adi_v5_cmsis_dap.c: Simplify debugging output
[fw/openocd] / src / target / arm_adi_v5.c
1 /***************************************************************************
2  *   Copyright (C) 2006 by Magnus Lundin                                   *
3  *   lundin@mlu.mine.nu                                                    *
4  *                                                                         *
5  *   Copyright (C) 2008 by Spencer Oliver                                  *
6  *   spen@spen-soft.co.uk                                                  *
7  *                                                                         *
8  *   Copyright (C) 2009-2010 by Oyvind Harboe                              *
9  *   oyvind.harboe@zylin.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2009-2010 by David Brownell                             *
12  *                                                                         *
13  *   Copyright (C) 2013 by Andreas Fritiofson                              *
14  *   andreas.fritiofson@gmail.com                                          *
15  *                                                                         *
16  *   This program is free software; you can redistribute it and/or modify  *
17  *   it under the terms of the GNU General Public License as published by  *
18  *   the Free Software Foundation; either version 2 of the License, or     *
19  *   (at your option) any later version.                                   *
20  *                                                                         *
21  *   This program is distributed in the hope that it will be useful,       *
22  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
23  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
24  *   GNU General Public License for more details.                          *
25  *                                                                         *
26  *   You should have received a copy of the GNU General Public License     *
27  *   along with this program; if not, write to the                         *
28  *   Free Software Foundation, Inc.,                                       *
29  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.           *
30  ***************************************************************************/
31
32 /**
33  * @file
34  * This file implements support for the ARM Debug Interface version 5 (ADIv5)
35  * debugging architecture.  Compared with previous versions, this includes
36  * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
37  * transport, and focusses on memory mapped resources as defined by the
38  * CoreSight architecture.
39  *
40  * A key concept in ADIv5 is the Debug Access Port, or DAP.  A DAP has two
41  * basic components:  a Debug Port (DP) transporting messages to and from a
42  * debugger, and an Access Port (AP) accessing resources.  Three types of DP
43  * are defined.  One uses only JTAG for communication, and is called JTAG-DP.
44  * One uses only SWD for communication, and is called SW-DP.  The third can
45  * use either SWD or JTAG, and is called SWJ-DP.  The most common type of AP
46  * is used to access memory mapped resources and is called a MEM-AP.  Also a
47  * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
48  *
49  * This programming interface allows DAP pipelined operations through a
50  * transaction queue.  This primarily affects AP operations (such as using
51  * a MEM-AP to access memory or registers).  If the current transaction has
52  * not finished by the time the next one must begin, and the ORUNDETECT bit
53  * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
54  * further AP operations will fail.  There are two basic methods to avoid
55  * such overrun errors.  One involves polling for status instead of using
56  * transaction piplining.  The other involves adding delays to ensure the
57  * AP has enough time to complete one operation before starting the next
58  * one.  (For JTAG these delays are controlled by memaccess_tck.)
59  */
60
61 /*
62  * Relevant specifications from ARM include:
63  *
64  * ARM(tm) Debug Interface v5 Architecture Specification    ARM IHI 0031A
65  * CoreSight(tm) v1.0 Architecture Specification            ARM IHI 0029B
66  *
67  * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
68  * Cortex-M3(tm) TRM, ARM DDI 0337G
69  */
70
71 #ifdef HAVE_CONFIG_H
72 #include "config.h"
73 #endif
74
75 #include "jtag/interface.h"
76 #include "arm.h"
77 #include "arm_adi_v5.h"
78 #include <helper/time_support.h>
79
80 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement  */
81
82 /*
83         uint32_t tar_block_size(uint32_t address)
84         Return the largest block starting at address that does not cross a tar block size alignment boundary
85 */
86 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
87 {
88         return tar_autoincr_block - ((tar_autoincr_block - 1) & address);
89 }
90
91 /***************************************************************************
92  *                                                                         *
93  * DP and MEM-AP  register access  through APACC and DPACC                 *
94  *                                                                         *
95 ***************************************************************************/
96
97 /**
98  * Select one of the APs connected to the specified DAP.  The
99  * selection is implicitly used with future AP transactions.
100  * This is a NOP if the specified AP is already selected.
101  *
102  * @param dap The DAP
103  * @param apsel Number of the AP to (implicitly) use with further
104  *      transactions.  This normally identifies a MEM-AP.
105  */
106 void dap_ap_select(struct adiv5_dap *dap, uint8_t ap)
107 {
108         uint32_t new_ap = (ap << 24) & 0xFF000000;
109
110         if (new_ap != dap->ap_current) {
111                 dap->ap_current = new_ap;
112                 /* Switching AP invalidates cached values.
113                  * Values MUST BE UPDATED BEFORE AP ACCESS.
114                  */
115                 dap->ap_bank_value = -1;
116                 dap->ap_csw_value = -1;
117                 dap->ap_tar_value = -1;
118         }
119 }
120
121 static int dap_setup_accessport_csw(struct adiv5_dap *dap, uint32_t csw)
122 {
123         csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT |
124                 dap->apcsw[dap->ap_current >> 24];
125
126         if (csw != dap->ap_csw_value) {
127                 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
128                 int retval = dap_queue_ap_write(dap, AP_REG_CSW, csw);
129                 if (retval != ERROR_OK)
130                         return retval;
131                 dap->ap_csw_value = csw;
132         }
133         return ERROR_OK;
134 }
135
136 static int dap_setup_accessport_tar(struct adiv5_dap *dap, uint32_t tar)
137 {
138         if (tar != dap->ap_tar_value || dap->ap_csw_value & CSW_ADDRINC_MASK) {
139                 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
140                 int retval = dap_queue_ap_write(dap, AP_REG_TAR, tar);
141                 if (retval != ERROR_OK)
142                         return retval;
143                 dap->ap_tar_value = tar;
144         }
145         return ERROR_OK;
146 }
147
148 /**
149  * Queue transactions setting up transfer parameters for the
150  * currently selected MEM-AP.
151  *
152  * Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2
153  * initiate data reads or writes using memory or peripheral addresses.
154  * If the CSW is configured for it, the TAR may be automatically
155  * incremented after each transfer.
156  *
157  * @todo Rename to reflect it being specifically a MEM-AP function.
158  *
159  * @param dap The DAP connected to the MEM-AP.
160  * @param csw MEM-AP Control/Status Word (CSW) register to assign.  If this
161  *      matches the cached value, the register is not changed.
162  * @param tar MEM-AP Transfer Address Register (TAR) to assign.  If this
163  *      matches the cached address, the register is not changed.
164  *
165  * @return ERROR_OK if the transaction was properly queued, else a fault code.
166  */
167 int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar)
168 {
169         int retval;
170         retval = dap_setup_accessport_csw(dap, csw);
171         if (retval != ERROR_OK)
172                 return retval;
173         retval = dap_setup_accessport_tar(dap, tar);
174         if (retval != ERROR_OK)
175                 return retval;
176         return ERROR_OK;
177 }
178
179 /**
180  * Asynchronous (queued) read of a word from memory or a system register.
181  *
182  * @param dap The DAP connected to the MEM-AP performing the read.
183  * @param address Address of the 32-bit word to read; it must be
184  *      readable by the currently selected MEM-AP.
185  * @param value points to where the word will be stored when the
186  *      transaction queue is flushed (assuming no errors).
187  *
188  * @return ERROR_OK for success.  Otherwise a fault code.
189  */
190 int mem_ap_read_u32(struct adiv5_dap *dap, uint32_t address,
191                 uint32_t *value)
192 {
193         int retval;
194
195         /* Use banked addressing (REG_BDx) to avoid some link traffic
196          * (updating TAR) when reading several consecutive addresses.
