0610c93ce00751b73bdb9dd799dc740ced26d570
[fw/openocd] / src / target / arm920t.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
19  ***************************************************************************/
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "arm920t.h"
25 #include "time_support.h"
26 #include "target_type.h"
27 #include "register.h"
28
29
30 /*
31  * For information about the ARM920T, see ARM DDI 0151C especially
32  * Chapter 9 about debug support, which shows how to manipulate each
33  * of the different scan chains:
34  *
35  *   0 ... ARM920 signals, e.g. to rest of SOC (unused here)
36  *   1 ... debugging; watchpoint and breakpoint status, etc; also
37  *      MMU and cache access in conjunction with scan chain 15
38  *   2 ... EmbeddedICE
39  *   3 ... external boundary scan (SoC-specific, unused here)
40  *   4 ... access to cache tag RAM
41  *   6 ... ETM9
42  *   15 ... access coprocessor 15, "physical" or "interpreted" modes
43  *      "interpreted" works with a few actual MRC/MCR instructions
44  *      "physical" provides register-like behaviors.
45  *
46  * The ARM922T is similar, but with smaller caches (8K each, vs 16K).
47  */
48
49 #if 0
50 #define _DEBUG_INSTRUCTION_EXECUTION_
51 #endif
52
53 #define ARM920T_CP15_PHYS_ADDR(x, y, z) ((x << 5) | (y << 1) << (z))
54
55 static int arm920t_read_cp15_physical(struct target *target,
56                 int reg_addr, uint32_t *value)
57 {
58         struct arm920t_common *arm920t = target_to_arm920(target);
59         struct arm_jtag *jtag_info;
60         struct scan_field fields[4];
61         uint8_t access_type_buf = 1;
62         uint8_t reg_addr_buf = reg_addr & 0x3f;
63         uint8_t nr_w_buf = 0;
64
65         jtag_info = &arm920t->arm7_9_common.jtag_info;
66
67         jtag_set_end_state(TAP_IDLE);
68         arm_jtag_scann(jtag_info, 0xf);
69         arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL);
70
71         fields[0].tap = jtag_info->tap;
72         fields[0].num_bits = 1;
73         fields[0].out_value = &access_type_buf;
74         fields[0].in_value = NULL;
75
76         fields[1].tap = jtag_info->tap;
77         fields[1].num_bits = 32;
78         fields[1].out_value = NULL;
79         fields[1].in_value = NULL;
80
81         fields[2].tap = jtag_info->tap;
82         fields[2].num_bits = 6;
83         fields[2].out_value = &reg_addr_buf;
84         fields[2].in_value = NULL;
85
86         fields[3].tap = jtag_info->tap;
87         fields[3].num_bits = 1;
88         fields[3].out_value = &nr_w_buf;
89         fields[3].in_value = NULL;
90
91         jtag_add_dr_scan(4, fields, jtag_get_end_state());
92
93         fields[1].in_value = (uint8_t *)value;
94
95         jtag_add_dr_scan(4, fields, jtag_get_end_state());
96
97         jtag_add_callback(arm_le_to_h_u32, (jtag_callback_data_t)value);
98
99 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
100         jtag_execute_queue();
101         LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, *value);
102 #endif
103
104         return ERROR_OK;
105 }
106
107 static int arm920t_write_cp15_physical(struct target *target,
108                 int reg_addr, uint32_t value)
109 {
110         struct arm920t_common *arm920t = target_to_arm920(target);
111         struct arm_jtag *jtag_info;
112         struct scan_field fields[4];
113         uint8_t access_type_buf = 1;
114         uint8_t reg_addr_buf = reg_addr & 0x3f;
115         uint8_t nr_w_buf = 1;
116         uint8_t value_buf[4];
117
118         jtag_info = &arm920t->arm7_9_common.jtag_info;
119
120         buf_set_u32(value_buf, 0, 32, value);
121
122         jtag_set_end_state(TAP_IDLE);
123         arm_jtag_scann(jtag_info, 0xf);
124         arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL);
125
126         fields[0].tap = jtag_info->tap;
127         fields[0].num_bits = 1;
128         fields[0].out_value = &access_type_buf;
129         fields[0].in_value = NULL;
130
131         fields[1].tap = jtag_info->tap;
132         fields[1].num_bits = 32;
133         fields[1].out_value = value_buf;
134         fields[1].in_value = NULL;
135
136         fields[2].tap = jtag_info->tap;
137         fields[2].num_bits = 6;
138         fields[2].out_value = &reg_addr_buf;
139         fields[2].in_value = NULL;
140
141         fields[3].tap = jtag_info->tap;
142         fields[3].num_bits = 1;
143         fields[3].out_value = &nr_w_buf;
144         fields[3].in_value = NULL;
145
146         jtag_add_dr_scan(4, fields, jtag_get_end_state());
147
148 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
149         LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, value);
150 #endif
151
152         return ERROR_OK;
153 }
154
155 static int arm920t_execute_cp15(struct target *target, uint32_t cp15_opcode,
156                 uint32_t arm_opcode)
157 {
158         int retval;
159         struct arm920t_common *arm920t = target_to_arm920(target);
160         struct arm_jtag *jtag_info;
161         struct scan_field fields[4];
162         uint8_t access_type_buf = 0;            /* interpreted access */
163         uint8_t reg_addr_buf = 0x0;
164         uint8_t nr_w_buf = 0;
165         uint8_t cp15_opcode_buf[4];
166
167         jtag_info = &arm920t->arm7_9_common.jtag_info;
168
169         jtag_set_end_state(TAP_IDLE);
170         arm_jtag_scann(jtag_info, 0xf);
171         arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL);
172
173         buf_set_u32(cp15_opcode_buf, 0, 32, cp15_opcode);
174
175         fields[0].tap = jtag_info->tap;
176         fields[0].num_bits = 1;
177         fields[0].out_value = &access_type_buf;
178         fields[0].in_value = NULL;
179
180         fields[1].tap = jtag_info->tap;
181         fields[1].num_bits = 32;
182         fields[1].out_value = cp15_opcode_buf;
183         fields[1].in_value = NULL;
184
185         fields[2].tap = jtag_info->tap;
186         fields[2].num_bits = 6;
187         fields[2].out_value = &reg_addr_buf;
188         fields[2].in_value = NULL;
189
190         fields[3].tap = jtag_info->tap;
191         fields[3].num_bits = 1;
192         fields[3].out_value = &nr_w_buf;
193         fields[3].in_value = NULL;
194
195         jtag_add_dr_scan(4, fields, jtag_get_end_state());
196
197         arm9tdmi_clock_out(jtag_info, arm_opcode, 0, NULL, 0);
198         arm9tdmi_clock_out(jtag_info, ARMV4_5_NOP, 0, NULL, 1);
199         retval = arm7_9_execute_sys_speed(target);
200         if (retval != ERROR_OK)
201                 return retval;
202
203         if ((retval = jtag_execute_queue()) != ERROR_OK)
204         {
205                 LOG_ERROR("failed executing JTAG queue");
206                 return retval;
207         }
208
209         return ERROR_OK;
210 }
211
212 static int arm920t_read_cp15_interpreted(struct target *target,
213                 uint32_t cp15_opcode, uint32_t address, uint32_t *value)
214 {
215         struct arm *armv4_5 = target_to_armv4_5(target);
216         uint32_t* regs_p[1];
217         uint32_t regs[2];
218         uint32_t cp15c15 = 0x0;
219         struct reg *r = armv4_5->core_cache->reg_list;
220
221         /* load address into R1 */
