arm mmu: error propagation added for address translation
[fw/openocd] / src / target / arm920t.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
19  ***************************************************************************/
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "arm920t.h"
25 #include <helper/time_support.h>
26 #include "target_type.h"
27 #include "register.h"
28 #include "arm_opcodes.h"
29
30
31 /*
32  * For information about the ARM920T, see ARM DDI 0151C especially
33  * Chapter 9 about debug support, which shows how to manipulate each
34  * of the different scan chains:
35  *
36  *   0 ... ARM920 signals, e.g. to rest of SOC (unused here)
37  *   1 ... debugging; watchpoint and breakpoint status, etc; also
38  *      MMU and cache access in conjunction with scan chain 15
39  *   2 ... EmbeddedICE
40  *   3 ... external boundary scan (SoC-specific, unused here)
41  *   4 ... access to cache tag RAM
42  *   6 ... ETM9
43  *   15 ... access coprocessor 15, "physical" or "interpreted" modes
44  *      "interpreted" works with a few actual MRC/MCR instructions
45  *      "physical" provides register-like behaviors.  Section 9.6.7
46  *      covers these details.
47  *
48  * The ARM922T is similar, but with smaller caches (8K each, vs 16K).
49  */
50
51 #if 0
52 #define _DEBUG_INSTRUCTION_EXECUTION_
53 #endif
54
55 /* Table 9-8 shows scan chain 15 format during physical access mode, using a
56  * dedicated 6-bit address space (encoded in bits 33:38).  Writes use one
57  * JTAG scan, while reads use two.
58  *
59  * Table 9-9 lists the thirteen registers which support physical access.
60  * ARM920T_CP15_PHYS_ADDR() constructs the 6-bit reg_addr parameter passed
61  * to arm920t_read_cp15_physical() and arm920t_write_cp15_physical().
62  *
63  *  x == bit[38]
64  *  y == bits[37:34]
65  *  z == bit[33]
66  */
67 #define ARM920T_CP15_PHYS_ADDR(x, y, z) ((x << 5) | (y << 1) << (z))
68
69 /* Registers supporting physical Read access (from table 9-9) */
70 #define CP15PHYS_CACHETYPE      ARM920T_CP15_PHYS_ADDR(0, 0x0, 1)
71 #define CP15PHYS_ICACHE_IDX     ARM920T_CP15_PHYS_ADDR(1, 0xd, 1)
72 #define CP15PHYS_DCACHE_IDX     ARM920T_CP15_PHYS_ADDR(1, 0xe, 1)
73 /* NOTE: several more registers support only physical read access */
74
75 /* Registers supporting physical Read/Write access (from table 9-9) */
76 #define CP15PHYS_CTRL           ARM920T_CP15_PHYS_ADDR(0, 0x1, 0)
77 #define CP15PHYS_PID            ARM920T_CP15_PHYS_ADDR(0, 0xd, 0)
78 #define CP15PHYS_TESTSTATE      ARM920T_CP15_PHYS_ADDR(0, 0xf, 0)
79 #define CP15PHYS_ICACHE         ARM920T_CP15_PHYS_ADDR(1, 0x1, 1)
80 #define CP15PHYS_DCACHE         ARM920T_CP15_PHYS_ADDR(1, 0x2, 1)
81
82 static int arm920t_read_cp15_physical(struct target *target,
83                 int reg_addr, uint32_t *value)
84 {
85         struct arm920t_common *arm920t = target_to_arm920(target);
86         struct arm_jtag *jtag_info;
87         struct scan_field fields[4];
88         uint8_t access_type_buf = 1;
89         uint8_t reg_addr_buf = reg_addr & 0x3f;
90         uint8_t nr_w_buf = 0;
91
92         jtag_info = &arm920t->arm7_9_common.jtag_info;
93
94         arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
95         arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
96
97         fields[0].num_bits = 1;
98         fields[0].out_value = &access_type_buf;
99         fields[0].in_value = NULL;
100
101         fields[1].num_bits = 32;
102         fields[1].out_value = NULL;
103         fields[1].in_value = NULL;
104
105         fields[2].num_bits = 6;
106         fields[2].out_value = &reg_addr_buf;
107         fields[2].in_value = NULL;
108
109         fields[3].num_bits = 1;
110         fields[3].out_value = &nr_w_buf;
111         fields[3].in_value = NULL;
112
113         jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
114
115         fields[1].in_value = (uint8_t *)value;
116
117         jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
118
119         jtag_add_callback(arm_le_to_h_u32, (jtag_callback_data_t)value);
120
121 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
122         jtag_execute_queue();
123         LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, *value);
124 #endif
125
126         return ERROR_OK;
127 }
128
129 static int arm920t_write_cp15_physical(struct target *target,
130                 int reg_addr, uint32_t value)
131 {
132         struct arm920t_common *arm920t = target_to_arm920(target);
133         struct arm_jtag *jtag_info;
134         struct scan_field fields[4];
135         uint8_t access_type_buf = 1;
136         uint8_t reg_addr_buf = reg_addr & 0x3f;
137         uint8_t nr_w_buf = 1;
138         uint8_t value_buf[4];
139
140         jtag_info = &arm920t->arm7_9_common.jtag_info;
141
142         buf_set_u32(value_buf, 0, 32, value);
143
144         arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
145         arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
146
147         fields[0].num_bits = 1;
148         fields[0].out_value = &access_type_buf;
149         fields[0].in_value = NULL;
150
151         fields[1].num_bits = 32;
152         fields[1].out_value = value_buf;
153         fields[1].in_value = NULL;
154
155         fields[2].num_bits = 6;
156         fields[2].out_value = &reg_addr_buf;
157         fields[2].in_value = NULL;
158
159         fields[3].num_bits = 1;
160         fields[3].out_value = &nr_w_buf;
161         fields[3].in_value = NULL;
162
163         jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
164
165 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
166         LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, value);
167 #endif
168
169         return ERROR_OK;
170 }
171
172 /* See table 9-10 for scan chain 15 format during interpreted access mode.
173  * If the TESTSTATE register is set for interpreted access, certain CP15
174  * MRC and MCR instructions may be executed through scan chain 15.
175  *
176  * Tables 9-11, 9-12, and 9-13 show which MRC and MCR instructions can be
177  * executed using scan chain 15 interpreted mode.
