1357820a9a14a2c9b023428ec750ec1fbeab5cec
[fw/openocd] / src / target / arm920t.c
1
2 /***************************************************************************
3  *   Copyright (C) 2005 by Dominic Rath                                    *
4  *   Dominic.Rath@gmx.de                                                   *
5  *                                                                         *
6  *   This program is free software; you can redistribute it and/or modify  *
7  *   it under the terms of the GNU General Public License as published by  *
8  *   the Free Software Foundation; either version 2 of the License, or     *
9  *   (at your option) any later version.                                   *
10  *                                                                         *
11  *   This program is distributed in the hope that it will be useful,       *
12  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
13  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
14  *   GNU General Public License for more details.                          *
15  *                                                                         *
16  *   You should have received a copy of the GNU General Public License     *
17  *   along with this program; if not, write to the                         *
18  *   Free Software Foundation, Inc.,                                       *
19  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
20  ***************************************************************************/
21 #ifdef HAVE_CONFIG_H
22 #include "config.h"
23 #endif
24
25 #include "arm920t.h"
26 #include <helper/time_support.h>
27 #include "target_type.h"
28 #include "register.h"
29 #include "arm_opcodes.h"
30
31
32 /*
33  * For information about the ARM920T, see ARM DDI 0151C especially
34  * Chapter 9 about debug support, which shows how to manipulate each
35  * of the different scan chains:
36  *
37  *   0 ... ARM920 signals, e.g. to rest of SOC (unused here)
38  *   1 ... debugging; watchpoint and breakpoint status, etc; also
39  *      MMU and cache access in conjunction with scan chain 15
40  *   2 ... EmbeddedICE
41  *   3 ... external boundary scan (SoC-specific, unused here)
42  *   4 ... access to cache tag RAM
43  *   6 ... ETM9
44  *   15 ... access coprocessor 15, "physical" or "interpreted" modes
45  *      "interpreted" works with a few actual MRC/MCR instructions
46  *      "physical" provides register-like behaviors.  Section 9.6.7
47  *      covers these details.
48  *
49  * The ARM922T is similar, but with smaller caches (8K each, vs 16K).
50  */
51
52 #if 0
53 #define _DEBUG_INSTRUCTION_EXECUTION_
54 #endif
55
56 /* Table 9-8 shows scan chain 15 format during physical access mode, using a
57  * dedicated 6-bit address space (encoded in bits 33:38).  Writes use one
58  * JTAG scan, while reads use two.
59  *
60  * Table 9-9 lists the thirteen registers which support physical access.
61  * ARM920T_CP15_PHYS_ADDR() constructs the 6-bit reg_addr parameter passed
62  * to arm920t_read_cp15_physical() and arm920t_write_cp15_physical().
63  *
64  *  x == bit[38]
65  *  y == bits[37:34]
66  *  z == bit[33]
67  */
68 #define ARM920T_CP15_PHYS_ADDR(x, y, z) ((x << 5) | (y << 1) << (z))
69
70 /* Registers supporting physical Read access (from table 9-9) */
71 #define CP15PHYS_CACHETYPE      ARM920T_CP15_PHYS_ADDR(0, 0x0, 1)
72 #define CP15PHYS_ICACHE_IDX     ARM920T_CP15_PHYS_ADDR(1, 0xd, 1)
73 #define CP15PHYS_DCACHE_IDX     ARM920T_CP15_PHYS_ADDR(1, 0xe, 1)
74 /* NOTE: several more registers support only physical read access */
75
76 /* Registers supporting physical Read/Write access (from table 9-9) */
77 #define CP15PHYS_CTRL           ARM920T_CP15_PHYS_ADDR(0, 0x1, 0)
78 #define CP15PHYS_PID            ARM920T_CP15_PHYS_ADDR(0, 0xd, 0)
79 #define CP15PHYS_TESTSTATE      ARM920T_CP15_PHYS_ADDR(0, 0xf, 0)
80 #define CP15PHYS_ICACHE         ARM920T_CP15_PHYS_ADDR(1, 0x1, 1)
81 #define CP15PHYS_DCACHE         ARM920T_CP15_PHYS_ADDR(1, 0x2, 1)
82
83 static int arm920t_read_cp15_physical(struct target *target,
84                 int reg_addr, uint32_t *value)
85 {
86         struct arm920t_common *arm920t = target_to_arm920(target);
87         struct arm_jtag *jtag_info;
88         struct scan_field fields[4];
89         uint8_t access_type_buf = 1;
90         uint8_t reg_addr_buf = reg_addr & 0x3f;
91         uint8_t nr_w_buf = 0;
92         int retval;
93
94         jtag_info = &arm920t->arm7_9_common.jtag_info;
95
96         retval = arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
97         if (retval != ERROR_OK)
98                 return retval;
99         retval = arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
100         if (retval != ERROR_OK)
101                 return retval;
102
103         fields[0].num_bits = 1;
104         fields[0].out_value = &access_type_buf;
105         fields[0].in_value = NULL;
106
107         fields[1].num_bits = 32;
108         fields[1].out_value = NULL;
109         fields[1].in_value = NULL;
110
111         fields[2].num_bits = 6;
112         fields[2].out_value = &reg_addr_buf;
113         fields[2].in_value = NULL;
114
115         fields[3].num_bits = 1;
116         fields[3].out_value = &nr_w_buf;
117         fields[3].in_value = NULL;
118
119         jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
120
121         fields[1].in_value = (uint8_t *)value;
122
123         jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
124
125         jtag_add_callback(arm_le_to_h_u32, (jtag_callback_data_t)value);
126
127 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
128         jtag_execute_queue();
129         LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, *value);
130 #endif
131
132         return ERROR_OK;
133 }
134
135 static int arm920t_write_cp15_physical(struct target *target,
136                 int reg_addr, uint32_t value)
137 {
138         struct arm920t_common *arm920t = target_to_arm920(target);
139         struct arm_jtag *jtag_info;
140         struct scan_field fields[4];
141         uint8_t access_type_buf = 1;
142         uint8_t reg_addr_buf = reg_addr & 0x3f;
143         uint8_t nr_w_buf = 1;
144         uint8_t value_buf[4];
145         int retval;
146
147         jtag_info = &arm920t->arm7_9_common.jtag_info;
148
149         buf_set_u32(value_buf, 0, 32, value);
150
151         retval = arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
152         if (retval != ERROR_OK)
153                 return retval;
154         retval = arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
155         if (retval != ERROR_OK)
156                 return retval;
157
158         fields[0].num_bits = 1;
159         fields[0].out_value = &access_type_buf;
160         fields[0].in_value = NULL;
161
162         fields[1].num_bits = 32;
163         fields[1].out_value = value_buf;
164         fields[1].in_value = NULL;
165
166         fields[2].num_bits = 6;
167         fields[2].out_value = &reg_addr_buf;
168         fields[2].in_value = NULL;
169
170         fields[3].num_bits = 1;
171         fields[3].out_value = &nr_w_buf;
172         fields[3].in_value = NULL;
173
174         jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
175
176 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
177         LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, value);
178 #endif
179
180         return ERROR_OK;
181 }
182
183 /* See table 9-10 for scan chain 15 format during interpreted access mode.
184  * If the TESTSTATE register is set for interpreted access, certain CP15
185  * MRC and MCR instructions may be executed through scan chain 15.
186  *
187  * Tables 9-11, 9-12, and 9-13 show which MRC and MCR instructions can be
188  * executed using scan chain 15 interpreted mode.