197          */
198         retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
199                         address & 0xFFFFFFF0);
200         if (retval != ERROR_OK)
201                 return retval;
202
203         return dap_queue_ap_read(dap, AP_REG_BD0 | (address & 0xC), value);
204 }
205
206 /**
207  * Synchronous read of a word from memory or a system register.
208  * As a side effect, this flushes any queued transactions.
209  *
210  * @param dap The DAP connected to the MEM-AP performing the read.
211  * @param address Address of the 32-bit word to read; it must be
212  *      readable by the currently selected MEM-AP.
213  * @param value points to where the result will be stored.
214  *
215  * @return ERROR_OK for success; *value holds the result.
216  * Otherwise a fault code.
217  */
218 int mem_ap_read_atomic_u32(struct adiv5_dap *dap, uint32_t address,
219                 uint32_t *value)
220 {
221         int retval;
222
223         retval = mem_ap_read_u32(dap, address, value);
224         if (retval != ERROR_OK)
225                 return retval;
226
227         return dap_run(dap);
228 }
229
230 /**
231  * Asynchronous (queued) write of a word to memory or a system register.
232  *
233  * @param dap The DAP connected to the MEM-AP.
234  * @param address Address to be written; it must be writable by
235  *      the currently selected MEM-AP.
236  * @param value Word that will be written to the address when transaction
237  *      queue is flushed (assuming no errors).
238  *
239  * @return ERROR_OK for success.  Otherwise a fault code.
240  */
241 int mem_ap_write_u32(struct adiv5_dap *dap, uint32_t address,
242                 uint32_t value)
243 {
244         int retval;
245
246         /* Use banked addressing (REG_BDx) to avoid some link traffic
247          * (updating TAR) when writing several consecutive addresses.
248          */
249         retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
250                         address & 0xFFFFFFF0);
251         if (retval != ERROR_OK)
252                 return retval;
253
254         return dap_queue_ap_write(dap, AP_REG_BD0 | (address & 0xC),
255                         value);
256 }
257
258 /**
259  * Synchronous write of a word to memory or a system register.
260  * As a side effect, this flushes any queued transactions.
261  *
262  * @param dap The DAP connected to the MEM-AP.
263  * @param address Address to be written; it must be writable by
264  *      the currently selected MEM-AP.
265  * @param value Word that will be written.
266  *
267  * @return ERROR_OK for success; the data was written.  Otherwise a fault code.
268  */
269 int mem_ap_write_atomic_u32(struct adiv5_dap *dap, uint32_t address,
270                 uint32_t value)
271 {
272         int retval = mem_ap_write_u32(dap, address, value);
273
274         if (retval != ERROR_OK)
275                 return retval;
276
277         return dap_run(dap);
278 }
279
280 /**
281  * Synchronous write of a block of memory, using a specific access size.
282  *
283  * @param dap The DAP connected to the MEM-AP.
284  * @param buffer The data buffer to write. No particular alignment is assumed.
285  * @param size Which access size to use, in bytes. 1, 2 or 4.
286  * @param count The number of writes to do (in size units, not bytes).
287  * @param address Address to be written; it must be writable by the currently selected MEM-AP.
288  * @param addrinc Whether the target address should be increased for each write or not. This
289  *  should normally be true, except when writing to e.g. a FIFO.
290  * @return ERROR_OK on success, otherwise an error code.
291  */
292 int mem_ap_write(struct adiv5_dap *dap, const uint8_t *buffer, uint32_t size, uint32_t count,
293                 uint32_t address, bool addrinc)
294 {
295         size_t nbytes = size * count;
296         const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
297         uint32_t csw_size;
298         uint32_t addr_xor;
299         int retval;
300
301         /* TI BE-32 Quirks mode:
302          * Writes on big-endian TMS570 behave very strangely. Observed behavior:
303          *   size   write address   bytes written in order
304          *   4      TAR ^ 0         (val >> 24), (val >> 16), (val >> 8), (val)
305          *   2      TAR ^ 2         (val >> 8), (val)
306          *   1      TAR ^ 3         (val)
307          * For example, if you attempt to write a single byte to address 0, the processor
308          * will actually write a byte to address 3.
309          *
310          * To make writes of size < 4 work as expected, we xor a value with the address before
311          * setting the TAP, and we set the TAP after every transfer rather then relying on
312          * address increment. */
313
314         if (size == 4) {
315                 csw_size = CSW_32BIT;
316                 addr_xor = 0;
317         } else if (size == 2) {
318                 csw_size = CSW_16BIT;
319                 addr_xor = dap->ti_be_32_quirks ? 2 : 0;
320         } else if (size == 1) {
321                 csw_size = CSW_8BIT;
322                 addr_xor = dap->ti_be_32_quirks ? 3 : 0;
323         } else {
324                 return ERROR_TARGET_UNALIGNED_ACCESS;
325         }
326
327         if (dap->unaligned_access_bad && (address % size != 0))
328                 return ERROR_TARGET_UNALIGNED_ACCESS;
329
330         retval = dap_setup_accessport_tar(dap, address ^ addr_xor);
331         if (retval != ERROR_OK)
332                 return retval;
333
334         while (nbytes > 0) {
335                 uint32_t this_size = size;
336
337                 /* Select packed transfer if possible */
338                 if (addrinc && dap->packed_transfers && nbytes >= 4
339                                 && max_tar_block_size(dap->tar_autoincr_block, address) >= 4) {
340                         this_size = 4;
341                         retval = dap_setup_accessport_csw(dap, csw_size | CSW_ADDRINC_PACKED);
342                 } else {
343                         retval = dap_setup_accessport_csw(dap, csw_size | csw_addrincr);
344                 }
345
346                 if (retval != ERROR_OK)
347                         break;
348
349                 /* How many source bytes each transfer will consume, and their location in the DRW,
350                  * depends on the type of transfer and alignment. See ARM document IHI0031C. */
351                 uint32_t outvalue = 0;
352                 if (dap->ti_be_32_quirks) {
353                         switch (this_size) {
354                         case 4:
355                                 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (address++ & 3) ^ addr_xor);
356                                 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (address++ & 3) ^ addr_xor);
357                                 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (address++ & 3) ^ addr_xor);
358                                 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (address++ & 3) ^ addr_xor);
359                                 break;
360                         case 2:
361                                 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (address++ & 3) ^ addr_xor);
362                                 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (address++ & 3) ^ addr_xor);
363                                 break;
364                         case 1:
365                                 outvalue |= (uint32_t)*buffer++ << 8 * (0 ^ (address++ & 3) ^ addr_xor);
366                                 break;
367                         }
368                 } else {
369                         switch (this_size) {
370                         case 4:
371                                 outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
372                                 outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
373                         case 2:
374                                 outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
375                         case 1:
376                                 outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
377                         }
378                 }
379
380                 nbytes -= this_size;
381
382                 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
383                 if (retval != ERROR_OK)
384                         break;
385
386                 /* Rewrite TAR if it wrapped or we're xoring addresses */
387                 if (addrinc && (addr_xor || (address % dap->tar_autoincr_block < size && nbytes > 0))) {
388                         retval = dap_setup_accessport_tar(dap, address ^ addr_xor);
389                         if (retval != ERROR_OK)
390                                 break;
391                 }
392         }
393
394         /* REVISIT: Might want to have a queued version of this function that does not run. */
395         if (retval == ERROR_OK)
396                 retval = dap_run(dap);
397
398         if (retval != ERROR_OK) {
399                 uint32_t tar;
400                 if (dap_queue_ap_read(dap, AP_REG_TAR, &tar) == ERROR_OK
401                                 && dap_run(dap) == ERROR_OK)
402                         LOG_ERROR("Failed to write memory at 0x%08"PRIx32, tar);
403                 else
404                         LOG_ERROR("Failed to write memory and, additionally, failed to find out where");
405         }
406
407         return retval;
408 }
409
410 /**
411  * Synchronous read of a block of memory, using a specific access size.