178  */
179 static int arm920t_execute_cp15(struct target *target, uint32_t cp15_opcode,
180                 uint32_t arm_opcode)
181 {
182         int retval;
183         struct arm920t_common *arm920t = target_to_arm920(target);
184         struct arm_jtag *jtag_info;
185         struct scan_field fields[4];
186         uint8_t access_type_buf = 0;            /* interpreted access */
187         uint8_t reg_addr_buf = 0x0;
188         uint8_t nr_w_buf = 0;
189         uint8_t cp15_opcode_buf[4];
190
191         jtag_info = &arm920t->arm7_9_common.jtag_info;
192
193         arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
194         arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
195
196         buf_set_u32(cp15_opcode_buf, 0, 32, cp15_opcode);
197
198         fields[0].num_bits = 1;
199         fields[0].out_value = &access_type_buf;
200         fields[0].in_value = NULL;
201
202         fields[1].num_bits = 32;
203         fields[1].out_value = cp15_opcode_buf;
204         fields[1].in_value = NULL;
205
206         fields[2].num_bits = 6;
207         fields[2].out_value = &reg_addr_buf;
208         fields[2].in_value = NULL;
209
210         fields[3].num_bits = 1;
211         fields[3].out_value = &nr_w_buf;
212         fields[3].in_value = NULL;
213
214         jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
215
216         arm9tdmi_clock_out(jtag_info, arm_opcode, 0, NULL, 0);
217         arm9tdmi_clock_out(jtag_info, ARMV4_5_NOP, 0, NULL, 1);
218         retval = arm7_9_execute_sys_speed(target);
219         if (retval != ERROR_OK)
220                 return retval;
221
222         if ((retval = jtag_execute_queue()) != ERROR_OK)
223         {
224                 LOG_ERROR("failed executing JTAG queue");
225                 return retval;
226         }
227
228         return ERROR_OK;
229 }
230
231 static int arm920t_read_cp15_interpreted(struct target *target,
232                 uint32_t cp15_opcode, uint32_t address, uint32_t *value)
233 {
234         struct arm *armv4_5 = target_to_arm(target);
235         uint32_t* regs_p[1];
236         uint32_t regs[2];
237         uint32_t cp15c15 = 0x0;
238         struct reg *r = armv4_5->core_cache->reg_list;
239
240         /* load address into R1 */
241         regs[1] = address;
242         arm9tdmi_write_core_regs(target, 0x2, regs);
243
244         /* read-modify-write CP15 test state register
245         * to enable interpreted access mode */
246         arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
247         jtag_execute_queue();
248         cp15c15 |= 1;   /* set interpret mode */
249         arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
250
251         /* execute CP15 instruction and ARM load (reading from coprocessor) */
252         arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_LDR(0, 1));
253
254         /* disable interpreted access mode */
255         cp15c15 &= ~1U; /* clear interpret mode */
256         arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
257
258         /* retrieve value from R0 */
259         regs_p[0] = value;
260         arm9tdmi_read_core_regs(target, 0x1, regs_p);
261         jtag_execute_queue();
262
263 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
264         LOG_DEBUG("cp15_opcode: %8.8x, address: %8.8x, value: %8.8x",
265                         cp15_opcode, address, *value);
266 #endif
267
268         if (!is_arm_mode(armv4_5->core_mode))
269                 return ERROR_FAIL;
270
271         r[0].dirty = 1;
272         r[1].dirty = 1;
273
274         return ERROR_OK;
275 }
276
277 static
278 int arm920t_write_cp15_interpreted(struct target *target,
279                 uint32_t cp15_opcode, uint32_t value, uint32_t address)
280 {
281         uint32_t cp15c15 = 0x0;
282         struct arm *armv4_5 = target_to_arm(target);
283         uint32_t regs[2];
284         struct reg *r = armv4_5->core_cache->reg_list;
285
286         /* load value, address into R0, R1 */
287         regs[0] = value;
288         regs[1] = address;
289         arm9tdmi_write_core_regs(target, 0x3, regs);
290
291         /* read-modify-write CP15 test state register
292         * to enable interpreted access mode */
293         arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
294         jtag_execute_queue();
295         cp15c15 |= 1;   /* set interpret mode */
296         arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
297
298         /* execute CP15 instruction and ARM store (writing to coprocessor) */
299         arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_STR(0, 1));
300
301         /* disable interpreted access mode */
302         cp15c15 &= ~1U; /* set interpret mode */
303         arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
304
305 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
306         LOG_DEBUG("cp15_opcode: %8.8x, value: %8.8x, address: %8.8x",
307                         cp15_opcode, value, address);
308 #endif
309
310         if (!is_arm_mode(armv4_5->core_mode))
311                 return ERROR_FAIL;
312
313         r[0].dirty = 1;
314         r[1].dirty = 1;
315
316         return ERROR_OK;
317 }
318
319 // EXPORTED to FA256
320 uint32_t arm920t_get_ttb(struct target *target)
321 {
322         int retval;
323         uint32_t ttb = 0x0;
324
325         if ((retval = arm920t_read_cp15_interpreted(target,
326                         /* FIXME use opcode macro */
327                         0xeebf0f51, 0x0, &ttb)) != ERROR_OK)
328                 return retval;
329
330         return ttb;
331 }
332
333 // EXPORTED to FA256
334 void arm920t_disable_mmu_caches(struct target *target, int mmu,
335                 int d_u_cache, int i_cache)
336 {
337         uint32_t cp15_control;
338
339         /* read cp15 control register */
340         arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_control);
341         jtag_execute_queue();
342
343         if (mmu)
344                 cp15_control &= ~0x1U;
345
346         if (d_u_cache)
347                 cp15_control &= ~0x4U;
348
349         if (i_cache)
350                 cp15_control &= ~0x1000U;
351
352         arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_control);
353 }
354
355 // EXPORTED to FA256
356 void arm920t_enable_mmu_caches(struct target *target, int mmu,
357                 int d_u_cache, int i_cache)
358 {
359         uint32_t cp15_control;
360
361         /* read cp15 control register */
362         arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_control);
363         jtag_execute_queue();
364
365         if (mmu)
366                 cp15_control |= 0x1U;
367
368         if (d_u_cache)
369                 cp15_control |= 0x4U;
370
371         if (i_cache)
372                 cp15_control |= 0x1000U;
373
374         arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_control);
375 }
376
377 // EXPORTED to FA256
378 void arm920t_post_debug_entry(struct target *target)
379 {
380         uint32_t cp15c15;
381         struct arm920t_common *arm920t = target_to_arm920(target);
382
383         /* examine cp15 control reg */
384         arm920t_read_cp15_physical(target,
385                         CP15PHYS_CTRL, &arm920t->cp15_control_reg);
386         jtag_execute_queue();
387         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, arm920t->cp15_control_reg);
388
389         if (arm920t->armv4_5_mmu.armv4_5_cache.ctype == -1)
390         {
391                 uint32_t cache_type_reg;
392                 /* identify caches */
393                 arm920t_read_cp15_physical(target,
394                                 CP15PHYS_CACHETYPE, &cache_type_reg);
395                 jtag_execute_queue();
396                 armv4_5_identify_cache(cache_type_reg,
397                                 &arm920t->armv4_5_mmu.armv4_5_cache);
398         }
399
400         arm920t->armv4_5_mmu.mmu_enabled =
401                         (arm920t->cp15_control_reg & 0x1U) ? 1 : 0;
402         arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
403                         (arm920t->cp15_control_reg & 0x4U) ? 1 : 0;
404         arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
405                         (arm920t->cp15_control_reg & 0x1000U) ? 1 : 0;
406
407         /* save i/d fault status and address register */
408                         /* FIXME use opcode macros */
409         arm920t_read_cp15_interpreted(target, 0xee150f10, 0x0, &arm920t->d_fsr);
410         arm920t_read_cp15_interpreted(target, 0xee150f30, 0x0, &arm920t->i_fsr);
411         arm920t_read_cp15_interpreted(target, 0xee160f10, 0x0, &arm920t->d_far);
412         arm920t_read_cp15_interpreted(target, 0xee160f30, 0x0, &arm920t->i_far);
413
414         LOG_DEBUG("D FSR: 0x%8.8" PRIx32 ", D FAR: 0x%8.8" PRIx32
415                 ", I FSR: 0x%8.8" PRIx32 ", I FAR: 0x%8.8" PRIx32,
416                 arm920t->d_fsr, arm920t->d_far, arm920t->i_fsr, arm920t->i_far);
417
418         if (arm920t->preserve_cache)
419         {
420                 /* read-modify-write CP15 test state register
421                  * to disable I/D-cache linefills */
422                 arm920t_read_cp15_physical(target,
423                                 CP15PHYS_TESTSTATE, &cp15c15);
424                 jtag_execute_queue();
425                 cp15c15 |= 0x600;
426                 arm920t_write_cp15_physical(target,
427                                 CP15PHYS_TESTSTATE, cp15c15);
428         }
429 }
430
431 // EXPORTED to FA256
432 void arm920t_pre_restore_context(struct target *target)
433 {
434         uint32_t cp15c15;
435         struct arm920t_common *arm920t = target_to_arm920(target);
436
437         /* restore i/d fault status and address register */
