs - 1; i >= 0; i--) {
169                 if (cache->reg_list[i].dirty) {
170                         armv7m->arm.write_core_reg(target, &cache->reg_list[i], i,
171                                                    ARM_MODE_ANY, cache->reg_list[i].value);
172                 }
173         }
174
175         return ERROR_OK;
176 }
177
178 /* Core state functions */
179
180 /**
181  * Maps ISR number (from xPSR) to name.
182  * Note that while names and meanings for the first sixteen are standardized
183  * (with zero not a true exception), external interrupts are only numbered.
184  * They are assigned by vendors, which generally assign different numbers to
185  * peripherals (such as UART0 or a USB peripheral controller).
186  */
187 const char *armv7m_exception_string(int number)
188 {
189         static char enamebuf[32];
190
191         if ((number < 0) | (number > 511))
192                 return "Invalid exception";
193         if (number < 16)
194                 return armv7m_exception_strings[number];
195         sprintf(enamebuf, "External Interrupt(%i)", number - 16);
196         return enamebuf;
197 }
198
199 static int armv7m_get_core_reg(struct reg *reg)
200 {
201         int retval;
202         struct arm_reg *armv7m_reg = reg->arch_info;
203         struct target *target = armv7m_reg->target;
204         struct arm *arm = target_to_arm(target);
205
206         if (target->state != TARGET_HALTED)
207                 return ERROR_TARGET_NOT_HALTED;
208
209         retval = arm->read_core_reg(target, reg, reg->number, arm->core_mode);
210
211         return retval;
212 }
213
214 static int armv7m_set_core_reg(struct reg *reg, uint8_t *buf)
215 {
216         struct arm_reg *armv7m_reg = reg->arch_info;
217         struct target *target = armv7m_reg->target;
218
219         if (target->state != TARGET_HALTED)
220                 return ERROR_TARGET_NOT_HALTED;
221
222         buf_cpy(buf, reg->value, reg->size);
223         reg->dirty = true;
224         reg->valid = true;
225
226         return ERROR_OK;
227 }
228
229 static uint32_t armv7m_map_id_to_regsel(unsigned int arm_reg_id)
230 {
231         switch (arm_reg_id) {
232         case ARMV7M_R0 ... ARMV7M_R14:
233         case ARMV7M_PC:
234         case ARMV7M_xPSR:
235         case ARMV7M_MSP:
236         case ARMV7M_PSP:
237                 /* NOTE:  we "know" here that the register identifiers
238                  * match the Cortex-M DCRSR.REGSEL selectors values
239                  * for R0..R14, PC, xPSR, MSP, and PSP.
240                  */
241                 return arm_reg_id;
242
243         case ARMV7M_PMSK_BPRI_FLTMSK_CTRL:
244                 return ARMV7M_REGSEL_PMSK_BPRI_FLTMSK_CTRL;
245
246         case ARMV7M_FPSCR:
247                 return ARMV7M_REGSEL_FPSCR;
248
249         case ARMV7M_D0 ... ARMV7M_D15:
250                 return ARMV7M_REGSEL_S0 + 2 * (arm_reg_id - ARMV7M_D0);
251
252         default:
253                 LOG_ERROR("Bad register ID %u", arm_reg_id);
254                 return arm_reg_id;
255         }
256 }
257
258 static bool armv7m_map_reg_packing(unsigned int arm_reg_id,
259                                         unsigned int *reg32_id, uint32_t *offset)
260 {
261         switch (arm_reg_id) {
262
263         case ARMV7M_PRIMASK:
264                 *reg32_id = ARMV7M_PMSK_BPRI_FLTMSK_CTRL;
265                 *offset = 0;
266                 return true;
267         case ARMV7M_BASEPRI:
268                 *reg32_id = ARMV7M_PMSK_BPRI_FLTMSK_CTRL;
269                 *offset = 1;
270                 return true;
271         case ARMV7M_FAULTMASK:
272                 *reg32_id = ARMV7M_PMSK_BPRI_FLTMSK_CTRL;
273                 *offset = 2;
274                 return true;
275         case ARMV7M_CONTROL:
276                 *reg32_id = ARMV7M_PMSK_BPRI_FLTMSK_CTRL;
277                 *offset = 3;
278                 return true;
279
280         default:
281                 return false;
282         }
283 }
284
285 static int armv7m_read_core_reg(struct target *target, struct reg *r,
286         int num, enum arm_mode mode)
287 {
288         uint32_t reg_value;
289         int retval;
290         struct armv7m_common *armv7m = target_to_armv7m(target);
291
292         assert(num < (int)armv7m->arm.core_cache->num_regs);
293         assert(num == (int)r->number);
294
295         /* If a code calls read_reg, it expects the cache is no more dirty.
