cortex_m: Discover the AP to use, just like Cortex-A
[fw/openocd] / src / target / arm_adi_v5.c
1 /***************************************************************************
2  *   Copyright (C) 2006 by Magnus Lundin                                   *
3  *   lundin@mlu.mine.nu                                                    *
4  *                                                                         *
5  *   Copyright (C) 2008 by Spencer Oliver                                  *
6  *   spen@spen-soft.co.uk                                                  *
7  *                                                                         *
8  *   Copyright (C) 2009-2010 by Oyvind Harboe                              *
9  *   oyvind.harboe@zylin.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2009-2010 by David Brownell                             *
12  *                                                                         *
13  *   Copyright (C) 2013 by Andreas Fritiofson                              *
14  *   andreas.fritiofson@gmail.com                                          *
15  *                                                                         *
16  *   This program is free software; you can redistribute it and/or modify  *
17  *   it under the terms of the GNU General Public License as published by  *
18  *   the Free Software Foundation; either version 2 of the License, or     *
19  *   (at your option) any later version.                                   *
20  *                                                                         *
21  *   This program is distributed in the hope that it will be useful,       *
22  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
23  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
24  *   GNU General Public License for more details.                          *
25  *                                                                         *
26  *   You should have received a copy of the GNU General Public License     *
27  *   along with this program; if not, write to the                         *
28  *   Free Software Foundation, Inc.,                                       *
29  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.           *
30  ***************************************************************************/
31
32 /**
33  * @file
34  * This file implements support for the ARM Debug Interface version 5 (ADIv5)
35  * debugging architecture.  Compared with previous versions, this includes
36  * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
37  * transport, and focusses on memory mapped resources as defined by the
38  * CoreSight architecture.
39  *
40  * A key concept in ADIv5 is the Debug Access Port, or DAP.  A DAP has two
41  * basic components:  a Debug Port (DP) transporting messages to and from a
42  * debugger, and an Access Port (AP) accessing resources.  Three types of DP
43  * are defined.  One uses only JTAG for communication, and is called JTAG-DP.
44  * One uses only SWD for communication, and is called SW-DP.  The third can
45  * use either SWD or JTAG, and is called SWJ-DP.  The most common type of AP
46  * is used to access memory mapped resources and is called a MEM-AP.  Also a
47  * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
48  *
49  * This programming interface allows DAP pipelined operations through a
50  * transaction queue.  This primarily affects AP operations (such as using
51  * a MEM-AP to access memory or registers).  If the current transaction has
52  * not finished by the time the next one must begin, and the ORUNDETECT bit
53  * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
54  * further AP operations will fail.  There are two basic methods to avoid
55  * such overrun errors.  One involves polling for status instead of using
56  * transaction piplining.  The other involves adding delays to ensure the
57  * AP has enough time to complete one operation before starting the next
58  * one.  (For JTAG these delays are controlled by memaccess_tck.)
59  */
60
61 /*
62  * Relevant specifications from ARM include:
63  *
64  * ARM(tm) Debug Interface v5 Architecture Specification    ARM IHI 0031A
65  * CoreSight(tm) v1.0 Architecture Specification            ARM IHI 0029B
66  *
67  * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
68  * Cortex-M3(tm) TRM, ARM DDI 0337G
69  */
70
71 #ifdef HAVE_CONFIG_H
72 #include "config.h"
73 #endif
74
75 #include "jtag/interface.h"
76 #include "arm.h"
77 #include "arm_adi_v5.h"
78 #include <helper/time_support.h>
79
80 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement  */
81
82 /*
83         uint32_t tar_block_size(uint32_t address)
84         Return the largest block starting at address that does not cross a tar block size alignment boundary
85 */
86 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
87 {
88         return tar_autoincr_block - ((tar_autoincr_block - 1) & address);
89 }
90
91 /***************************************************************************
92  *                                                                         *
93  * DP and MEM-AP  register access  through APACC and DPACC                 *
94  *                                                                         *
95 ***************************************************************************/
96
97 /**
98  * Select one of the APs connected to the specified DAP.  The
99  * selection is implicitly used with future AP transactions.
100  * This is a NOP if the specified AP is already selected.
101  *
102  * @param dap The DAP
103  * @param apsel Number of the AP to (implicitly) use with further
104  *      transactions.  This normally identifies a MEM-AP.
105  */
106 void dap_ap_select(struct adiv5_dap *dap, uint8_t ap)
107 {
108         uint32_t new_ap = (ap << 24) & 0xFF000000;
109
110         if (new_ap != dap->ap_current) {
111                 dap->ap_current = new_ap;
112                 /* Switching AP invalidates cached values.
113                  * Values MUST BE UPDATED BEFORE AP ACCESS.
114                  */
115                 dap->ap_bank_value = -1;
116         }
117 }
118
119 static int dap_setup_accessport_csw(struct adiv5_dap *dap, uint32_t csw)
120 {
121         csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT |
122                 dap->ap[dap_ap_get_select(dap)].csw_default;
123
124         if (csw != dap->ap[dap_ap_get_select(dap)].csw_value) {
125                 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
126                 int retval = dap_queue_ap_write(dap, MEM_AP_REG_CSW, csw);
127                 if (retval != ERROR_OK)
128                         return retval;
129                 dap->ap[dap_ap_get_select(dap)].csw_value = csw;
130         }
131         return ERROR_OK;
132 }
133
134 static int dap_setup_accessport_tar(struct adiv5_dap *dap, uint32_t tar)
135 {
136         if (tar != dap->ap[dap_ap_get_select(dap)].tar_value ||
137                         (dap->ap[dap_ap_get_select(dap)].csw_value & CSW_ADDRINC_MASK)) {
138                 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
139                 int retval = dap_queue_ap_write(dap, MEM_AP_REG_TAR, tar);
140                 if (retval != ERROR_OK)
141                         return retval;
142                 dap->ap[dap_ap_get_select(dap)].tar_value = tar;
143         }
144         return ERROR_OK;
145 }
146
147 /**
148  * Queue transactions setting up transfer parameters for the
149  * currently selected MEM-AP.
150  *
151  * Subsequent transfers using registers like MEM_AP_REG_DRW or MEM_AP_REG_BD2
152  * initiate data reads or writes using memory or peripheral addresses.
153  * If the CSW is configured for it, the TAR may be automatically
154  * incremented after each transfer.
155  *
156  * @todo Rename to reflect it being specifically a MEM-AP function.
157  *
158  * @param dap The DAP connected to the MEM-AP.
159  * @param csw MEM-AP Control/Status Word (CSW) register to assign.  If this
160  *      matches the cached value, the register is not changed.
161  * @param tar MEM-AP Transfer Address Register (TAR) to assign.  If this
162  *      matches the cached address, the register is not changed.
163  *
164  * @return ERROR_OK if the transaction was properly queued, else a fault code.
165  */
166 int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar)
167 {
168         int retval;
169         retval = dap_setup_accessport_csw(dap, csw);
170         if (retval != ERROR_OK)
171                 return retval;
172         retval = dap_setup_accessport_tar(dap, tar);
173         if (retval != ERROR_OK)
174                 return retval;
175         return ERROR_OK;
176 }
177
178 /**
179  * Asynchronous (queued) read of a word from memory or a system register.
180  *
181  * @param dap The DAP connected to the MEM-AP performing the read.
182  * @param address Address of the 32-bit word to read; it must be
183  *      readable by the currently selected MEM-AP.
184  * @param value points to where the word will be stored when the
185  *      transaction queue is flushed (assuming no errors).
186  *
187  * @return ERROR_OK for success.  Otherwise a fault code.
188  */
189 static int mem_ap_read_u32(struct adiv5_dap *dap, uint32_t address,
190                 uint32_t *value)
191 {
192         int retval;
193
194         /* Use banked addressing (REG_BDx) to avoid some link traffic
195          * (updating TAR) when reading several consecutive addresses.
196          */
197         retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
198                         address & 0xFFFFFFF0);
199         if (retval != ERROR_OK)
200                 return retval;
201
202         return dap_queue_ap_read(dap, MEM_AP_REG_BD0 | (address & 0xC), value);
203 }
204
205 /**
206  * Synchronous read of a word from memory or a system register.