222         regs[1] = address;
223         arm9tdmi_write_core_regs(target, 0x2, regs);
224
225         /* read-modify-write CP15 test state register
226         * to enable interpreted access mode */
227         arm920t_read_cp15_physical(target, 0x1e, &cp15c15);
228         jtag_execute_queue();
229         cp15c15 |= 1;   /* set interpret mode */
230         arm920t_write_cp15_physical(target, 0x1e, cp15c15);
231
232         /* execute CP15 instruction and ARM load (reading from coprocessor) */
233         arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_LDR(0, 1));
234
235         /* disable interpreted access mode */
236         cp15c15 &= ~1U; /* clear interpret mode */
237         arm920t_write_cp15_physical(target, 0x1e, cp15c15);
238
239         /* retrieve value from R0 */
240         regs_p[0] = value;
241         arm9tdmi_read_core_regs(target, 0x1, regs_p);
242         jtag_execute_queue();
243
244 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
245         LOG_DEBUG("cp15_opcode: %8.8x, address: %8.8x, value: %8.8x", cp15_opcode, address, *value);
246 #endif
247
248         if (!is_arm_mode(armv4_5->core_mode))
249                 return ERROR_FAIL;
250
251         r[0].dirty = 1;
252         r[1].dirty = 1;
253
254         return ERROR_OK;
255 }
256
257 static
258 int arm920t_write_cp15_interpreted(struct target *target,
259                 uint32_t cp15_opcode, uint32_t value, uint32_t address)
260 {
261         uint32_t cp15c15 = 0x0;
262         struct arm *armv4_5 = target_to_armv4_5(target);
263         uint32_t regs[2];
264         struct reg *r = armv4_5->core_cache->reg_list;
265
266         /* load value, address into R0, R1 */
267         regs[0] = value;
268         regs[1] = address;
269         arm9tdmi_write_core_regs(target, 0x3, regs);
270
271         /* read-modify-write CP15 test state register
272         * to enable interpreted access mode */
273         arm920t_read_cp15_physical(target, 0x1e, &cp15c15);
274         jtag_execute_queue();
275         cp15c15 |= 1;   /* set interpret mode */
276         arm920t_write_cp15_physical(target, 0x1e, cp15c15);
277
278         /* execute CP15 instruction and ARM store (writing to coprocessor) */
279         arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_STR(0, 1));
280
281         /* disable interpreted access mode */
282         cp15c15 &= ~1U; /* set interpret mode */
283         arm920t_write_cp15_physical(target, 0x1e, cp15c15);
284
285 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
286         LOG_DEBUG("cp15_opcode: %8.8x, value: %8.8x, address: %8.8x", cp15_opcode, value, address);
287 #endif
288
289         if (!is_arm_mode(armv4_5->core_mode))
290                 return ERROR_FAIL;
291
292         r[0].dirty = 1;
293         r[1].dirty = 1;
294
295         return ERROR_OK;
296 }
297
298 // EXPORTED to FA256
299 uint32_t arm920t_get_ttb(struct target *target)
300 {
301         int retval;
302         uint32_t ttb = 0x0;
303
304         if ((retval = arm920t_read_cp15_interpreted(target, 0xeebf0f51, 0x0, &ttb)) != ERROR_OK)
305                 return retval;
306
307         return ttb;
308 }
309
310 // EXPORTED to FA256
311 void arm920t_disable_mmu_caches(struct target *target, int mmu, int d_u_cache, int i_cache)
312 {
313         uint32_t cp15_control;
314
315         /* read cp15 control register */
316         arm920t_read_cp15_physical(target, 0x2, &cp15_control);
317         jtag_execute_queue();
318
319         if (mmu)
320                 cp15_control &= ~0x1U;
321
322         if (d_u_cache)
323                 cp15_control &= ~0x4U;
324
325         if (i_cache)
326                 cp15_control &= ~0x1000U;
327
328         arm920t_write_cp15_physical(target, 0x2, cp15_control);
329 }
330
331 // EXPORTED to FA256
332 void arm920t_enable_mmu_caches(struct target *target, int mmu, int d_u_cache, int i_cache)
333 {
334         uint32_t cp15_control;
335
336         /* read cp15 control register */
337         arm920t_read_cp15_physical(target, 0x2, &cp15_control);
338         jtag_execute_queue();
339
340         if (mmu)
341                 cp15_control |= 0x1U;
342
343         if (d_u_cache)
344                 cp15_control |= 0x4U;
345
346         if (i_cache)
347                 cp15_control |= 0x1000U;
348
349         arm920t_write_cp15_physical(target, 0x2, cp15_control);
350 }
351
352 // EXPORTED to FA256
353 void arm920t_post_debug_entry(struct target *target)
354 {
355         uint32_t cp15c15;
356         struct arm920t_common *arm920t = target_to_arm920(target);
357
358         /* examine cp15 control reg */
359         arm920t_read_cp15_physical(target, 0x2, &arm920t->cp15_control_reg);
360         jtag_execute_queue();
361         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32 "", arm920t->cp15_control_reg);
362
363         if (arm920t->armv4_5_mmu.armv4_5_cache.ctype == -1)
364         {
365                 uint32_t cache_type_reg;
366                 /* identify caches */
367                 arm920t_read_cp15_physical(target, 0x1, &cache_type_reg);
368                 jtag_execute_queue();
369                 armv4_5_identify_cache(cache_type_reg, &arm920t->armv4_5_mmu.armv4_5_cache);
370         }
371
372         arm920t->armv4_5_mmu.mmu_enabled = (arm920t->cp15_control_reg & 0x1U) ? 1 : 0;
373         arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled = (arm920t->cp15_control_reg & 0x4U) ? 1 : 0;
374         arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled = (arm920t->cp15_control_reg & 0x1000U) ? 1 : 0;
375
376         /* save i/d fault status and address register */
377         arm920t_read_cp15_interpreted(target, 0xee150f10, 0x0, &arm920t->d_fsr);
378         arm920t_read_cp15_interpreted(target, 0xee150f30, 0x0, &arm920t->i_fsr);
379         arm920t_read_cp15_interpreted(target, 0xee160f10, 0x0, &arm920t->d_far);
380         arm920t_read_cp15_interpreted(target, 0xee160f30, 0x0, &arm920t->i_far);
381
382         LOG_DEBUG("D FSR: 0x%8.8" PRIx32 ", D FAR: 0x%8.8" PRIx32 ", I FSR: 0x%8.8" PRIx32 ", I FAR: 0x%8.8" PRIx32 "",
383                 arm920t->d_fsr, arm920t->d_far, arm920t->i_fsr, arm920t->i_far);
384
385         if (arm920t->preserve_cache)
386         {
387                 /* read-modify-write CP15 test state register
388                  * to disable I/D-cache linefills */
389                 arm920t_read_cp15_physical(target, 0x1e, &cp15c15);
390                 jtag_execute_queue();
391                 cp15c15 |= 0x600;
392                 arm920t_write_cp15_physical(target, 0x1e, cp15c15);
393         }
394 }
395
396 // EXPORTED to FA256
397 void arm920t_pre_restore_context(struct target *target)
398 {
399         uint32_t cp15c15;
400         struct arm920t_common *arm920t = target_to_arm920(target);
401
402         /* restore i/d fault status and address register */
403         arm920t_write_cp15_interpreted(target, 0xee050f10, arm920t->d_fsr, 0x0);
404         arm920t_write_cp15_interpreted(target, 0xee050f30, arm920t->i_fsr, 0x0);
405         arm920t_write_cp15_interpreted(target, 0xee060f10, arm920t->d_far, 0x0);
406         arm920t_write_cp15_interpreted(target, 0xee060f30, arm920t->i_far, 0x0);