296          * Clear the dirty flag regardless of the later read succeeds or not
297          * to prevent unwanted cache flush after a read error */
298         r->dirty = false;
299
300         if (r->size <= 8) {
301                 /* any 8-bit or shorter register is packed */
302                 uint32_t offset = 0;    /* silence false gcc warning */
303                 unsigned int reg32_id;
304
305                 bool is_packed = armv7m_map_reg_packing(num, &reg32_id, &offset);
306                 assert(is_packed);
307                 struct reg *r32 = &armv7m->arm.core_cache->reg_list[reg32_id];
308
309                 /* Read 32-bit container register if not cached */
310                 if (!r32->valid) {
311                         retval = armv7m_read_core_reg(target, r32, reg32_id, mode);
312                         if (retval != ERROR_OK)
313                                 return retval;
314                 }
315
316                 /* Copy required bits of 32-bit container register */
317                 buf_cpy(r32->value + offset, r->value, r->size);
318
319         } else {
320                 assert(r->size == 32 || r->size == 64);
321
322                 struct arm_reg *armv7m_core_reg = r->arch_info;
323                 uint32_t regsel = armv7m_map_id_to_regsel(armv7m_core_reg->num);
324
325                 retval = armv7m->load_core_reg_u32(target, regsel, &reg_value);
326                 if (retval != ERROR_OK)
327                         return retval;
328                 buf_set_u32(r->value, 0, 32, reg_value);
329
330                 if (r->size == 64) {
331                         retval = armv7m->load_core_reg_u32(target, regsel + 1, &reg_value);
332                         if (retval != ERROR_OK) {
333                                 r->valid = false;
334                                 return retval;
335                         }
336                         buf_set_u32(r->value + 4, 0, 32, reg_value);
337
338                         uint64_t q = buf_get_u64(r->value, 0, 64);
339                         LOG_DEBUG("read %s value 0x%016" PRIx64, r->name, q);
340                 } else {
341                         LOG_DEBUG("read %s value 0x%08" PRIx32, r->name, reg_value);
342                 }
343         }
344
345         r->valid = true;
346
347         return ERROR_OK;
348 }
349
350 static int armv7m_write_core_reg(struct target *target, struct reg *r,
351         int num, enum arm_mode mode, uint8_t *value)
352 {
353         int retval;
354         uint32_t t;
355         struct armv7m_common *armv7m = target_to_armv7m(target);
356
357         assert(num < (int)armv7m->arm.core_cache->num_regs);
358         assert(num == (int)r->number);
359
360         if (value != r->value) {
361                 /* If we are not flushing the cache, store the new value to the cache */
362                 buf_cpy(value, r->value, r->size);
363         }
364
365         if (r->size <= 8) {
366                 /* any 8-bit or shorter register is packed */
367                 uint32_t offset = 0;    /* silence false gcc warning */
368                 unsigned int reg32_id;
369
370                 bool is_packed = armv7m_map_reg_packing(num, &reg32_id, &offset);
371                 assert(is_packed);
372                 struct reg *r32 = &armv7m->arm.core_cache->reg_list[reg32_id];
373
374                 if (!r32->valid) {
375                         /* Before merging with other parts ensure the 32-bit register is valid */
376                         retval = armv7m_read_core_reg(target, r32, reg32_id, mode);
377                         if (retval != ERROR_OK)
378                                 return retval;
379                 }
380
381                 /* Write a part to the 32-bit container register */
382                 buf_cpy(value, r32->value + offset, r->size);
383                 r32->dirty = true;
384
385         } else {
386                 assert(r->size == 32 || r->size == 64);
387
388                 struct arm_reg *armv7m_core_reg = r->arch_info;
389                 uint32_t regsel = armv7m_map_id_to_regsel(armv7m_core_reg->num);
390
391                 t = buf_get_u32(value, 0, 32);
392                 retval = armv7m->store_core_reg_u32(target, regsel, t);
393                 if (retval != ERROR_OK)
394                         goto out_error;
395
396                 if (r->size == 64) {
397                         t = buf_get_u32(value + 4, 0, 32);
398                         retval = armv7m->store_core_reg_u32(target, regsel + 1, t);
399                         if (retval != ERROR_OK)
400                                 goto out_error;
401
402                         uint64_t q = buf_get_u64(value, 0, 64);
403                         LOG_DEBUG("write %s value 0x%016" PRIx64, r->name, q);
404                 } else {
405                         LOG_DEBUG("write %s value 0x%08" PRIx32, r->name, t);
406                 }
407         }
408
409         r->valid = true;
410         r->dirty = false;
411
412         return ERROR_OK;
413
414 out_error:
415         r->dirty = true;
416         LOG_ERROR("Error setting register %s", r->name);
417         return retval;
418 }
419
420 /**
421  * Returns generic ARM userspace registers to GDB.