207  * As a side effect, this flushes any queued transactions.
208  *
209  * @param dap The DAP connected to the MEM-AP performing the read.
210  * @param address Address of the 32-bit word to read; it must be
211  *      readable by the currently selected MEM-AP.
212  * @param value points to where the result will be stored.
213  *
214  * @return ERROR_OK for success; *value holds the result.
215  * Otherwise a fault code.
216  */
217 static int mem_ap_read_atomic_u32(struct adiv5_dap *dap, uint32_t address,
218                 uint32_t *value)
219 {
220         int retval;
221
222         retval = mem_ap_read_u32(dap, address, value);
223         if (retval != ERROR_OK)
224                 return retval;
225
226         return dap_run(dap);
227 }
228
229 /**
230  * Asynchronous (queued) write of a word to memory or a system register.
231  *
232  * @param dap The DAP connected to the MEM-AP.
233  * @param address Address to be written; it must be writable by
234  *      the currently selected MEM-AP.
235  * @param value Word that will be written to the address when transaction
236  *      queue is flushed (assuming no errors).
237  *
238  * @return ERROR_OK for success.  Otherwise a fault code.
239  */
240 static int mem_ap_write_u32(struct adiv5_dap *dap, uint32_t address,
241                 uint32_t value)
242 {
243         int retval;
244
245         /* Use banked addressing (REG_BDx) to avoid some link traffic
246          * (updating TAR) when writing several consecutive addresses.
247          */
248         retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
249                         address & 0xFFFFFFF0);
250         if (retval != ERROR_OK)
251                 return retval;
252
253         return dap_queue_ap_write(dap, MEM_AP_REG_BD0 | (address & 0xC),
254                         value);
255 }
256
257 /**
258  * Synchronous write of a word to memory or a system register.
259  * As a side effect, this flushes any queued transactions.
260  *
261  * @param dap The DAP connected to the MEM-AP.
262  * @param address Address to be written; it must be writable by
263  *      the currently selected MEM-AP.
264  * @param value Word that will be written.
265  *
266  * @return ERROR_OK for success; the data was written.  Otherwise a fault code.
267  */
268 static int mem_ap_write_atomic_u32(struct adiv5_dap *dap, uint32_t address,
269                 uint32_t value)
270 {
271         int retval = mem_ap_write_u32(dap, address, value);
272
273         if (retval != ERROR_OK)
274                 return retval;
275
276         return dap_run(dap);
277 }
278
279 /**
280  * Synchronous write of a block of memory, using a specific access size.
281  *
282  * @param dap The DAP connected to the MEM-AP.
283  * @param buffer The data buffer to write. No particular alignment is assumed.
284  * @param size Which access size to use, in bytes. 1, 2 or 4.
285  * @param count The number of writes to do (in size units, not bytes).
286  * @param address Address to be written; it must be writable by the currently selected MEM-AP.
287  * @param addrinc Whether the target address should be increased for each write or not. This
288  *  should normally be true, except when writing to e.g. a FIFO.
289  * @return ERROR_OK on success, otherwise an error code.
290  */
291 static int mem_ap_write(struct adiv5_dap *dap, const uint8_t *buffer, uint32_t size, uint32_t count,
292                 uint32_t address, bool addrinc)
293 {
294         struct adiv5_ap *ap = &dap->ap[dap_ap_get_select(dap)];
295         size_t nbytes = size * count;
296         const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
297         uint32_t csw_size;
298         uint32_t addr_xor;
299         int retval;
300
301         /* TI BE-32 Quirks mode:
302          * Writes on big-endian TMS570 behave very strangely. Observed behavior:
303          *   size   write address   bytes written in order
304          *   4      TAR ^ 0         (val >> 24), (val >> 16), (val >> 8), (val)
305          *   2      TAR ^ 2         (val >> 8), (val)
306          *   1      TAR ^ 3         (val)
307          * For example, if you attempt to write a single byte to address 0, the processor
308          * will actually write a byte to address 3.
309          *
310          * To make writes of size < 4 work as expected, we xor a value with the address before
311          * setting the TAP, and we set the TAP after every transfer rather then relying on
312          * address increment. */
313
314         if (size == 4) {
315                 csw_size = CSW_32BIT;
316                 addr_xor = 0;
317         } else if (size == 2) {
318                 csw_size = CSW_16BIT;
319                 addr_xor = dap->ti_be_32_quirks ? 2 : 0;
320         } else if (size == 1) {
321                 csw_size = CSW_8BIT;
322                 addr_xor = dap->ti_be_32_quirks ? 3 : 0;
323         } else {
324                 return ERROR_TARGET_UNALIGNED_ACCESS;
325         }
326
327         if (ap->unaligned_access_bad && (address % size != 0))
328                 return ERROR_TARGET_UNALIGNED_ACCESS;
329
330         retval = dap_setup_accessport_tar(dap, address ^ addr_xor);
331         if (retval != ERROR_OK)
332                 return retval;
333
334         while (nbytes > 0) {
335                 uint32_t this_size = size;
336
337                 /* Select packed transfer if possible */
338                 if (addrinc && ap->packed_transfers && nbytes >= 4
339                                 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
340                         this_size = 4;
341                         retval = dap_setup_accessport_csw(dap, csw_size | CSW_ADDRINC_PACKED);
342                 } else {
343                         retval = dap_setup_accessport_csw(dap, csw_size | csw_addrincr);
344                 }
345
346                 if (retval != ERROR_OK)
347                         break;
348
349                 /* How many source bytes each transfer will consume, and their location in the DRW,
350                  * depends on the type of transfer and alignment. See ARM document IHI0031C. */
351                 uint32_t outvalue = 0;
352                 if (dap->ti_be_32_quirks) {
353                         switch (this_size) {
354                         case 4:
355                                 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (address++ & 3) ^ addr_xor);
356                                 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (address++ & 3) ^ addr_xor);
357                                 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (address++ & 3) ^ addr_xor);
358                                 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (address++ & 3) ^ addr_xor);
359                                 break;
360                         case 2:
361                                 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (address++ & 3) ^ addr_xor);
362                                 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (address++ & 3) ^ addr_xor);
363                                 break;
364                         case 1:
365                                 outvalue |= (uint32_t)*buffer++ << 8 * (0 ^ (address++ & 3) ^ addr_xor);
366                                 break;
367                         }
368                 } else {
369                         switch (this_size) {
370                         case 4:
371                                 outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
372                                 outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
373                         case 2:
374                                 outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
375                         case 1:
376                                 outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
377                         }
378                 }
379
380                 nbytes -= this_size;
381
382                 retval = dap_queue_ap_write(dap, MEM_AP_REG_DRW, outvalue);
383                 if (retval != ERROR_OK)
384                         break;
385
386                 /* Rewrite TAR if it wrapped or we're xoring addresses */
387                 if (addrinc && (addr_xor || (address % ap->tar_autoincr_block < size && nbytes > 0))) {
388                         retval = dap_setup_accessport_tar(dap, address ^ addr_xor);
389                         if (retval != ERROR_OK)
390                                 break;
391                 }
392         }
393
394         /* REVISIT: Might want to have a queued version of this function that does not run. */
395         if (retval == ERROR_OK)
396                 retval = dap_run(dap);
397
398         if (retval != ERROR_OK) {
399                 uint32_t tar;
400                 if (dap_queue_ap_read(dap, MEM_AP_REG_TAR, &tar) == ERROR_OK
401                                 && dap_run(dap) == ERROR_OK)
402                         LOG_ERROR("Failed to write memory at 0x%08"PRIx32, tar);
403                 else
404                         LOG_ERROR("Failed to write memory and, additionally, failed to find out where");
405         }
406
407         return retval;
408 }
409
410 /**
411  * Synchronous read of a block of memory, using a specific access size.
412  *
413  * @param dap The DAP connected to the MEM-AP.
414  * @param buffer The data buffer to receive the data. No particular alignment is assumed.
415  * @param size Which access size to use, in bytes. 1, 2 or 4.
416  * @param count The number of reads to do (in size units, not bytes).
417  * @param address Address to be read; it must be readable by the currently selected MEM-AP.