438         arm920t_write_cp15_interpreted(target, 0xee050f10, arm920t->d_fsr, 0x0);
439         arm920t_write_cp15_interpreted(target, 0xee050f30, arm920t->i_fsr, 0x0);
440         arm920t_write_cp15_interpreted(target, 0xee060f10, arm920t->d_far, 0x0);
441         arm920t_write_cp15_interpreted(target, 0xee060f30, arm920t->i_far, 0x0);
442
443         /* read-modify-write CP15 test state register
444         * to reenable I/D-cache linefills */
445         if (arm920t->preserve_cache)
446         {
447                 arm920t_read_cp15_physical(target,
448                                 CP15PHYS_TESTSTATE, &cp15c15);
449                 jtag_execute_queue();
450                 cp15c15 &= ~0x600U;
451                 arm920t_write_cp15_physical(target,
452                                 CP15PHYS_TESTSTATE, cp15c15);
453         }
454 }
455
456 static const char arm920_not[] = "target is not an ARM920";
457
458 static int arm920t_verify_pointer(struct command_context *cmd_ctx,
459                 struct arm920t_common *arm920t)
460 {
461         if (arm920t->common_magic != ARM920T_COMMON_MAGIC) {
462                 command_print(cmd_ctx, arm920_not);
463                 return ERROR_TARGET_INVALID;
464         }
465
466         return ERROR_OK;
467 }
468
469 /** Logs summary of ARM920 state for a halted target. */
470 int arm920t_arch_state(struct target *target)
471 {
472         static const char *state[] =
473         {
474                 "disabled", "enabled"
475         };
476
477         struct arm920t_common *arm920t = target_to_arm920(target);
478         struct arm *armv4_5;
479
480         if (arm920t->common_magic != ARM920T_COMMON_MAGIC)
481         {
482                 LOG_ERROR("BUG: %s", arm920_not);
483                 return ERROR_TARGET_INVALID;
484         }
485
486         armv4_5 = &arm920t->arm7_9_common.armv4_5_common;
487
488         arm_arch_state(target);
489         LOG_USER("MMU: %s, D-Cache: %s, I-Cache: %s",
490                  state[arm920t->armv4_5_mmu.mmu_enabled],
491                  state[arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled],
492                  state[arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled]);
493
494         return ERROR_OK;
495 }
496
497 static int arm920_mmu(struct target *target, int *enabled)
498 {
499         if (target->state != TARGET_HALTED) {
500                 LOG_ERROR("%s: target not halted", __func__);
501                 return ERROR_TARGET_INVALID;
502         }
503
504         *enabled = target_to_arm920(target)->armv4_5_mmu.mmu_enabled;
505         return ERROR_OK;
506 }
507
508 static int arm920_virt2phys(struct target *target,
509                 uint32_t virt, uint32_t *phys)
510 {
511         int type;
512         uint32_t cb;
513         int domain;
514         uint32_t ap;
515         struct arm920t_common *arm920t = target_to_arm920(target);
516
517         uint32_t ret;
518         int retval = armv4_5_mmu_translate_va(target,
519                         &arm920t->armv4_5_mmu, virt, &type, &cb, &domain, &ap, &ret);
520         if (retval != ERROR_OK)
521                 return retval;
522         if (type == -1)
523         {
524                 return ret;
525         }
526         *phys = ret;
527         return ERROR_OK;
528 }
529
530 /** Reads a buffer, in the specified word size, with current MMU settings. */
531 int arm920t_read_memory(struct target *target, uint32_t address,
532                 uint32_t size, uint32_t count, uint8_t *buffer)
533 {
534         int retval;
535
536         retval = arm7_9_read_memory(target, address, size, count, buffer);
537
538         return retval;
539 }
540
541
542 static int arm920t_read_phys_memory(struct target *target,
543                 uint32_t address, uint32_t size,
544                 uint32_t count, uint8_t *buffer)
545 {
546         struct arm920t_common *arm920t = target_to_arm920(target);
547
548         return armv4_5_mmu_read_physical(target, &arm920t->armv4_5_mmu,
549                         address, size, count, buffer);
550 }
551
552 static int arm920t_write_phys_memory(struct target *target,
553                 uint32_t address, uint32_t size,
554                 uint32_t count, uint8_t *buffer)
555 {
556         struct arm920t_common *arm920t = target_to_arm920(target);
557
558         return armv4_5_mmu_write_physical(target, &arm920t->armv4_5_mmu,
559                         address, size, count, buffer);
560 }
561
562
563 /** Writes a buffer, in the specified word size, with current MMU settings. */
564 int arm920t_write_memory(struct target *target, uint32_t address,
565                 uint32_t size, uint32_t count, uint8_t *buffer)
566 {
567         int retval;
568         const uint32_t cache_mask = ~0x1f; /* cache line size : 32 byte */
569         struct arm920t_common *arm920t = target_to_arm920(target);
570
571         /* FIX!!!! this should be cleaned up and made much more general. The
572          * plan is to write up and test on arm920t specifically and
573          * then generalize and clean up afterwards.
574          *
575          * Also it should be moved to the callbacks that handle breakpoints
576          * specifically and not the generic memory write fn's. See XScale code.
577          */
578         if (arm920t->armv4_5_mmu.mmu_enabled && (count == 1) &&
579                         ((size==2) || (size==4)))
580         {
581                 /* special case the handling of single word writes to
582                  * bypass MMU, to allow implementation of breakpoints
583                  * in memory marked read only
584                  * by MMU
585                  */
586                 int type;
587                 uint32_t cb;
588                 int domain;
589                 uint32_t ap;
590                 uint32_t pa;
591
592                 /*
593                  * We need physical address and cb
594                  */
595                 int retval = armv4_5_mmu_translate_va(target, &arm920t->armv4_5_mmu,
596                                 address, &type, &cb, &domain, &ap, &pa);
597                 if (retval != ERROR_OK)
598                         return retval;
599                 if (type == -1)
600                         return pa;
601
602                 if (arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
603                 {
604                         if (cb & 0x1)
605                         {
606                                 LOG_DEBUG("D-Cache buffered, "
607                                                 "drain write buffer");
608                                 /*
609                                  * Buffered ?
610                                  * Drain write buffer - MCR p15,0,Rd,c7,c10,4
611                                  */
612
613                                 retval = arm920t_write_cp15_interpreted(target,
614                                         ARMV4_5_MCR(15, 0, 0, 7, 10, 4),
615                                         0x0, 0);
616                                 if (retval != ERROR_OK)
617                                         return retval;
618                         }
619
620                         if (cb == 0x3)
621                         {
622                                 /*
623                                  * Write back memory ? -> clean cache
624                                  *
625                                  * There is no way to clean cache lines using
626                                  * cp15 scan chain, so copy the full cache
627                                  * line from cache to physical memory.
628                                  */
629                                 uint8_t data[32];
630
631                                 LOG_DEBUG("D-Cache in 'write back' mode, "
632                                                 "flush cache line");
633
634                                 retval = target_read_memory(target,
635                                                 address & cache_mask, 1,
636                                                 sizeof(data), &data[0]);
637                                 if (retval != ERROR_OK)
638                                         return retval;
639
640                                 retval = armv4_5_mmu_write_physical(target,
641                                                 &arm920t->armv4_5_mmu,
642                                                 pa & cache_mask, 1,
643                                                 sizeof(data), &data[0]);
644                                 if (retval != ERROR_OK)
645                                         return retval;
646                         }
647
648                         /* Cached ? */
649                         if (cb & 0x2)
650                         {
651                                 /*
652                                  * Cached ? -> Invalidate data cache using MVA
653                                  *
654                                  * MCR p15,0,Rd,c7,c6,1
655                                  */
656                                 LOG_DEBUG("D-Cache enabled, "
657                                         "invalidate cache line");
658
659                                 retval = arm920t_write_cp15_interpreted(target,
660                                         ARMV4_5_MCR(15, 0, 0, 7, 6, 1), 0x0,
661                                         address & cache_mask);
662                                 if (retval != ERROR_OK)
663                                         return retval;
664                         }
665                 }
666
667                 /* write directly to physical memory,
668                  * bypassing any read only MMU bits, etc.