422  */
423 int armv7m_get_gdb_reg_list(struct target *target, struct reg **reg_list[],
424                 int *reg_list_size, enum target_register_class reg_class)
425 {
426         struct armv7m_common *armv7m = target_to_armv7m(target);
427         int i, size;
428
429         if (reg_class == REG_CLASS_ALL)
430                 size = armv7m->arm.core_cache->num_regs;
431         else
432                 size = ARMV7M_NUM_CORE_REGS;
433
434         *reg_list = malloc(sizeof(struct reg *) * size);
435         if (*reg_list == NULL)
436                 return ERROR_FAIL;
437
438         for (i = 0; i < size; i++)
439                 (*reg_list)[i] = &armv7m->arm.core_cache->reg_list[i];
440
441         *reg_list_size = size;
442
443         return ERROR_OK;
444 }
445
446 /** Runs a Thumb algorithm in the target. */
447 int armv7m_run_algorithm(struct target *target,
448         int num_mem_params, struct mem_param *mem_params,
449         int num_reg_params, struct reg_param *reg_params,
450         target_addr_t entry_point, target_addr_t exit_point,
451         int timeout_ms, void *arch_info)
452 {
453         int retval;
454
455         retval = armv7m_start_algorithm(target,
456                         num_mem_params, mem_params,
457                         num_reg_params, reg_params,
458                         entry_point, exit_point,
459                         arch_info);
460
461         if (retval == ERROR_OK)
462                 retval = armv7m_wait_algorithm(target,
463                                 num_mem_params, mem_params,
464                                 num_reg_params, reg_params,
465                                 exit_point, timeout_ms,
466                                 arch_info);
467
468         return retval;
469 }
470
471 /** Starts a Thumb algorithm in the target. */
472 int armv7m_start_algorithm(struct target *target,
473         int num_mem_params, struct mem_param *mem_params,
474         int num_reg_params, struct reg_param *reg_params,
475         target_addr_t entry_point, target_addr_t exit_point,
476         void *arch_info)
477 {
478         struct armv7m_common *armv7m = target_to_armv7m(target);
479         struct armv7m_algorithm *armv7m_algorithm_info = arch_info;
480         enum arm_mode core_mode = armv7m->arm.core_mode;
481         int retval = ERROR_OK;
482
483         /* NOTE: armv7m_run_algorithm requires that each algorithm uses a software breakpoint
484          * at the exit point */
485
486         if (armv7m_algorithm_info->common_magic != ARMV7M_COMMON_MAGIC) {
487                 LOG_ERROR("current target isn't an ARMV7M target");
488                 return ERROR_TARGET_INVALID;
489         }
490
491         if (target->state != TARGET_HALTED) {
492                 LOG_WARNING("target not halted");
493                 return ERROR_TARGET_NOT_HALTED;
494         }
495
496         /* refresh core register cache
497          * Not needed if core register cache is always consistent with target process state */
498         for (unsigned i = 0; i < armv7m->arm.core_cache->num_regs; i++) {
499
500                 armv7m_algorithm_info->context[i] = buf_get_u32(
501                                 armv7m->arm.core_cache->reg_list[i].value,
502                                 0,
503                                 32);
504         }
505
506         for (int i = 0; i < num_mem_params; i++) {
507                 if (mem_params[i].direction == PARAM_IN)
508                         continue;
509                 retval = target_write_buffer(target, mem_params[i].address,
510                                 mem_params[i].size,
511                                 mem_params[i].value);
512                 if (retval != ERROR_OK)
513                         return retval;
514         }
515
516         for (int i = 0; i < num_reg_params; i++) {
517                 if (reg_params[i].direction == PARAM_IN)
518                         continue;
519
520                 struct reg *reg =
521                         register_get_by_name(armv7m->arm.core_cache, reg_params[i].reg_name, 0);
522 /*              uint32_t regvalue; */
523
524                 if (!reg) {
525                         LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
526                         return ERROR_COMMAND_SYNTAX_ERROR;
527                 }
528
529                 if (reg->size != reg_params[i].size) {
530                         LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
531                                 reg_params[i].reg_name);
532                         return ERROR_COMMAND_SYNTAX_ERROR;
533                 }
534
535 /*              regvalue = buf_get_u32(reg_params[i].value, 0, 32); */
536                 armv7m_set_core_reg(reg, reg_params[i].value);
537         }
538
539         {
540                 /*
541                  * Ensure xPSR.T is set to avoid trying to run things in arm
542                  * (non-thumb) mode, which armv7m does not support.