412  *
413  * @param dap The DAP connected to the MEM-AP.
414  * @param buffer The data buffer to receive the data. No particular alignment is assumed.
415  * @param size Which access size to use, in bytes. 1, 2 or 4.
416  * @param count The number of reads to do (in size units, not bytes).
417  * @param address Address to be read; it must be readable by the currently selected MEM-AP.
418  * @param addrinc Whether the target address should be increased after each read or not. This
419  *  should normally be true, except when reading from e.g. a FIFO.
420  * @return ERROR_OK on success, otherwise an error code.
421  */
422 int mem_ap_read(struct adiv5_dap *dap, uint8_t *buffer, uint32_t size, uint32_t count,
423                 uint32_t adr, bool addrinc)
424 {
425         size_t nbytes = size * count;
426         const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
427         uint32_t csw_size;
428         uint32_t address = adr;
429         int retval;
430
431         /* TI BE-32 Quirks mode:
432          * Reads on big-endian TMS570 behave strangely differently than writes.
433          * They read from the physical address requested, but with DRW byte-reversed.
434          * For example, a byte read from address 0 will place the result in the high bytes of DRW.
435          * Also, packed 8-bit and 16-bit transfers seem to sometimes return garbage in some bytes,
436          * so avoid them. */
437
438         if (size == 4)
439                 csw_size = CSW_32BIT;
440         else if (size == 2)
441                 csw_size = CSW_16BIT;
442         else if (size == 1)
443                 csw_size = CSW_8BIT;
444         else
445                 return ERROR_TARGET_UNALIGNED_ACCESS;
446
447         if (dap->unaligned_access_bad && (adr % size != 0))
448                 return ERROR_TARGET_UNALIGNED_ACCESS;
449
450         /* Allocate buffer to hold the sequence of DRW reads that will be made. This is a significant
451          * over-allocation if packed transfers are going to be used, but determining the real need at
452          * this point would be messy. */
453         uint32_t *read_buf = malloc(count * sizeof(uint32_t));
454         uint32_t *read_ptr = read_buf;
455         if (read_buf == NULL) {
456                 LOG_ERROR("Failed to allocate read buffer");
457                 return ERROR_FAIL;
458         }
459
460         retval = dap_setup_accessport_tar(dap, address);
461         if (retval != ERROR_OK) {
462                 free(read_buf);
463                 return retval;
464         }
465
466         /* Queue up all reads. Each read will store the entire DRW word in the read buffer. How many
467          * useful bytes it contains, and their location in the word, depends on the type of transfer
468          * and alignment. */
469         while (nbytes > 0) {
470                 uint32_t this_size = size;
471
472                 /* Select packed transfer if possible */
473                 if (addrinc && dap->packed_transfers && nbytes >= 4
474                                 && max_tar_block_size(dap->tar_autoincr_block, address) >= 4) {
475                         this_size = 4;
476                         retval = dap_setup_accessport_csw(dap, csw_size | CSW_ADDRINC_PACKED);
477                 } else {
478                         retval = dap_setup_accessport_csw(dap, csw_size | csw_addrincr);
479                 }
480                 if (retval != ERROR_OK)
481                         break;
482
483                 retval = dap_queue_ap_read(dap, AP_REG_DRW, read_ptr++);
484                 if (retval != ERROR_OK)
485                         break;
486
487                 nbytes -= this_size;
488                 address += this_size;
489
490                 /* Rewrite TAR if it wrapped */
491                 if (addrinc && address % dap->tar_autoincr_block < size && nbytes > 0) {
492                         retval = dap_setup_accessport_tar(dap, address);
493                         if (retval != ERROR_OK)
494                                 break;
495                 }
496         }
497
498         if (retval == ERROR_OK)
499                 retval = dap_run(dap);
500
501         /* Restore state */
502         address = adr;
503         nbytes = size * count;
504         read_ptr = read_buf;
505
506         /* If something failed, read TAR to find out how much data was successfully read, so we can
507          * at least give the caller what we have. */
508         if (retval != ERROR_OK) {
509                 uint32_t tar;
510                 if (dap_queue_ap_read(dap, AP_REG_TAR, &tar) == ERROR_OK
511                                 && dap_run(dap) == ERROR_OK) {
512                         LOG_ERROR("Failed to read memory at 0x%08"PRIx32, tar);
513                         if (nbytes > tar - address)
514                                 nbytes = tar - address;
515                 } else {
516                         LOG_ERROR("Failed to read memory and, additionally, failed to find out where");
517                         nbytes = 0;
518                 }
519         }
520
521         /* Replay loop to populate caller's buffer from the correct word and byte lane */
522         while (nbytes > 0) {
523                 uint32_t this_size = size;
524
525                 if (addrinc && dap->packed_transfers && nbytes >= 4
526                                 && max_tar_block_size(dap->tar_autoincr_block, address) >= 4) {
527                         this_size = 4;
528                 }
529
530                 if (dap->ti_be_32_quirks) {
531                         switch (this_size) {
532                         case 4:
533                                 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
534                                 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
535                         case 2:
536                                 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
537                         case 1:
538                                 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
539                         }
540                 } else {
541                         switch (this_size) {
542                         case 4:
543                                 *buffer++ = *read_ptr >> 8 * (address++ & 3);
544                                 *buffer++ = *read_ptr >> 8 * (address++ & 3);
545                         case 2:
546                                 *buffer++ = *read_ptr >> 8 * (address++ & 3);
547                         case 1:
548                                 *buffer++ = *read_ptr >> 8 * (address++ & 3);
549                         }
550                 }
551
552                 read_ptr++;
553                 nbytes -= this_size;
554         }
555
556         free(read_buf);
557         return retval;
558 }
559
560 /*--------------------------------------------------------------------*/
561 /*          Wrapping function with selection of AP                    */
562 /*--------------------------------------------------------------------*/
563 int mem_ap_sel_read_u32(struct adiv5_dap *swjdp, uint8_t ap,
564                 uint32_t address, uint32_t *value)
565 {
566         dap_ap_select(swjdp, ap);
567         return mem_ap_read_u32(swjdp, address, value);
568 }
569
570 int mem_ap_sel_write_u32(struct adiv5_dap *swjdp, uint8_t ap,
571                 uint32_t address, uint32_t value)
572 {
573         dap_ap_select(swjdp, ap);
574         return mem_ap_write_u32(swjdp, address, value);
575 }
576
577 int mem_ap_sel_read_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
578                 uint32_t address, uint32_t *value)
579 {
580         dap_ap_select(swjdp, ap);
581         return mem_ap_read_atomic_u32(swjdp, address, value);
582 }
583
584 int mem_ap_sel_write_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
585                 uint32_t address, uint32_t value)
586 {
587         dap_ap_select(swjdp, ap);
588         return mem_ap_write_atomic_u32(swjdp, address, value);
589 }
590
591 int mem_ap_sel_read_buf(struct adiv5_dap *swjdp, uint8_t ap,
592                 uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
593 {
594         dap_ap_select(swjdp, ap);
595         return mem_ap_read(swjdp, buffer, size, count, address, true);
596 }
597
598 int mem_ap_sel_write_buf(struct adiv5_dap *swjdp, uint8_t ap,
599                 const uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
600 {
601         dap_ap_select(swjdp, ap);
602         return mem_ap_write(swjdp, buffer, size, count, address, true);
603 }
604
605 int mem_ap_sel_read_buf_noincr(struct adiv5_dap *swjdp, uint8_t ap,
606                 uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
607 {
608         dap_ap_select(swjdp, ap);
609         return mem_ap_read(swjdp, buffer, size, count, address, false);
610 }
611
612 int mem_ap_sel_write_buf_noincr(struct adiv5_dap *swjdp, uint8_t ap,
613                 const uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
614 {
615         dap_ap_select(swjdp, ap);
616         return mem_ap_write(swjdp, buffer, size, count, address, false);
617 }
618
619 /*--------------------------------------------------------------------------*/
620
621
622 #define DAP_POWER_DOMAIN_TIMEOUT (10)
623
624 /* FIXME don't import ... just initialize as
625  * part of DAP transport setup
626 */
627 extern const struct dap_ops jtag_dp_ops;
628
629 /*--------------------------------------------------------------------------*/
630
631 /**
632  * Initialize a DAP.  This sets up the power domains, prepares the DP
633  * for further use, and arranges to use AP #0 for all AP operations
634  * until dap_ap-select() changes that policy.