189  */
190 static int arm920t_execute_cp15(struct target *target, uint32_t cp15_opcode,
191                 uint32_t arm_opcode)
192 {
193         int retval;
194         struct arm920t_common *arm920t = target_to_arm920(target);
195         struct arm_jtag *jtag_info;
196         struct scan_field fields[4];
197         uint8_t access_type_buf = 0;            /* interpreted access */
198         uint8_t reg_addr_buf = 0x0;
199         uint8_t nr_w_buf = 0;
200         uint8_t cp15_opcode_buf[4];
201
202         jtag_info = &arm920t->arm7_9_common.jtag_info;
203
204         retval = arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
205         if (retval != ERROR_OK)
206                 return retval;
207         retval = arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
208         if (retval != ERROR_OK)
209                 return retval;
210
211         buf_set_u32(cp15_opcode_buf, 0, 32, cp15_opcode);
212
213         fields[0].num_bits = 1;
214         fields[0].out_value = &access_type_buf;
215         fields[0].in_value = NULL;
216
217         fields[1].num_bits = 32;
218         fields[1].out_value = cp15_opcode_buf;
219         fields[1].in_value = NULL;
220
221         fields[2].num_bits = 6;
222         fields[2].out_value = &reg_addr_buf;
223         fields[2].in_value = NULL;
224
225         fields[3].num_bits = 1;
226         fields[3].out_value = &nr_w_buf;
227         fields[3].in_value = NULL;
228
229         jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
230
231         arm9tdmi_clock_out(jtag_info, arm_opcode, 0, NULL, 0);
232         arm9tdmi_clock_out(jtag_info, ARMV4_5_NOP, 0, NULL, 1);
233         retval = arm7_9_execute_sys_speed(target);
234         if (retval != ERROR_OK)
235                 return retval;
236
237         if ((retval = jtag_execute_queue()) != ERROR_OK)
238         {
239                 LOG_ERROR("failed executing JTAG queue");
240                 return retval;
241         }
242
243         return ERROR_OK;
244 }
245
246 static int arm920t_read_cp15_interpreted(struct target *target,
247                 uint32_t cp15_opcode, uint32_t address, uint32_t *value)
248 {
249         struct arm *armv4_5 = target_to_arm(target);
250         uint32_t* regs_p[1];
251         uint32_t regs[2];
252         uint32_t cp15c15 = 0x0;
253         struct reg *r = armv4_5->core_cache->reg_list;
254
255         /* load address into R1 */
256         regs[1] = address;
257         arm9tdmi_write_core_regs(target, 0x2, regs);
258
259         /* read-modify-write CP15 test state register
260         * to enable interpreted access mode */
261         arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
262         jtag_execute_queue();
263         cp15c15 |= 1;   /* set interpret mode */
264         arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
265
266         /* execute CP15 instruction and ARM load (reading from coprocessor) */
267         arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_LDR(0, 1));
268
269         /* disable interpreted access mode */
270         cp15c15 &= ~1U; /* clear interpret mode */
271         arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
272
273         /* retrieve value from R0 */
274         regs_p[0] = value;
275         arm9tdmi_read_core_regs(target, 0x1, regs_p);
276         jtag_execute_queue();
277
278 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
279         LOG_DEBUG("cp15_opcode: %8.8x, address: %8.8x, value: %8.8x",
280                         cp15_opcode, address, *value);
281 #endif
282
283         if (!is_arm_mode(armv4_5->core_mode))
284         {
285                 LOG_ERROR("not a valid arm core mode - communication failure?");
286                 return ERROR_FAIL;
287         }
288
289         r[0].dirty = 1;
290         r[1].dirty = 1;
291
292         return ERROR_OK;
293 }
294
295 static
296 int arm920t_write_cp15_interpreted(struct target *target,
297                 uint32_t cp15_opcode, uint32_t value, uint32_t address)
298 {
299         uint32_t cp15c15 = 0x0;
300         struct arm *armv4_5 = target_to_arm(target);
301         uint32_t regs[2];
302         struct reg *r = armv4_5->core_cache->reg_list;
303
304         /* load value, address into R0, R1 */
305         regs[0] = value;
306         regs[1] = address;
307         arm9tdmi_write_core_regs(target, 0x3, regs);
308
309         /* read-modify-write CP15 test state register
310         * to enable interpreted access mode */
311         arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
312         jtag_execute_queue();
313         cp15c15 |= 1;   /* set interpret mode */
314         arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
315
316         /* execute CP15 instruction and ARM store (writing to coprocessor) */
317         arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_STR(0, 1));
318
319         /* disable interpreted access mode */
320         cp15c15 &= ~1U; /* set interpret mode */
321         arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
322
323 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
324         LOG_DEBUG("cp15_opcode: %8.8x, value: %8.8x, address: %8.8x",
325                         cp15_opcode, value, address);
326 #endif
327
328         if (!is_arm_mode(armv4_5->core_mode))
329         {
330                 LOG_ERROR("not a valid arm core mode - communication failure?");
331                 return ERROR_FAIL;
332         }
333
334         r[0].dirty = 1;
335         r[1].dirty = 1;
336
337         return ERROR_OK;
338 }
339
340 // EXPORTED to FA256
341 int arm920t_get_ttb(struct target *target, uint32_t *result)
342 {
343         int retval;
344         uint32_t ttb = 0x0;
345
346         if ((retval = arm920t_read_cp15_interpreted(target,
347                         /* FIXME use opcode macro */
348                         0xeebf0f51, 0x0, &ttb)) != ERROR_OK)
349                 return retval;
350
351         *result = ttb;
352         return ERROR_OK;
353 }
354
355 // EXPORTED to FA256
356 int arm920t_disable_mmu_caches(struct target *target, int mmu,
357                 int d_u_cache, int i_cache)
358 {
359         uint32_t cp15_control;
360         int retval;
361
362         /* read cp15 control register */
363         retval = arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_control);
364         if (retval != ERROR_OK)
365                 return retval;
366         retval = jtag_execute_queue();
367         if (retval != ERROR_OK)
368                 return retval;
369
370         if (mmu)
371                 cp15_control &= ~0x1U;
372
373         if (d_u_cache)
374                 cp15_control &= ~0x4U;
375
376         if (i_cache)
377                 cp15_control &= ~0x1000U;
378
379         retval = arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_control);
380         return retval;
381 }
382
383 // EXPORTED to FA256
384 int arm920t_enable_mmu_caches(struct target *target, int mmu,
385                 int d_u_cache, int i_cache)
386 {
387         uint32_t cp15_control;
388         int retval;
389
390         /* read cp15 control register */
391         retval = arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_control);
392         if (retval != ERROR_OK)
393                 return retval;
394         retval = jtag_execute_queue();
395         if (retval != ERROR_OK)
396                 return retval;
397
398         if (mmu)
399                 cp15_control |= 0x1U;
400
401         if (d_u_cache)
402                 cp15_control |= 0x4U;
403
404         if (i_cache)
405                 cp15_control |= 0x1000U;
406
407         retval = arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_control);
408         return retval;
409 }
410
411 // EXPORTED to FA256
412 int arm920t_post_debug_entry(struct target *target)
413 {
414         uint32_t cp15c15;
415         struct arm920t_common *arm920t = target_to_arm920(target);
416         int retval;
417
418         /* examine cp15 control reg */
419         retval = arm920t_read_cp15_physical(target,
420                         CP15PHYS_CTRL, &arm920t->cp15_control_reg);
421         if (retval != ERROR_OK)
422                 return retval;
423         retval = jtag_execute_queue();
424         if (retval != ERROR_OK)
425                 return retval;
426         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, arm920t->cp15_control_reg);
427
428         if (arm920t->armv4_5_mmu.armv4_5_cache.ctype == -1)
429         {
430                 uint32_t cache_type_reg;
431                 /* identify caches */
432                 retval = arm920t_read_cp15_physical(target,
433                                 CP15PHYS_CACHETYPE, &cache_type_reg);
434                 if (retval != ERROR_OK)
435                         return retval;
436                 retval = jtag_execute_queue();
437                 if (retval != ERROR_OK)
438                         return retval;
439                 armv4_5_identify_cache(cache_type_reg,
440                                 &arm920t->armv4_5_mmu.armv4_5_cache);
441         }
442
443         arm920t->armv4_5_mmu.mmu_enabled =
444                         (arm920t->cp15_control_reg & 0x1U) ? 1 : 0;
445         arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
446                         (arm920t->cp15_control_reg & 0x4U) ? 1 : 0;