543                  *
544                  * We do this by setting the entirety of xPSR, which should
545                  * remove all the unknowns about xPSR state.
546                  *
547                  * Because xPSR.T is populated on reset from the vector table,
548                  * it might be 0 if the vector table has "bad" data in it.
549                  */
550                 struct reg *reg = &armv7m->arm.core_cache->reg_list[ARMV7M_xPSR];
551                 buf_set_u32(reg->value, 0, 32, 0x01000000);
552                 reg->valid = true;
553                 reg->dirty = true;
554         }
555
556         if (armv7m_algorithm_info->core_mode != ARM_MODE_ANY &&
557                         armv7m_algorithm_info->core_mode != core_mode) {
558
559                 /* we cannot set ARM_MODE_HANDLER, so use ARM_MODE_THREAD instead */
560                 if (armv7m_algorithm_info->core_mode == ARM_MODE_HANDLER) {
561                         armv7m_algorithm_info->core_mode = ARM_MODE_THREAD;
562                         LOG_INFO("ARM_MODE_HANDLER not currently supported, using ARM_MODE_THREAD instead");
563                 }
564
565                 LOG_DEBUG("setting core_mode: 0x%2.2x", armv7m_algorithm_info->core_mode);
566                 buf_set_u32(armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].value,
567                         0, 1, armv7m_algorithm_info->core_mode);
568                 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].dirty = true;
569                 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].valid = true;
570         }
571
572         /* save previous core mode */
573         armv7m_algorithm_info->core_mode = core_mode;
574
575         retval = target_resume(target, 0, entry_point, 1, 1);
576
577         return retval;
578 }
579
580 /** Waits for an algorithm in the target. */
581 int armv7m_wait_algorithm(struct target *target,
582         int num_mem_params, struct mem_param *mem_params,
583         int num_reg_params, struct reg_param *reg_params,
584         target_addr_t exit_point, int timeout_ms,
585         void *arch_info)
586 {
587         struct armv7m_common *armv7m = target_to_armv7m(target);
588         struct armv7m_algorithm *armv7m_algorithm_info = arch_info;
589         int retval = ERROR_OK;
590
591         /* NOTE: armv7m_run_algorithm requires that each algorithm uses a software breakpoint
592          * at the exit point */
593
594         if (armv7m_algorithm_info->common_magic != ARMV7M_COMMON_MAGIC) {
595                 LOG_ERROR("current target isn't an ARMV7M target");
596                 return ERROR_TARGET_INVALID;
597         }
598
599         retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
600         /* If the target fails to halt due to the breakpoint, force a halt */
601         if (retval != ERROR_OK || target->state != TARGET_HALTED) {
602                 retval = target_halt(target);
603                 if (retval != ERROR_OK)
604                         return retval;
605                 retval = target_wait_state(target, TARGET_HALTED, 500);
606                 if (retval != ERROR_OK)
607                         return retval;
608                 return ERROR_TARGET_TIMEOUT;
609         }
610
611         if (exit_point) {
612                 /* PC value has been cached in cortex_m_debug_entry() */
613                 uint32_t pc = buf_get_u32(armv7m->arm.pc->value, 0, 32);
614                 if (pc != exit_point) {
615                         LOG_DEBUG("failed algorithm halted at 0x%" PRIx32 ", expected 0x%" TARGET_PRIxADDR,
616                                           pc, exit_point);
617                         return ERROR_TARGET_ALGO_EXIT;
618                 }
619         }
620
621         /* Read memory values to mem_params[] */
622         for (int i = 0; i < num_mem_params; i++) {
623                 if (mem_params[i].direction != PARAM_OUT) {
624                         retval = target_read_buffer(target, mem_params[i].address,
625                                         mem_params[i].size,
626                                         mem_params[i].value);
627                         if (retval != ERROR_OK)
628                                 return retval;
629                 }
630         }
631
632         /* Copy core register values to reg_params[] */
633         for (int i = 0; i < num_reg_params; i++) {