418  * @param addrinc Whether the target address should be increased after each read or not. This
419  *  should normally be true, except when reading from e.g. a FIFO.
420  * @return ERROR_OK on success, otherwise an error code.
421  */
422 static int mem_ap_read(struct adiv5_dap *dap, uint8_t *buffer, uint32_t size, uint32_t count,
423                 uint32_t adr, bool addrinc)
424 {
425         struct adiv5_ap *ap = &dap->ap[dap_ap_get_select(dap)];
426         size_t nbytes = size * count;
427         const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
428         uint32_t csw_size;
429         uint32_t address = adr;
430         int retval;
431
432         /* TI BE-32 Quirks mode:
433          * Reads on big-endian TMS570 behave strangely differently than writes.
434          * They read from the physical address requested, but with DRW byte-reversed.
435          * For example, a byte read from address 0 will place the result in the high bytes of DRW.
436          * Also, packed 8-bit and 16-bit transfers seem to sometimes return garbage in some bytes,
437          * so avoid them. */
438
439         if (size == 4)
440                 csw_size = CSW_32BIT;
441         else if (size == 2)
442                 csw_size = CSW_16BIT;
443         else if (size == 1)
444                 csw_size = CSW_8BIT;
445         else
446                 return ERROR_TARGET_UNALIGNED_ACCESS;
447
448         if (ap->unaligned_access_bad && (adr % size != 0))
449                 return ERROR_TARGET_UNALIGNED_ACCESS;
450
451         /* Allocate buffer to hold the sequence of DRW reads that will be made. This is a significant
452          * over-allocation if packed transfers are going to be used, but determining the real need at
453          * this point would be messy. */
454         uint32_t *read_buf = malloc(count * sizeof(uint32_t));
455         uint32_t *read_ptr = read_buf;
456         if (read_buf == NULL) {
457                 LOG_ERROR("Failed to allocate read buffer");
458                 return ERROR_FAIL;
459         }
460
461         retval = dap_setup_accessport_tar(dap, address);
462         if (retval != ERROR_OK) {
463                 free(read_buf);
464                 return retval;
465         }
466
467         /* Queue up all reads. Each read will store the entire DRW word in the read buffer. How many
468          * useful bytes it contains, and their location in the word, depends on the type of transfer
469          * and alignment. */
470         while (nbytes > 0) {
471                 uint32_t this_size = size;
472
473                 /* Select packed transfer if possible */
474                 if (addrinc && ap->packed_transfers && nbytes >= 4
475                                 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
476                         this_size = 4;
477                         retval = dap_setup_accessport_csw(dap, csw_size | CSW_ADDRINC_PACKED);
478                 } else {
479                         retval = dap_setup_accessport_csw(dap, csw_size | csw_addrincr);
480                 }
481                 if (retval != ERROR_OK)
482                         break;
483
484                 retval = dap_queue_ap_read(dap, MEM_AP_REG_DRW, read_ptr++);
485                 if (retval != ERROR_OK)
486                         break;
487
488                 nbytes -= this_size;
489                 address += this_size;
490
491                 /* Rewrite TAR if it wrapped */
492                 if (addrinc && address % ap->tar_autoincr_block < size && nbytes > 0) {
493                         retval = dap_setup_accessport_tar(dap, address);
494                         if (retval != ERROR_OK)
495                                 break;
496                 }
497         }
498
499         if (retval == ERROR_OK)
500                 retval = dap_run(dap);
501
502         /* Restore state */
503         address = adr;
504         nbytes = size * count;
505         read_ptr = read_buf;
506
507         /* If something failed, read TAR to find out how much data was successfully read, so we can
508          * at least give the caller what we have. */
509         if (retval != ERROR_OK) {
510                 uint32_t tar;
511                 if (dap_queue_ap_read(dap, MEM_AP_REG_TAR, &tar) == ERROR_OK
512                                 && dap_run(dap) == ERROR_OK) {
513                         LOG_ERROR("Failed to read memory at 0x%08"PRIx32, tar);
514                         if (nbytes > tar - address)
515                                 nbytes = tar - address;
516                 } else {
517                         LOG_ERROR("Failed to read memory and, additionally, failed to find out where");
518                         nbytes = 0;
519                 }
520         }
521
522         /* Replay loop to populate caller's buffer from the correct word and byte lane */
523         while (nbytes > 0) {
524                 uint32_t this_size = size;
525
526                 if (addrinc && ap->packed_transfers && nbytes >= 4
527                                 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
528                         this_size = 4;
529                 }
530
531                 if (dap->ti_be_32_quirks) {
532                         switch (this_size) {
533                         case 4:
534                                 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
535                                 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
536                         case 2:
537                                 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
538                         case 1:
539                                 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
540                         }
541                 } else {
542                         switch (this_size) {
543                         case 4:
544                                 *buffer++ = *read_ptr >> 8 * (address++ & 3);
545                                 *buffer++ = *read_ptr >> 8 * (address++ & 3);
546                         case 2:
547                                 *buffer++ = *read_ptr >> 8 * (address++ & 3);
548                         case 1:
549                                 *buffer++ = *read_ptr >> 8 * (address++ & 3);
550                         }
551                 }
552
553                 read_ptr++;
554                 nbytes -= this_size;
555         }
556
557         free(read_buf);
558         return retval;
559 }
560
561 /*--------------------------------------------------------------------*/
562 /*          Wrapping function with selection of AP                    */
563 /*--------------------------------------------------------------------*/
564 int mem_ap_sel_read_u32(struct adiv5_dap *swjdp, uint8_t ap,
565                 uint32_t address, uint32_t *value)
566 {
567         dap_ap_select(swjdp, ap);
568         return mem_ap_read_u32(swjdp, address, value);
569 }
570
571 int mem_ap_sel_write_u32(struct adiv5_dap *swjdp, uint8_t ap,
572                 uint32_t address, uint32_t value)
573 {
574         dap_ap_select(swjdp, ap);
575         return mem_ap_write_u32(swjdp, address, value);
576 }
577
578 int mem_ap_sel_read_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
579                 uint32_t address, uint32_t *value)
580 {
581         dap_ap_select(swjdp, ap);
582         return mem_ap_read_atomic_u32(swjdp, address, value);
583 }
584
585 int mem_ap_sel_write_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
586                 uint32_t address, uint32_t value)
587 {
588         dap_ap_select(swjdp, ap);
589         return mem_ap_write_atomic_u32(swjdp, address, value);
590 }
591
592 int mem_ap_sel_read_buf(struct adiv5_dap *swjdp, uint8_t ap,
593                 uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
594 {
595         dap_ap_select(swjdp, ap);
596         return mem_ap_read(swjdp, buffer, size, count, address, true);
597 }
598
599 int mem_ap_sel_write_buf(struct adiv5_dap *swjdp, uint8_t ap,
600                 const uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
601 {
602         dap_ap_select(swjdp, ap);
603         return mem_ap_write(swjdp, buffer, size, count, address, true);
604 }
605
606 int mem_ap_sel_read_buf_noincr(struct adiv5_dap *swjdp, uint8_t ap,
607                 uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
608 {
609         dap_ap_select(swjdp, ap);
610         return mem_ap_read(swjdp, buffer, size, count, address, false);
611 }
612
613 int mem_ap_sel_write_buf_noincr(struct adiv5_dap *swjdp, uint8_t ap,
614                 const uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
615 {
616         dap_ap_select(swjdp, ap);
617         return mem_ap_write(swjdp, buffer, size, count, address, false);
618 }
619
620 /*--------------------------------------------------------------------------*/
621
622
623 #define DAP_POWER_DOMAIN_TIMEOUT (10)
624
625 /* FIXME don't import ... just initialize as
626  * part of DAP transport setup
627 */
628 extern const struct dap_ops jtag_dp_ops;
629
630 /*--------------------------------------------------------------------------*/
631
632 /**
633  * Create a new DAP
634  */
635 struct adiv5_dap *dap_init(void)
636 {
637         struct adiv5_dap *dap = calloc(1, sizeof(struct adiv5_dap));
638         int i;
639         /* Set up with safe defaults */
640         for (i = 0; i <= 255; i++) {
641                 dap->ap[i].dap = dap;
642                 dap->ap[i].ap_num = i;
643                 /* memaccess_tck max is 255 */
644                 dap->ap[i].memaccess_tck = 255;
645                 /* Number of bits for tar autoincrement, impl. dep. at least 10 */
646                 dap->ap[i].tar_autoincr_block = (1<<10);
647         }
648         return dap;
649 }
650
651 /**
652  * Initialize a DAP.  This sets up the power domains, prepares the DP
653  * for further use, and arranges to use AP #0 for all AP operations
654  * until dap_ap-select() changes that policy.