447         arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
448                         (arm920t->cp15_control_reg & 0x1000U) ? 1 : 0;
449
450         /* save i/d fault status and address register */
451                         /* FIXME use opcode macros */
452         retval = arm920t_read_cp15_interpreted(target, 0xee150f10, 0x0, &arm920t->d_fsr);
453         if (retval != ERROR_OK)
454                 return retval;
455         retval = arm920t_read_cp15_interpreted(target, 0xee150f30, 0x0, &arm920t->i_fsr);
456         if (retval != ERROR_OK)
457                 return retval;
458         retval = arm920t_read_cp15_interpreted(target, 0xee160f10, 0x0, &arm920t->d_far);
459         if (retval != ERROR_OK)
460                 return retval;
461         retval = arm920t_read_cp15_interpreted(target, 0xee160f30, 0x0, &arm920t->i_far);
462         if (retval != ERROR_OK)
463                 return retval;
464
465         LOG_DEBUG("D FSR: 0x%8.8" PRIx32 ", D FAR: 0x%8.8" PRIx32
466                 ", I FSR: 0x%8.8" PRIx32 ", I FAR: 0x%8.8" PRIx32,
467                 arm920t->d_fsr, arm920t->d_far, arm920t->i_fsr, arm920t->i_far);
468
469         if (arm920t->preserve_cache)
470         {
471                 /* read-modify-write CP15 test state register
472                  * to disable I/D-cache linefills */
473                 retval = arm920t_read_cp15_physical(target,
474                                 CP15PHYS_TESTSTATE, &cp15c15);
475                 if (retval != ERROR_OK)
476                         return retval;
477                 retval = jtag_execute_queue();
478                 if (retval != ERROR_OK)
479                         return retval;
480                 cp15c15 |= 0x600;
481                 retval = arm920t_write_cp15_physical(target,
482                                 CP15PHYS_TESTSTATE, cp15c15);
483                 if (retval != ERROR_OK)
484                         return retval;
485         }
486         return ERROR_OK;
487 }
488
489 // EXPORTED to FA256
490 void arm920t_pre_restore_context(struct target *target)
491 {
492         uint32_t cp15c15;
493         struct arm920t_common *arm920t = target_to_arm920(target);
494
495         /* restore i/d fault status and address register */
496         arm920t_write_cp15_interpreted(target, 0xee050f10, arm920t->d_fsr, 0x0);
497         arm920t_write_cp15_interpreted(target, 0xee050f30, arm920t->i_fsr, 0x0);
498         arm920t_write_cp15_interpreted(target, 0xee060f10, arm920t->d_far, 0x0);
499         arm920t_write_cp15_interpreted(target, 0xee060f30, arm920t->i_far, 0x0);
500
501         /* read-modify-write CP15 test state register
502         * to reenable I/D-cache linefills */
503         if (arm920t->preserve_cache)
504         {
505                 arm920t_read_cp15_physical(target,
506                                 CP15PHYS_TESTSTATE, &cp15c15);
507                 jtag_execute_queue();
508                 cp15c15 &= ~0x600U;
509                 arm920t_write_cp15_physical(target,
510                                 CP15PHYS_TESTSTATE, cp15c15);
511         }
512 }
513
514 static const char arm920_not[] = "target is not an ARM920";
515
516 static int arm920t_verify_pointer(struct command_context *cmd_ctx,
517                 struct arm920t_common *arm920t)
518 {
519         if (arm920t->common_magic != ARM920T_COMMON_MAGIC) {
520                 command_print(cmd_ctx, arm920_not);
521                 return ERROR_TARGET_INVALID;
522         }
523
524         return ERROR_OK;
525 }
526
527 /** Logs summary of ARM920 state for a halted target. */
528 int arm920t_arch_state(struct target *target)
529 {
530         static const char *state[] =
531         {
532                 "disabled", "enabled"
533         };
534
535         struct arm920t_common *arm920t = target_to_arm920(target);
536
537         if (arm920t->common_magic != ARM920T_COMMON_MAGIC)
538         {
539                 LOG_ERROR("BUG: %s", arm920_not);
540                 return ERROR_TARGET_INVALID;
541         }
542
543         arm_arch_state(target);
544         LOG_USER("MMU: %s, D-Cache: %s, I-Cache: %s",
545                  state[arm920t->armv4_5_mmu.mmu_enabled],
546                  state[arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled],
547                  state[arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled]);
548
549         return ERROR_OK;
550 }
551
552 static int arm920_mmu(struct target *target, int *enabled)
553 {
554         if (target->state != TARGET_HALTED) {
555                 LOG_ERROR("%s: target not halted", __func__);
556                 return ERROR_TARGET_INVALID;
557         }
558
559         *enabled = target_to_arm920(target)->armv4_5_mmu.mmu_enabled;
560         return ERROR_OK;
561 }
562
563 static int arm920_virt2phys(struct target *target,
564                 uint32_t virt, uint32_t *phys)
565 {
566         uint32_t cb;
567         struct arm920t_common *arm920t = target_to_arm920(target);
568
569         uint32_t ret;
570         int retval = armv4_5_mmu_translate_va(target,
571                         &arm920t->armv4_5_mmu, virt, &cb, &ret);
572         if (retval != ERROR_OK)
573                 return retval;
574         *phys = ret;
575         return ERROR_OK;
576 }
577
578 /** Reads a buffer, in the specified word size, with current MMU settings. */
579 int arm920t_read_memory(struct target *target, uint32_t address,
580                 uint32_t size, uint32_t count, uint8_t *buffer)
581 {
582         int retval;
583
584         retval = arm7_9_read_memory(target, address, size, count, buffer);
585
586         return retval;
587 }
588
589
590 static int arm920t_read_phys_memory(struct target *target,
591                 uint32_t address, uint32_t size,
592                 uint32_t count, uint8_t *buffer)
593 {
594         struct arm920t_common *arm920t = target_to_arm920(target);
595
596         return armv4_5_mmu_read_physical(target, &arm920t->armv4_5_mmu,
597                         address, size, count, buffer);
598 }
599
600 static int arm920t_write_phys_memory(struct target *target,
601                 uint32_t address, uint32_t size,
602                 uint32_t count, const uint8_t *buffer)
603 {
604         struct arm920t_common *arm920t = target_to_arm920(target);
605
606         return armv4_5_mmu_write_physical(target, &arm920t->armv4_5_mmu,
607                         address, size, count, buffer);
608 }
609
610
611 /** Writes a buffer, in the specified word size, with current MMU settings. */
612 int arm920t_write_memory(struct target *target, uint32_t address,
613                 uint32_t size, uint32_t count, const uint8_t *buffer)
614 {
615         int retval;
616         const uint32_t cache_mask = ~0x1f; /* cache line size : 32 byte */
617         struct arm920t_common *arm920t = target_to_arm920(target);
618
619         /* FIX!!!! this should be cleaned up and made much more general. The
620          * plan is to write up and test on arm920t specifically and
621          * then generalize and clean up afterwards.
622          *
623          * Also it should be moved to the callbacks that handle breakpoints
624          * specifically and not the generic memory write fn's. See XScale code.
625          */
626         if (arm920t->armv4_5_mmu.mmu_enabled && (count == 1) &&
627                         ((size==2) || (size==4)))
628         {
629                 /* special case the handling of single word writes to
630                  * bypass MMU, to allow implementation of breakpoints
631                  * in memory marked read only
632                  * by MMU
633                  */
634                 uint32_t cb;
635                 uint32_t pa;
636
637                 /*
638                  * We need physical address and cb
639                  */
640                 retval = armv4_5_mmu_translate_va(target, &arm920t->armv4_5_mmu,
641                                 address, &cb, &pa);
642                 if (retval != ERROR_OK)
643                         return retval;
644
645                 if (arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
646                 {
647                         if (cb & 0x1)
648                         {
649                                 LOG_DEBUG("D-Cache buffered, "
650                                                 "drain write buffer");
651                                 /*
652                                  * Buffered ?
653                                  * Drain write buffer - MCR p15,0,Rd,c7,c10,4
654                                  */
655
656                                 retval = arm920t_write_cp15_interpreted(target,
657                                         ARMV4_5_MCR(15, 0, 0, 7, 10, 4),
658                                         0x0, 0);
659                                 if (retval != ERROR_OK)
660                                         return retval;
661                         }
662
663                         if (cb == 0x3)
664                         {
665                                 /*
666                                  * Write back memory ? -> clean cache
667                                  *
668                                  * There is no way to clean cache lines using
669                                  * cp15 scan chain, so copy the full cache
670                                  * line from cache to physical memory.