634                 if (reg_params[i].direction != PARAM_OUT) {
635                         struct reg *reg = register_get_by_name(armv7m->arm.core_cache,
636                                         reg_params[i].reg_name,
637                                         0);
638
639                         if (!reg) {
640                                 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
641                                 return ERROR_COMMAND_SYNTAX_ERROR;
642                         }
643
644                         if (reg->size != reg_params[i].size) {
645                                 LOG_ERROR(
646                                         "BUG: register '%s' size doesn't match reg_params[i].size",
647                                         reg_params[i].reg_name);
648                                 return ERROR_COMMAND_SYNTAX_ERROR;
649                         }
650
651                         buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
652                 }
653         }
654
655         for (int i = armv7m->arm.core_cache->num_regs - 1; i >= 0; i--) {
656                 uint32_t regvalue;
657                 regvalue = buf_get_u32(armv7m->arm.core_cache->reg_list[i].value, 0, 32);
658                 if (regvalue != armv7m_algorithm_info->context[i]) {
659                         LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32,
660                                         armv7m->arm.core_cache->reg_list[i].name,
661                                 armv7m_algorithm_info->context[i]);
662                         buf_set_u32(armv7m->arm.core_cache->reg_list[i].value,
663                                 0, 32, armv7m_algorithm_info->context[i]);
664                         armv7m->arm.core_cache->reg_list[i].valid = true;
665                         armv7m->arm.core_cache->reg_list[i].dirty = true;
666                 }
667         }
668
669         /* restore previous core mode */
670         if (armv7m_algorithm_info->core_mode != armv7m->arm.core_mode) {
671                 LOG_DEBUG("restoring core_mode: 0x%2.2x", armv7m_algorithm_info->core_mode);
672                 buf_set_u32(armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].value,
673                         0, 1, armv7m_algorithm_info->core_mode);
674                 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].dirty = true;
675                 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].valid = true;
676         }
677
678         armv7m->arm.core_mode = armv7m_algorithm_info->core_mode;
679
680         return retval;
681 }
682
683 /** Logs summary of ARMv7-M state for a halted target. */
684 int armv7m_arch_state(struct target *target)
685 {
686         struct armv7m_common *armv7m = target_to_armv7m(target);
687         struct arm *arm = &armv7m->arm;
688         uint32_t ctrl, sp;
689
690         /* avoid filling log waiting for fileio reply */
691         if (target->semihosting && target->semihosting->hit_fileio)
692                 return ERROR_OK;
693
694         ctrl = buf_get_u32(arm->core_cache->reg_list[ARMV7M_CONTROL].value, 0, 32);
695         sp = buf_get_u32(arm->core_cache->reg_list[ARMV7M_R13].value, 0, 32);
696
697         LOG_USER("target halted due to %s, current mode: %s %s\n"
698                 "xPSR: %#8.8" PRIx32 " pc: %#8.8" PRIx32 " %csp: %#8.8" PRIx32 "%s%s",
699                 debug_reason_name(target),
700                 arm_mode_name(arm->core_mode),
701                 armv7m_exception_string(armv7m->exception_number),
702                 buf_get_u32(arm->cpsr->value, 0, 32),
703                 buf_get_u32(arm->pc->value, 0, 32),
704                 (ctrl & 0x02) ? 'p' : 'm',
705                 sp,
706                 (target->semihosting && target->semihosting->is_active) ? ", semihosting" : "",
707                 (target->semihosting && target->semihosting->is_fileio) ? " fileio" : "");
708
709         return ERROR_OK;
710 }
711
712 static const struct reg_arch_type armv7m_reg_type = {
713         .get = armv7m_get_core_reg,
714         .set = armv7m_set_core_reg,
715 };
716
717 /** Builds cache of architecturally defined registers.  */
718 struct reg_cache *armv7m_build_reg_cache(struct target *target)
719 {
720         struct armv7m_common *armv7m = target_to_armv7m(target);
721         struct arm *arm = &armv7m->arm;
722         int num_regs = ARMV7M_NUM_REGS;
723         struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