655  *
656  * @param dap The DAP being initialized.
657  *
658  * @todo Rename this.  We also need an initialization scheme which account
659  * for SWD transports not just JTAG; that will need to address differences
660  * in layering.  (JTAG is useful without any debug target; but not SWD.)
661  * And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP.
662  */
663 int ahbap_debugport_init(struct adiv5_dap *dap, uint8_t apsel)
664 {
665         /* check that we support packed transfers */
666         uint32_t csw, cfg;
667         int retval;
668         struct adiv5_ap *ap = &dap->ap[apsel];
669
670         LOG_DEBUG(" ");
671
672         /* JTAG-DP or SWJ-DP, in JTAG mode
673          * ... for SWD mode this is patched as part
674          * of link switchover
675          */
676         if (!dap->ops)
677                 dap->ops = &jtag_dp_ops;
678
679         /* Default MEM-AP setup.
680          *
681          * REVISIT AP #0 may be an inappropriate default for this.
682          * Should we probe, or take a hint from the caller?
683          * Presumably we can ignore the possibility of multiple APs.
684          */
685         dap->ap_current = -1;
686         dap_ap_select(dap, apsel);
687         dap->last_read = NULL;
688
689         for (size_t i = 0; i < 10; i++) {
690                 /* DP initialization */
691
692                 dap->dp_bank_value = 0;
693
694                 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
695                 if (retval != ERROR_OK)
696                         continue;
697
698                 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, SSTICKYERR);
699                 if (retval != ERROR_OK)
700                         continue;
701
702                 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
703                 if (retval != ERROR_OK)
704                         continue;
705
706                 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
707                 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
708                 if (retval != ERROR_OK)
709                         continue;
710
711                 /* Check that we have debug power domains activated */
712                 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
713                 retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
714                                               CDBGPWRUPACK, CDBGPWRUPACK,
715                                               DAP_POWER_DOMAIN_TIMEOUT);
716                 if (retval != ERROR_OK)
717                         continue;
718
719                 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
720                 retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
721                                               CSYSPWRUPACK, CSYSPWRUPACK,
722                                               DAP_POWER_DOMAIN_TIMEOUT);
723                 if (retval != ERROR_OK)
724                         continue;
725
726                 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
727                 if (retval != ERROR_OK)
728                         continue;
729                 /* With debug power on we can activate OVERRUN checking */
730                 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
731                 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
732                 if (retval != ERROR_OK)
733                         continue;
734                 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
735                 if (retval != ERROR_OK)
736                         continue;
737
738                 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, 0);
739                 if (retval != ERROR_OK)
740                         continue;
741
742                 retval = dap_queue_ap_read(dap, MEM_AP_REG_CSW, &csw);
743                 if (retval != ERROR_OK)
744                         continue;
745
746                 retval = dap_queue_ap_read(dap, MEM_AP_REG_CFG, &cfg);
747                 if (retval != ERROR_OK)
748                         continue;
749
750                 retval = dap_run(dap);
751                 if (retval != ERROR_OK)
752                         continue;
753
754                 break;
755         }
756
757         if (retval != ERROR_OK)
758                 return retval;
759
760         if (csw & CSW_ADDRINC_PACKED)
761                 ap->packed_transfers = true;
762         else
763                 ap->packed_transfers = false;
764
765         /* Packed transfers on TI BE-32 processors do not work correctly in
766          * many cases. */
767         if (dap->ti_be_32_quirks)
768                 ap->packed_transfers = false;
769
770         LOG_DEBUG("MEM_AP Packed Transfers: %s",
771                         ap->packed_transfers ? "enabled" : "disabled");
772
773         /* The ARM ADI spec leaves implementation-defined whether unaligned
774          * memory accesses work, only work partially, or cause a sticky error.
775          * On TI BE-32 processors, reads seem to return garbage in some bytes
776          * and unaligned writes seem to cause a sticky error.
777          * TODO: it would be nice to have a way to detect whether unaligned
778          * operations are supported on other processors. */
779         ap->unaligned_access_bad = dap->ti_be_32_quirks;
780
781         LOG_DEBUG("MEM_AP CFG: large data %d, long address %d, big-endian %d",
782                         !!(cfg & 0x04), !!(cfg & 0x02), !!(cfg & 0x01));
783
784         return ERROR_OK;
785 }
786
787 /* CID interpretation -- see ARM IHI 0029B section 3
788  * and ARM IHI 0031A table 13-3.
789  */
790 static const char *class_description[16] = {
791         "Reserved", "ROM table", "Reserved", "Reserved",
792         "Reserved", "Reserved", "Reserved", "Reserved",
793         "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
794         "Reserved", "OptimoDE DESS",
795         "Generic IP component", "PrimeCell or System component"
796 };
797
798 static bool is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0)
799 {
800         return cid3 == 0xb1 && cid2 == 0x05
801                         && ((cid1 & 0x0f) == 0) && cid0 == 0x0d;
802 }
803
804 /*
805  * This function checks the ID for each access port to find the requested Access Port type
806  */
807 int dap_find_ap(struct adiv5_dap *dap, enum ap_type type_to_find, uint8_t *ap_num_out)
808 {
809         int ap;
810
811         /* Maximum AP number is 255 since the SELECT register is 8 bits */
812         for (ap = 0; ap <= 255; ap++) {
813
814                 /* read the IDR register of the Access Port */
815                 uint32_t id_val = 0;
816                 dap_ap_select(dap, ap);
817
818                 int retval = dap_queue_ap_read(dap, AP_REG_IDR, &id_val);
819                 if (retval != ERROR_OK)
820                         return retval;
821
822                 retval = dap_run(dap);
823
824                 /* IDR bits:
825                  * 31-28 : Revision
826                  * 27-24 : JEDEC bank (0x4 for ARM)
827                  * 23-17 : JEDEC code (0x3B for ARM)
828                  * 16-13 : Class (0b1000=Mem-AP)
829                  * 12-8  : Reserved
830                  *  7-4  : AP Variant (non-zero for JTAG-AP)
831                  *  3-0  : AP Type (0=JTAG-AP 1=AHB-AP 2=APB-AP 4=AXI-AP)
832                  */
833
834                 /* Reading register for a non-existant AP should not cause an error,
835                  * but just to be sure, try to continue searching if an error does happen.