407
408         /* read-modify-write CP15 test state register
409         * to reenable I/D-cache linefills */
410         if (arm920t->preserve_cache)
411         {
412                 arm920t_read_cp15_physical(target, 0x1e, &cp15c15);
413                 jtag_execute_queue();
414                 cp15c15 &= ~0x600U;
415                 arm920t_write_cp15_physical(target, 0x1e, cp15c15);
416         }
417 }
418
419 static const char arm920_not[] = "target is not an ARM920";
420
421 static int arm920t_verify_pointer(struct command_context *cmd_ctx,
422                 struct arm920t_common *arm920t)
423 {
424         if (arm920t->common_magic != ARM920T_COMMON_MAGIC) {
425                 command_print(cmd_ctx, arm920_not);
426                 return ERROR_TARGET_INVALID;
427         }
428
429         return ERROR_OK;
430 }
431
432 /** Logs summary of ARM920 state for a halted target. */
433 int arm920t_arch_state(struct target *target)
434 {
435         static const char *state[] =
436         {
437                 "disabled", "enabled"
438         };
439
440         struct arm920t_common *arm920t = target_to_arm920(target);
441         struct arm *armv4_5;
442
443         if (arm920t->common_magic != ARM920T_COMMON_MAGIC)
444         {
445                 LOG_ERROR("BUG: %s", arm920_not);
446                 return ERROR_TARGET_INVALID;
447         }
448
449         armv4_5 = &arm920t->arm7_9_common.armv4_5_common;
450
451         LOG_USER("target halted in %s state due to %s, current mode: %s\n"
452                         "cpsr: 0x%8.8" PRIx32 " pc: 0x%8.8" PRIx32 "\n"
453                         "MMU: %s, D-Cache: %s, I-Cache: %s",
454                          armv4_5_state_strings[armv4_5->core_state],
455                          Jim_Nvp_value2name_simple(nvp_target_debug_reason, target->debug_reason)->name,
456                          arm_mode_name(armv4_5->core_mode),
457                          buf_get_u32(armv4_5->cpsr->value, 0, 32),
458                          buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32),
459                          state[arm920t->armv4_5_mmu.mmu_enabled],
460                          state[arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled],
461                          state[arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled]);
462
463         return ERROR_OK;
464 }
465
466 static int arm920_mmu(struct target *target, int *enabled)
467 {
468         if (target->state != TARGET_HALTED) {
469                 LOG_ERROR("%s: target not halted", __func__);
470                 return ERROR_TARGET_INVALID;
471         }
472
473         *enabled = target_to_arm920(target)->armv4_5_mmu.mmu_enabled;
474         return ERROR_OK;
475 }
476
477 static int arm920_virt2phys(struct target *target,
478                 uint32_t virt, uint32_t *phys)
479 {
480         /** @todo Implement this!  */
481         LOG_ERROR("%s: not implemented", __func__);
482         return ERROR_FAIL;
483 }
484
485 /** Reads a buffer, in the specified word size, with current MMU settings. */
486 int arm920t_read_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
487 {
488         int retval;
489
490         retval = arm7_9_read_memory(target, address, size, count, buffer);
491
492         return retval;
493 }
494
495
496 static int arm920t_read_phys_memory(struct target *target,
497                 uint32_t address, uint32_t size,
498                 uint32_t count, uint8_t *buffer)
499 {
500         struct arm920t_common *arm920t = target_to_arm920(target);
501
502         return armv4_5_mmu_read_physical(target, &arm920t->armv4_5_mmu,
503                         address, size, count, buffer);
504 }
505
506 static int arm920t_write_phys_memory(struct target *target,
507                 uint32_t address, uint32_t size,
508                 uint32_t count, uint8_t *buffer)
509 {
510         struct arm920t_common *arm920t = target_to_arm920(target);
511
512         return armv4_5_mmu_write_physical(target, &arm920t->armv4_5_mmu,
513                         address, size, count, buffer);
514 }
515
516
517 /** Writes a buffer, in the specified word size, with current MMU settings. */
518 int arm920t_write_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
519 {
520         int retval;
521
522         if ((retval = arm7_9_write_memory(target, address, size, count, buffer)) != ERROR_OK)
523                 return retval;
524
525         /* This fn is used to write breakpoints, so we need to make sure
526          * that the data cache is flushed and the instruction cache is
527          * invalidated
528          */
529         if (((size == 4) || (size == 2)) && (count == 1))
530         {
531                 struct arm920t_common *arm920t = target_to_arm920(target);
532
533                 if (arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
534                 {
535                         LOG_DEBUG("D-Cache enabled, flush and invalidate cache line");
536                         /* MCR p15,0,Rd,c7,c10,2 */
537                         retval = arm920t_write_cp15_interpreted(target, 0xee070f5e, 0x0, address);
538                         if (retval != ERROR_OK)
539                                 return retval;
540                 }
541
542                 if (arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
543                 {
544                         LOG_DEBUG("I-Cache enabled, invalidating affected I-Cache line");
545                         retval = arm920t_write_cp15_interpreted(target, 0xee070f35, 0x0, address);
546                         if (retval != ERROR_OK)
547                                 return retval;
548                 }
549         }
550
551         return retval;
552 }
553
554 // EXPORTED to FA256
555 int arm920t_soft_reset_halt(struct target *target)
556 {
557         int retval = ERROR_OK;
558         struct arm920t_common *arm920t = target_to_arm920(target);
559         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
560         struct arm *armv4_5 = &arm7_9->armv4_5_common;
561         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
562
563         if ((retval = target_halt(target)) != ERROR_OK)
564         {
565                 return retval;
566         }
567
568         long long then = timeval_ms();
569         int timeout;
570         while (!(timeout = ((timeval_ms()-then) > 1000)))
571         {
572                 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) == 0)
573                 {
574                         embeddedice_read_reg(dbg_stat);
575                         if ((retval = jtag_execute_queue()) != ERROR_OK)
576                         {
577                                 return retval;
578                         }
579                 } else
580                 {
581                         break;
582                 }
583                 if (debug_level >= 3)
584                 {
585                         /* do not eat all CPU, time out after 1 se*/
586                         alive_sleep(100);
587                 } else
588                 {
589                         keep_alive();
590                 }
591         }
592         if (timeout)
593         {