669                  */
670                 retval = armv4_5_mmu_write_physical(target,
671                                 &arm920t->armv4_5_mmu, pa, size,
672                                 count, buffer);
673                 if (retval != ERROR_OK)
674                         return retval;
675         } else
676         {
677                 if ((retval = arm7_9_write_memory(target, address,
678                                         size, count, buffer)) != ERROR_OK)
679                         return retval;
680         }
681
682         /* If ICache is enabled, we have to invalidate affected ICache lines
683          * the DCache is forced to write-through,
684          * so we don't have to clean it here
685          */
686         if (arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
687         {
688                 if (count <= 1)
689                 {
690                         /* invalidate ICache single entry with MVA
691                          *   mcr        15, 0, r0, cr7, cr5, {1}
692                          */
693                         LOG_DEBUG("I-Cache enabled, "
694                                 "invalidating affected I-Cache line");
695                         retval = arm920t_write_cp15_interpreted(target,
696                                         ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
697                                         0x0, address & cache_mask);
698                         if (retval != ERROR_OK)
699                                 return retval;
700                 }
701                 else
702                 {
703                         /* invalidate ICache
704                          *  mcr 15, 0, r0, cr7, cr5, {0}
705                          */
706                         retval = arm920t_write_cp15_interpreted(target,
707                                         ARMV4_5_MCR(15, 0, 0, 7, 5, 0),
708                                         0x0, 0x0);
709                         if (retval != ERROR_OK)
710                                 return retval;
711                 }
712         }
713
714         return retval;
715 }
716
717 // EXPORTED to FA256
718 int arm920t_soft_reset_halt(struct target *target)
719 {
720         int retval = ERROR_OK;
721         struct arm920t_common *arm920t = target_to_arm920(target);
722         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
723         struct arm *armv4_5 = &arm7_9->armv4_5_common;
724         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
725
726         if ((retval = target_halt(target)) != ERROR_OK)
727         {
728                 return retval;
729         }
730
731         long long then = timeval_ms();
732         int timeout;
733         while (!(timeout = ((timeval_ms()-then) > 1000)))
734         {
735                 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1)
736                                 == 0)
737                 {
738                         embeddedice_read_reg(dbg_stat);
739                         if ((retval = jtag_execute_queue()) != ERROR_OK)
740                         {
741                                 return retval;
742                         }
743                 } else
744                 {
745                         break;
746                 }
747                 if (debug_level >= 3)
748                 {
749                         /* do not eat all CPU, time out after 1 se*/
750                         alive_sleep(100);
751                 } else
752                 {
753                         keep_alive();
754                 }
755         }
756         if (timeout)
757         {
758                 LOG_ERROR("Failed to halt CPU after 1 sec");
759                 return ERROR_TARGET_TIMEOUT;
760         }
761
762         target->state = TARGET_HALTED;
763
764         /* SVC, ARM state, IRQ and FIQ disabled */
765         uint32_t cpsr;
766
767         cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 32);
768         cpsr &= ~0xff;
769         cpsr |= 0xd3;
770         arm_set_cpsr(armv4_5, cpsr);
771         armv4_5->cpsr->dirty = 1;
772
773         /* start fetching from 0x0 */
774         buf_set_u32(armv4_5->pc->value, 0, 32, 0x0);
775         armv4_5->pc->dirty = 1;
776         armv4_5->pc->valid = 1;
777
778         arm920t_disable_mmu_caches(target, 1, 1, 1);
779         arm920t->armv4_5_mmu.mmu_enabled = 0;
780         arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled = 0;
781         arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled = 0;
782
783         return target_call_event_callbacks(target, TARGET_EVENT_HALTED);
784 }
785
786 /* FIXME remove forward decls */
787 static int arm920t_mrc(struct target *target, int cpnum,
788                 uint32_t op1, uint32_t op2,
789                 uint32_t CRn, uint32_t CRm,
790                 uint32_t *value);
791 static int arm920t_mcr(struct target *target, int cpnum,
792                 uint32_t op1, uint32_t op2,
793                 uint32_t CRn, uint32_t CRm,
794                 uint32_t value);
795
796 static int arm920t_init_arch_info(struct target *target,
797                 struct arm920t_common *arm920t, struct jtag_tap *tap)
798 {
799         struct arm7_9_common *arm7_9 = &arm920t->arm7_9_common;
800
801         arm7_9->armv4_5_common.mrc = arm920t_mrc;
802         arm7_9->armv4_5_common.mcr = arm920t_mcr;
803
804         /* initialize arm7/arm9 specific info (including armv4_5) */
805         arm9tdmi_init_arch_info(target, arm7_9, tap);
806
807         arm920t->common_magic = ARM920T_COMMON_MAGIC;
808
809         arm7_9->post_debug_entry = arm920t_post_debug_entry;
810         arm7_9->pre_restore_context = arm920t_pre_restore_context;
811
812         arm920t->armv4_5_mmu.armv4_5_cache.ctype = -1;
813         arm920t->armv4_5_mmu.get_ttb = arm920t_get_ttb;
814         arm920t->armv4_5_mmu.read_memory = arm7_9_read_memory;
815         arm920t->armv4_5_mmu.write_memory = arm7_9_write_memory;
816         arm920t->armv4_5_mmu.disable_mmu_caches = arm920t_disable_mmu_caches;
817         arm920t->armv4_5_mmu.enable_mmu_caches = arm920t_enable_mmu_caches;
818         arm920t->armv4_5_mmu.has_tiny_pages = 1;
819         arm920t->armv4_5_mmu.mmu_enabled = 0;
820
821         /* disabling linefills leads to lockups, so keep them enabled for now
822          * this doesn't affect correctness, but might affect timing issues, if
823          * important data is evicted from the cache during the debug session
824          * */
825         arm920t->preserve_cache = 0;
826
827         /* override hw single-step capability from ARM9TDMI */
828         arm7_9->has_single_step = 1;
829
830         return ERROR_OK;
831 }
832
833 static int arm920t_target_create(struct target *target, Jim_Interp *interp)
834 {
835         struct arm920t_common *arm920t;
836
837         arm920t = calloc(1,sizeof(struct arm920t_common));
838         return arm920t_init_arch_info(target, arm920t, target->tap);
839 }
840
841 COMMAND_HANDLER(arm920t_handle_read_cache_command)
842 {
843         int retval = ERROR_OK;
844         struct target *target = get_current_target(CMD_CTX);
845         struct arm920t_common *arm920t = target_to_arm920(target);
846         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
847         struct arm *armv4_5 = &arm7_9->armv4_5_common;
848         uint32_t cp15c15;
849         uint32_t cp15_ctrl, cp15_ctrl_saved;
850         uint32_t regs[16];
851         uint32_t *regs_p[16];
852         uint32_t C15_C_D_Ind, C15_C_I_Ind;
853         int i;
854         FILE *output;
855         struct arm920t_cache_line d_cache[8][64], i_cache[8][64];
856         int segment, index;
857         struct reg *r;
858
859         retval = arm920t_verify_pointer(CMD_CTX, arm920t);
860         if (retval != ERROR_OK)
861                 return retval;
862
863         if (CMD_ARGC != 1)
864         {
865                 command_print(CMD_CTX, "usage: arm920t read_cache <filename>");
866                 return ERROR_OK;
867         }
868
869         if ((output = fopen(CMD_ARGV[0], "w")) == NULL)
870         {
871                 LOG_DEBUG("error opening cache content file");
872                 return ERROR_OK;
873         }
874
875         for (i = 0; i < 16; i++)
876                 regs_p[i] = &regs[i];
877
878         /* disable MMU and Caches */
879         arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_ctrl);
880         if ((retval = jtag_execute_queue()) != ERROR_OK)
881         {
882                 return retval;
883         }
884         cp15_ctrl_saved = cp15_ctrl;
885         cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED
886                 | ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED);
887         arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl);
888
889         /* read CP15 test state register */
890         arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
891         jtag_execute_queue();
892
893         /* read DCache content */
894         fprintf(output, "DCache:\n");
895
896         /* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