635  *
636  * @param dap The DAP being initialized.
637  *
638  * @todo Rename this.  We also need an initialization scheme which account
639  * for SWD transports not just JTAG; that will need to address differences
640  * in layering.  (JTAG is useful without any debug target; but not SWD.)
641  * And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP.
642  */
643 int ahbap_debugport_init(struct adiv5_dap *dap)
644 {
645         int retval;
646
647         LOG_DEBUG(" ");
648
649         /* JTAG-DP or SWJ-DP, in JTAG mode
650          * ... for SWD mode this is patched as part
651          * of link switchover
652          */
653         if (!dap->ops)
654                 dap->ops = &jtag_dp_ops;
655
656         /* Default MEM-AP setup.
657          *
658          * REVISIT AP #0 may be an inappropriate default for this.
659          * Should we probe, or take a hint from the caller?
660          * Presumably we can ignore the possibility of multiple APs.
661          */
662         dap->ap_current = !0;
663         dap_ap_select(dap, 0);
664         dap->last_read = NULL;
665
666         /* DP initialization */
667
668         dap->dp_bank_value = 0;
669
670         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
671         if (retval != ERROR_OK)
672                 return retval;
673
674         retval = dap_queue_dp_write(dap, DP_CTRL_STAT, SSTICKYERR);
675         if (retval != ERROR_OK)
676                 return retval;
677
678         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
679         if (retval != ERROR_OK)
680                 return retval;
681
682         dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
683         retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
684         if (retval != ERROR_OK)
685                 return retval;
686
687         /* Check that we have debug power domains activated */
688         LOG_DEBUG("DAP: wait CDBGPWRUPACK");
689         retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
690                                       CDBGPWRUPACK, CDBGPWRUPACK,
691                                       DAP_POWER_DOMAIN_TIMEOUT);
692         if (retval != ERROR_OK)
693                 return retval;
694
695         LOG_DEBUG("DAP: wait CSYSPWRUPACK");
696         retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
697                                       CSYSPWRUPACK, CSYSPWRUPACK,
698                                       DAP_POWER_DOMAIN_TIMEOUT);
699         if (retval != ERROR_OK)
700                 return retval;
701
702         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
703         if (retval != ERROR_OK)
704                 return retval;
705         /* With debug power on we can activate OVERRUN checking */
706         dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
707         retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
708         if (retval != ERROR_OK)
709                 return retval;
710         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
711         if (retval != ERROR_OK)
712                 return retval;
713
714         /* check that we support packed transfers */
715         uint32_t csw, cfg;
716
717         retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, 0);
718         if (retval != ERROR_OK)
719                 return retval;
720
721         retval = dap_queue_ap_read(dap, AP_REG_CSW, &csw);
722         if (retval != ERROR_OK)
723                 return retval;
724
725         retval = dap_queue_ap_read(dap, AP_REG_CFG, &cfg);
726         if (retval != ERROR_OK)
727                 return retval;
728
729         retval = dap_run(dap);
730         if (retval != ERROR_OK)
731                 return retval;
732
733         if (csw & CSW_ADDRINC_PACKED)
734                 dap->packed_transfers = true;
735         else
736                 dap->packed_transfers = false;
737
738         /* Packed transfers on TI BE-32 processors do not work correctly in
739          * many cases. */
740         if (dap->ti_be_32_quirks)
741                 dap->packed_transfers = false;
742
743         LOG_DEBUG("MEM_AP Packed Transfers: %s",
744                         dap->packed_transfers ? "enabled" : "disabled");
745
746         /* The ARM ADI spec leaves implementation-defined whether unaligned
747          * memory accesses work, only work partially, or cause a sticky error.
748          * On TI BE-32 processors, reads seem to return garbage in some bytes
749          * and unaligned writes seem to cause a sticky error.
750          * TODO: it would be nice to have a way to detect whether unaligned
751          * operations are supported on other processors. */
752         dap->unaligned_access_bad = dap->ti_be_32_quirks;
753
754         LOG_DEBUG("MEM_AP CFG: large data %d, long address %d, big-endian %d",
755                         !!(cfg & 0x04), !!(cfg & 0x02), !!(cfg & 0x01));
756
757         return ERROR_OK;
758 }
759
760 /* CID interpretation -- see ARM IHI 0029B section 3
761  * and ARM IHI 0031A table 13-3.
762  */
763 static const char *class_description[16] = {
764         "Reserved", "ROM table", "Reserved", "Reserved",
765         "Reserved", "Reserved", "Reserved", "Reserved",
766         "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
767         "Reserved", "OptimoDE DESS",
768         "Generic IP component", "PrimeCell or System component"
769 };
770
771 static bool is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0)
772 {
773         return cid3 == 0xb1 && cid2 == 0x05
774                         && ((cid1 & 0x0f) == 0) && cid0 == 0x0d;
775 }
776
777 /*
778  * This function checks the ID for each access port to find the requested Access Port type
779  */
780 int dap_find_ap(struct adiv5_dap *dap, enum ap_type type_to_find, uint8_t *ap_num_out)
781 {
782         int ap;
783
784         /* Maximum AP number is 255 since the SELECT register is 8 bits */
785         for (ap = 0; ap <= 255; ap++) {
786
787                 /* read the IDR register of the Access Port */
788                 uint32_t id_val = 0;
789                 dap_ap_select(dap, ap);
790
791                 int retval = dap_queue_ap_read(dap, AP_REG_IDR, &id_val);
792                 if (retval != ERROR_OK)
793                         return retval;
794
795                 retval = dap_run(dap);
796
797                 /* IDR bits:
798                  * 31-28 : Revision
799                  * 27-24 : JEDEC bank (0x4 for ARM)
800                  * 23-17 : JEDEC code (0x3B for ARM)
801                  * 16    : Mem-AP
802                  * 15-8  : Reserved
803                  *  7-0  : AP Identity (1=AHB-AP 2=APB-AP 0x10=JTAG-AP)
804                  */
805
806                 /* Reading register for a non-existant AP should not cause an error,
807                  * but just to be sure, try to continue searching if an error does happen.