836                  */
837                 if ((retval == ERROR_OK) &&                  /* Register read success */
838                         ((id_val & 0x0FFF0000) == 0x04770000) && /* Jedec codes match */
839                         ((id_val & 0xF) == type_to_find)) {      /* type matches*/
840
841                         LOG_DEBUG("Found %s at AP index: %d (IDR=0x%08" PRIX32 ")",
842                                                 (type_to_find == AP_TYPE_AHB_AP)  ? "AHB-AP"  :
843                                                 (type_to_find == AP_TYPE_APB_AP)  ? "APB-AP"  :
844                                                 (type_to_find == AP_TYPE_AXI_AP)  ? "AXI-AP"  :
845                                                 (type_to_find == AP_TYPE_JTAG_AP) ? "JTAG-AP" : "Unknown",
846                                                 ap, id_val);
847
848                         *ap_num_out = ap;
849                         return ERROR_OK;
850                 }
851         }
852
853         LOG_DEBUG("No %s found",
854                                 (type_to_find == AP_TYPE_AHB_AP)  ? "AHB-AP"  :
855                                 (type_to_find == AP_TYPE_APB_AP)  ? "APB-AP"  :
856                                 (type_to_find == AP_TYPE_AXI_AP)  ? "AXI-AP"  :
857                                 (type_to_find == AP_TYPE_JTAG_AP) ? "JTAG-AP" : "Unknown");
858         return ERROR_FAIL;
859 }
860
861 int dap_get_debugbase(struct adiv5_dap *dap, int ap,
862                         uint32_t *dbgbase, uint32_t *apid)
863 {
864         uint32_t ap_old;
865         int retval;
866
867         /* AP address is in bits 31:24 of DP_SELECT */
868         if (ap >= 256)
869                 return ERROR_COMMAND_SYNTAX_ERROR;
870
871         ap_old = dap_ap_get_select(dap);
872         dap_ap_select(dap, ap);
873
874         retval = dap_queue_ap_read(dap, MEM_AP_REG_BASE, dbgbase);
875         if (retval != ERROR_OK)
876                 return retval;
877         retval = dap_queue_ap_read(dap, AP_REG_IDR, apid);
878         if (retval != ERROR_OK)
879                 return retval;
880         retval = dap_run(dap);
881         if (retval != ERROR_OK)
882                 return retval;
883
884         dap_ap_select(dap, ap_old);
885
886         return ERROR_OK;
887 }
888
889 int dap_lookup_cs_component(struct adiv5_dap *dap, int ap,
890                         uint32_t dbgbase, uint8_t type, uint32_t *addr, int32_t *idx)
891 {
892         uint32_t ap_old;
893         uint32_t romentry, entry_offset = 0, component_base, devtype;
894         int retval;
895
896         if (ap >= 256)
897                 return ERROR_COMMAND_SYNTAX_ERROR;
898
899         *addr = 0;
900         ap_old = dap_ap_get_select(dap);
901         dap_ap_select(dap, ap);
902
903         do {
904                 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) |
905                                                 entry_offset, &romentry);
906                 if (retval != ERROR_OK)
907                         return retval;
908
909                 component_base = (dbgbase & 0xFFFFF000)
910                         + (romentry & 0xFFFFF000);
911
912                 if (romentry & 0x1) {
913                         uint32_t c_cid1;
914                         retval = mem_ap_read_atomic_u32(dap, component_base | 0xff4, &c_cid1);
915                         if (retval != ERROR_OK) {
916                                 LOG_ERROR("Can't read component with base address 0x%" PRIx32
917                                           ", the corresponding core might be turned off", component_base);
918                                 return retval;
919                         }
920                         if (((c_cid1 >> 4) & 0x0f) == 1) {
921                                 retval = dap_lookup_cs_component(dap, ap, component_base,
922                                                         type, addr, idx);
923                                 if (retval == ERROR_OK)
924                                         break;
925                                 if (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
926                                         return retval;
927                         }
928
929                         retval = mem_ap_read_atomic_u32(dap,
930                                         (component_base & 0xfffff000) | 0xfcc,
931                                         &devtype);
932                         if (retval != ERROR_OK)
933                                 return retval;
934                         if ((devtype & 0xff) == type) {
935                                 if (!*idx) {
936                                         *addr = component_base;
937                                         break;
938                                 } else
939                                         (*idx)--;
940                         }
941                 }
942                 entry_offset += 4;
943         } while (romentry > 0);
944
945         dap_ap_select(dap, ap_old);
946
947         if (!*addr)
948                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
949
950         return ERROR_OK;
951 }
952
953 static int dap_rom_display(struct command_context *cmd_ctx,
954                                 struct adiv5_dap *dap, int ap, uint32_t dbgbase, int depth)
955 {
956         int retval;
957         uint32_t cid0, cid1, cid2, cid3, memtype, romentry;
958         uint16_t entry_offset;
959         char tabs[7] = "";
960
961         if (depth > 16) {
962                 command_print(cmd_ctx, "\tTables too deep");
963                 return ERROR_FAIL;
964         }
965
966         if (depth)
967                 snprintf(tabs, sizeof(tabs), "[L%02d] ", depth);
968
969         /* bit 16 of apid indicates a memory access port */
970         if (dbgbase & 0x02)
971                 command_print(cmd_ctx, "\t%sValid ROM table present", tabs);
972         else
973                 command_print(cmd_ctx, "\t%sROM table in legacy format", tabs);
974
975         /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec  */
976         retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF0, &cid0);
977         if (retval != ERROR_OK)
978                 return retval;
979         retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF4, &cid1);
980         if (retval != ERROR_OK)
981                 return retval;
982         retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF8, &cid2);
983         if (retval != ERROR_OK)
984                 return retval;
985         retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFFC, &cid3);
986         if (retval != ERROR_OK)
987                 return retval;
988         retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFCC, &memtype);
989         if (retval != ERROR_OK)
990                 return retval;
991         retval = dap_run(dap);
992         if (retval != ERROR_OK)
993                 return retval;
994
995         if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
996                 command_print(cmd_ctx, "\t%sCID3 0x%02x"
997                                 ", CID2 0x%02x"
998                                 ", CID1 0x%02x"
999                                 ", CID0 0x%02x",
1000                                 tabs,
1001                                 (unsigned)cid3, (unsigned)cid2,
1002                                 (unsigned)cid1, (unsigned)cid0);
1003         if (memtype & 0x01)
1004                 command_print(cmd_ctx, "\t%sMEMTYPE system memory present on bus", tabs);
1005         else
1006                 command_print(cmd_ctx, "\t%sMEMTYPE system memory not present: dedicated debug bus", tabs);
1007
1008         /* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
1009         for (entry_offset = 0; ; entry_offset += 4) {
1010                 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) | entry_offset, &romentry);
1011                 if (retval != ERROR_OK)
1012                         return retval;
1013                 command_print(cmd_ctx, "\t%sROMTABLE[0x%x] = 0x%" PRIx32 "",
1014                                 tabs, entry_offset, romentry);
1015                 if (romentry & 0x01) {
1016                         uint32_t c_cid0, c_cid1, c_cid2, c_cid3;
1017                         uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4;
1018                         uint32_t component_base;
1019                         uint32_t part_num;
1020                         const char *type, *full;
1021
1022                         component_base = (dbgbase & 0xFFFFF000) + (romentry & 0xFFFFF000);
1023
1024                         /* IDs are in last 4K section */
1025                         retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE0, &c_pid0);
1026                         if (retval != ERROR_OK) {
1027                                 command_print(cmd_ctx, "\t%s\tCan't read component with base address 0x%" PRIx32
1028                                               ", the corresponding core might be turned off", tabs, component_base);
1029                                 continue;
1030                         }
1031                         c_pid0 &= 0xff;
1032                         retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE4, &c_pid1);
1033                         if (retval != ERROR_OK)
1034                                 return retval;
1035                         c_pid1 &= 0xff;
1036                         retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE8, &c_pid2);
1037                         if (retval != ERROR_OK)
1038                                 return retval;
1039                         c_pid2 &= 0xff;
1040                         retval = mem_ap_read_atomic_u32(dap, component_base + 0xFEC, &c_pid3);
1041                         if (retval != ERROR_OK)
1042                                 return retval;
1043                         c_pid3 &= 0xff;
1044                         retval = mem_ap_read_atomic_u32(dap, component_base + 0xFD0, &c_pid4);
1045                         if (retval != ERROR_OK)
1046                                 return retval;
1047                         c_pid4 &= 0xff;
1048
1049                         retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF0, &c_cid0);
1050                         if (retval != ERROR_OK)
1051                                 return retval;
1052                         c_cid0 &= 0xff;
1053                         retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF4, &c_cid1);
1054                         if (retval != ERROR_OK)
1055                                 return retval;
1056                         c_cid1 &= 0xff;
1057                         retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF8, &c_cid2);
1058                         if (retval != ERROR_OK)
1059                                 return retval;
1060                         c_cid2 &= 0xff;
1061                         retval = mem_ap_read_atomic_u32(dap, component_base + 0xFFC, &c_cid3);
1062                         if (retval != ERROR_OK)
1063                                 return retval;
1064                         c_cid3 &= 0xff;
1065