594                 LOG_ERROR("Failed to halt CPU after 1 sec");
595                 return ERROR_TARGET_TIMEOUT;
596         }
597
598         target->state = TARGET_HALTED;
599
600         /* SVC, ARM state, IRQ and FIQ disabled */
601         uint32_t cpsr;
602
603         cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 32);
604         cpsr &= ~0xff;
605         cpsr |= 0xd3;
606         arm_set_cpsr(armv4_5, cpsr);
607         armv4_5->cpsr->dirty = 1;
608
609         /* start fetching from 0x0 */
610         buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, 0x0);
611         armv4_5->core_cache->reg_list[15].dirty = 1;
612         armv4_5->core_cache->reg_list[15].valid = 1;
613
614         arm920t_disable_mmu_caches(target, 1, 1, 1);
615         arm920t->armv4_5_mmu.mmu_enabled = 0;
616         arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled = 0;
617         arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled = 0;
618
619         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
620         {
621                 return retval;
622         }
623
624         return ERROR_OK;
625 }
626
627 int arm920t_init_arch_info(struct target *target, struct arm920t_common *arm920t, struct jtag_tap *tap)
628 {
629         struct arm7_9_common *arm7_9 = &arm920t->arm7_9_common;
630
631         /* initialize arm7/arm9 specific info (including armv4_5) */
632         arm9tdmi_init_arch_info(target, arm7_9, tap);
633
634         arm920t->common_magic = ARM920T_COMMON_MAGIC;
635
636         arm7_9->post_debug_entry = arm920t_post_debug_entry;
637         arm7_9->pre_restore_context = arm920t_pre_restore_context;
638
639         arm920t->armv4_5_mmu.armv4_5_cache.ctype = -1;
640         arm920t->armv4_5_mmu.get_ttb = arm920t_get_ttb;
641         arm920t->armv4_5_mmu.read_memory = arm7_9_read_memory;
642         arm920t->armv4_5_mmu.write_memory = arm7_9_write_memory;
643         arm920t->armv4_5_mmu.disable_mmu_caches = arm920t_disable_mmu_caches;
644         arm920t->armv4_5_mmu.enable_mmu_caches = arm920t_enable_mmu_caches;
645         arm920t->armv4_5_mmu.has_tiny_pages = 1;
646         arm920t->armv4_5_mmu.mmu_enabled = 0;
647
648         /* disabling linefills leads to lockups, so keep them enabled for now
649          * this doesn't affect correctness, but might affect timing issues, if
650          * important data is evicted from the cache during the debug session
651          * */
652         arm920t->preserve_cache = 0;
653
654         /* override hw single-step capability from ARM9TDMI */
655         arm7_9->has_single_step = 1;
656
657         return ERROR_OK;
658 }
659
660 static int arm920t_target_create(struct target *target, Jim_Interp *interp)
661 {
662         struct arm920t_common *arm920t = calloc(1,sizeof(struct arm920t_common));
663
664         return arm920t_init_arch_info(target, arm920t, target->tap);
665 }
666
667 COMMAND_HANDLER(arm920t_handle_read_cache_command)
668 {
669         int retval = ERROR_OK;
670         struct target *target = get_current_target(CMD_CTX);
671         struct arm920t_common *arm920t = target_to_arm920(target);
672         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
673         struct arm *armv4_5 = &arm7_9->armv4_5_common;
674         uint32_t cp15c15;
675         uint32_t cp15_ctrl, cp15_ctrl_saved;
676         uint32_t regs[16];
677         uint32_t *regs_p[16];
678         uint32_t C15_C_D_Ind, C15_C_I_Ind;
679         int i;
680         FILE *output;
681         struct arm920t_cache_line d_cache[8][64], i_cache[8][64];
682         int segment, index;
683         struct reg *r;
684
685         retval = arm920t_verify_pointer(CMD_CTX, arm920t);
686         if (retval != ERROR_OK)
687                 return retval;
688
689         if (CMD_ARGC != 1)
690         {
691                 command_print(CMD_CTX, "usage: arm920t read_cache <filename>");
692                 return ERROR_OK;
693         }
694
695         if ((output = fopen(CMD_ARGV[0], "w")) == NULL)
696         {
697                 LOG_DEBUG("error opening cache content file");
698                 return ERROR_OK;
699         }
700
701         for (i = 0; i < 16; i++)
702                 regs_p[i] = &regs[i];
703
704         /* disable MMU and Caches */
705         arm920t_read_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0x1, 0), &cp15_ctrl);
706         if ((retval = jtag_execute_queue()) != ERROR_OK)
707         {
708                 return retval;
709         }
710         cp15_ctrl_saved = cp15_ctrl;
711         cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED | ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED);
712         arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0x1, 0), cp15_ctrl);
713
714         /* read CP15 test state register */
715         arm920t_read_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0xf, 0), &cp15c15);
716         jtag_execute_queue();
717
718         /* read DCache content */
719         fprintf(output, "DCache:\n");
720
721         /* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
722         for (segment = 0; segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets; segment++)
723         {
724                 fprintf(output, "\nsegment: %i\n----------", segment);
725
726                 /* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
727                 regs[0] = 0x0 | (segment << 5);
728                 arm9tdmi_write_core_regs(target, 0x1, regs);
729
730                 /* set interpret mode */
731                 cp15c15 |= 0x1;
732                 arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0xf, 0), cp15c15);
733
734                 /* D CAM Read, loads current victim into C15.C.D.Ind */
735                 arm920t_execute_cp15(target, ARMV4_5_MCR(15,2,0,15,6,2), ARMV4_5_LDR(1, 0));
736
737                 /* read current victim */
738                 arm920t_read_cp15_physical(target, 0x3d, &C15_C_D_Ind);
739
740                 /* clear interpret mode */
741                 cp15c15 &= ~0x1;
742                 arm920t_write_cp15_physical(target, 0x1e, cp15c15);
743
744                 for (index = 0; index < 64; index++)
745                 {
746                         /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
747                         regs[0] = 0x0 | (segment << 5) | (index << 26);
748                         arm9tdmi_write_core_regs(target, 0x1, regs);
749
750                         /* set interpret mode */
751                         cp15c15 |= 0x1;
752                         arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0xf, 0), cp15c15);
753
754                         /* Write DCache victim */
755                         arm920t_execute_cp15(target, ARMV4_5_MCR(15,0,0,9,1,0), ARMV4_5_LDR(1, 0));
756
757                         /* Read D RAM */
758                         arm920t_execute_cp15(target, ARMV4_5_MCR(15,2,0,15,10,2), ARMV4_5_LDMIA(0, 0x1fe, 0, 0));
759
760                         /* Read D CAM */
761                         arm920t_execute_cp15(target, ARMV4_5_MCR(15,2,0,15,6,2), ARMV4_5_LDR(9, 0));
762
763                         /* clear interpret mode */