897         for (segment = 0;
898                 segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets;
899                 segment++)
900         {
901                 fprintf(output, "\nsegment: %i\n----------", segment);
902
903                 /* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
904                 regs[0] = 0x0 | (segment << 5);
905                 arm9tdmi_write_core_regs(target, 0x1, regs);
906
907                 /* set interpret mode */
908                 cp15c15 |= 0x1;
909                 arm920t_write_cp15_physical(target,
910                                 CP15PHYS_TESTSTATE, cp15c15);
911
912                 /* D CAM Read, loads current victim into C15.C.D.Ind */
913                 arm920t_execute_cp15(target,
914                         ARMV4_5_MCR(15,2,0,15,6,2), ARMV4_5_LDR(1, 0));
915
916                 /* read current victim */
917                 arm920t_read_cp15_physical(target,
918                                 CP15PHYS_DCACHE_IDX, &C15_C_D_Ind);
919
920                 /* clear interpret mode */
921                 cp15c15 &= ~0x1;
922                 arm920t_write_cp15_physical(target,
923                                 CP15PHYS_TESTSTATE, cp15c15);
924
925                 for (index = 0; index < 64; index++)
926                 {
927                         /* Ra:
928                          * r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0)
929                          */
930                         regs[0] = 0x0 | (segment << 5) | (index << 26);
931                         arm9tdmi_write_core_regs(target, 0x1, regs);
932
933                         /* set interpret mode */
934                         cp15c15 |= 0x1;
935                         arm920t_write_cp15_physical(target,
936                                         CP15PHYS_TESTSTATE, cp15c15);
937
938                         /* Write DCache victim */
939                         arm920t_execute_cp15(target,
940                                 ARMV4_5_MCR(15,0,0,9,1,0), ARMV4_5_LDR(1, 0));
941
942                         /* Read D RAM */
943                         arm920t_execute_cp15(target,
944                                 ARMV4_5_MCR(15,2,0,15,10,2),
945                                 ARMV4_5_LDMIA(0, 0x1fe, 0, 0));
946
947                         /* Read D CAM */
948                         arm920t_execute_cp15(target,
949                                 ARMV4_5_MCR(15,2,0,15,6,2),
950                                 ARMV4_5_LDR(9, 0));
951
952                         /* clear interpret mode */
953                         cp15c15 &= ~0x1;
954                         arm920t_write_cp15_physical(target,
955                                         CP15PHYS_TESTSTATE, cp15c15);
956
957                         /* read D RAM and CAM content */
958                         arm9tdmi_read_core_regs(target, 0x3fe, regs_p);
959                         if ((retval = jtag_execute_queue()) != ERROR_OK)
960                         {
961                                 return retval;
962                         }
963
964                         d_cache[segment][index].cam = regs[9];
965
966                         /* mask LFSR[6] */
967                         regs[9] &= 0xfffffffe;
968                         fprintf(output, "\nsegment: %i, index: %i, CAM: 0x%8.8"
969                                 PRIx32 ", content (%s):\n",
970                                 segment, index, regs[9],
971                                 (regs[9] & 0x10) ? "valid" : "invalid");
972
973                         for (i = 1; i < 9; i++)
974                         {
975                                  d_cache[segment][index].data[i] = regs[i];
976                                  fprintf(output, "%i: 0x%8.8" PRIx32 "\n",
977                                                 i-1, regs[i]);
978                         }
979
980                 }
981
982                 /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
983                 regs[0] = 0x0 | (segment << 5) | (C15_C_D_Ind << 26);
984                 arm9tdmi_write_core_regs(target, 0x1, regs);
985
986                 /* set interpret mode */
987                 cp15c15 |= 0x1;
988                 arm920t_write_cp15_physical(target,
989                                 CP15PHYS_TESTSTATE, cp15c15);
990
991                 /* Write DCache victim */
992                 arm920t_execute_cp15(target,
993                                 ARMV4_5_MCR(15,0,0,9,1,0), ARMV4_5_LDR(1, 0));
994
995                 /* clear interpret mode */
996                 cp15c15 &= ~0x1;
997                 arm920t_write_cp15_physical(target,
998                                 CP15PHYS_TESTSTATE, cp15c15);
999         }
1000
1001         /* read ICache content */
1002         fprintf(output, "ICache:\n");
1003
1004         /* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
1005         for (segment = 0;
1006                 segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets;
1007                 segment++)
1008         {
1009                 fprintf(output, "segment: %i\n----------", segment);
1010
1011                 /* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
1012                 regs[0] = 0x0 | (segment << 5);
1013                 arm9tdmi_write_core_regs(target, 0x1, regs);
1014
1015                 /* set interpret mode */
1016                 cp15c15 |= 0x1;
1017                 arm920t_write_cp15_physical(target,
1018                                 CP15PHYS_TESTSTATE, cp15c15);
1019
1020                 /* I CAM Read, loads current victim into C15.C.I.Ind */
1021                 arm920t_execute_cp15(target,
1022                                 ARMV4_5_MCR(15,2,0,15,5,2), ARMV4_5_LDR(1, 0));
1023
1024                 /* read current victim */
1025                 arm920t_read_cp15_physical(target, CP15PHYS_ICACHE_IDX,
1026                                 &C15_C_I_Ind);
1027
1028                 /* clear interpret mode */
1029                 cp15c15 &= ~0x1;
1030                 arm920t_write_cp15_physical(target,
1031                                 CP15PHYS_TESTSTATE, cp15c15);
1032
1033                 for (index = 0; index < 64; index++)
1034                 {
1035                         /* Ra:
1036                          * r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0)
1037                          */
1038                         regs[0] = 0x0 | (segment << 5) | (index << 26);
1039                         arm9tdmi_write_core_regs(target, 0x1, regs);
1040
1041                         /* set interpret mode */
1042                         cp15c15 |= 0x1;
1043                         arm920t_write_cp15_physical(target,
1044                                         CP15PHYS_TESTSTATE, cp15c15);
1045
1046                         /* Write ICache victim */
1047                         arm920t_execute_cp15(target,
1048                                 ARMV4_5_MCR(15,0,0,9,1,1), ARMV4_5_LDR(1, 0));
1049
1050                         /* Read I RAM */
1051                         arm920t_execute_cp15(target,
1052                                 ARMV4_5_MCR(15,2,0,15,9,2),
1053                                 ARMV4_5_LDMIA(0, 0x1fe, 0, 0));
1054
1055                         /* Read I CAM */
1056                         arm920t_execute_cp15(target,
1057                                 ARMV4_5_MCR(15,2,0,15,5,2),
1058                                 ARMV4_5_LDR(9, 0));
1059
1060                         /* clear interpret mode */
1061                         cp15c15 &= ~0x1;
1062                         arm920t_write_cp15_physical(target,
1063                                         CP15PHYS_TESTSTATE, cp15c15);
1064
1065                         /* read I RAM and CAM content */
1066                         arm9tdmi_read_core_regs(target, 0x3fe, regs_p);
1067                         if ((retval = jtag_execute_queue()) != ERROR_OK)
1068                         {
1069                                 return retval;
1070                         }
1071
1072                         i_cache[segment][index].cam = regs[9];
1073
1074                         /* mask LFSR[6] */
1075                         regs[9] &= 0xfffffffe;
1076                         fprintf(output, "\nsegment: %i, index: %i, "
1077                                 "CAM: 0x%8.8" PRIx32 ", content (%s):\n",
1078                                 segment, index, regs[9],
1079                                 (regs[9] & 0x10) ? "valid" : "invalid");
1080
1081                         for (i = 1; i < 9; i++)
1082                         {
1083                                  i_cache[segment][index].data[i] = regs[i];
1084                                  fprintf(output, "%i: 0x%8.8" PRIx32 "\n",
1085                                                 i-1, regs[i]);
1086                         }
1087                 }
1088
1089                 /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
1090                 regs[0] = 0x0 | (segment << 5) | (C15_C_D_Ind << 26);
1091                 arm9tdmi_write_core_regs(target, 0x1, regs);