808                  */
809                 if ((retval == ERROR_OK) &&                  /* Register read success */
810                         ((id_val & 0x0FFF0000) == 0x04770000) && /* Jedec codes match */
811                         ((id_val & 0xFF) == type_to_find)) {     /* type matches*/
812
813                         LOG_DEBUG("Found %s at AP index: %d (IDR=0x%08" PRIX32 ")",
814                                                 (type_to_find == AP_TYPE_AHB_AP)  ? "AHB-AP"  :
815                                                 (type_to_find == AP_TYPE_APB_AP)  ? "APB-AP"  :
816                                                 (type_to_find == AP_TYPE_JTAG_AP) ? "JTAG-AP" : "Unknown",
817                                                 ap, id_val);
818
819                         *ap_num_out = ap;
820                         return ERROR_OK;
821                 }
822         }
823
824         LOG_DEBUG("No %s found",
825                                 (type_to_find == AP_TYPE_AHB_AP)  ? "AHB-AP"  :
826                                 (type_to_find == AP_TYPE_APB_AP)  ? "APB-AP"  :
827                                 (type_to_find == AP_TYPE_JTAG_AP) ? "JTAG-AP" : "Unknown");
828         return ERROR_FAIL;
829 }
830
831 int dap_get_debugbase(struct adiv5_dap *dap, int ap,
832                         uint32_t *dbgbase, uint32_t *apid)
833 {
834         uint32_t ap_old;
835         int retval;
836
837         /* AP address is in bits 31:24 of DP_SELECT */
838         if (ap >= 256)
839                 return ERROR_COMMAND_SYNTAX_ERROR;
840
841         ap_old = dap->ap_current;
842         dap_ap_select(dap, ap);
843
844         retval = dap_queue_ap_read(dap, AP_REG_BASE, dbgbase);
845         if (retval != ERROR_OK)
846                 return retval;
847         retval = dap_queue_ap_read(dap, AP_REG_IDR, apid);
848         if (retval != ERROR_OK)
849                 return retval;
850         retval = dap_run(dap);
851         if (retval != ERROR_OK)
852                 return retval;
853
854         dap_ap_select(dap, ap_old);
855
856         return ERROR_OK;
857 }
858
859 int dap_lookup_cs_component(struct adiv5_dap *dap, int ap,
860                         uint32_t dbgbase, uint8_t type, uint32_t *addr)
861 {
862         uint32_t ap_old;
863         uint32_t romentry, entry_offset = 0, component_base, devtype;
864         int retval = ERROR_FAIL;
865
866         if (ap >= 256)
867                 return ERROR_COMMAND_SYNTAX_ERROR;
868
869         ap_old = dap->ap_current;
870         dap_ap_select(dap, ap);
871
872         do {
873                 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) |
874                                                 entry_offset, &romentry);
875                 if (retval != ERROR_OK)
876                         return retval;
877
878                 component_base = (dbgbase & 0xFFFFF000)
879                         + (romentry & 0xFFFFF000);
880
881                 if (romentry & 0x1) {
882                         retval = mem_ap_read_atomic_u32(dap,
883                                         (component_base & 0xfffff000) | 0xfcc,
884                                         &devtype);
885                         if (retval != ERROR_OK)
886                                 return retval;
887                         if ((devtype & 0xff) == type) {
888                                 *addr = component_base;
889                                 retval = ERROR_OK;
890                                 break;
891                         }
892                 }
893                 entry_offset += 4;
894         } while (romentry > 0);
895
896         dap_ap_select(dap, ap_old);
897
898         return retval;
899 }
900
901 static int dap_rom_display(struct command_context *cmd_ctx,
902                                 struct adiv5_dap *dap, int ap, uint32_t dbgbase, int depth)
903 {
904         int retval;
905         uint32_t cid0, cid1, cid2, cid3, memtype, romentry;
906         uint16_t entry_offset;
907         char tabs[7] = "";
908
909         if (depth > 16) {
910                 command_print(cmd_ctx, "\tTables too deep");
911                 return ERROR_FAIL;
912         }
913
914         if (depth)
915                 snprintf(tabs, sizeof(tabs), "[L%02d] ", depth);
916
917         /* bit 16 of apid indicates a memory access port */
918         if (dbgbase & 0x02)
919                 command_print(cmd_ctx, "\t%sValid ROM table present", tabs);
920         else
921                 command_print(cmd_ctx, "\t%sROM table in legacy format", tabs);
922
923         /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec  */
924         retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF0, &cid0);
925         if (retval != ERROR_OK)
926                 return retval;
927         retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF4, &cid1);
928         if (retval != ERROR_OK)
929                 return retval;
930         retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF8, &cid2);
931         if (retval != ERROR_OK)
932                 return retval;
933         retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFFC, &cid3);
934         if (retval != ERROR_OK)
935                 return retval;
936         retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFCC, &memtype);
937         if (retval != ERROR_OK)
938                 return retval;
939         retval = dap_run(dap);
940         if (retval != ERROR_OK)
941                 return retval;
942
943         if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
944                 command_print(cmd_ctx, "\t%sCID3 0x%02x"
945                                 ", CID2 0x%02x"
946                                 ", CID1 0x%02x"
947                                 ", CID0 0x%02x",
948                                 tabs,
949                                 (unsigned)cid3, (unsigned)cid2,
950                                 (unsigned)cid1, (unsigned)cid0);
951         if (memtype & 0x01)
952                 command_print(cmd_ctx, "\t%sMEMTYPE system memory present on bus", tabs);
953         else
954                 command_print(cmd_ctx, "\t%sMEMTYPE system memory not present: dedicated debug bus", tabs);
955
956         /* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
957         for (entry_offset = 0; ; entry_offset += 4) {
958                 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) | entry_offset, &romentry);
959                 if (retval != ERROR_OK)
960                         return retval;
961                 command_print(cmd_ctx, "\t%sROMTABLE[0x%x] = 0x%" PRIx32 "",
962                                 tabs, entry_offset, romentry);
963                 if (romentry & 0x01) {
964                         uint32_t c_cid0, c_cid1, c_cid2, c_cid3;
965                         uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4;
966                         uint32_t component_base;
967                         unsigned part_num;
968                         char *type, *full;
969
970                         component_base = (dbgbase & 0xFFFFF000) + (romentry & 0xFFFFF000);
971
972                         /* IDs are in last 4K section */
973                         retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE0, &c_pid0);
974                         if (retval != ERROR_OK) {
975                                 command_print(cmd_ctx, "\t%s\tCan't read component with base address 0x%" PRIx32
976                                               ", the corresponding core might be turned off", tabs, component_base);
977                                 continue;
978                         }
979                         c_pid0 &= 0xff;
980                         retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE4, &c_pid1);
981                         if (retval != ERROR_OK)
982                                 return retval;
983                         c_pid1 &= 0xff;
984                         retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE8, &c_pid2);
985                         if (retval != ERROR_OK)
986                                 return retval;
987                         c_pid2 &= 0xff;
988                         retval = mem_ap_read_atomic_u32(dap, component_base + 0xFEC, &c_pid3);
989                         if (retval != ERROR_OK)
990                                 return retval;
991                         c_pid3 &= 0xff;
992                         retval = mem_ap_read_atomic_u32(dap, component_base + 0xFD0, &c_pid4);
993                         if (retval != ERROR_OK)
994                                 return retval;
995                         c_pid4 &= 0xff;
996
997                         retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF0, &c_cid0);
998                         if (retval != ERROR_OK)
999                                 return retval;
1000                         c_cid0 &= 0xff;
1001                         retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF4, &c_cid1);
1002                         if (retval != ERROR_OK)
1003                                 return retval;
1004                         c_cid1 &= 0xff;
1005                         retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF8, &c_cid2);
1006                         if (retval != ERROR_OK)
1007                                 return retval;
1008                         c_cid2 &= 0xff;
1009                         retval = mem_ap_read_atomic_u32(dap, component_base + 0xFFC, &c_cid3);
1010                         if (retval != ERROR_OK)
1011                                 return retval;
1012                         c_cid3 &= 0xff;
1013
1014                         command_print(cmd_ctx, "\t\tComponent base address 0x%" PRIx32 ", "
1015                                       "start address 0x%" PRIx32, component_base,
1016                                       /* component may take multiple 4K pages */
1017                                       (uint32_t)(component_base - 0x1000*(c_pid4 >> 4)));
1018                         command_print(cmd_ctx, "\t\tComponent class is 0x%" PRIx8 ", %s",
1019                                         (uint8_t)((c_cid1 >> 4) & 0xf),
1020                                         /* See ARM IHI 0029B Table 3-3 */
1021                                         class_description[(c_cid1 >> 4) & 0xf]);
1022
1023                         /* CoreSight component? */