671                                  */
672                                 uint8_t data[32];
673
674                                 LOG_DEBUG("D-Cache in 'write back' mode, "
675                                                 "flush cache line");
676
677                                 retval = target_read_memory(target,
678                                                 address & cache_mask, 1,
679                                                 sizeof(data), &data[0]);
680                                 if (retval != ERROR_OK)
681                                         return retval;
682
683                                 retval = armv4_5_mmu_write_physical(target,
684                                                 &arm920t->armv4_5_mmu,
685                                                 pa & cache_mask, 1,
686                                                 sizeof(data), &data[0]);
687                                 if (retval != ERROR_OK)
688                                         return retval;
689                         }
690
691                         /* Cached ? */
692                         if (cb & 0x2)
693                         {
694                                 /*
695                                  * Cached ? -> Invalidate data cache using MVA
696                                  *
697                                  * MCR p15,0,Rd,c7,c6,1
698                                  */
699                                 LOG_DEBUG("D-Cache enabled, "
700                                         "invalidate cache line");
701
702                                 retval = arm920t_write_cp15_interpreted(target,
703                                         ARMV4_5_MCR(15, 0, 0, 7, 6, 1), 0x0,
704                                         address & cache_mask);
705                                 if (retval != ERROR_OK)
706                                         return retval;
707                         }
708                 }
709
710                 /* write directly to physical memory,
711                  * bypassing any read only MMU bits, etc.
712                  */
713                 retval = armv4_5_mmu_write_physical(target,
714                                 &arm920t->armv4_5_mmu, pa, size,
715                                 count, buffer);
716                 if (retval != ERROR_OK)
717                         return retval;
718         } else
719         {
720                 if ((retval = arm7_9_write_memory(target, address,
721                                         size, count, buffer)) != ERROR_OK)
722                         return retval;
723         }
724
725         /* If ICache is enabled, we have to invalidate affected ICache lines
726          * the DCache is forced to write-through,
727          * so we don't have to clean it here
728          */
729         if (arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
730         {
731                 if (count <= 1)
732                 {
733                         /* invalidate ICache single entry with MVA
734                          *   mcr        15, 0, r0, cr7, cr5, {1}
735                          */
736                         LOG_DEBUG("I-Cache enabled, "
737                                 "invalidating affected I-Cache line");
738                         retval = arm920t_write_cp15_interpreted(target,
739                                         ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
740                                         0x0, address & cache_mask);
741                         if (retval != ERROR_OK)
742                                 return retval;
743                 }
744                 else
745                 {
746                         /* invalidate ICache
747                          *  mcr 15, 0, r0, cr7, cr5, {0}
748                          */
749                         retval = arm920t_write_cp15_interpreted(target,
750                                         ARMV4_5_MCR(15, 0, 0, 7, 5, 0),
751                                         0x0, 0x0);
752                         if (retval != ERROR_OK)
753                                 return retval;
754                 }
755         }
756
757         return ERROR_OK;
758 }
759
760 // EXPORTED to FA256
761 int arm920t_soft_reset_halt(struct target *target)
762 {
763         int retval = ERROR_OK;
764         struct arm920t_common *arm920t = target_to_arm920(target);
765         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
766         struct arm *armv4_5 = &arm7_9->armv4_5_common;
767         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
768
769         if ((retval = target_halt(target)) != ERROR_OK)
770         {
771                 return retval;
772         }
773
774         long long then = timeval_ms();
775         int timeout;
776         while (!(timeout = ((timeval_ms()-then) > 1000)))
777         {
778                 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1)
779                                 == 0)
780                 {
781                         embeddedice_read_reg(dbg_stat);
782                         if ((retval = jtag_execute_queue()) != ERROR_OK)
783                         {
784                                 return retval;
785                         }
786                 } else
787                 {
788                         break;
789                 }
790                 if (debug_level >= 3)
791                 {
792                         /* do not eat all CPU, time out after 1 se*/
793                         alive_sleep(100);
794                 } else
795                 {
796                         keep_alive();
797                 }
798         }
799         if (timeout)
800         {
801                 LOG_ERROR("Failed to halt CPU after 1 sec");
802                 return ERROR_TARGET_TIMEOUT;
803         }
804
805         target->state = TARGET_HALTED;
806
807         /* SVC, ARM state, IRQ and FIQ disabled */
808         uint32_t cpsr;
809
810         cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 32);
811         cpsr &= ~0xff;
812         cpsr |= 0xd3;
813         arm_set_cpsr(armv4_5, cpsr);
814         armv4_5->cpsr->dirty = 1;
815
816         /* start fetching from 0x0 */
817         buf_set_u32(armv4_5->pc->value, 0, 32, 0x0);
818         armv4_5->pc->dirty = 1;
819         armv4_5->pc->valid = 1;
820
821         arm920t_disable_mmu_caches(target, 1, 1, 1);
822         arm920t->armv4_5_mmu.mmu_enabled = 0;
823         arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled = 0;
824         arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled = 0;
825
826         return target_call_event_callbacks(target, TARGET_EVENT_HALTED);
827 }
828
829 /* FIXME remove forward decls */
830 static int arm920t_mrc(struct target *target, int cpnum,
831                 uint32_t op1, uint32_t op2,
832                 uint32_t CRn, uint32_t CRm,
833                 uint32_t *value);
834 static int arm920t_mcr(struct target *target, int cpnum,
835                 uint32_t op1, uint32_t op2,
836                 uint32_t CRn, uint32_t CRm,
837                 uint32_t value);
838
839 static int arm920t_init_arch_info(struct target *target,
840                 struct arm920t_common *arm920t, struct jtag_tap *tap)
841 {
842         struct arm7_9_common *arm7_9 = &arm920t->arm7_9_common;
843
844         arm7_9->armv4_5_common.mrc = arm920t_mrc;
845         arm7_9->armv4_5_common.mcr = arm920t_mcr;
846
847         /* initialize arm7/arm9 specific info (including armv4_5) */
848         arm9tdmi_init_arch_info(target, arm7_9, tap);
849
850         arm920t->common_magic = ARM920T_COMMON_MAGIC;
851
852         arm7_9->post_debug_entry = arm920t_post_debug_entry;
853         arm7_9->pre_restore_context = arm920t_pre_restore_context;
854
855         arm920t->armv4_5_mmu.armv4_5_cache.ctype = -1;
856         arm920t->armv4_5_mmu.get_ttb = arm920t_get_ttb;
857         arm920t->armv4_5_mmu.read_memory = arm7_9_read_memory;
858         arm920t->armv4_5_mmu.write_memory = arm7_9_write_memory;
859         arm920t->armv4_5_mmu.disable_mmu_caches = arm920t_disable_mmu_caches;
860         arm920t->armv4_5_mmu.enable_mmu_caches = arm920t_enable_mmu_caches;
861         arm920t->armv4_5_mmu.has_tiny_pages = 1;
862         arm920t->armv4_5_mmu.mmu_enabled = 0;
863
864         /* disabling linefills leads to lockups, so keep them enabled for now
865          * this doesn't affect correctness, but might affect timing issues, if
866          * important data is evicted from the cache during the debug session
867          * */
868         arm920t->preserve_cache = 0;
869
870         /* override hw single-step capability from ARM9TDMI */
871         arm7_9->has_single_step = 1;
872
873         return ERROR_OK;
874 }
875
876 static int arm920t_target_create(struct target *target, Jim_Interp *interp)
877 {
878         struct arm920t_common *arm920t;
879
880         arm920t = calloc(1,sizeof(struct arm920t_common));
881         return arm920t_init_arch_info(target, arm920t, target->tap);
882 }
883
884 COMMAND_HANDLER(arm920t_handle_read_cache_command)
885 {
886         int retval = ERROR_OK;
887         struct target *target = get_current_target(CMD_CTX);
888         struct arm920t_common *arm920t = target_to_arm920(target);
889         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
890         struct arm *armv4_5 = &arm7_9->armv4_5_common;
891         uint32_t cp15c15;
892         uint32_t cp15_ctrl, cp15_ctrl_saved;
893         uint32_t regs[16];
894         uint32_t *regs_p[16];