1092
1093                 /* set interpret mode */
1094                 cp15c15 |= 0x1;
1095                 arm920t_write_cp15_physical(target,
1096                                 CP15PHYS_TESTSTATE, cp15c15);
1097
1098                 /* Write ICache victim */
1099                 arm920t_execute_cp15(target,
1100                                 ARMV4_5_MCR(15,0,0,9,1,1), ARMV4_5_LDR(1, 0));
1101
1102                 /* clear interpret mode */
1103                 cp15c15 &= ~0x1;
1104                 arm920t_write_cp15_physical(target,
1105                                 CP15PHYS_TESTSTATE, cp15c15);
1106         }
1107
1108         /* restore CP15 MMU and Cache settings */
1109         arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl_saved);
1110
1111         command_print(CMD_CTX, "cache content successfully output to %s",
1112                         CMD_ARGV[0]);
1113
1114         fclose(output);
1115
1116         if (!is_arm_mode(armv4_5->core_mode))
1117                 return ERROR_FAIL;
1118
1119         /* force writeback of the valid data */
1120         r = armv4_5->core_cache->reg_list;
1121         r[0].dirty = r[0].valid;
1122         r[1].dirty = r[1].valid;
1123         r[2].dirty = r[2].valid;
1124         r[3].dirty = r[3].valid;
1125         r[4].dirty = r[4].valid;
1126         r[5].dirty = r[5].valid;
1127         r[6].dirty = r[6].valid;
1128         r[7].dirty = r[7].valid;
1129
1130         r = arm_reg_current(armv4_5, 8);
1131         r->dirty = r->valid;
1132
1133         r = arm_reg_current(armv4_5, 9);
1134         r->dirty = r->valid;
1135
1136         return ERROR_OK;
1137 }
1138
1139 COMMAND_HANDLER(arm920t_handle_read_mmu_command)
1140 {
1141         int retval = ERROR_OK;
1142         struct target *target = get_current_target(CMD_CTX);
1143         struct arm920t_common *arm920t = target_to_arm920(target);
1144         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1145         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1146         uint32_t cp15c15;
1147         uint32_t cp15_ctrl, cp15_ctrl_saved;
1148         uint32_t regs[16];
1149         uint32_t *regs_p[16];
1150         int i;
1151         FILE *output;
1152         uint32_t Dlockdown, Ilockdown;
1153         struct arm920t_tlb_entry d_tlb[64], i_tlb[64];
1154         int victim;
1155         struct reg *r;
1156
1157         retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1158         if (retval != ERROR_OK)
1159                 return retval;
1160
1161         if (CMD_ARGC != 1)
1162         {
1163                 command_print(CMD_CTX, "usage: arm920t read_mmu <filename>");
1164                 return ERROR_OK;
1165         }
1166
1167         if ((output = fopen(CMD_ARGV[0], "w")) == NULL)
1168         {
1169                 LOG_DEBUG("error opening mmu content file");
1170                 return ERROR_OK;
1171         }
1172
1173         for (i = 0; i < 16; i++)
1174                 regs_p[i] = &regs[i];
1175
1176         /* disable MMU and Caches */
1177         arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_ctrl);
1178         if ((retval = jtag_execute_queue()) != ERROR_OK)
1179         {
1180                 return retval;
1181         }
1182         cp15_ctrl_saved = cp15_ctrl;
1183         cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED
1184                         | ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED);
1185         arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl);
1186
1187         /* read CP15 test state register */
1188         arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
1189         if ((retval = jtag_execute_queue()) != ERROR_OK)
1190         {
1191                 return retval;
1192         }
1193
1194         /* prepare reading D TLB content
1195          * */
1196
1197         /* set interpret mode */
1198         cp15c15 |= 0x1;
1199         arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1200
1201         /* Read D TLB lockdown */
1202         arm920t_execute_cp15(target,
1203                         ARMV4_5_MRC(15,0,0,10,0,0), ARMV4_5_LDR(1, 0));
1204
1205         /* clear interpret mode */
1206         cp15c15 &= ~0x1;
1207         arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1208
1209         /* read D TLB lockdown stored to r1 */
1210         arm9tdmi_read_core_regs(target, 0x2, regs_p);
1211         if ((retval = jtag_execute_queue()) != ERROR_OK)
1212         {
1213                 return retval;
1214         }
1215         Dlockdown = regs[1];
1216
1217         for (victim = 0; victim < 64; victim += 8)
1218         {
1219                 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1220                  * base remains unchanged, victim goes through entries 0 to 63
1221                  */
1222                 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1223                 arm9tdmi_write_core_regs(target, 0x2, regs);
1224
1225                 /* set interpret mode */
1226                 cp15c15 |= 0x1;
1227                 arm920t_write_cp15_physical(target,
1228                                 CP15PHYS_TESTSTATE, cp15c15);
1229
1230                 /* Write D TLB lockdown */
1231                 arm920t_execute_cp15(target,
1232                         ARMV4_5_MCR(15,0,0,10,0,0),
1233                         ARMV4_5_STR(1, 0));
1234
1235                 /* Read D TLB CAM */
1236                 arm920t_execute_cp15(target,
1237                         ARMV4_5_MCR(15,4,0,15,6,4),
1238                         ARMV4_5_LDMIA(0, 0x3fc, 0, 0));
1239
1240                 /* clear interpret mode */
1241                 cp15c15 &= ~0x1;
1242                 arm920t_write_cp15_physical(target,
1243                                 CP15PHYS_TESTSTATE, cp15c15);
1244
1245                 /* read D TLB CAM content stored to r2-r9 */
1246                 arm9tdmi_read_core_regs(target, 0x3fc, regs_p);
1247                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1248                 {
1249                         return retval;
1250                 }
1251
1252                 for (i = 0; i < 8; i++)
1253                         d_tlb[victim + i].cam = regs[i + 2];
1254         }
1255
1256         for (victim = 0; victim < 64; victim++)
1257         {
1258                 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1259                  * base remains unchanged, victim goes through entries 0 to 63
1260                  */
1261                 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1262                 arm9tdmi_write_core_regs(target, 0x2, regs);
1263
1264                 /* set interpret mode */
1265                 cp15c15 |= 0x1;
1266                 arm920t_write_cp15_physical(target,
1267                                 CP15PHYS_TESTSTATE, cp15c15);
1268
1269                 /* Write D TLB lockdown */
1270                 arm920t_execute_cp15(target,
1271                                 ARMV4_5_MCR(15,0,0,10,0,0), ARMV4_5_STR(1, 0));
1272
1273                 /* Read D TLB RAM1 */
1274                 arm920t_execute_cp15(target,
1275                                 ARMV4_5_MCR(15,4,0,15,10,4), ARMV4_5_LDR(2,0));
1276
1277                 /* Read D TLB RAM2 */
1278                 arm920t_execute_cp15(target,
1279                                 ARMV4_5_MCR(15,4,0,15,2,5), ARMV4_5_LDR(3,0));
1280
1281                 /* clear interpret mode */
1282                 cp15c15 &= ~0x1;
1283                 arm920t_write_cp15_physical(target,
1284                                 CP15PHYS_TESTSTATE, cp15c15);
1285
1286                 /* read D TLB RAM content stored to r2 and r3 */
1287                 arm9tdmi_read_core_regs(target, 0xc, regs_p);
1288                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1289                 {
1290                         return retval;
1291                 }
1292
1293                 d_tlb[victim].ram1 = regs[2];
1294                 d_tlb[victim].ram2 = regs[3];
1295         }
1296
1297         /* restore D TLB lockdown */
1298         regs[1] = Dlockdown;
1299         arm9tdmi_write_core_regs(target, 0x2, regs);
1300
1301         /* Write D TLB lockdown */
1302         arm920t_execute_cp15(target,
1303                         ARMV4_5_MCR(15,0,0,10,0,0), ARMV4_5_STR(1, 0));
1304
1305         /* prepare reading I TLB content
1306          * */
1307
1308         /* set interpret mode */
1309         cp15c15 |= 0x1;
1310         arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1311
1312         /* Read I TLB lockdown */
1313         arm920t_execute_cp15(target,
1314                         ARMV4_5_MRC(15,0,0,10,0,1), ARMV4_5_LDR(1, 0));
1315
1316         /* clear interpret mode */
1317         cp15c15 &= ~0x1;
1318         arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1319
1320         /* read I TLB lockdown stored to r1 */
1321         arm9tdmi_read_core_regs(target, 0x2, regs_p);
1322         if ((retval = jtag_execute_queue()) != ERROR_OK)
1323         {
1324                 return retval;
1325         }
1326         Ilockdown = regs[1];