764                         cp15c15 &= ~0x1;
765                         arm920t_write_cp15_physical(target, 0x1e, cp15c15);
766
767                         /* read D RAM and CAM content */
768                         arm9tdmi_read_core_regs(target, 0x3fe, regs_p);
769                         if ((retval = jtag_execute_queue()) != ERROR_OK)
770                         {
771                                 return retval;
772                         }
773
774                         d_cache[segment][index].cam = regs[9];
775
776                         /* mask LFSR[6] */
777                         regs[9] &= 0xfffffffe;
778                         fprintf(output, "\nsegment: %i, index: %i, CAM: 0x%8.8" PRIx32 ", content (%s):\n", segment, index, regs[9], (regs[9] & 0x10) ? "valid" : "invalid");
779
780                         for (i = 1; i < 9; i++)
781                         {
782                                  d_cache[segment][index].data[i] = regs[i];
783                                  fprintf(output, "%i: 0x%8.8" PRIx32 "\n", i-1, regs[i]);
784                         }
785
786                 }
787
788                 /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
789                 regs[0] = 0x0 | (segment << 5) | (C15_C_D_Ind << 26);
790                 arm9tdmi_write_core_regs(target, 0x1, regs);
791
792                 /* set interpret mode */
793                 cp15c15 |= 0x1;
794                 arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0xf, 0), cp15c15);
795
796                 /* Write DCache victim */
797                 arm920t_execute_cp15(target, ARMV4_5_MCR(15,0,0,9,1,0), ARMV4_5_LDR(1, 0));
798
799                 /* clear interpret mode */
800                 cp15c15 &= ~0x1;
801                 arm920t_write_cp15_physical(target, 0x1e, cp15c15);
802         }
803
804         /* read ICache content */
805         fprintf(output, "ICache:\n");
806
807         /* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
808         for (segment = 0; segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets; segment++)
809         {
810                 fprintf(output, "segment: %i\n----------", segment);
811
812                 /* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
813                 regs[0] = 0x0 | (segment << 5);
814                 arm9tdmi_write_core_regs(target, 0x1, regs);
815
816                 /* set interpret mode */
817                 cp15c15 |= 0x1;
818                 arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0xf, 0), cp15c15);
819
820                 /* I CAM Read, loads current victim into C15.C.I.Ind */
821                 arm920t_execute_cp15(target, ARMV4_5_MCR(15,2,0,15,5,2), ARMV4_5_LDR(1, 0));
822
823                 /* read current victim */
824                 arm920t_read_cp15_physical(target, 0x3b, &C15_C_I_Ind);
825
826                 /* clear interpret mode */
827                 cp15c15 &= ~0x1;
828                 arm920t_write_cp15_physical(target, 0x1e, cp15c15);
829
830                 for (index = 0; index < 64; index++)
831                 {
832                         /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
833                         regs[0] = 0x0 | (segment << 5) | (index << 26);
834                         arm9tdmi_write_core_regs(target, 0x1, regs);
835
836                         /* set interpret mode */
837                         cp15c15 |= 0x1;
838                         arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0xf, 0), cp15c15);
839
840                         /* Write ICache victim */
841                         arm920t_execute_cp15(target, ARMV4_5_MCR(15,0,0,9,1,1), ARMV4_5_LDR(1, 0));
842
843                         /* Read I RAM */
844                         arm920t_execute_cp15(target, ARMV4_5_MCR(15,2,0,15,9,2), ARMV4_5_LDMIA(0, 0x1fe, 0, 0));
845
846                         /* Read I CAM */
847                         arm920t_execute_cp15(target, ARMV4_5_MCR(15,2,0,15,5,2), ARMV4_5_LDR(9, 0));
848
849                         /* clear interpret mode */
850                         cp15c15 &= ~0x1;
851                         arm920t_write_cp15_physical(target, 0x1e, cp15c15);
852
853                         /* read I RAM and CAM content */
854                         arm9tdmi_read_core_regs(target, 0x3fe, regs_p);
855                         if ((retval = jtag_execute_queue()) != ERROR_OK)
856                         {
857                                 return retval;
858                         }
859
860                         i_cache[segment][index].cam = regs[9];
861
862                         /* mask LFSR[6] */
863                         regs[9] &= 0xfffffffe;
864                         fprintf(output, "\nsegment: %i, index: %i, CAM: 0x%8.8" PRIx32 ", content (%s):\n", segment, index, regs[9], (regs[9] & 0x10) ? "valid" : "invalid");
865
866                         for (i = 1; i < 9; i++)
867                         {
868                                  i_cache[segment][index].data[i] = regs[i];
869                                  fprintf(output, "%i: 0x%8.8" PRIx32 "\n", i-1, regs[i]);
870                         }
871                 }
872
873                 /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
874                 regs[0] = 0x0 | (segment << 5) | (C15_C_D_Ind << 26);
875                 arm9tdmi_write_core_regs(target, 0x1, regs);
876
877                 /* set interpret mode */
878                 cp15c15 |= 0x1;
879                 arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0xf, 0), cp15c15);
880
881                 /* Write ICache victim */
882                 arm920t_execute_cp15(target, ARMV4_5_MCR(15,0,0,9,1,1), ARMV4_5_LDR(1, 0));
883
884                 /* clear interpret mode */
885                 cp15c15 &= ~0x1;
886                 arm920t_write_cp15_physical(target, 0x1e, cp15c15);
887         }
888
889         /* restore CP15 MMU and Cache settings */
890         arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0x1, 0), cp15_ctrl_saved);
891
892         command_print(CMD_CTX, "cache content successfully output to %s", CMD_ARGV[0]);
893
894         fclose(output);
895
896         if (!is_arm_mode(armv4_5->core_mode))
897                 return ERROR_FAIL;
898
899         /* force writeback of the valid data */
900         r = armv4_5->core_cache->reg_list;
901         r[0].dirty = r[0].valid;
902         r[1].dirty = r[1].valid;
903         r[2].dirty = r[2].valid;
904         r[3].dirty = r[3].valid;
905         r[4].dirty = r[4].valid;
906         r[5].dirty = r[5].valid;
907         r[6].dirty = r[6].valid;
908         r[7].dirty = r[7].valid;
909
910         r = arm_reg_current(armv4_5, 8);
911         r->dirty = r->valid;
912
913         r = arm_reg_current(armv4_5, 9);
914         r->dirty = r->valid;
915
916         return ERROR_OK;
917 }
918
919 COMMAND_HANDLER(arm920t_handle_read_mmu_command)
920 {
921         int retval = ERROR_OK;
922         struct target *target = get_current_target(CMD_CTX);
923         struct arm920t_common *arm920t = target_to_arm920(target);
924         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