1066                         command_print(cmd_ctx, "\t\tComponent base address 0x%" PRIx32 ", "
1067                                       "start address 0x%" PRIx32, component_base,
1068                                       /* component may take multiple 4K pages */
1069                                       (uint32_t)(component_base - 0x1000*(c_pid4 >> 4)));
1070                         command_print(cmd_ctx, "\t\tComponent class is 0x%" PRIx8 ", %s",
1071                                         (uint8_t)((c_cid1 >> 4) & 0xf),
1072                                         /* See ARM IHI 0029B Table 3-3 */
1073                                         class_description[(c_cid1 >> 4) & 0xf]);
1074
1075                         /* CoreSight component? */
1076                         if (((c_cid1 >> 4) & 0x0f) == 9) {
1077                                 uint32_t devtype;
1078                                 unsigned minor;
1079                                 const char *major = "Reserved", *subtype = "Reserved";
1080
1081                                 retval = mem_ap_read_atomic_u32(dap,
1082                                                 (component_base & 0xfffff000) | 0xfcc,
1083                                                 &devtype);
1084                                 if (retval != ERROR_OK)
1085                                         return retval;
1086                                 minor = (devtype >> 4) & 0x0f;
1087                                 switch (devtype & 0x0f) {
1088                                 case 0:
1089                                         major = "Miscellaneous";
1090                                         switch (minor) {
1091                                         case 0:
1092                                                 subtype = "other";
1093                                                 break;
1094                                         case 4:
1095                                                 subtype = "Validation component";
1096                                                 break;
1097                                         }
1098                                         break;
1099                                 case 1:
1100                                         major = "Trace Sink";
1101                                         switch (minor) {
1102                                         case 0:
1103                                                 subtype = "other";
1104                                                 break;
1105                                         case 1:
1106                                                 subtype = "Port";
1107                                                 break;
1108                                         case 2:
1109                                                 subtype = "Buffer";
1110                                                 break;
1111                                         case 3:
1112                                                 subtype = "Router";
1113                                                 break;
1114                                         }
1115                                         break;
1116                                 case 2:
1117                                         major = "Trace Link";
1118                                         switch (minor) {
1119                                         case 0:
1120                                                 subtype = "other";
1121                                                 break;
1122                                         case 1:
1123                                                 subtype = "Funnel, router";
1124                                                 break;
1125                                         case 2:
1126                                                 subtype = "Filter";
1127                                                 break;
1128                                         case 3:
1129                                                 subtype = "FIFO, buffer";
1130                                                 break;
1131                                         }
1132                                         break;
1133                                 case 3:
1134                                         major = "Trace Source";
1135                                         switch (minor) {
1136                                         case 0:
1137                                                 subtype = "other";
1138                                                 break;
1139                                         case 1:
1140                                                 subtype = "Processor";
1141                                                 break;
1142                                         case 2:
1143                                                 subtype = "DSP";
1144                                                 break;
1145                                         case 3:
1146                                                 subtype = "Engine/Coprocessor";
1147                                                 break;
1148                                         case 4:
1149                                                 subtype = "Bus";
1150                                                 break;
1151                                         case 6:
1152                                                 subtype = "Software";
1153                                                 break;
1154                                         }
1155                                         break;
1156                                 case 4:
1157                                         major = "Debug Control";
1158                                         switch (minor) {
1159                                         case 0:
1160                                                 subtype = "other";
1161                                                 break;
1162                                         case 1:
1163                                                 subtype = "Trigger Matrix";
1164                                                 break;
1165                                         case 2:
1166                                                 subtype = "Debug Auth";
1167                                                 break;
1168                                         case 3:
1169                                                 subtype = "Power Requestor";
1170                                                 break;
1171                                         }
1172                                         break;
1173                                 case 5:
1174                                         major = "Debug Logic";
1175                                         switch (minor) {
1176                                         case 0:
1177                                                 subtype = "other";
1178                                                 break;
1179                                         case 1:
1180                                                 subtype = "Processor";
1181                                                 break;
1182                                         case 2:
1183                                                 subtype = "DSP";
1184                                                 break;
1185                                         case 3:
1186                                                 subtype = "Engine/Coprocessor";
1187                                                 break;
1188                                         case 4:
1189                                                 subtype = "Bus";
1190                                                 break;
1191                                         case 5:
1192                                                 subtype = "Memory";
1193                                                 break;
1194                                         }
1195                                         break;
1196                                 case 6:
1197                                         major = "Perfomance Monitor";
1198                                         switch (minor) {
1199                                         case 0:
1200                                                 subtype = "other";
1201                                                 break;
1202                                         case 1:
1203                                                 subtype = "Processor";
1204                                                 break;
1205                                         case 2:
1206                                                 subtype = "DSP";
1207                                                 break;
1208                                         case 3:
1209                                                 subtype = "Engine/Coprocessor";
1210                                                 break;
1211                                         case 4:
1212                                                 subtype = "Bus";
1213                                                 break;
1214                                         case 5:
1215                                                 subtype = "Memory";
1216                                                 break;
1217                                         }
1218                                         break;
1219                                 }
1220                                 command_print(cmd_ctx, "\t\tType is 0x%02" PRIx8 ", %s, %s",
1221                                                 (uint8_t)(devtype & 0xff),
1222                                                 major, subtype);
1223                                 /* REVISIT also show 0xfc8 DevId */
1224                         }
1225
1226                         if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1227                                 command_print(cmd_ctx,
1228                                                 "\t\tCID3 0%02x"
1229                                                 ", CID2 0%02x"
1230                                                 ", CID1 0%02x"
1231                                                 ", CID0 0%02x",
1232                                                 (int)c_cid3,
1233                                                 (int)c_cid2,
1234                                                 (int)c_cid1,
1235                                                 (int)c_cid0);
1236                         command_print(cmd_ctx,
1237                                 "\t\tPeripheral ID[4..0] = hex "
1238                                 "%02x %02x %02x %02x %02x",
1239                                 (int)c_pid4, (int)c_pid3, (int)c_pid2,
1240                                 (int)c_pid1, (int)c_pid0);
1241
1242                         /* Part number interpretations are from Cortex
1243                          * core specs, the CoreSight components TRM
1244                          * (ARM DDI 0314H), CoreSight System Design
1245                          * Guide (ARM DGI 0012D) and ETM specs; also
1246                          * from chip observation (e.g. TI SDTI).