1327
1328         for (victim = 0; victim < 64; victim += 8)
1329         {
1330                 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1331                  * base remains unchanged, victim goes through entries 0 to 63
1332                  */
1333                 regs[1] = (Ilockdown & 0xfc000000) | (victim << 20);
1334                 arm9tdmi_write_core_regs(target, 0x2, regs);
1335
1336                 /* set interpret mode */
1337                 cp15c15 |= 0x1;
1338                 arm920t_write_cp15_physical(target,
1339                                 CP15PHYS_TESTSTATE, cp15c15);
1340
1341                 /* Write I TLB lockdown */
1342                 arm920t_execute_cp15(target,
1343                                 ARMV4_5_MCR(15,0,0,10,0,1),
1344                                 ARMV4_5_STR(1, 0));
1345
1346                 /* Read I TLB CAM */
1347                 arm920t_execute_cp15(target,
1348                                 ARMV4_5_MCR(15,4,0,15,5,4),
1349                                 ARMV4_5_LDMIA(0, 0x3fc, 0, 0));
1350
1351                 /* clear interpret mode */
1352                 cp15c15 &= ~0x1;
1353                 arm920t_write_cp15_physical(target,
1354                                 CP15PHYS_TESTSTATE, cp15c15);
1355
1356                 /* read I TLB CAM content stored to r2-r9 */
1357                 arm9tdmi_read_core_regs(target, 0x3fc, regs_p);
1358                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1359                 {
1360                         return retval;
1361                 }
1362
1363                 for (i = 0; i < 8; i++)
1364                         i_tlb[i + victim].cam = regs[i + 2];
1365         }
1366
1367         for (victim = 0; victim < 64; victim++)
1368         {
1369                 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1370                  * base remains unchanged, victim goes through entries 0 to 63
1371                  */
1372                 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1373                 arm9tdmi_write_core_regs(target, 0x2, regs);
1374
1375                 /* set interpret mode */
1376                 cp15c15 |= 0x1;
1377                 arm920t_write_cp15_physical(target,
1378                                 CP15PHYS_TESTSTATE, cp15c15);
1379
1380                 /* Write I TLB lockdown */
1381                 arm920t_execute_cp15(target,
1382                                 ARMV4_5_MCR(15,0,0,10,0,1), ARMV4_5_STR(1, 0));
1383
1384                 /* Read I TLB RAM1 */
1385                 arm920t_execute_cp15(target,
1386                                 ARMV4_5_MCR(15,4,0,15,9,4), ARMV4_5_LDR(2,0));
1387
1388                 /* Read I TLB RAM2 */
1389                 arm920t_execute_cp15(target,
1390                                 ARMV4_5_MCR(15,4,0,15,1,5), ARMV4_5_LDR(3,0));
1391
1392                 /* clear interpret mode */
1393                 cp15c15 &= ~0x1;
1394                 arm920t_write_cp15_physical(target,
1395                                 CP15PHYS_TESTSTATE, cp15c15);
1396
1397                 /* read I TLB RAM content stored to r2 and r3 */
1398                 arm9tdmi_read_core_regs(target, 0xc, regs_p);
1399                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1400                 {
1401                         return retval;
1402                 }
1403
1404                 i_tlb[victim].ram1 = regs[2];
1405                 i_tlb[victim].ram2 = regs[3];
1406         }
1407
1408         /* restore I TLB lockdown */
1409         regs[1] = Ilockdown;
1410         arm9tdmi_write_core_regs(target, 0x2, regs);
1411
1412         /* Write I TLB lockdown */
1413         arm920t_execute_cp15(target,
1414                         ARMV4_5_MCR(15,0,0,10,0,1), ARMV4_5_STR(1, 0));
1415
1416         /* restore CP15 MMU and Cache settings */
1417         arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl_saved);
1418
1419         /* output data to file */
1420         fprintf(output, "D TLB content:\n");
1421         for (i = 0; i < 64; i++)
1422         {
1423                 fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32
1424                         " 0x%8.8" PRIx32 " %s\n",
1425                         i, d_tlb[i].cam, d_tlb[i].ram1, d_tlb[i].ram2,
1426                         (d_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)");
1427         }
1428
1429         fprintf(output, "\n\nI TLB content:\n");
1430         for (i = 0; i < 64; i++)
1431         {
1432                 fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32
1433                         " 0x%8.8" PRIx32 " %s\n",
1434                         i, i_tlb[i].cam, i_tlb[i].ram1, i_tlb[i].ram2,
1435                         (i_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)");
1436         }
1437
1438         command_print(CMD_CTX, "mmu content successfully output to %s",
1439                         CMD_ARGV[0]);
1440
1441         fclose(output);
1442
1443         if (!is_arm_mode(armv4_5->core_mode))
1444                 return ERROR_FAIL;
1445
1446         /* force writeback of the valid data */
1447         r = armv4_5->core_cache->reg_list;
1448         r[0].dirty = r[0].valid;
1449         r[1].dirty = r[1].valid;
1450         r[2].dirty = r[2].valid;
1451         r[3].dirty = r[3].valid;
1452         r[4].dirty = r[4].valid;
1453         r[5].dirty = r[5].valid;
1454         r[6].dirty = r[6].valid;
1455         r[7].dirty = r[7].valid;
1456
1457         r = arm_reg_current(armv4_5, 8);
1458         r->dirty = r->valid;
1459
1460         r = arm_reg_current(armv4_5, 9);
1461         r->dirty = r->valid;
1462
1463         return ERROR_OK;
1464 }
1465
1466 COMMAND_HANDLER(arm920t_handle_cp15_command)
1467 {
1468         int retval;
1469         struct target *target = get_current_target(CMD_CTX);
1470         struct arm920t_common *arm920t = target_to_arm920(target);
1471
1472         retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1473         if (retval != ERROR_OK)
1474                 return retval;
1475
1476         if (target->state != TARGET_HALTED)
1477         {
1478                 command_print(CMD_CTX, "target must be stopped for "
1479                         "\"%s\" command", CMD_NAME);
1480                 return ERROR_OK;
1481         }
1482
1483         /* one argument, read a register.
1484          * two arguments, write it.
1485          */
1486         if (CMD_ARGC >= 1)
1487         {
1488                 int address;
1489                 COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], address);
1490
1491                 if (CMD_ARGC == 1)
1492                 {
1493                         uint32_t value;
1494                         if ((retval = arm920t_read_cp15_physical(target,
1495                                         address, &value)) != ERROR_OK)
1496                         {
1497                                 command_print(CMD_CTX,
1498                                         "couldn't access reg %i", address);
1499                                 return ERROR_OK;
1500                         }
1501                         if ((retval = jtag_execute_queue()) != ERROR_OK)
1502                         {
1503                                 return retval;
1504                         }
1505
1506                         command_print(CMD_CTX, "%i: %8.8" PRIx32,
1507                                         address, value);
1508                 }
1509                 else if (CMD_ARGC == 2)
1510                 {
1511                         uint32_t value;
1512                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1513                         retval = arm920t_write_cp15_physical(target,
1514                                         address, value);
1515                         if (retval != ERROR_OK)
1516                         {
1517                                 command_print(CMD_CTX,
1518                                         "couldn't access reg %i", address);
1519                                 /* REVISIT why lie? "return retval"? */
1520                                 return ERROR_OK;
1521                         }
1522                         command_print(CMD_CTX, "%i: %8.8" PRIx32,
1523                                         address, value);
1524                 }
1525         }
1526
1527         return ERROR_OK;
1528 }
1529
1530 COMMAND_HANDLER(arm920t_handle_cp15i_command)
1531 {
1532         int retval;
1533         struct target *target = get_current_target(CMD_CTX);
1534         struct arm920t_common *arm920t = target_to_arm920(target);
1535
1536         retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1537         if (retval != ERROR_OK)
1538                 return retval;
1539
1540
1541         if (target->state != TARGET_HALTED)
1542         {
1543                 command_print(CMD_CTX, "target must be stopped for "
1544                                 "\"%s\" command", CMD_NAME);
1545                 return ERROR_OK;
1546         }
1547
1548         /* one argument, read a register.