895         uint32_t C15_C_D_Ind, C15_C_I_Ind;
896         int i;
897         FILE *output;
898         int segment, index_t;
899         struct reg *r;
900
901         retval = arm920t_verify_pointer(CMD_CTX, arm920t);
902         if (retval != ERROR_OK)
903                 return retval;
904
905         if (CMD_ARGC != 1)
906         {
907                 return ERROR_COMMAND_SYNTAX_ERROR;
908         }
909
910         if ((output = fopen(CMD_ARGV[0], "w")) == NULL)
911         {
912                 LOG_DEBUG("error opening cache content file");
913                 return ERROR_OK;
914         }
915
916         for (i = 0; i < 16; i++)
917                 regs_p[i] = &regs[i];
918
919         /* disable MMU and Caches */
920         arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_ctrl);
921         if ((retval = jtag_execute_queue()) != ERROR_OK)
922         {
923                 return retval;
924         }
925         cp15_ctrl_saved = cp15_ctrl;
926         cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED
927                 | ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED);
928         arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl);
929
930         /* read CP15 test state register */
931         arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
932         jtag_execute_queue();
933
934         /* read DCache content */
935         fprintf(output, "DCache:\n");
936
937         /* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
938         for (segment = 0;
939                 segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets;
940                 segment++)
941         {
942                 fprintf(output, "\nsegment: %i\n----------", segment);
943
944                 /* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
945                 regs[0] = 0x0 | (segment << 5);
946                 arm9tdmi_write_core_regs(target, 0x1, regs);
947
948                 /* set interpret mode */
949                 cp15c15 |= 0x1;
950                 arm920t_write_cp15_physical(target,
951                                 CP15PHYS_TESTSTATE, cp15c15);
952
953                 /* D CAM Read, loads current victim into C15.C.D.Ind */
954                 arm920t_execute_cp15(target,
955                         ARMV4_5_MCR(15,2,0,15,6,2), ARMV4_5_LDR(1, 0));
956
957                 /* read current victim */
958                 arm920t_read_cp15_physical(target,
959                                 CP15PHYS_DCACHE_IDX, &C15_C_D_Ind);
960
961                 /* clear interpret mode */
962                 cp15c15 &= ~0x1;
963                 arm920t_write_cp15_physical(target,
964                                 CP15PHYS_TESTSTATE, cp15c15);
965
966                 for (index_t = 0; index_t < 64; index_t++)
967                 {
968                         /* Ra:
969                          * r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0)
970                          */
971                         regs[0] = 0x0 | (segment << 5) | (index_t << 26);
972                         arm9tdmi_write_core_regs(target, 0x1, regs);
973
974                         /* set interpret mode */
975                         cp15c15 |= 0x1;
976                         arm920t_write_cp15_physical(target,
977                                         CP15PHYS_TESTSTATE, cp15c15);
978
979                         /* Write DCache victim */
980                         arm920t_execute_cp15(target,
981                                 ARMV4_5_MCR(15,0,0,9,1,0), ARMV4_5_LDR(1, 0));
982
983                         /* Read D RAM */
984                         arm920t_execute_cp15(target,
985                                 ARMV4_5_MCR(15,2,0,15,10,2),
986                                 ARMV4_5_LDMIA(0, 0x1fe, 0, 0));
987
988                         /* Read D CAM */
989                         arm920t_execute_cp15(target,
990                                 ARMV4_5_MCR(15,2,0,15,6,2),
991                                 ARMV4_5_LDR(9, 0));
992
993                         /* clear interpret mode */
994                         cp15c15 &= ~0x1;
995                         arm920t_write_cp15_physical(target,
996                                         CP15PHYS_TESTSTATE, cp15c15);
997
998                         /* read D RAM and CAM content */
999                         arm9tdmi_read_core_regs(target, 0x3fe, regs_p);
1000                         if ((retval = jtag_execute_queue()) != ERROR_OK)
1001                         {
1002                                 return retval;
1003                         }
1004
1005                         /* mask LFSR[6] */
1006                         regs[9] &= 0xfffffffe;
1007                         fprintf(output, "\nsegment: %i, index: %i, CAM: 0x%8.8"
1008                                 PRIx32 ", content (%s):\n",
1009                                 segment, index_t, regs[9],
1010                                 (regs[9] & 0x10) ? "valid" : "invalid");
1011
1012                         for (i = 1; i < 9; i++)
1013                         {
1014                                  fprintf(output, "%i: 0x%8.8" PRIx32 "\n",
1015                                                 i-1, regs[i]);
1016                         }
1017
1018                 }
1019
1020                 /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
1021                 regs[0] = 0x0 | (segment << 5) | (C15_C_D_Ind << 26);
1022                 arm9tdmi_write_core_regs(target, 0x1, regs);
1023
1024                 /* set interpret mode */
1025                 cp15c15 |= 0x1;
1026                 arm920t_write_cp15_physical(target,
1027                                 CP15PHYS_TESTSTATE, cp15c15);
1028
1029                 /* Write DCache victim */
1030                 arm920t_execute_cp15(target,
1031                                 ARMV4_5_MCR(15,0,0,9,1,0), ARMV4_5_LDR(1, 0));
1032
1033                 /* clear interpret mode */
1034                 cp15c15 &= ~0x1;
1035                 arm920t_write_cp15_physical(target,
1036                                 CP15PHYS_TESTSTATE, cp15c15);
1037         }
1038
1039         /* read ICache content */
1040         fprintf(output, "ICache:\n");
1041
1042         /* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
1043         for (segment = 0;
1044                 segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets;
1045                 segment++)
1046         {
1047                 fprintf(output, "segment: %i\n----------", segment);
1048
1049                 /* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
1050                 regs[0] = 0x0 | (segment << 5);
1051                 arm9tdmi_write_core_regs(target, 0x1, regs);
1052
1053                 /* set interpret mode */
1054                 cp15c15 |= 0x1;
1055                 arm920t_write_cp15_physical(target,
1056                                 CP15PHYS_TESTSTATE, cp15c15);
1057
1058                 /* I CAM Read, loads current victim into C15.C.I.Ind */
1059                 arm920t_execute_cp15(target,
1060                                 ARMV4_5_MCR(15,2,0,15,5,2), ARMV4_5_LDR(1, 0));
1061
1062                 /* read current victim */
1063                 arm920t_read_cp15_physical(target, CP15PHYS_ICACHE_IDX,
1064                                 &C15_C_I_Ind);
1065
1066                 /* clear interpret mode */
1067                 cp15c15 &= ~0x1;
1068                 arm920t_write_cp15_physical(target,
1069                                 CP15PHYS_TESTSTATE, cp15c15);
1070
1071                 for (index_t = 0; index_t < 64; index_t++)
1072                 {
1073                         /* Ra:
1074                          * r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0)
1075                          */
1076                         regs[0] = 0x0 | (segment << 5) | (index_t << 26);
1077                         arm9tdmi_write_core_regs(target, 0x1, regs);
1078
1079                         /* set interpret mode */
1080                         cp15c15 |= 0x1;
1081                         arm920t_write_cp15_physical(target,
1082                                         CP15PHYS_TESTSTATE, cp15c15);
1083
1084                         /* Write ICache victim */
1085                         arm920t_execute_cp15(target,
1086                                 ARMV4_5_MCR(15,0,0,9,1,1), ARMV4_5_LDR(1, 0));
1087
1088                         /* Read I RAM */
1089                         arm920t_execute_cp15(target,
1090                                 ARMV4_5_MCR(15,2,0,15,9,2),
1091                                 ARMV4_5_LDMIA(0, 0x1fe, 0, 0));
1092
1093                         /* Read I CAM */
1094                         arm920t_execute_cp15(target,
1095                                 ARMV4_5_MCR(15,2,0,15,5,2),
1096                                 ARMV4_5_LDR(9, 0));
1097
1098                         /* clear interpret mode */
1099                         cp15c15 &= ~0x1;
1100                         arm920t_write_cp15_physical(target,
1101                                         CP15PHYS_TESTSTATE, cp15c15);
1102
1103                         /* read I RAM and CAM content */
1104                         arm9tdmi_read_core_regs(target, 0x3fe, regs_p);
1105                         if ((retval = jtag_execute_queue()) != ERROR_OK)
1106                         {
1107                                 return retval;
1108                         }
1109
1110                         /* mask LFSR[6] */
1111                         regs[9] &= 0xfffffffe;