925         struct arm *armv4_5 = &arm7_9->armv4_5_common;
926         uint32_t cp15c15;
927         uint32_t cp15_ctrl, cp15_ctrl_saved;
928         uint32_t regs[16];
929         uint32_t *regs_p[16];
930         int i;
931         FILE *output;
932         uint32_t Dlockdown, Ilockdown;
933         struct arm920t_tlb_entry d_tlb[64], i_tlb[64];
934         int victim;
935         struct reg *r;
936
937         retval = arm920t_verify_pointer(CMD_CTX, arm920t);
938         if (retval != ERROR_OK)
939                 return retval;
940
941         if (CMD_ARGC != 1)
942         {
943                 command_print(CMD_CTX, "usage: arm920t read_mmu <filename>");
944                 return ERROR_OK;
945         }
946
947         if ((output = fopen(CMD_ARGV[0], "w")) == NULL)
948         {
949                 LOG_DEBUG("error opening mmu content file");
950                 return ERROR_OK;
951         }
952
953         for (i = 0; i < 16; i++)
954                 regs_p[i] = &regs[i];
955
956         /* disable MMU and Caches */
957         arm920t_read_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0x1, 0), &cp15_ctrl);
958         if ((retval = jtag_execute_queue()) != ERROR_OK)
959         {
960                 return retval;
961         }
962         cp15_ctrl_saved = cp15_ctrl;
963         cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED | ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED);
964         arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0x1, 0), cp15_ctrl);
965
966         /* read CP15 test state register */
967         arm920t_read_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0xf, 0), &cp15c15);
968         if ((retval = jtag_execute_queue()) != ERROR_OK)
969         {
970                 return retval;
971         }
972
973         /* prepare reading D TLB content
974          * */
975
976         /* set interpret mode */
977         cp15c15 |= 0x1;
978         arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0xf, 0), cp15c15);
979
980         /* Read D TLB lockdown */
981         arm920t_execute_cp15(target, ARMV4_5_MRC(15,0,0,10,0,0), ARMV4_5_LDR(1, 0));
982
983         /* clear interpret mode */
984         cp15c15 &= ~0x1;
985         arm920t_write_cp15_physical(target, 0x1e, cp15c15);
986
987         /* read D TLB lockdown stored to r1 */
988         arm9tdmi_read_core_regs(target, 0x2, regs_p);
989         if ((retval = jtag_execute_queue()) != ERROR_OK)
990         {
991                 return retval;
992         }
993         Dlockdown = regs[1];
994
995         for (victim = 0; victim < 64; victim += 8)
996         {
997                 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
998                  * base remains unchanged, victim goes through entries 0 to 63 */
999                 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1000                 arm9tdmi_write_core_regs(target, 0x2, regs);
1001
1002                 /* set interpret mode */
1003                 cp15c15 |= 0x1;
1004                 arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0xf, 0), cp15c15);
1005
1006                 /* Write D TLB lockdown */
1007                 arm920t_execute_cp15(target, ARMV4_5_MCR(15,0,0,10,0,0), ARMV4_5_STR(1, 0));
1008
1009                 /* Read D TLB CAM */
1010                 arm920t_execute_cp15(target, ARMV4_5_MCR(15,4,0,15,6,4), ARMV4_5_LDMIA(0, 0x3fc, 0, 0));
1011
1012                 /* clear interpret mode */
1013                 cp15c15 &= ~0x1;
1014                 arm920t_write_cp15_physical(target, 0x1e, cp15c15);
1015
1016                 /* read D TLB CAM content stored to r2-r9 */
1017                 arm9tdmi_read_core_regs(target, 0x3fc, regs_p);
1018                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1019                 {
1020                         return retval;
1021                 }
1022
1023                 for (i = 0; i < 8; i++)
1024                         d_tlb[victim + i].cam = regs[i + 2];
1025         }
1026
1027         for (victim = 0; victim < 64; victim++)
1028         {
1029                 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1030                  * base remains unchanged, victim goes through entries 0 to 63 */
1031                 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1032                 arm9tdmi_write_core_regs(target, 0x2, regs);
1033
1034                 /* set interpret mode */
1035                 cp15c15 |= 0x1;
1036                 arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0xf, 0), cp15c15);
1037
1038                 /* Write D TLB lockdown */
1039                 arm920t_execute_cp15(target, ARMV4_5_MCR(15,0,0,10,0,0), ARMV4_5_STR(1, 0));
1040
1041                 /* Read D TLB RAM1 */
1042                 arm920t_execute_cp15(target, ARMV4_5_MCR(15,4,0,15,10,4), ARMV4_5_LDR(2,0));
1043
1044                 /* Read D TLB RAM2 */
1045                 arm920t_execute_cp15(target, ARMV4_5_MCR(15,4,0,15,2,5), ARMV4_5_LDR(3,0));
1046
1047                 /* clear interpret mode */
1048                 cp15c15 &= ~0x1;
1049                 arm920t_write_cp15_physical(target, 0x1e, cp15c15);
1050
1051                 /* read D TLB RAM content stored to r2 and r3 */
1052                 arm9tdmi_read_core_regs(target, 0xc, regs_p);
1053                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1054                 {
1055                         return retval;
1056                 }
1057
1058                 d_tlb[victim].ram1 = regs[2];
1059                 d_tlb[victim].ram2 = regs[3];
1060         }
1061
1062         /* restore D TLB lockdown */
1063         regs[1] = Dlockdown;
1064         arm9tdmi_write_core_regs(target, 0x2, regs);
1065
1066         /* Write D TLB lockdown */
1067         arm920t_execute_cp15(target, ARMV4_5_MCR(15,0,0,10,0,0), ARMV4_5_STR(1, 0));
1068
1069         /* prepare reading I TLB content
1070          * */
1071
1072         /* set interpret mode */
1073         cp15c15 |= 0x1;
1074         arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0xf, 0), cp15c15);
1075
1076         /* Read I TLB lockdown */
1077         arm920t_execute_cp15(target, ARMV4_5_MRC(15,0,0,10,0,1), ARMV4_5_LDR(1, 0));
1078
1079         /* clear interpret mode */
1080         cp15c15 &= ~0x1;
1081         arm920t_write_cp15_physical(target, 0x1e, cp15c15);
1082
1083         /* read I TLB lockdown stored to r1 */
1084         arm9tdmi_read_core_regs(target, 0x2, regs_p);
1085         if ((retval = jtag_execute_queue()) != ERROR_OK)
1086         {
1087                 return retval;
1088         }
1089         Ilockdown = regs[1];
1090
1091         for (victim = 0; victim < 64; victim += 8)
1092         {
1093                 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1094                  * base remains unchanged, victim goes through entries 0 to 63 */
1095                 regs[1] = (Ilockdown & 0xfc000000) | (victim << 20);
1096                 arm9tdmi_write_core_regs(target, 0x2, regs);
1097
1098                 /* set interpret mode */
1099                 cp15c15 |= 0x1;
1100                 arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0xf, 0), cp15c15);
1101