724         struct reg_cache *cache = malloc(sizeof(struct reg_cache));
725         struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
726         struct arm_reg *arch_info = calloc(num_regs, sizeof(struct arm_reg));
727         struct reg_feature *feature;
728         int i;
729
730         /* Build the process context cache */
731         cache->name = "arm v7m registers";
732         cache->next = NULL;
733         cache->reg_list = reg_list;
734         cache->num_regs = num_regs;
735         (*cache_p) = cache;
736
737         for (i = 0; i < num_regs; i++) {
738                 arch_info[i].num = armv7m_regs[i].id;
739                 arch_info[i].target = target;
740                 arch_info[i].arm = arm;
741
742                 reg_list[i].name = armv7m_regs[i].name;
743                 reg_list[i].size = armv7m_regs[i].bits;
744                 reg_list[i].value = arch_info[i].value;
745                 reg_list[i].dirty = false;
746                 reg_list[i].valid = false;
747                 reg_list[i].hidden = i == ARMV7M_PMSK_BPRI_FLTMSK_CTRL;
748                 reg_list[i].type = &armv7m_reg_type;
749                 reg_list[i].arch_info = &arch_info[i];
750
751                 reg_list[i].group = armv7m_regs[i].group;
752                 reg_list[i].number = i;
753                 reg_list[i].exist = true;
754                 reg_list[i].caller_save = true; /* gdb defaults to true */
755
756                 if (reg_list[i].hidden)
757                         continue;
758
759                 feature = calloc(1, sizeof(struct reg_feature));
760                 if (feature) {
761                         feature->name = armv7m_regs[i].feature;
762                         reg_list[i].feature = feature;
763                 } else
764                         LOG_ERROR("unable to allocate feature list");
765
766                 reg_list[i].reg_data_type = calloc(1, sizeof(struct reg_data_type));
767                 if (reg_list[i].reg_data_type)
768                         reg_list[i].reg_data_type->type = armv7m_regs[i].type;
769                 else
770                         LOG_ERROR("unable to allocate reg type list");
771         }
772
773         arm->cpsr = reg_list + ARMV7M_xPSR;
774         arm->pc = reg_list + ARMV7M_PC;
775         arm->core_cache = cache;
776
777         return cache;
778 }
779
780 void armv7m_free_reg_cache(struct target *target)
781 {
782         struct armv7m_common *armv7m = target_to_armv7m(target);
783         struct arm *arm = &armv7m->arm;
784         struct reg_cache *cache;
785         struct reg *reg;
786         unsigned int i;
787
788         cache = arm->core_cache;
789
790         if (!cache)
791                 return;
792
793         for (i = 0; i < cache->num_regs; i++) {
794                 reg = &cache->reg_list[i];
795
796                 free(reg->feature);
797                 free(reg->reg_data_type);
798         }
799
800         free(cache->reg_list[0].arch_info);
801         free(cache->reg_list);
802         free(cache);
803
804         arm->core_cache = NULL;
805 }
806
807 static int armv7m_setup_semihosting(struct target *target, int enable)
808 {
809         /* nothing todo for armv7m */
810         return ERROR_OK;
811 }
812
813 /** Sets up target as a generic ARMv7-M core */
814 int armv7m_init_arch_info(struct target *target, struct armv7m_common *armv7m)
815 {
816         struct arm *arm = &armv7m->arm;
817
818         armv7m->common_magic = ARMV7M_COMMON_MAGIC;
819         armv7m->fp_feature = FP_NONE;
820         armv7m->trace_config.trace_bus_id = 1;
821         /* Enable stimulus port #0 by default */
822         armv7m->trace_config.itm_ter[0] = 1;
823
824         arm->core_type = ARM_CORE_TYPE_M_PROFILE;
825         arm->arch_info = armv7m;
826         arm->setup_semihosting = armv7m_setup_semihosting;
827
828         arm->read_core_reg = armv7m_read_core_reg;
829         arm->write_core_reg = armv7m_write_core_reg;
830
831         return arm_init_arch_info(target, arm);
832 }
833
834 /** Generates a CRC32 checksum of a memory region. */
835 int armv7m_checksum_memory(struct target *target,
836         target_addr_t address, uint32_t count, uint32_t *checksum)
837 {
838         struct working_area *crc_algorithm;
839         struct armv7m_algorithm armv7m_info;
840         struct reg_param reg_params[2];
841         int retval;