1112                         fprintf(output, "\nsegment: %i, index: %i, "
1113                                 "CAM: 0x%8.8" PRIx32 ", content (%s):\n",
1114                                 segment, index_t, regs[9],
1115                                 (regs[9] & 0x10) ? "valid" : "invalid");
1116
1117                         for (i = 1; i < 9; i++)
1118                         {
1119                                  fprintf(output, "%i: 0x%8.8" PRIx32 "\n",
1120                                                 i-1, regs[i]);
1121                         }
1122                 }
1123
1124                 /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
1125                 regs[0] = 0x0 | (segment << 5) | (C15_C_D_Ind << 26);
1126                 arm9tdmi_write_core_regs(target, 0x1, regs);
1127
1128                 /* set interpret mode */
1129                 cp15c15 |= 0x1;
1130                 arm920t_write_cp15_physical(target,
1131                                 CP15PHYS_TESTSTATE, cp15c15);
1132
1133                 /* Write ICache victim */
1134                 arm920t_execute_cp15(target,
1135                                 ARMV4_5_MCR(15,0,0,9,1,1), ARMV4_5_LDR(1, 0));
1136
1137                 /* clear interpret mode */
1138                 cp15c15 &= ~0x1;
1139                 arm920t_write_cp15_physical(target,
1140                                 CP15PHYS_TESTSTATE, cp15c15);
1141         }
1142
1143         /* restore CP15 MMU and Cache settings */
1144         arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl_saved);
1145
1146         command_print(CMD_CTX, "cache content successfully output to %s",
1147                         CMD_ARGV[0]);
1148
1149         fclose(output);
1150
1151         if (!is_arm_mode(armv4_5->core_mode))
1152         {
1153                 LOG_ERROR("not a valid arm core mode - communication failure?");
1154                 return ERROR_FAIL;
1155         }
1156
1157         /* force writeback of the valid data */
1158         r = armv4_5->core_cache->reg_list;
1159         r[0].dirty = r[0].valid;
1160         r[1].dirty = r[1].valid;
1161         r[2].dirty = r[2].valid;
1162         r[3].dirty = r[3].valid;
1163         r[4].dirty = r[4].valid;
1164         r[5].dirty = r[5].valid;
1165         r[6].dirty = r[6].valid;
1166         r[7].dirty = r[7].valid;
1167
1168         r = arm_reg_current(armv4_5, 8);
1169         r->dirty = r->valid;
1170
1171         r = arm_reg_current(armv4_5, 9);
1172         r->dirty = r->valid;
1173
1174         return ERROR_OK;
1175 }
1176
1177 COMMAND_HANDLER(arm920t_handle_read_mmu_command)
1178 {
1179         int retval = ERROR_OK;
1180         struct target *target = get_current_target(CMD_CTX);
1181         struct arm920t_common *arm920t = target_to_arm920(target);
1182         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1183         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1184         uint32_t cp15c15;
1185         uint32_t cp15_ctrl, cp15_ctrl_saved;
1186         uint32_t regs[16];
1187         uint32_t *regs_p[16];
1188         int i;
1189         FILE *output;
1190         uint32_t Dlockdown, Ilockdown;
1191         struct arm920t_tlb_entry d_tlb[64], i_tlb[64];
1192         int victim;
1193         struct reg *r;
1194
1195         retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1196         if (retval != ERROR_OK)
1197                 return retval;
1198
1199         if (CMD_ARGC != 1)
1200         {
1201                 return ERROR_COMMAND_SYNTAX_ERROR;
1202         }
1203
1204         if ((output = fopen(CMD_ARGV[0], "w")) == NULL)
1205         {
1206                 LOG_DEBUG("error opening mmu content file");
1207                 return ERROR_OK;
1208         }
1209
1210         for (i = 0; i < 16; i++)
1211                 regs_p[i] = &regs[i];
1212
1213         /* disable MMU and Caches */
1214         arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_ctrl);
1215         if ((retval = jtag_execute_queue()) != ERROR_OK)
1216         {
1217                 return retval;
1218         }
1219         cp15_ctrl_saved = cp15_ctrl;
1220         cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED
1221                         | ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED);
1222         arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl);
1223
1224         /* read CP15 test state register */
1225         arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
1226         if ((retval = jtag_execute_queue()) != ERROR_OK)
1227         {
1228                 return retval;
1229         }
1230
1231         /* prepare reading D TLB content
1232          * */
1233
1234         /* set interpret mode */
1235         cp15c15 |= 0x1;
1236         arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1237
1238         /* Read D TLB lockdown */
1239         arm920t_execute_cp15(target,
1240                         ARMV4_5_MRC(15,0,0,10,0,0), ARMV4_5_LDR(1, 0));
1241
1242         /* clear interpret mode */
1243         cp15c15 &= ~0x1;
1244         arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1245
1246         /* read D TLB lockdown stored to r1 */
1247         arm9tdmi_read_core_regs(target, 0x2, regs_p);
1248         if ((retval = jtag_execute_queue()) != ERROR_OK)
1249         {
1250                 return retval;
1251         }
1252         Dlockdown = regs[1];
1253
1254         for (victim = 0; victim < 64; victim += 8)
1255         {
1256                 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1257                  * base remains unchanged, victim goes through entries 0 to 63
1258                  */
1259                 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1260                 arm9tdmi_write_core_regs(target, 0x2, regs);
1261
1262                 /* set interpret mode */
1263                 cp15c15 |= 0x1;
1264                 arm920t_write_cp15_physical(target,
1265                                 CP15PHYS_TESTSTATE, cp15c15);
1266
1267                 /* Write D TLB lockdown */
1268                 arm920t_execute_cp15(target,
1269                         ARMV4_5_MCR(15,0,0,10,0,0),
1270                         ARMV4_5_STR(1, 0));
1271
1272                 /* Read D TLB CAM */
1273                 arm920t_execute_cp15(target,
1274                         ARMV4_5_MCR(15,4,0,15,6,4),
1275                         ARMV4_5_LDMIA(0, 0x3fc, 0, 0));
1276
1277                 /* clear interpret mode */
1278                 cp15c15 &= ~0x1;
1279                 arm920t_write_cp15_physical(target,
1280                                 CP15PHYS_TESTSTATE, cp15c15);
1281
1282                 /* read D TLB CAM content stored to r2-r9 */
1283                 arm9tdmi_read_core_regs(target, 0x3fc, regs_p);
1284                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1285                 {
1286                         return retval;
1287                 }
1288
1289                 for (i = 0; i < 8; i++)
1290                         d_tlb[victim + i].cam = regs[i + 2];
1291         }
1292
1293         for (victim = 0; victim < 64; victim++)
1294         {
1295                 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1296                  * base remains unchanged, victim goes through entries 0 to 63
1297                  */
1298                 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1299                 arm9tdmi_write_core_regs(target, 0x2, regs);
1300
1301                 /* set interpret mode */
1302                 cp15c15 |= 0x1;
1303                 arm920t_write_cp15_physical(target,
1304                                 CP15PHYS_TESTSTATE, cp15c15);
1305
1306                 /* Write D TLB lockdown */
1307                 arm920t_execute_cp15(target,
1308                                 ARMV4_5_MCR(15,0,0,10,0,0), ARMV4_5_STR(1, 0));
1309
1310                 /* Read D TLB RAM1 */
1311                 arm920t_execute_cp15(target,
1312                                 ARMV4_5_MCR(15,4,0,15,10,4), ARMV4_5_LDR(2,0));
1313
1314                 /* Read D TLB RAM2 */
1315                 arm920t_execute_cp15(target,
1316                                 ARMV4_5_MCR(15,4,0,15,2,5), ARMV4_5_LDR(3,0));
1317
1318                 /* clear interpret mode */
1319                 cp15c15 &= ~0x1;
1320                 arm920t_write_cp15_physical(target,
1321                                 CP15PHYS_TESTSTATE, cp15c15);
1322
1323                 /* read D TLB RAM content stored to r2 and r3 */
1324                 arm9tdmi_read_core_regs(target, 0xc, regs_p);
1325                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1326                 {
1327                         return retval;
1328                 }
1329
1330                 d_tlb[victim].ram1 = regs[2];
1331                 d_tlb[victim].ram2 = regs[3];
1332         }
1333
1334         /* restore D TLB lockdown */
1335         regs[1] = Dlockdown;
1336         arm9tdmi_write_core_regs(target, 0x2, regs);
1337
1338         /* Write D TLB lockdown */
1339         arm920t_execute_cp15(target,
1340                         ARMV4_5_MCR(15,0,0,10,0,0), ARMV4_5_STR(1, 0));
1341
1342         /* prepare reading I TLB content
1343          * */
1344
1345         /* set interpret mode */
1346         cp15c15 |= 0x1;
1347         arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1348
1349         /* Read I TLB lockdown */
1350         arm920t_execute_cp15(target,
1351                         ARMV4_5_MRC(15,0,0,10,0,1), ARMV4_5_LDR(1, 0));
1352
1353         /* clear interpret mode */