1102                 /* Write I TLB lockdown */
1103                 arm920t_execute_cp15(target, ARMV4_5_MCR(15,0,0,10,0,1), ARMV4_5_STR(1, 0));
1104
1105                 /* Read I TLB CAM */
1106                 arm920t_execute_cp15(target, ARMV4_5_MCR(15,4,0,15,5,4), ARMV4_5_LDMIA(0, 0x3fc, 0, 0));
1107
1108                 /* clear interpret mode */
1109                 cp15c15 &= ~0x1;
1110                 arm920t_write_cp15_physical(target, 0x1e, cp15c15);
1111
1112                 /* read I TLB CAM content stored to r2-r9 */
1113                 arm9tdmi_read_core_regs(target, 0x3fc, regs_p);
1114                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1115                 {
1116                         return retval;
1117                 }
1118
1119                 for (i = 0; i < 8; i++)
1120                         i_tlb[i + victim].cam = regs[i + 2];
1121         }
1122
1123         for (victim = 0; victim < 64; victim++)
1124         {
1125                 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1126                  * base remains unchanged, victim goes through entries 0 to 63 */
1127                 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1128                 arm9tdmi_write_core_regs(target, 0x2, regs);
1129
1130                 /* set interpret mode */
1131                 cp15c15 |= 0x1;
1132                 arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0xf, 0), cp15c15);
1133
1134                 /* Write I TLB lockdown */
1135                 arm920t_execute_cp15(target, ARMV4_5_MCR(15,0,0,10,0,1), ARMV4_5_STR(1, 0));
1136
1137                 /* Read I TLB RAM1 */
1138                 arm920t_execute_cp15(target, ARMV4_5_MCR(15,4,0,15,9,4), ARMV4_5_LDR(2,0));
1139
1140                 /* Read I TLB RAM2 */
1141                 arm920t_execute_cp15(target, ARMV4_5_MCR(15,4,0,15,1,5), ARMV4_5_LDR(3,0));
1142
1143                 /* clear interpret mode */
1144                 cp15c15 &= ~0x1;
1145                 arm920t_write_cp15_physical(target, 0x1e, cp15c15);
1146
1147                 /* read I TLB RAM content stored to r2 and r3 */
1148                 arm9tdmi_read_core_regs(target, 0xc, regs_p);
1149                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1150                 {
1151                         return retval;
1152                 }
1153
1154                 i_tlb[victim].ram1 = regs[2];
1155                 i_tlb[victim].ram2 = regs[3];
1156         }
1157
1158         /* restore I TLB lockdown */
1159         regs[1] = Ilockdown;
1160         arm9tdmi_write_core_regs(target, 0x2, regs);
1161
1162         /* Write I TLB lockdown */
1163         arm920t_execute_cp15(target, ARMV4_5_MCR(15,0,0,10,0,1), ARMV4_5_STR(1, 0));
1164
1165         /* restore CP15 MMU and Cache settings */
1166         arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0x1, 0), cp15_ctrl_saved);
1167
1168         /* output data to file */
1169         fprintf(output, "D TLB content:\n");
1170         for (i = 0; i < 64; i++)
1171         {
1172                 fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32 " 0x%8.8" PRIx32 " %s\n", i, d_tlb[i].cam, d_tlb[i].ram1, d_tlb[i].ram2, (d_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)");
1173         }
1174
1175         fprintf(output, "\n\nI TLB content:\n");
1176         for (i = 0; i < 64; i++)
1177         {
1178                 fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32 " 0x%8.8" PRIx32 " %s\n", i, i_tlb[i].cam, i_tlb[i].ram1, i_tlb[i].ram2, (i_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)");
1179         }
1180
1181         command_print(CMD_CTX, "mmu content successfully output to %s", CMD_ARGV[0]);
1182
1183         fclose(output);
1184
1185         if (!is_arm_mode(armv4_5->core_mode))
1186                 return ERROR_FAIL;
1187
1188         /* force writeback of the valid data */
1189         r = armv4_5->core_cache->reg_list;
1190         r[0].dirty = r[0].valid;
1191         r[1].dirty = r[1].valid;
1192         r[2].dirty = r[2].valid;
1193         r[3].dirty = r[3].valid;
1194         r[4].dirty = r[4].valid;
1195         r[5].dirty = r[5].valid;
1196         r[6].dirty = r[6].valid;
1197         r[7].dirty = r[7].valid;
1198
1199         r = arm_reg_current(armv4_5, 8);
1200         r->dirty = r->valid;
1201
1202         r = arm_reg_current(armv4_5, 9);
1203         r->dirty = r->valid;
1204
1205         return ERROR_OK;
1206 }
1207
1208 COMMAND_HANDLER(arm920t_handle_cp15_command)
1209 {
1210         int retval;
1211         struct target *target = get_current_target(CMD_CTX);
1212         struct arm920t_common *arm920t = target_to_arm920(target);
1213
1214         retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1215         if (retval != ERROR_OK)
1216                 return retval;
1217
1218         if (target->state != TARGET_HALTED)
1219         {
1220                 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
1221                 return ERROR_OK;
1222         }
1223
1224         /* one or more argument, access a single register (write if second argument is given */
1225         if (CMD_ARGC >= 1)
1226         {
1227                 int address;
1228                 COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], address);
1229
1230                 if (CMD_ARGC == 1)
1231                 {
1232                         uint32_t value;
1233                         if ((retval = arm920t_read_cp15_physical(target, address, &value)) != ERROR_OK)
1234                         {
1235                                 command_print(CMD_CTX, "couldn't access reg %i", address);
1236                                 return ERROR_OK;
1237                         }
1238                         if ((retval = jtag_execute_queue()) != ERROR_OK)
1239                         {
1240                                 return retval;
1241                         }
1242
1243                         command_print(CMD_CTX, "%i: %8.8" PRIx32 "", address, value);
1244                 }
1245                 else if (CMD_ARGC == 2)
1246                 {
1247                         uint32_t value;
1248                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1249                         if ((retval = arm920t_write_cp15_physical(target, address, value)) != ERROR_OK)
1250                         {
1251                                 command_print(CMD_CTX, "couldn't access reg %i", address);
1252                                 return ERROR_OK;
1253                         }
1254                         command_print(CMD_CTX, "%i: %8.8" PRIx32 "", address, value);
1255                 }
1256         }
1257
1258         return ERROR_OK;
1259 }
1260
1261 COMMAND_HANDLER(arm920t_handle_cp15i_command)
1262 {
1263         int retval;
1264         struct target *target = get_current_target(CMD_CTX);
1265         struct arm920t_common *arm920t = target_to_arm920(target);
1266
1267         retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1268         if (retval != ERROR_OK)
1269                 return retval;
1270
1271
1272         if (target->state != TARGET_HALTED)
1273         {