1024                         if (((c_cid1 >> 4) & 0x0f) == 9) {
1025                                 uint32_t devtype;
1026                                 unsigned minor;
1027                                 char *major = "Reserved", *subtype = "Reserved";
1028
1029                                 retval = mem_ap_read_atomic_u32(dap,
1030                                                 (component_base & 0xfffff000) | 0xfcc,
1031                                                 &devtype);
1032                                 if (retval != ERROR_OK)
1033                                         return retval;
1034                                 minor = (devtype >> 4) & 0x0f;
1035                                 switch (devtype & 0x0f) {
1036                                 case 0:
1037                                         major = "Miscellaneous";
1038                                         switch (minor) {
1039                                         case 0:
1040                                                 subtype = "other";
1041                                                 break;
1042                                         case 4:
1043                                                 subtype = "Validation component";
1044                                                 break;
1045                                         }
1046                                         break;
1047                                 case 1:
1048                                         major = "Trace Sink";
1049                                         switch (minor) {
1050                                         case 0:
1051                                                 subtype = "other";
1052                                                 break;
1053                                         case 1:
1054                                                 subtype = "Port";
1055                                                 break;
1056                                         case 2:
1057                                                 subtype = "Buffer";
1058                                                 break;
1059                                         case 3:
1060                                                 subtype = "Router";
1061                                                 break;
1062                                         }
1063                                         break;
1064                                 case 2:
1065                                         major = "Trace Link";
1066                                         switch (minor) {
1067                                         case 0:
1068                                                 subtype = "other";
1069                                                 break;
1070                                         case 1:
1071                                                 subtype = "Funnel, router";
1072                                                 break;
1073                                         case 2:
1074                                                 subtype = "Filter";
1075                                                 break;
1076                                         case 3:
1077                                                 subtype = "FIFO, buffer";
1078                                                 break;
1079                                         }
1080                                         break;
1081                                 case 3:
1082                                         major = "Trace Source";
1083                                         switch (minor) {
1084                                         case 0:
1085                                                 subtype = "other";
1086                                                 break;
1087                                         case 1:
1088                                                 subtype = "Processor";
1089                                                 break;
1090                                         case 2:
1091                                                 subtype = "DSP";
1092                                                 break;
1093                                         case 3:
1094                                                 subtype = "Engine/Coprocessor";
1095                                                 break;
1096                                         case 4:
1097                                                 subtype = "Bus";
1098                                                 break;
1099                                         case 6:
1100                                                 subtype = "Software";
1101                                                 break;
1102                                         }
1103                                         break;
1104                                 case 4:
1105                                         major = "Debug Control";
1106                                         switch (minor) {
1107                                         case 0:
1108                                                 subtype = "other";
1109                                                 break;
1110                                         case 1:
1111                                                 subtype = "Trigger Matrix";
1112                                                 break;
1113                                         case 2:
1114                                                 subtype = "Debug Auth";
1115                                                 break;
1116                                         case 3:
1117                                                 subtype = "Power Requestor";
1118                                                 break;
1119                                         }
1120                                         break;
1121                                 case 5:
1122                                         major = "Debug Logic";
1123                                         switch (minor) {
1124                                         case 0:
1125                                                 subtype = "other";
1126                                                 break;
1127                                         case 1:
1128                                                 subtype = "Processor";
1129                                                 break;
1130                                         case 2:
1131                                                 subtype = "DSP";
1132                                                 break;
1133                                         case 3:
1134                                                 subtype = "Engine/Coprocessor";
1135                                                 break;
1136                                         case 4:
1137                                                 subtype = "Bus";
1138                                                 break;
1139                                         case 5:
1140                                                 subtype = "Memory";
1141                                                 break;
1142                                         }
1143                                         break;
1144                                 case 6:
1145                                         major = "Perfomance Monitor";
1146                                         switch (minor) {
1147                                         case 0:
1148                                                 subtype = "other";
1149                                                 break;
1150                                         case 1:
1151                                                 subtype = "Processor";
1152                                                 break;
1153                                         case 2:
1154                                                 subtype = "DSP";
1155                                                 break;
1156                                         case 3:
1157                                                 subtype = "Engine/Coprocessor";
1158                                                 break;
1159                                         case 4:
1160                                                 subtype = "Bus";
1161                                                 break;
1162                                         case 5:
1163                                                 subtype = "Memory";
1164                                                 break;
1165                                         }
1166                                         break;
1167                                 }
1168                                 command_print(cmd_ctx, "\t\tType is 0x%02" PRIx8 ", %s, %s",
1169                                                 (uint8_t)(devtype & 0xff),
1170                                                 major, subtype);
1171                                 /* REVISIT also show 0xfc8 DevId */
1172                         }
1173
1174                         if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1175                                 command_print(cmd_ctx,
1176                                                 "\t\tCID3 0%02x"
1177                                                 ", CID2 0%02x"
1178                                                 ", CID1 0%02x"
1179                                                 ", CID0 0%02x",
1180                                                 (int)c_cid3,
1181                                                 (int)c_cid2,
1182                                                 (int)c_cid1,
1183                                                 (int)c_cid0);
1184                         command_print(cmd_ctx,
1185                                 "\t\tPeripheral ID[4..0] = hex "
1186                                 "%02x %02x %02x %02x %02x",
1187                                 (int)c_pid4, (int)c_pid3, (int)c_pid2,
1188                                 (int)c_pid1, (int)c_pid0);
1189
1190                         /* Part number interpretations are from Cortex
1191                          * core specs, the CoreSight components TRM
1192                          * (ARM DDI 0314H), CoreSight System Design
1193                          * Guide (ARM DGI 0012D) and ETM specs; also
1194                          * from chip observation (e.g. TI SDTI).