842
843         static const uint8_t cortex_m_crc_code[] = {
844 #include "../../contrib/loaders/checksum/armv7m_crc.inc"
845         };
846
847         retval = target_alloc_working_area(target, sizeof(cortex_m_crc_code), &crc_algorithm);
848         if (retval != ERROR_OK)
849                 return retval;
850
851         retval = target_write_buffer(target, crc_algorithm->address,
852                         sizeof(cortex_m_crc_code), (uint8_t *)cortex_m_crc_code);
853         if (retval != ERROR_OK)
854                 goto cleanup;
855
856         armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
857         armv7m_info.core_mode = ARM_MODE_THREAD;
858
859         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
860         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
861
862         buf_set_u32(reg_params[0].value, 0, 32, address);
863         buf_set_u32(reg_params[1].value, 0, 32, count);
864
865         int timeout = 20000 * (1 + (count / (1024 * 1024)));
866
867         retval = target_run_algorithm(target, 0, NULL, 2, reg_params, crc_algorithm->address,
868                         crc_algorithm->address + (sizeof(cortex_m_crc_code) - 6),
869                         timeout, &armv7m_info);
870
871         if (retval == ERROR_OK)
872                 *checksum = buf_get_u32(reg_params[0].value, 0, 32);
873         else
874                 LOG_ERROR("error executing cortex_m crc algorithm");
875
876         destroy_reg_param(&reg_params[0]);
877         destroy_reg_param(&reg_params[1]);
878
879 cleanup:
880         target_free_working_area(target, crc_algorithm);
881
882         return retval;
883 }
884
885 /** Checks an array of memory regions whether they are erased. */
886 int armv7m_blank_check_memory(struct target *target,
887         struct target_memory_check_block *blocks, int num_blocks, uint8_t erased_value)
888 {
889         struct working_area *erase_check_algorithm;
890         struct working_area *erase_check_params;
891         struct reg_param reg_params[2];
892         struct armv7m_algorithm armv7m_info;
893         int retval;
894
895         static bool timed_out;
896
897         static const uint8_t erase_check_code[] = {
898 #include "../../contrib/loaders/erase_check/armv7m_erase_check.inc"
899         };
900
901         const uint32_t code_size = sizeof(erase_check_code);
902
903         /* make sure we have a working area */
904         if (target_alloc_working_area(target, code_size,
905                 &erase_check_algorithm) != ERROR_OK)
906                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
907
908         retval = target_write_buffer(target, erase_check_algorithm->address,
909                         code_size, erase_check_code);
910         if (retval != ERROR_OK)
911                 goto cleanup1;
912
913         /* prepare blocks array for algo */
914         struct algo_block {
915                 union {
916                         uint32_t size;
917                         uint32_t result;
918                 };
919                 uint32_t address;
920         };
921
922         uint32_t avail = target_get_working_area_avail(target);
923         int blocks_to_check = avail / sizeof(struct algo_block) - 1;
924         if (num_blocks < blocks_to_check)
925                 blocks_to_check = num_blocks;
926
927         struct algo_block *params = malloc((blocks_to_check+1)*sizeof(struct algo_block));
928         if (params == NULL) {
929                 retval = ERROR_FAIL;
930                 goto cleanup1;
931         }
932
933         int i;
934         uint32_t total_size = 0;
935         for (i = 0; i < blocks_to_check; i++) {
936                 total_size += blocks[i].size;
937                 target_buffer_set_u32(target, (uint8_t *)&(params[i].size),
938                                                 blocks[i].size / sizeof(uint32_t));
939                 target_buffer_set_u32(target, (uint8_t *)&(params[i].address),
940                                                 blocks[i].address);
941         }
942         target_buffer_set_u32(target, (uint8_t *)&(params[blocks_to_check].size), 0);
943
944         uint32_t param_size = (blocks_to_check + 1) * sizeof(struct algo_block);
945         if (target_alloc_working_area(target, param_size,
946                         &erase_check_params) != ERROR_OK) {
947                 retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