1549          * two arguments, write it.
1550          */
1551         if (CMD_ARGC >= 1)
1552         {
1553                 uint32_t opcode;
1554                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], opcode);
1555
1556                 if (CMD_ARGC == 1)
1557                 {
1558                         uint32_t value;
1559                         retval = arm920t_read_cp15_interpreted(target,
1560                                         opcode, 0x0, &value);
1561                         if (retval != ERROR_OK)
1562                         {
1563                                 command_print(CMD_CTX,
1564                                         "couldn't execute %8.8" PRIx32,
1565                                         opcode);
1566                                 /* REVISIT why lie? "return retval"? */
1567                                 return ERROR_OK;
1568                         }
1569
1570                         command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32,
1571                                         opcode, value);
1572                 }
1573                 else if (CMD_ARGC == 2)
1574                 {
1575                         uint32_t value;
1576                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1577                         retval = arm920t_write_cp15_interpreted(target,
1578                                         opcode, value, 0);
1579                         if (retval != ERROR_OK)
1580                         {
1581                                 command_print(CMD_CTX,
1582                                         "couldn't execute %8.8" PRIx32,
1583                                         opcode);
1584                                 /* REVISIT why lie? "return retval"? */
1585                                 return ERROR_OK;
1586                         }
1587                         command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32,
1588                                         opcode, value);
1589                 }
1590                 else if (CMD_ARGC == 3)
1591                 {
1592                         uint32_t value;
1593                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1594                         uint32_t address;
1595                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], address);
1596                         retval = arm920t_write_cp15_interpreted(target,
1597                                         opcode, value, address);
1598                         if (retval != ERROR_OK)
1599                         {
1600                                 command_print(CMD_CTX,
1601                                         "couldn't execute %8.8" PRIx32, opcode);
1602                                 /* REVISIT why lie? "return retval"? */
1603                                 return ERROR_OK;
1604                         }
1605                         command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32
1606                                         " %8.8" PRIx32, opcode, value, address);
1607                 }
1608         }
1609         else
1610         {
1611                 command_print(CMD_CTX,
1612                         "usage: arm920t cp15i <opcode> [value] [address]");
1613         }
1614
1615         return ERROR_OK;
1616 }
1617
1618 COMMAND_HANDLER(arm920t_handle_cache_info_command)
1619 {
1620         int retval;
1621         struct target *target = get_current_target(CMD_CTX);
1622         struct arm920t_common *arm920t = target_to_arm920(target);
1623
1624         retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1625         if (retval != ERROR_OK)
1626                 return retval;
1627
1628         return armv4_5_handle_cache_info_command(CMD_CTX,
1629                         &arm920t->armv4_5_mmu.armv4_5_cache);
1630 }
1631
1632
1633 static int arm920t_mrc(struct target *target, int cpnum,
1634                 uint32_t op1, uint32_t op2,
1635                 uint32_t CRn, uint32_t CRm,
1636                 uint32_t *value)
1637 {
1638         if (cpnum!=15)
1639         {
1640                 LOG_ERROR("Only cp15 is supported");
1641                 return ERROR_FAIL;
1642         }
1643
1644         /* read "to" r0 */
1645         return arm920t_read_cp15_interpreted(target,
1646                         ARMV4_5_MRC(cpnum, op1, 0, CRn, CRm, op2),
1647                         0, value);
1648 }
1649
1650 static int arm920t_mcr(struct target *target, int cpnum,
1651                 uint32_t op1, uint32_t op2,
1652                 uint32_t CRn, uint32_t CRm,
1653                 uint32_t value)
1654 {
1655         if (cpnum!=15)
1656         {
1657                 LOG_ERROR("Only cp15 is supported");
1658                 return ERROR_FAIL;
1659         }
1660
1661         /* write "from" r0 */
1662         return arm920t_write_cp15_interpreted(target,
1663                         ARMV4_5_MCR(cpnum, op1, 0, CRn, CRm, op2),
1664                         0, value);
1665 }
1666
1667 static const struct command_registration arm920t_exec_command_handlers[] = {
1668         {
1669                 .name = "cp15",
1670                 .handler = arm920t_handle_cp15_command,
1671                 .mode = COMMAND_EXEC,
1672                 .help = "display/modify cp15 register",
1673                 .usage = "regnum [value]",
1674         },
1675         {
1676                 .name = "cp15i",
1677                 .handler = arm920t_handle_cp15i_command,
1678                 .mode = COMMAND_EXEC,
1679                 /* prefer using less error-prone "arm mcr" or "arm mrc" */
1680                 .help = "display/modify cp15 register using ARM opcode"
1681                         " (DEPRECATED)",
1682                 .usage = "instruction [value [address]]",
1683         },
1684         {
1685                 .name = "cache_info",
1686                 .handler = arm920t_handle_cache_info_command,
1687                 .mode = COMMAND_EXEC,
1688                 .help = "display information about target caches",
1689         },
1690         {
1691                 .name = "read_cache",
1692                 .handler = arm920t_handle_read_cache_command,
1693                 .mode = COMMAND_EXEC,
1694                 .help = "dump I/D cache content to file",
1695                 .usage = "filename",
1696         },
1697         {
1698                 .name = "read_mmu",
1699                 .handler = arm920t_handle_read_mmu_command,
1700                 .mode = COMMAND_EXEC,
1701                 .help = "dump I/D mmu content to file",
1702                 .usage = "filename",
1703         },
1704         COMMAND_REGISTRATION_DONE
1705 };
1706 const struct command_registration arm920t_command_handlers[] = {
1707         {
1708                 .chain = arm9tdmi_command_handlers,
1709         },
1710         {
1711                 .name = "arm920t",
1712                 .mode = COMMAND_ANY,
1713                 .help = "arm920t command group",
1714                 .chain = arm920t_exec_command_handlers,
1715         },
1716         COMMAND_REGISTRATION_DONE
1717 };
1718
1719 /** Holds methods for ARM920 targets. */
1720 struct target_type arm920t_target =
1721 {
1722         .name = "arm920t",
1723
1724         .poll = arm7_9_poll,
1725         .arch_state = arm920t_arch_state,
1726
1727         .target_request_data = arm7_9_target_request_data,
1728
1729         .halt = arm7_9_halt,
1730         .resume = arm7_9_resume,
1731         .step = arm7_9_step,
1732
1733         .assert_reset = arm7_9_assert_reset,
1734         .deassert_reset = arm7_9_deassert_reset,
1735         .soft_reset_halt = arm920t_soft_reset_halt,
1736
1737         .get_gdb_reg_list = arm_get_gdb_reg_list,
1738
1739         .read_memory = arm920t_read_memory,
1740         .write_memory = arm920t_write_memory,
1741         .read_phys_memory = arm920t_read_phys_memory,
1742         .write_phys_memory = arm920t_write_phys_memory,
1743         .mmu = arm920_mmu,
1744         .virt2phys = arm920_virt2phys,
1745
1746         .bulk_write_memory = arm7_9_bulk_write_memory,
1747
1748         .checksum_memory = arm_checksum_memory,
1749         .blank_check_memory = arm_blank_check_memory,
1750
1751         .run_algorithm = armv4_5_run_algorithm,
1752
1753         .add_breakpoint = arm7_9_add_breakpoint,
1754         .remove_breakpoint = arm7_9_remove_breakpoint,
1755         .add_watchpoint = arm7_9_add_watchpoint,
1756         .remove_watchpoint = arm7_9_remove_watchpoint,
1757
1758         .commands = arm920t_command_handlers,
1759         .target_create = arm920t_target_create,
1760         .init_target = arm9tdmi_init_target,
1761         .examine = arm7_9_examine,
1762         .check_reset = arm7_9_check_reset,
1763 };