1195                          */
1196                         part_num = (c_pid0 & 0xff);
1197                         part_num |= (c_pid1 & 0x0f) << 8;
1198                         switch (part_num) {
1199                         case 0x000:
1200                                 type = "Cortex-M3 NVIC";
1201                                 full = "(Interrupt Controller)";
1202                                 break;
1203                         case 0x001:
1204                                 type = "Cortex-M3 ITM";
1205                                 full = "(Instrumentation Trace Module)";
1206                                 break;
1207                         case 0x002:
1208                                 type = "Cortex-M3 DWT";
1209                                 full = "(Data Watchpoint and Trace)";
1210                                 break;
1211                         case 0x003:
1212                                 type = "Cortex-M3 FBP";
1213                                 full = "(Flash Patch and Breakpoint)";
1214                                 break;
1215                         case 0x00c:
1216                                 type = "Cortex-M4 SCS";
1217                                 full = "(System Control Space)";
1218                                 break;
1219                         case 0x00d:
1220                                 type = "CoreSight ETM11";
1221                                 full = "(Embedded Trace)";
1222                                 break;
1223                         /* case 0x113: what? */
1224                         case 0x120:             /* from OMAP3 memmap */
1225                                 type = "TI SDTI";
1226                                 full = "(System Debug Trace Interface)";
1227                                 break;
1228                         case 0x343:             /* from OMAP3 memmap */
1229                                 type = "TI DAPCTL";
1230                                 full = "";
1231                                 break;
1232                         case 0x906:
1233                                 type = "Coresight CTI";
1234                                 full = "(Cross Trigger)";
1235                                 break;
1236                         case 0x907:
1237                                 type = "Coresight ETB";
1238                                 full = "(Trace Buffer)";
1239                                 break;
1240                         case 0x908:
1241                                 type = "Coresight CSTF";
1242                                 full = "(Trace Funnel)";
1243                                 break;
1244                         case 0x910:
1245                                 type = "CoreSight ETM9";
1246                                 full = "(Embedded Trace)";
1247                                 break;
1248                         case 0x912:
1249                                 type = "Coresight TPIU";
1250                                 full = "(Trace Port Interface Unit)";
1251                                 break;
1252                         case 0x913:
1253                                 type = "Coresight ITM";
1254                                 full = "(Instrumentation Trace Macrocell)";
1255                                 break;
1256                         case 0x917:
1257                                 type = "Coresight HTM";
1258                                 full = "(AHB Trace Macrocell)";
1259                                 break;
1260                         case 0x920:
1261                                 type = "CoreSight ETM11";
1262                                 full = "(Embedded Trace)";
1263                                 break;
1264                         case 0x921:
1265                                 type = "Cortex-A8 ETM";
1266                                 full = "(Embedded Trace)";
1267                                 break;
1268                         case 0x922:
1269                                 type = "Cortex-A8 CTI";
1270                                 full = "(Cross Trigger)";
1271                                 break;
1272                         case 0x923:
1273                                 type = "Cortex-M3 TPIU";
1274                                 full = "(Trace Port Interface Unit)";
1275                                 break;
1276                         case 0x924:
1277                                 type = "Cortex-M3 ETM";
1278                                 full = "(Embedded Trace)";
1279                                 break;
1280                         case 0x925:
1281                                 type = "Cortex-M4 ETM";
1282                                 full = "(Embedded Trace)";
1283                                 break;
1284                         case 0x930:
1285                                 type = "Cortex-R4 ETM";
1286                                 full = "(Embedded Trace)";
1287                                 break;
1288                         case 0x950:
1289                                 type = "CoreSight Component";
1290                                 full = "(unidentified Cortex-A9 component)";
1291                                 break;
1292                         case 0x962:
1293                                 type = "CoreSight STM";
1294                                 full = "(System Trace Macrocell)";
1295                                 break;
1296                         case 0x9a0:
1297                                 type = "CoreSight PMU";
1298                                 full = "(Performance Monitoring Unit)";
1299                                 break;
1300                         case 0x9a1:
1301                                 type = "Cortex-M4 TPUI";
1302                                 full = "(Trace Port Interface Unit)";
1303                                 break;
1304                         case 0xc08:
1305                                 type = "Cortex-A8 Debug";
1306                                 full = "(Debug Unit)";
1307                                 break;
1308                         case 0xc09:
1309                                 type = "Cortex-A9 Debug";
1310                                 full = "(Debug Unit)";
1311                                 break;
1312                         default:
1313                                 type = "-*- unrecognized -*-";
1314                                 full = "";
1315                                 break;
1316                         }
1317                         command_print(cmd_ctx, "\t\tPart is %s %s",
1318                                         type, full);
1319
1320                         /* ROM Table? */
1321                         if (((c_cid1 >> 4) & 0x0f) == 1) {
1322                                 retval = dap_rom_display(cmd_ctx, dap, ap, component_base, depth + 1);
1323                                 if (retval != ERROR_OK)
1324                                         return retval;
1325                         }
1326                 } else {
1327                         if (romentry)
1328                                 command_print(cmd_ctx, "\t\tComponent not present");
1329                         else
1330                                 break;
1331                 }
1332         }
1333         command_print(cmd_ctx, "\t%s\tEnd of ROM table", tabs);
1334         return ERROR_OK;
1335 }
1336
1337 static int dap_info_command(struct command_context *cmd_ctx,
1338                 struct adiv5_dap *dap, int ap)
1339 {
1340         int retval;
1341         uint32_t dbgbase, apid;
1342         int romtable_present = 0;
1343         uint8_t mem_ap;
1344         uint32_t ap_old;
1345
1346         retval = dap_get_debugbase(dap, ap, &dbgbase, &apid);
1347         if (retval != ERROR_OK)
1348                 return retval;
1349
1350         ap_old = dap->ap_current;
1351         dap_ap_select(dap, ap);
1352
1353         /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec  */
1354         mem_ap = ((apid&0x10000) && ((apid&0x0F) != 0));
1355         command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid);
1356         if (apid) {
1357                 switch (apid&0x0F) {
1358                         case 0:
1359                                 command_print(cmd_ctx, "\tType is JTAG-AP");
1360                                 break;
1361                         case 1:
1362                                 command_print(cmd_ctx, "\tType is MEM-AP AHB");
1363                                 break;
1364                         case 2:
1365                                 command_print(cmd_ctx, "\tType is MEM-AP APB");
1366                                 break;
1367                         default:
1368                                 command_print(cmd_ctx, "\tUnknown AP type");
1369                                 break;
1370                 }
1371
1372                 /* NOTE: a MEM-AP may have a single CoreSight component that's
1373                  * not a ROM table ... or have no such components at all.
1374                  */
1375                 if (mem_ap)
1376                         command_print(cmd_ctx, "AP BASE 0x%8.8" PRIx32, dbgbase);
1377         } else
1378                 command_print(cmd_ctx, "No AP found at this ap 0x%x", ap);
1379
1380         romtable_present = ((mem_ap) && (dbgbase != 0xFFFFFFFF));
1381         if (romtable_present) {
1382                 dap_rom_display(cmd_ctx, dap, ap, dbgbase, 0);
1383         } else
1384                 command_print(cmd_ctx, "\tNo ROM table present");
1385         dap_ap_select(dap, ap_old);
1386
1387         return ERROR_OK;
1388 }
1389
1390 COMMAND_HANDLER(handle_dap_info_command)
1391 {
1392         struct target *target = get_current_target(CMD_CTX);
1393         struct arm *arm = target_to_arm(target);
1394         struct adiv5_dap *dap = arm->dap;
1395         uint32_t apsel;
1396
1397         switch (CMD_ARGC) {
1398         case 0:
1399                 apsel = dap->apsel;
1400                 break;
1401         case 1:
1402                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1403                 break;
1404         default:
1405                 return ERROR_COMMAND_SYNTAX_ERROR;
1406         }
1407
1408         return dap_info_command(CMD_CTX, dap, apsel);
1409 }
1410
1411 COMMAND_HANDLER(dap_baseaddr_command)
1412 {
1413         struct target *target = get_current_target(CMD_CTX);
1414         struct arm *arm = target_to_arm(target);
1415         struct adiv5_dap *dap = arm->dap;
1416
1417         uint32_t apsel, baseaddr;
1418         int retval;
1419
1420         switch (CMD_ARGC) {
1421         case 0:
1422                 apsel = dap->apsel;
1423                 break;
1424         case 1:
1425                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1426                 /* AP address is in bits 31:24 of DP_SELECT */
1427                 if (apsel >= 256)
1428                         return ERROR_COMMAND_SYNTAX_ERROR;
1429                 break;
1430         default:
1431                 return ERROR_COMMAND_SYNTAX_ERROR;
1432         }
1433
1434         dap_ap_select(dap, apsel);
1435
1436         /* NOTE:  assumes we're talking to a MEM-AP, which
1437          * has a base address.  There are other kinds of AP,
1438          * though they're not common for now.  This should
1439          * use the ID register to verify it's a MEM-AP.