1354         cp15c15 &= ~0x1;
1355         arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1356
1357         /* read I TLB lockdown stored to r1 */
1358         arm9tdmi_read_core_regs(target, 0x2, regs_p);
1359         if ((retval = jtag_execute_queue()) != ERROR_OK)
1360         {
1361                 return retval;
1362         }
1363         Ilockdown = regs[1];
1364
1365         for (victim = 0; victim < 64; victim += 8)
1366         {
1367                 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1368                  * base remains unchanged, victim goes through entries 0 to 63
1369                  */
1370                 regs[1] = (Ilockdown & 0xfc000000) | (victim << 20);
1371                 arm9tdmi_write_core_regs(target, 0x2, regs);
1372
1373                 /* set interpret mode */
1374                 cp15c15 |= 0x1;
1375                 arm920t_write_cp15_physical(target,
1376                                 CP15PHYS_TESTSTATE, cp15c15);
1377
1378                 /* Write I TLB lockdown */
1379                 arm920t_execute_cp15(target,
1380                                 ARMV4_5_MCR(15,0,0,10,0,1),
1381                                 ARMV4_5_STR(1, 0));
1382
1383                 /* Read I TLB CAM */
1384                 arm920t_execute_cp15(target,
1385                                 ARMV4_5_MCR(15,4,0,15,5,4),
1386                                 ARMV4_5_LDMIA(0, 0x3fc, 0, 0));
1387
1388                 /* clear interpret mode */
1389                 cp15c15 &= ~0x1;
1390                 arm920t_write_cp15_physical(target,
1391                                 CP15PHYS_TESTSTATE, cp15c15);
1392
1393                 /* read I TLB CAM content stored to r2-r9 */
1394                 arm9tdmi_read_core_regs(target, 0x3fc, regs_p);
1395                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1396                 {
1397                         return retval;
1398                 }
1399
1400                 for (i = 0; i < 8; i++)
1401                         i_tlb[i + victim].cam = regs[i + 2];
1402         }
1403
1404         for (victim = 0; victim < 64; victim++)
1405         {
1406                 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1407                  * base remains unchanged, victim goes through entries 0 to 63
1408                  */
1409                 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1410                 arm9tdmi_write_core_regs(target, 0x2, regs);
1411
1412                 /* set interpret mode */
1413                 cp15c15 |= 0x1;
1414                 arm920t_write_cp15_physical(target,
1415                                 CP15PHYS_TESTSTATE, cp15c15);
1416
1417                 /* Write I TLB lockdown */
1418                 arm920t_execute_cp15(target,
1419                                 ARMV4_5_MCR(15,0,0,10,0,1), ARMV4_5_STR(1, 0));
1420
1421                 /* Read I TLB RAM1 */
1422                 arm920t_execute_cp15(target,
1423                                 ARMV4_5_MCR(15,4,0,15,9,4), ARMV4_5_LDR(2,0));
1424
1425                 /* Read I TLB RAM2 */
1426                 arm920t_execute_cp15(target,
1427                                 ARMV4_5_MCR(15,4,0,15,1,5), ARMV4_5_LDR(3,0));
1428
1429                 /* clear interpret mode */
1430                 cp15c15 &= ~0x1;
1431                 arm920t_write_cp15_physical(target,
1432                                 CP15PHYS_TESTSTATE, cp15c15);
1433
1434                 /* read I TLB RAM content stored to r2 and r3 */
1435                 arm9tdmi_read_core_regs(target, 0xc, regs_p);
1436                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1437                 {
1438                         return retval;
1439                 }
1440
1441                 i_tlb[victim].ram1 = regs[2];
1442                 i_tlb[victim].ram2 = regs[3];
1443         }
1444
1445         /* restore I TLB lockdown */
1446         regs[1] = Ilockdown;
1447         arm9tdmi_write_core_regs(target, 0x2, regs);
1448
1449         /* Write I TLB lockdown */
1450         arm920t_execute_cp15(target,
1451                         ARMV4_5_MCR(15,0,0,10,0,1), ARMV4_5_STR(1, 0));
1452
1453         /* restore CP15 MMU and Cache settings */
1454         arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl_saved);
1455
1456         /* output data to file */
1457         fprintf(output, "D TLB content:\n");
1458         for (i = 0; i < 64; i++)
1459         {
1460                 fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32
1461                         " 0x%8.8" PRIx32 " %s\n",
1462                         i, d_tlb[i].cam, d_tlb[i].ram1, d_tlb[i].ram2,
1463                         (d_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)");
1464         }
1465
1466         fprintf(output, "\n\nI TLB content:\n");
1467         for (i = 0; i < 64; i++)
1468         {
1469                 fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32
1470                         " 0x%8.8" PRIx32 " %s\n",
1471                         i, i_tlb[i].cam, i_tlb[i].ram1, i_tlb[i].ram2,
1472                         (i_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)");
1473         }
1474
1475         command_print(CMD_CTX, "mmu content successfully output to %s",
1476                         CMD_ARGV[0]);
1477
1478         fclose(output);
1479
1480         if (!is_arm_mode(armv4_5->core_mode))
1481         {
1482                 LOG_ERROR("not a valid arm core mode - communication failure?");
1483                 return ERROR_FAIL;
1484         }
1485
1486         /* force writeback of the valid data */
1487         r = armv4_5->core_cache->reg_list;
1488         r[0].dirty = r[0].valid;
1489         r[1].dirty = r[1].valid;
1490         r[2].dirty = r[2].valid;
1491         r[3].dirty = r[3].valid;
1492         r[4].dirty = r[4].valid;
1493         r[5].dirty = r[5].valid;
1494         r[6].dirty = r[6].valid;
1495         r[7].dirty = r[7].valid;
1496
1497         r = arm_reg_current(armv4_5, 8);
1498         r->dirty = r->valid;
1499
1500         r = arm_reg_current(armv4_5, 9);
1501         r->dirty = r->valid;
1502
1503         return ERROR_OK;
1504 }
1505
1506 COMMAND_HANDLER(arm920t_handle_cp15_command)
1507 {
1508         int retval;
1509         struct target *target = get_current_target(CMD_CTX);
1510         struct arm920t_common *arm920t = target_to_arm920(target);
1511
1512         retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1513         if (retval != ERROR_OK)
1514                 return retval;
1515
1516         if (target->state != TARGET_HALTED)
1517         {
1518                 command_print(CMD_CTX, "target must be stopped for "
1519                         "\"%s\" command", CMD_NAME);
1520                 return ERROR_OK;
1521         }
1522
1523         /* one argument, read a register.
1524          * two arguments, write it.
1525          */
1526         if (CMD_ARGC >= 1)
1527         {
1528                 int address;
1529                 COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], address);
1530
1531                 if (CMD_ARGC == 1)
1532                 {
1533                         uint32_t value;
1534                         if ((retval = arm920t_read_cp15_physical(target,
1535                                         address, &value)) != ERROR_OK)
1536                         {
1537                                 command_print(CMD_CTX,
1538                                         "couldn't access reg %i", address);
1539                                 return ERROR_OK;
1540                         }
1541                         if ((retval = jtag_execute_queue()) != ERROR_OK)
1542                         {
1543                                 return retval;
1544                         }
1545
1546                         command_print(CMD_CTX, "%i: %8.8" PRIx32,
1547                                         address, value);
1548                 }
1549                 else if (CMD_ARGC == 2)
1550                 {
1551                         uint32_t value;
1552                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1553                         retval = arm920t_write_cp15_physical(target,
1554                                         address, value);
1555                         if (retval != ERROR_OK)
1556                         {
1557                                 command_print(CMD_CTX,
1558                                         "couldn't access reg %i", address);
1559                                 /* REVISIT why lie? "return retval"? */
1560                                 return ERROR_OK;
1561                         }
1562                         command_print(CMD_CTX, "%i: %8.8" PRIx32,
1563                                         address, value);
1564                 }
1565         }
1566
1567         return ERROR_OK;
1568 }
1569
1570 COMMAND_HANDLER(arm920t_handle_cp15i_command)
1571 {
1572         int retval;
1573         struct target *target = get_current_target(CMD_CTX);
1574         struct arm920t_common *arm920t = target_to_arm920(target);
1575
1576         retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1577         if (retval != ERROR_OK)
1578                 return retval;
1579
1580
1581         if (target->state != TARGET_HALTED)
1582         {
1583                 command_print(CMD_CTX, "target must be stopped for "
1584                                 "\"%s\" command", CMD_NAME);
1585                 return ERROR_OK;
1586         }
1587
1588         /* one argument, read a register.