1247                          */
1248                         part_num = (c_pid0 & 0xff);
1249                         part_num |= (c_pid1 & 0x0f) << 8;
1250                         switch (part_num) {
1251                         case 0x000:
1252                                 type = "Cortex-M3 NVIC";
1253                                 full = "(Interrupt Controller)";
1254                                 break;
1255                         case 0x001:
1256                                 type = "Cortex-M3 ITM";
1257                                 full = "(Instrumentation Trace Module)";
1258                                 break;
1259                         case 0x002:
1260                                 type = "Cortex-M3 DWT";
1261                                 full = "(Data Watchpoint and Trace)";
1262                                 break;
1263                         case 0x003:
1264                                 type = "Cortex-M3 FBP";
1265                                 full = "(Flash Patch and Breakpoint)";
1266                                 break;
1267                         case 0x008:
1268                                 type = "Cortex-M0 SCS";
1269                                 full = "(System Control Space)";
1270                                 break;
1271                         case 0x00a:
1272                                 type = "Cortex-M0 DWT";
1273                                 full = "(Data Watchpoint and Trace)";
1274                                 break;
1275                         case 0x00b:
1276                                 type = "Cortex-M0 BPU";
1277                                 full = "(Breakpoint Unit)";
1278                                 break;
1279                         case 0x00c:
1280                                 type = "Cortex-M4 SCS";
1281                                 full = "(System Control Space)";
1282                                 break;
1283                         case 0x00d:
1284                                 type = "CoreSight ETM11";
1285                                 full = "(Embedded Trace)";
1286                                 break;
1287                         /* case 0x113: what? */
1288                         case 0x120:             /* from OMAP3 memmap */
1289                                 type = "TI SDTI";
1290                                 full = "(System Debug Trace Interface)";
1291                                 break;
1292                         case 0x343:             /* from OMAP3 memmap */
1293                                 type = "TI DAPCTL";
1294                                 full = "";
1295                                 break;
1296                         case 0x906:
1297                                 type = "Coresight CTI";
1298                                 full = "(Cross Trigger)";
1299                                 break;
1300                         case 0x907:
1301                                 type = "Coresight ETB";
1302                                 full = "(Trace Buffer)";
1303                                 break;
1304                         case 0x908:
1305                                 type = "Coresight CSTF";
1306                                 full = "(Trace Funnel)";
1307                                 break;
1308                         case 0x910:
1309                                 type = "CoreSight ETM9";
1310                                 full = "(Embedded Trace)";
1311                                 break;
1312                         case 0x912:
1313                                 type = "Coresight TPIU";
1314                                 full = "(Trace Port Interface Unit)";
1315                                 break;
1316                         case 0x913:
1317                                 type = "Coresight ITM";
1318                                 full = "(Instrumentation Trace Macrocell)";
1319                                 break;
1320                         case 0x914:
1321                                 type = "Coresight SWO";
1322                                 full = "(Single Wire Output)";
1323                                 break;
1324                         case 0x917:
1325                                 type = "Coresight HTM";
1326                                 full = "(AHB Trace Macrocell)";
1327                                 break;
1328                         case 0x920:
1329                                 type = "CoreSight ETM11";
1330                                 full = "(Embedded Trace)";
1331                                 break;
1332                         case 0x921:
1333                                 type = "Cortex-A8 ETM";
1334                                 full = "(Embedded Trace)";
1335                                 break;
1336                         case 0x922:
1337                                 type = "Cortex-A8 CTI";
1338                                 full = "(Cross Trigger)";
1339                                 break;
1340                         case 0x923:
1341                                 type = "Cortex-M3 TPIU";
1342                                 full = "(Trace Port Interface Unit)";
1343                                 break;
1344                         case 0x924:
1345                                 type = "Cortex-M3 ETM";
1346                                 full = "(Embedded Trace)";
1347                                 break;
1348                         case 0x925:
1349                                 type = "Cortex-M4 ETM";
1350                                 full = "(Embedded Trace)";
1351                                 break;
1352                         case 0x930:
1353                                 type = "Cortex-R4 ETM";
1354                                 full = "(Embedded Trace)";
1355                                 break;
1356                         case 0x950:
1357                                 type = "CoreSight Component";
1358                                 full = "(unidentified Cortex-A9 component)";
1359                                 break;
1360                         case 0x961:
1361                                 type = "CoreSight TMC";
1362                                 full = "(Trace Memory Controller)";
1363                                 break;
1364                         case 0x962:
1365                                 type = "CoreSight STM";
1366                                 full = "(System Trace Macrocell)";
1367                                 break;
1368                         case 0x9a0:
1369                                 type = "CoreSight PMU";
1370                                 full = "(Performance Monitoring Unit)";
1371                                 break;
1372                         case 0x9a1:
1373                                 type = "Cortex-M4 TPUI";
1374                                 full = "(Trace Port Interface Unit)";
1375                                 break;
1376                         case 0x9a5:
1377                                 type = "Cortex-A5 ETM";
1378                                 full = "(Embedded Trace)";
1379                                 break;
1380                         case 0xc05:
1381                                 type = "Cortex-A5 Debug";
1382                                 full = "(Debug Unit)";
1383                                 break;
1384                         case 0xc08:
1385                                 type = "Cortex-A8 Debug";
1386                                 full = "(Debug Unit)";
1387                                 break;
1388                         case 0xc09:
1389                                 type = "Cortex-A9 Debug";
1390                                 full = "(Debug Unit)";
1391                                 break;
1392                         case 0x4af:
1393                                 type = "Cortex-A15 Debug";
1394                                 full = "(Debug Unit)";
1395                                 break;
1396                         default:
1397                                 LOG_DEBUG("Unrecognized Part number 0x%" PRIx32, part_num);
1398                                 type = "-*- unrecognized -*-";
1399                                 full = "";
1400                                 break;
1401                         }
1402                         command_print(cmd_ctx, "\t\tPart is %s %s",
1403                                         type, full);
1404
1405                         /* ROM Table? */
1406                         if (((c_cid1 >> 4) & 0x0f) == 1) {
1407                                 retval = dap_rom_display(cmd_ctx, dap, ap, component_base, depth + 1);
1408                                 if (retval != ERROR_OK)
1409                                         return retval;
1410                         }
1411                 } else {
1412                         if (romentry)
1413                                 command_print(cmd_ctx, "\t\tComponent not present");
1414                         else
1415                                 break;
1416                 }
1417         }
1418         command_print(cmd_ctx, "\t%s\tEnd of ROM table", tabs);
1419         return ERROR_OK;
1420 }
1421
1422 static int dap_info_command(struct command_context *cmd_ctx,
1423                 struct adiv5_dap *dap, int ap)
1424 {
1425         int retval;
1426         uint32_t dbgbase, apid;
1427         int romtable_present = 0;
1428         uint8_t mem_ap;
1429         uint32_t ap_old;
1430
1431         retval = dap_get_debugbase(dap, ap, &dbgbase, &apid);
1432         if (retval != ERROR_OK)
1433                 return retval;
1434
1435         ap_old = dap_ap_get_select(dap);
1436         dap_ap_select(dap, ap);
1437
1438         /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec  */
1439         mem_ap = ((apid&0x10000) && ((apid&0x0F) != 0));
1440         command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid);
1441         if (apid) {
1442                 switch (apid&0x0F) {
1443                         case 0:
1444                                 command_print(cmd_ctx, "\tType is JTAG-AP");
1445                                 break;
1446                         case 1:
1447                                 command_print(cmd_ctx, "\tType is MEM-AP AHB");
1448                                 break;
1449                         case 2:
1450                                 command_print(cmd_ctx, "\tType is MEM-AP APB");
1451                                 break;
1452                         default:
1453                                 command_print(cmd_ctx, "\tUnknown AP type");
1454                                 break;
1455                 }
1456
1457                 /* NOTE: a MEM-AP may have a single CoreSight component that's
1458                  * not a ROM table ... or have no such components at all.
1459                  */
1460                 if (mem_ap)
1461                         command_print(cmd_ctx, "AP BASE 0x%8.8" PRIx32, dbgbase);
1462         } else
1463                 command_print(cmd_ctx, "No AP found at this ap 0x%x", ap);
1464
1465         romtable_present = ((mem_ap) && (dbgbase != 0xFFFFFFFF));
1466         if (romtable_present)
1467                 dap_rom_display(cmd_ctx, dap, ap, dbgbase, 0);
1468         else
1469                 command_print(cmd_ctx, "\tNo ROM table present");
1470         dap_ap_select(dap, ap_old);
1471
1472         return ERROR_OK;
1473 }
1474
1475 COMMAND_HANDLER(handle_dap_info_command)
1476 {
1477         struct target *target = get_current_target(CMD_CTX);
1478         struct arm *arm = target_to_arm(target);
1479         struct adiv5_dap *dap = arm->dap;
1480         uint32_t apsel;
1481
1482         switch (CMD_ARGC) {
1483         case 0:
1484                 apsel = dap->apsel;
1485                 break;
1486         case 1:
1487                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1488                 break;
1489         default:
1490                 return ERROR_COMMAND_SYNTAX_ERROR;
1491         }
1492
1493         return dap_info_command(CMD_CTX, dap, apsel);
1494 }
1495
1496 COMMAND_HANDLER(dap_baseaddr_command)
1497 {
1498         struct target *target = get_current_target(CMD_CTX);
1499         struct arm *arm = target_to_arm(target);
1500         struct adiv5_dap *dap = arm->dap;
1501
1502         uint32_t apsel, baseaddr;
1503         int retval;
1504
1505         switch (CMD_ARGC) {
1506         case 0:
1507                 apsel = dap->apsel;
1508                 break;
1509         case 1:
1510                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1511                 /* AP address is in bits 31:24 of DP_SELECT */
1512                 if (apsel >= 256)
1513                         return ERROR_COMMAND_SYNTAX_ERROR;
1514                 break;
1515         default:
1516                 return ERROR_COMMAND_SYNTAX_ERROR;
1517         }
1518
1519         dap_ap_select(dap, apsel);
1520
1521         /* NOTE:  assumes we're talking to a MEM-AP, which
1522          * has a base address.  There are other kinds of AP,
1523          * though they're not common for now.  This should
1524          * use the ID register to verify it's a MEM-AP.