1440          */
1441         retval = dap_queue_ap_read(dap, AP_REG_BASE, &baseaddr);
1442         if (retval != ERROR_OK)
1443                 return retval;
1444         retval = dap_run(dap);
1445         if (retval != ERROR_OK)
1446                 return retval;
1447
1448         command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
1449
1450         return retval;
1451 }
1452
1453 COMMAND_HANDLER(dap_memaccess_command)
1454 {
1455         struct target *target = get_current_target(CMD_CTX);
1456         struct arm *arm = target_to_arm(target);
1457         struct adiv5_dap *dap = arm->dap;
1458
1459         uint32_t memaccess_tck;
1460
1461         switch (CMD_ARGC) {
1462         case 0:
1463                 memaccess_tck = dap->memaccess_tck;
1464                 break;
1465         case 1:
1466                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1467                 break;
1468         default:
1469                 return ERROR_COMMAND_SYNTAX_ERROR;
1470         }
1471         dap->memaccess_tck = memaccess_tck;
1472
1473         command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
1474                         dap->memaccess_tck);
1475
1476         return ERROR_OK;
1477 }
1478
1479 COMMAND_HANDLER(dap_apsel_command)
1480 {
1481         struct target *target = get_current_target(CMD_CTX);
1482         struct arm *arm = target_to_arm(target);
1483         struct adiv5_dap *dap = arm->dap;
1484
1485         uint32_t apsel, apid;
1486         int retval;
1487
1488         switch (CMD_ARGC) {
1489         case 0:
1490                 apsel = 0;
1491                 break;
1492         case 1:
1493                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1494                 /* AP address is in bits 31:24 of DP_SELECT */
1495                 if (apsel >= 256)
1496                         return ERROR_COMMAND_SYNTAX_ERROR;
1497                 break;
1498         default:
1499                 return ERROR_COMMAND_SYNTAX_ERROR;
1500         }
1501
1502         dap->apsel = apsel;
1503         dap_ap_select(dap, apsel);
1504
1505         retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1506         if (retval != ERROR_OK)
1507                 return retval;
1508         retval = dap_run(dap);
1509         if (retval != ERROR_OK)
1510                 return retval;
1511
1512         command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
1513                         apsel, apid);
1514
1515         return retval;
1516 }
1517
1518 COMMAND_HANDLER(dap_apcsw_command)
1519 {
1520         struct target *target = get_current_target(CMD_CTX);
1521         struct arm *arm = target_to_arm(target);
1522         struct adiv5_dap *dap = arm->dap;
1523
1524         uint32_t apcsw = dap->apcsw[dap->apsel], sprot = 0;
1525
1526         switch (CMD_ARGC) {
1527         case 0:
1528                 command_print(CMD_CTX, "apsel %" PRIi32 " selected, csw 0x%8.8" PRIx32,
1529                         (dap->apsel), apcsw);
1530                 break;
1531         case 1:
1532                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], sprot);
1533                 /* AP address is in bits 31:24 of DP_SELECT */
1534                 if (sprot > 1)
1535                         return ERROR_COMMAND_SYNTAX_ERROR;
1536                 if (sprot)
1537                         apcsw |= CSW_SPROT;
1538                 else
1539                         apcsw &= ~CSW_SPROT;
1540                 break;
1541         default:
1542                 return ERROR_COMMAND_SYNTAX_ERROR;
1543         }
1544         dap->apcsw[dap->apsel] = apcsw;
1545
1546         return 0;
1547 }
1548
1549
1550
1551 COMMAND_HANDLER(dap_apid_command)
1552 {
1553         struct target *target = get_current_target(CMD_CTX);
1554         struct arm *arm = target_to_arm(target);
1555         struct adiv5_dap *dap = arm->dap;
1556
1557         uint32_t apsel, apid;
1558         int retval;
1559
1560         switch (CMD_ARGC) {
1561         case 0:
1562                 apsel = dap->apsel;
1563                 break;
1564         case 1:
1565                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1566                 /* AP address is in bits 31:24 of DP_SELECT */
1567                 if (apsel >= 256)
1568                         return ERROR_COMMAND_SYNTAX_ERROR;
1569                 break;
1570         default:
1571                 return ERROR_COMMAND_SYNTAX_ERROR;
1572         }
1573
1574         dap_ap_select(dap, apsel);
1575
1576         retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1577         if (retval != ERROR_OK)
1578                 return retval;
1579         retval = dap_run(dap);
1580         if (retval != ERROR_OK)
1581                 return retval;
1582
1583         command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
1584
1585         return retval;
1586 }
1587
1588 COMMAND_HANDLER(dap_ti_be_32_quirks_command)
1589 {
1590         struct target *target = get_current_target(CMD_CTX);
1591         struct arm *arm = target_to_arm(target);
1592         struct adiv5_dap *dap = arm->dap;
1593
1594         uint32_t enable = dap->ti_be_32_quirks;
1595
1596         switch (CMD_ARGC) {
1597         case 0:
1598                 break;
1599         case 1:
1600                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], enable);
1601                 if (enable > 1)
1602                         return ERROR_COMMAND_SYNTAX_ERROR;
1603                 break;
1604         default:
1605                 return ERROR_COMMAND_SYNTAX_ERROR;
1606         }
1607         dap->ti_be_32_quirks = enable;
1608         command_print(CMD_CTX, "TI BE-32 quirks mode %s",
1609                 enable ? "enabled" : "disabled");
1610
1611         return 0;
1612 }
1613
1614 static const struct command_registration dap_commands[] = {
1615         {
1616                 .name = "info",
1617                 .handler = handle_dap_info_command,
1618                 .mode = COMMAND_EXEC,
1619                 .help = "display ROM table for MEM-AP "
1620                         "(default currently selected AP)",
1621                 .usage = "[ap_num]",
1622         },
1623         {
1624                 .name = "apsel",
1625                 .handler = dap_apsel_command,
1626                 .mode = COMMAND_EXEC,
1627                 .help = "Set the currently selected AP (default 0) "
1628                         "and display the result",
1629                 .usage = "[ap_num]",
1630         },
1631         {
1632                 .name = "apcsw",
1633                 .handler = dap_apcsw_command,
1634                 .mode = COMMAND_EXEC,
1635                 .help = "Set csw access bit ",
1636                 .usage = "[sprot]",
1637         },
1638
1639         {
1640                 .name = "apid",
1641                 .handler = dap_apid_command,
1642                 .mode = COMMAND_EXEC,
1643                 .help = "return ID register from AP "
1644                         "(default currently selected AP)",
1645                 .usage = "[ap_num]",
1646         },
1647         {
1648                 .name = "baseaddr",
1649                 .handler = dap_baseaddr_command,
1650                 .mode = COMMAND_EXEC,
1651                 .help = "return debug base address from MEM-AP "
1652                         "(default currently selected AP)",
1653                 .usage = "[ap_num]",
1654         },
1655         {
1656                 .name = "memaccess",
1657                 .handler = dap_memaccess_command,
1658                 .mode = COMMAND_EXEC,
1659                 .help = "set/get number of extra tck for MEM-AP memory "
1660                         "bus access [0-255]",
1661                 .usage = "[cycles]",
1662         },
1663         {
1664                 .name = "ti_be_32_quirks",
1665                 .handler = dap_ti_be_32_quirks_command,
1666                 .mode = COMMAND_CONFIG,
1667                 .help = "set/get quirks mode for TI TMS450/TMS570 processors",
1668                 .usage = "[enable]",
1669         },
1670         COMMAND_REGISTRATION_DONE
1671 };
1672
1673 const struct command_registration dap_command_handlers[] = {
1674         {
1675                 .name = "dap",
1676                 .mode = COMMAND_EXEC,
1677                 .help = "DAP command group",
1678                 .usage = "",
1679                 .chain = dap_commands,
1680         },
1681         COMMAND_REGISTRATION_DONE
1682 };