1589          * two arguments, write it.
1590          */
1591         if (CMD_ARGC >= 1)
1592         {
1593                 uint32_t opcode;
1594                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], opcode);
1595
1596                 if (CMD_ARGC == 1)
1597                 {
1598                         uint32_t value;
1599                         retval = arm920t_read_cp15_interpreted(target,
1600                                         opcode, 0x0, &value);
1601                         if (retval != ERROR_OK)
1602                         {
1603                                 command_print(CMD_CTX,
1604                                         "couldn't execute %8.8" PRIx32,
1605                                         opcode);
1606                                 /* REVISIT why lie? "return retval"? */
1607                                 return ERROR_OK;
1608                         }
1609
1610                         command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32,
1611                                         opcode, value);
1612                 }
1613                 else if (CMD_ARGC == 2)
1614                 {
1615                         uint32_t value;
1616                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1617                         retval = arm920t_write_cp15_interpreted(target,
1618                                         opcode, value, 0);
1619                         if (retval != ERROR_OK)
1620                         {
1621                                 command_print(CMD_CTX,
1622                                         "couldn't execute %8.8" PRIx32,
1623                                         opcode);
1624                                 /* REVISIT why lie? "return retval"? */
1625                                 return ERROR_OK;
1626                         }
1627                         command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32,
1628                                         opcode, value);
1629                 }
1630                 else if (CMD_ARGC == 3)
1631                 {
1632                         uint32_t value;
1633                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1634                         uint32_t address;
1635                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], address);
1636                         retval = arm920t_write_cp15_interpreted(target,
1637                                         opcode, value, address);
1638                         if (retval != ERROR_OK)
1639                         {
1640                                 command_print(CMD_CTX,
1641                                         "couldn't execute %8.8" PRIx32, opcode);
1642                                 /* REVISIT why lie? "return retval"? */
1643                                 return ERROR_OK;
1644                         }
1645                         command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32
1646                                         " %8.8" PRIx32, opcode, value, address);
1647                 }
1648         }
1649         else
1650         {
1651             return ERROR_COMMAND_SYNTAX_ERROR;
1652         }
1653
1654         return ERROR_OK;
1655 }
1656
1657 COMMAND_HANDLER(arm920t_handle_cache_info_command)
1658 {
1659         int retval;
1660         struct target *target = get_current_target(CMD_CTX);
1661         struct arm920t_common *arm920t = target_to_arm920(target);
1662
1663         retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1664         if (retval != ERROR_OK)
1665                 return retval;
1666
1667         return armv4_5_handle_cache_info_command(CMD_CTX,
1668                         &arm920t->armv4_5_mmu.armv4_5_cache);
1669 }
1670
1671
1672 static int arm920t_mrc(struct target *target, int cpnum,
1673                 uint32_t op1, uint32_t op2,
1674                 uint32_t CRn, uint32_t CRm,
1675                 uint32_t *value)
1676 {
1677         if (cpnum!=15)
1678         {
1679                 LOG_ERROR("Only cp15 is supported");
1680                 return ERROR_FAIL;
1681         }
1682
1683         /* read "to" r0 */
1684         return arm920t_read_cp15_interpreted(target,
1685                         ARMV4_5_MRC(cpnum, op1, 0, CRn, CRm, op2),
1686                         0, value);
1687 }
1688
1689 static int arm920t_mcr(struct target *target, int cpnum,
1690                 uint32_t op1, uint32_t op2,
1691                 uint32_t CRn, uint32_t CRm,
1692                 uint32_t value)
1693 {
1694         if (cpnum!=15)
1695         {
1696                 LOG_ERROR("Only cp15 is supported");
1697                 return ERROR_FAIL;
1698         }
1699
1700         /* write "from" r0 */
1701         return arm920t_write_cp15_interpreted(target,
1702                         ARMV4_5_MCR(cpnum, op1, 0, CRn, CRm, op2),
1703                         0, value);
1704 }
1705
1706 static const struct command_registration arm920t_exec_command_handlers[] = {
1707         {
1708                 .name = "cp15",
1709                 .handler = arm920t_handle_cp15_command,
1710                 .mode = COMMAND_EXEC,
1711                 .help = "display/modify cp15 register",
1712                 .usage = "regnum [value]",
1713         },
1714         {
1715                 .name = "cp15i",
1716                 .handler = arm920t_handle_cp15i_command,
1717                 .mode = COMMAND_EXEC,
1718                 /* prefer using less error-prone "arm mcr" or "arm mrc" */
1719                 .help = "display/modify cp15 register using ARM opcode"
1720                         " (DEPRECATED)",
1721                 .usage = "instruction [value [address]]",
1722         },
1723         {
1724                 .name = "cache_info",
1725                 .handler = arm920t_handle_cache_info_command,
1726                 .mode = COMMAND_EXEC,
1727                 .help = "display information about target caches",
1728         },
1729         {
1730                 .name = "read_cache",
1731                 .handler = arm920t_handle_read_cache_command,
1732                 .mode = COMMAND_EXEC,
1733                 .help = "dump I/D cache content to file",
1734                 .usage = "filename",
1735         },
1736         {
1737                 .name = "read_mmu",
1738                 .handler = arm920t_handle_read_mmu_command,
1739                 .mode = COMMAND_EXEC,
1740                 .help = "dump I/D mmu content to file",
1741                 .usage = "filename",
1742         },
1743         COMMAND_REGISTRATION_DONE
1744 };
1745 const struct command_registration arm920t_command_handlers[] = {
1746         {
1747                 .chain = arm9tdmi_command_handlers,
1748         },
1749         {
1750                 .name = "arm920t",
1751                 .mode = COMMAND_ANY,
1752                 .help = "arm920t command group",
1753                 .chain = arm920t_exec_command_handlers,
1754         },
1755         COMMAND_REGISTRATION_DONE
1756 };
1757
1758 /** Holds methods for ARM920 targets. */
1759 struct target_type arm920t_target =
1760 {
1761         .name = "arm920t",
1762
1763         .poll = arm7_9_poll,
1764         .arch_state = arm920t_arch_state,
1765
1766         .target_request_data = arm7_9_target_request_data,
1767
1768         .halt = arm7_9_halt,
1769         .resume = arm7_9_resume,
1770         .step = arm7_9_step,
1771
1772         .assert_reset = arm7_9_assert_reset,
1773         .deassert_reset = arm7_9_deassert_reset,
1774         .soft_reset_halt = arm920t_soft_reset_halt,
1775
1776         .get_gdb_reg_list = arm_get_gdb_reg_list,
1777
1778         .read_memory = arm920t_read_memory,
1779         .write_memory = arm920t_write_memory,
1780         .read_phys_memory = arm920t_read_phys_memory,
1781         .write_phys_memory = arm920t_write_phys_memory,
1782         .mmu = arm920_mmu,
1783         .virt2phys = arm920_virt2phys,
1784
1785         .bulk_write_memory = arm7_9_bulk_write_memory,
1786
1787         .checksum_memory = arm_checksum_memory,
1788         .blank_check_memory = arm_blank_check_memory,
1789
1790         .run_algorithm = armv4_5_run_algorithm,
1791
1792         .add_breakpoint = arm7_9_add_breakpoint,
1793         .remove_breakpoint = arm7_9_remove_breakpoint,
1794         .add_watchpoint = arm7_9_add_watchpoint,
1795         .remove_watchpoint = arm7_9_remove_watchpoint,
1796
1797         .commands = arm920t_command_handlers,
1798         .target_create = arm920t_target_create,
1799         .init_target = arm9tdmi_init_target,
1800         .examine = arm7_9_examine,
1801         .check_reset = arm7_9_check_reset,
1802 };