1525          */
1526         retval = dap_queue_ap_read(dap, MEM_AP_REG_BASE, &baseaddr);
1527         if (retval != ERROR_OK)
1528                 return retval;
1529         retval = dap_run(dap);
1530         if (retval != ERROR_OK)
1531                 return retval;
1532
1533         command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
1534
1535         return retval;
1536 }
1537
1538 COMMAND_HANDLER(dap_memaccess_command)
1539 {
1540         struct target *target = get_current_target(CMD_CTX);
1541         struct arm *arm = target_to_arm(target);
1542         struct adiv5_dap *dap = arm->dap;
1543
1544         uint32_t memaccess_tck;
1545
1546         switch (CMD_ARGC) {
1547         case 0:
1548                 memaccess_tck = dap->ap[dap->apsel].memaccess_tck;
1549                 break;
1550         case 1:
1551                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1552                 break;
1553         default:
1554                 return ERROR_COMMAND_SYNTAX_ERROR;
1555         }
1556         dap->ap[dap->apsel].memaccess_tck = memaccess_tck;
1557
1558         command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
1559                         dap->ap[dap->apsel].memaccess_tck);
1560
1561         return ERROR_OK;
1562 }
1563
1564 COMMAND_HANDLER(dap_apsel_command)
1565 {
1566         struct target *target = get_current_target(CMD_CTX);
1567         struct arm *arm = target_to_arm(target);
1568         struct adiv5_dap *dap = arm->dap;
1569
1570         uint32_t apsel, apid;
1571         int retval;
1572
1573         switch (CMD_ARGC) {
1574         case 0:
1575                 apsel = 0;
1576                 break;
1577         case 1:
1578                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1579                 /* AP address is in bits 31:24 of DP_SELECT */
1580                 if (apsel >= 256)
1581                         return ERROR_COMMAND_SYNTAX_ERROR;
1582                 break;
1583         default:
1584                 return ERROR_COMMAND_SYNTAX_ERROR;
1585         }
1586
1587         dap->apsel = apsel;
1588         dap_ap_select(dap, apsel);
1589
1590         retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1591         if (retval != ERROR_OK)
1592                 return retval;
1593         retval = dap_run(dap);
1594         if (retval != ERROR_OK)
1595                 return retval;
1596
1597         command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
1598                         apsel, apid);
1599
1600         return retval;
1601 }
1602
1603 COMMAND_HANDLER(dap_apcsw_command)
1604 {
1605         struct target *target = get_current_target(CMD_CTX);
1606         struct arm *arm = target_to_arm(target);
1607         struct adiv5_dap *dap = arm->dap;
1608
1609         uint32_t apcsw = dap->ap[dap->apsel].csw_default, sprot = 0;
1610
1611         switch (CMD_ARGC) {
1612         case 0:
1613                 command_print(CMD_CTX, "apsel %" PRIi32 " selected, csw 0x%8.8" PRIx32,
1614                         (dap->apsel), apcsw);
1615                 break;
1616         case 1:
1617                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], sprot);
1618                 /* AP address is in bits 31:24 of DP_SELECT */
1619                 if (sprot > 1)
1620                         return ERROR_COMMAND_SYNTAX_ERROR;
1621                 if (sprot)
1622                         apcsw |= CSW_SPROT;
1623                 else
1624                         apcsw &= ~CSW_SPROT;
1625                 break;
1626         default:
1627                 return ERROR_COMMAND_SYNTAX_ERROR;
1628         }
1629         dap->ap[dap->apsel].csw_default = apcsw;
1630
1631         return 0;
1632 }
1633
1634
1635
1636 COMMAND_HANDLER(dap_apid_command)
1637 {
1638         struct target *target = get_current_target(CMD_CTX);
1639         struct arm *arm = target_to_arm(target);
1640         struct adiv5_dap *dap = arm->dap;
1641
1642         uint32_t apsel, apid;
1643         int retval;
1644
1645         switch (CMD_ARGC) {
1646         case 0:
1647                 apsel = dap->apsel;
1648                 break;
1649         case 1:
1650                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1651                 /* AP address is in bits 31:24 of DP_SELECT */
1652                 if (apsel >= 256)
1653                         return ERROR_COMMAND_SYNTAX_ERROR;
1654                 break;
1655         default:
1656                 return ERROR_COMMAND_SYNTAX_ERROR;
1657         }
1658
1659         dap_ap_select(dap, apsel);
1660
1661         retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1662         if (retval != ERROR_OK)
1663                 return retval;
1664         retval = dap_run(dap);
1665         if (retval != ERROR_OK)
1666                 return retval;
1667
1668         command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
1669
1670         return retval;
1671 }
1672
1673 COMMAND_HANDLER(dap_ti_be_32_quirks_command)
1674 {
1675         struct target *target = get_current_target(CMD_CTX);
1676         struct arm *arm = target_to_arm(target);
1677         struct adiv5_dap *dap = arm->dap;
1678
1679         uint32_t enable = dap->ti_be_32_quirks;
1680
1681         switch (CMD_ARGC) {
1682         case 0:
1683                 break;
1684         case 1:
1685                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], enable);
1686                 if (enable > 1)
1687                         return ERROR_COMMAND_SYNTAX_ERROR;
1688                 break;
1689         default:
1690                 return ERROR_COMMAND_SYNTAX_ERROR;
1691         }
1692         dap->ti_be_32_quirks = enable;
1693         command_print(CMD_CTX, "TI BE-32 quirks mode %s",
1694                 enable ? "enabled" : "disabled");
1695
1696         return 0;
1697 }
1698
1699 static const struct command_registration dap_commands[] = {
1700         {
1701                 .name = "info",
1702                 .handler = handle_dap_info_command,
1703                 .mode = COMMAND_EXEC,
1704                 .help = "display ROM table for MEM-AP "
1705                         "(default currently selected AP)",
1706                 .usage = "[ap_num]",
1707         },
1708         {
1709                 .name = "apsel",
1710                 .handler = dap_apsel_command,
1711                 .mode = COMMAND_EXEC,
1712                 .help = "Set the currently selected AP (default 0) "
1713                         "and display the result",
1714                 .usage = "[ap_num]",
1715         },
1716         {
1717                 .name = "apcsw",
1718                 .handler = dap_apcsw_command,
1719                 .mode = COMMAND_EXEC,
1720                 .help = "Set csw access bit ",
1721                 .usage = "[sprot]",
1722         },
1723
1724         {
1725                 .name = "apid",
1726                 .handler = dap_apid_command,
1727                 .mode = COMMAND_EXEC,
1728                 .help = "return ID register from AP "
1729                         "(default currently selected AP)",
1730                 .usage = "[ap_num]",
1731         },
1732         {
1733                 .name = "baseaddr",
1734                 .handler = dap_baseaddr_command,
1735                 .mode = COMMAND_EXEC,
1736                 .help = "return debug base address from MEM-AP "
1737                         "(default currently selected AP)",
1738                 .usage = "[ap_num]",
1739         },
1740         {
1741                 .name = "memaccess",
1742                 .handler = dap_memaccess_command,
1743                 .mode = COMMAND_EXEC,
1744                 .help = "set/get number of extra tck for MEM-AP memory "
1745                         "bus access [0-255]",
1746                 .usage = "[cycles]",
1747         },
1748         {
1749                 .name = "ti_be_32_quirks",
1750                 .handler = dap_ti_be_32_quirks_command,
1751                 .mode = COMMAND_CONFIG,
1752                 .help = "set/get quirks mode for TI TMS450/TMS570 processors",
1753                 .usage = "[enable]",
1754         },
1755         COMMAND_REGISTRATION_DONE
1756 };
1757
1758 const struct command_registration dap_command_handlers[] = {
1759         {
1760                 .name = "dap",
1761                 .mode = COMMAND_EXEC,
1762                 .help = "DAP command group",
1763                 .usage = "",
1764                 .chain = dap_commands,
1765         },
1766         COMMAND_REGISTRATION_DONE
1767 };