948                 goto cleanup2;
949         }
950
951         retval = target_write_buffer(target, erase_check_params->address,
952                                 param_size, (uint8_t *)params);
953         if (retval != ERROR_OK)
954                 goto cleanup3;
955
956         uint32_t erased_word = erased_value | (erased_value << 8)
957                                | (erased_value << 16) | (erased_value << 24);
958
959         LOG_DEBUG("Starting erase check of %d blocks, parameters@"
960                  TARGET_ADDR_FMT, blocks_to_check, erase_check_params->address);
961
962         armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
963         armv7m_info.core_mode = ARM_MODE_THREAD;
964
965         init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
966         buf_set_u32(reg_params[0].value, 0, 32, erase_check_params->address);
967
968         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
969         buf_set_u32(reg_params[1].value, 0, 32, erased_word);
970
971         /* assume CPU clk at least 1 MHz */
972         int timeout = (timed_out ? 30000 : 2000) + total_size * 3 / 1000;
973
974         retval = target_run_algorithm(target,
975                                 0, NULL,
976                                 ARRAY_SIZE(reg_params), reg_params,
977                                 erase_check_algorithm->address,
978                                 erase_check_algorithm->address + (code_size - 2),
979                                 timeout,
980                                 &armv7m_info);
981
982         timed_out = retval == ERROR_TARGET_TIMEOUT;
983         if (retval != ERROR_OK && !timed_out)
984                 goto cleanup4;
985
986         retval = target_read_buffer(target, erase_check_params->address,
987                                 param_size, (uint8_t *)params);
988         if (retval != ERROR_OK)
989                 goto cleanup4;
990
991         for (i = 0; i < blocks_to_check; i++) {
992                 uint32_t result = target_buffer_get_u32(target,
993                                         (uint8_t *)&(params[i].result));
994                 if (result != 0 && result != 1)
995                         break;
996
997                 blocks[i].result = result;
998         }
999         if (i && timed_out)
1000                 LOG_INFO("Slow CPU clock: %d blocks checked, %d remain. Continuing...", i, num_blocks-i);
1001
1002         retval = i;             /* return number of blocks really checked */
1003
1004 cleanup4:
1005         destroy_reg_param(&reg_params[0]);
1006         destroy_reg_param(&reg_params[1]);
1007
1008 cleanup3:
1009         target_free_working_area(target, erase_check_params);
1010 cleanup2:
1011         free(params);
1012 cleanup1:
1013         target_free_working_area(target, erase_check_algorithm);
1014
1015         return retval;
1016 }
1017
1018 int armv7m_maybe_skip_bkpt_inst(struct target *target, bool *inst_found)
1019 {
1020         struct armv7m_common *armv7m = target_to_armv7m(target);
1021         struct reg *r = armv7m->arm.pc;
1022         bool result = false;
1023
1024
1025         /* if we halted last time due to a bkpt instruction
1026          * then we have to manually step over it, otherwise
1027          * the core will break again */
1028
1029         if (target->debug_reason == DBG_REASON_BREAKPOINT) {
1030                 uint16_t op;
1031                 uint32_t pc = buf_get_u32(r->value, 0, 32);
1032
1033                 pc &= ~1;
1034                 if (target_read_u16(target, pc, &op) == ERROR_OK) {
1035                         if ((op & 0xFF00) == 0xBE00) {
1036                                 pc = buf_get_u32(r->value, 0, 32) + 2;
1037                                 buf_set_u32(r->value, 0, 32, pc);
1038                                 r->dirty = true;
1039                                 r->valid = true;
1040                                 result = true;
1041                                 LOG_DEBUG("Skipping over BKPT instruction");
1042                         }
1043                 }
1044         }
1045
1046         if (inst_found)
1047                 *inst_found = result;
1048
1049         return ERROR_OK;
1050 }
1051
1052 const struct command_registration armv7m_command_handlers[] = {
1053         {
1054                 .chain = arm_command_handlers,
1055         },
1056         COMMAND_REGISTRATION_DONE
1057 };