1274                 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
1275                 return ERROR_OK;
1276         }
1277
1278         /* one or more argument, access a single register (write if second argument is given */
1279         if (CMD_ARGC >= 1)
1280         {
1281                 uint32_t opcode;
1282                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], opcode);
1283
1284                 if (CMD_ARGC == 1)
1285                 {
1286                         uint32_t value;
1287                         if ((retval = arm920t_read_cp15_interpreted(target, opcode, 0x0, &value)) != ERROR_OK)
1288                         {
1289                                 command_print(CMD_CTX, "couldn't execute %8.8" PRIx32 "", opcode);
1290                                 return ERROR_OK;
1291                         }
1292
1293                         command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32 "", opcode, value);
1294                 }
1295                 else if (CMD_ARGC == 2)
1296                 {
1297                         uint32_t value;
1298                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1299                         if ((retval = arm920t_write_cp15_interpreted(target, opcode, value, 0)) != ERROR_OK)
1300                         {
1301                                 command_print(CMD_CTX, "couldn't execute %8.8" PRIx32 "", opcode);
1302                                 return ERROR_OK;
1303                         }
1304                         command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32 "", opcode, value);
1305                 }
1306                 else if (CMD_ARGC == 3)
1307                 {
1308                         uint32_t value;
1309                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1310                         uint32_t address;
1311                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], address);
1312                         if ((retval = arm920t_write_cp15_interpreted(target, opcode, value, address)) != ERROR_OK)
1313                         {
1314                                 command_print(CMD_CTX, "couldn't execute %8.8" PRIx32 "", opcode);
1315                                 return ERROR_OK;
1316                         }
1317                         command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32 " %8.8" PRIx32 "", opcode, value, address);
1318                 }
1319         }
1320         else
1321         {
1322                 command_print(CMD_CTX, "usage: arm920t cp15i <opcode> [value] [address]");
1323         }
1324
1325         return ERROR_OK;
1326 }
1327
1328 COMMAND_HANDLER(arm920t_handle_cache_info_command)
1329 {
1330         int retval;
1331         struct target *target = get_current_target(CMD_CTX);
1332         struct arm920t_common *arm920t = target_to_arm920(target);
1333
1334         retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1335         if (retval != ERROR_OK)
1336                 return retval;
1337
1338         return armv4_5_handle_cache_info_command(CMD_CTX, &arm920t->armv4_5_mmu.armv4_5_cache);
1339 }
1340
1341
1342 static int arm920t_mrc(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value)
1343 {
1344         if (cpnum!=15)
1345         {
1346                 LOG_ERROR("Only cp15 is supported");
1347                 return ERROR_FAIL;
1348         }
1349
1350         return arm920t_read_cp15_interpreted(target, mrc_opcode(cpnum, op1, op2, CRn, CRm), 0, value);
1351 }
1352
1353 static int arm920t_mcr(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value)
1354 {
1355         if (cpnum!=15)
1356         {
1357                 LOG_ERROR("Only cp15 is supported");
1358                 return ERROR_FAIL;
1359         }
1360
1361         return arm920t_write_cp15_interpreted(target, mrc_opcode(cpnum, op1, op2, CRn, CRm), 0, value);
1362 }
1363
1364 /** Registers commands to access coprocessor, cache, and MMU resources. */
1365 int arm920t_register_commands(struct command_context *cmd_ctx)
1366 {
1367         int retval;
1368         struct command *arm920t_cmd;
1369
1370         retval = arm9tdmi_register_commands(cmd_ctx);
1371
1372         arm920t_cmd = register_command(cmd_ctx, NULL, "arm920t",
1373                         NULL, COMMAND_ANY,
1374                         "arm920t specific commands");
1375
1376         register_command(cmd_ctx, arm920t_cmd, "cp15",
1377                         arm920t_handle_cp15_command, COMMAND_EXEC,
1378                         "display/modify cp15 register <num> [value]");
1379         register_command(cmd_ctx, arm920t_cmd, "cp15i",
1380                         arm920t_handle_cp15i_command, COMMAND_EXEC,
1381                         "display/modify cp15 (interpreted access) "
1382                                 "<opcode> [value] [address]");
1383         register_command(cmd_ctx, arm920t_cmd, "cache_info",
1384                         arm920t_handle_cache_info_command, COMMAND_EXEC,
1385                         "display information about target caches");
1386         register_command(cmd_ctx, arm920t_cmd, "read_cache",
1387                         arm920t_handle_read_cache_command, COMMAND_EXEC,
1388                         "display I/D cache content");
1389         register_command(cmd_ctx, arm920t_cmd, "read_mmu",
1390                         arm920t_handle_read_mmu_command, COMMAND_EXEC,
1391                         "display I/D mmu content");
1392
1393         return retval;
1394 }
1395
1396 /** Holds methods for ARM920 targets. */
1397 struct target_type arm920t_target =
1398 {
1399         .name = "arm920t",
1400
1401         .poll = arm7_9_poll,
1402         .arch_state = arm920t_arch_state,
1403
1404         .target_request_data = arm7_9_target_request_data,
1405
1406         .halt = arm7_9_halt,
1407         .resume = arm7_9_resume,
1408         .step = arm7_9_step,
1409
1410         .assert_reset = arm7_9_assert_reset,
1411         .deassert_reset = arm7_9_deassert_reset,
1412         .soft_reset_halt = arm920t_soft_reset_halt,
1413
1414         .get_gdb_reg_list = armv4_5_get_gdb_reg_list,
1415
1416         .read_memory = arm920t_read_memory,
1417         .write_memory = arm920t_write_memory,
1418         .read_phys_memory = arm920t_read_phys_memory,
1419         .write_phys_memory = arm920t_write_phys_memory,
1420         .mmu = arm920_mmu,
1421         .virt2phys = arm920_virt2phys,
1422
1423         .bulk_write_memory = arm7_9_bulk_write_memory,
1424
1425         .checksum_memory = arm_checksum_memory,
1426         .blank_check_memory = arm_blank_check_memory,
1427
1428         .run_algorithm = armv4_5_run_algorithm,
1429
1430         .add_breakpoint = arm7_9_add_breakpoint,
1431         .remove_breakpoint = arm7_9_remove_breakpoint,
1432         .add_watchpoint = arm7_9_add_watchpoint,
1433         .remove_watchpoint = arm7_9_remove_watchpoint,
1434
1435         .register_commands = arm920t_register_commands,
1436         .target_create = arm920t_target_create,
1437         .init_target = arm9tdmi_init_target,
1438         .examine = arm7_9_examine,
1439         .mrc = arm920t_mrc,
1440         .mcr = arm920t_mcr,
1441 };