ARM7/9 minor cleanups
[fw/openocd] / src / target / arm7_9_common.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2009 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2008 by Hongtao Zheng                                   *
12  *   hontor@126.com                                                        *
13  *                                                                         *
14  *   Copyright (C) 2009 by David Brownell                                  *
15  *                                                                         *
16  *   This program is free software; you can redistribute it and/or modify  *
17  *   it under the terms of the GNU General Public License as published by  *
18  *   the Free Software Foundation; either version 2 of the License, or     *
19  *   (at your option) any later version.                                   *
20  *                                                                         *
21  *   This program is distributed in the hope that it will be useful,       *
22  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
23  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
24  *   GNU General Public License for more details.                          *
25  *                                                                         *
26  *   You should have received a copy of the GNU General Public License     *
27  *   along with this program; if not, write to the                         *
28  *   Free Software Foundation, Inc.,                                       *
29  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
30  ***************************************************************************/
31 #ifdef HAVE_CONFIG_H
32 #include "config.h"
33 #endif
34
35 #include "breakpoints.h"
36 #include "embeddedice.h"
37 #include "target_request.h"
38 #include "etm.h"
39 #include <helper/time_support.h>
40 #include "arm_simulator.h"
41 #include "arm_semihosting.h"
42 #include "algorithm.h"
43 #include "register.h"
44 #include "armv4_5.h"
45
46
47 /**
48  * @file
49  * Hold common code supporting the ARM7 and ARM9 core generations.
50  *
51  * While the ARM core implementations evolved substantially during these
52  * two generations, they look quite similar from the JTAG perspective.
53  * Both have similar debug facilities, based on the same two scan chains
54  * providing access to the core and to an EmbeddedICE module.  Both can
55  * support similar ETM and ETB modules, for tracing.  And both expose
56  * what could be viewed as "ARM Classic", with multiple processor modes,
57  * shadowed registers, and support for the Thumb instruction set.
58  *
59  * Processor differences include things like presence or absence of MMU
60  * and cache, pipeline sizes, use of a modified Harvard Architecure
61  * (with separate instruction and data busses from the CPU), support
62  * for cpu clock gating during idle, and more.
63  */
64
65 static int arm7_9_debug_entry(struct target *target);
66
67 /**
68  * Clear watchpoints for an ARM7/9 target.
69  *
70  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
71  * @return JTAG error status after executing queue
72  */
73 static int arm7_9_clear_watchpoints(struct arm7_9_common *arm7_9)
74 {
75         LOG_DEBUG("-");
76         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
77         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
78         arm7_9->sw_breakpoint_count = 0;
79         arm7_9->sw_breakpoints_added = 0;
80         arm7_9->wp0_used = 0;
81         arm7_9->wp1_used = arm7_9->wp1_used_default;
82         arm7_9->wp_available = arm7_9->wp_available_max;
83
84         return jtag_execute_queue();
85 }
86
87 /**
88  * Assign a watchpoint to one of the two available hardware comparators in an
89  * ARM7 or ARM9 target.
90  *
91  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
92  * @param breakpoint Pointer to the breakpoint to be used as a watchpoint
93  */
94 static void arm7_9_assign_wp(struct arm7_9_common *arm7_9, struct breakpoint *breakpoint)
95 {
96         if (!arm7_9->wp0_used)
97         {
98                 arm7_9->wp0_used = 1;
99                 breakpoint->set = 1;
100                 arm7_9->wp_available--;
101         }
102         else if (!arm7_9->wp1_used)
103         {
104                 arm7_9->wp1_used = 1;
105                 breakpoint->set = 2;
106                 arm7_9->wp_available--;
107         }
108         else
109         {
110                 LOG_ERROR("BUG: no hardware comparator available");
111         }
112         LOG_DEBUG("BPID: %d (0x%08" PRIx32 ") using hw wp: %d",
113                           breakpoint->unique_id,
114                           breakpoint->address,
115                           breakpoint->set );
116 }
117
118 /**
119  * Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
120  *
121  * @param arm7_9 Pointer to common struct for ARM7/9 targets
122  * @return Error codes if there is a problem finding a watchpoint or the result
123  *         of executing the JTAG queue
124  */
125 static int arm7_9_set_software_breakpoints(struct arm7_9_common *arm7_9)
126 {
127         if (arm7_9->sw_breakpoints_added)
128         {
129                 return ERROR_OK;
130         }
131         if (arm7_9->wp_available < 1)
132         {
133                 LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
134                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
135         }
136         arm7_9->wp_available--;
137
138         /* pick a breakpoint unit */
139         if (!arm7_9->wp0_used)
140         {
141                 arm7_9->sw_breakpoints_added = 1;
142                 arm7_9->wp0_used = 3;
143         } else if (!arm7_9->wp1_used)
144         {
145                 arm7_9->sw_breakpoints_added = 2;
146                 arm7_9->wp1_used = 3;
147         }
148         else
149         {
150                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
151                 return ERROR_FAIL;
152         }
153
154         if (arm7_9->sw_breakpoints_added == 1)
155         {
156                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], arm7_9->arm_bkpt);
157                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0x0);
158                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffffu);
159                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
160                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
161         }
162         else if (arm7_9->sw_breakpoints_added == 2)
163         {
164                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], arm7_9->arm_bkpt);
165                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0x0);
166                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0xffffffffu);
167                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
168                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
169         }
170         else
171         {
172                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
173                 return ERROR_FAIL;
174         }
175         LOG_DEBUG("SW BP using hw wp: %d",
176                           arm7_9->sw_breakpoints_added );
177
178         return jtag_execute_queue();
179 }
180
181 /**
182  * Setup the common pieces for an ARM7/9 target after reset or on startup.
183  *
184  * @param target Pointer to an ARM7/9 target to setup
185  * @return Result of clearing the watchpoints on the target
186  */
187 int arm7_9_setup(struct target *target)
188 {
189         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
190
191         return arm7_9_clear_watchpoints(arm7_9);
192 }
193
194 /**
195  * Set either a hardware or software breakpoint on an ARM7/9 target.  The
196  * breakpoint is set up even if it is already set.  Some actions, e.g. reset,
197  * might have erased the values in Embedded ICE.
198  *
199  * @param target Pointer to the target device to set the breakpoints on
200  * @param breakpoint Pointer to the breakpoint to be set
201  * @return For hardware breakpoints, this is the result of executing the JTAG
202  *         queue.  For software breakpoints, this will be the status of the
203  *         required memory reads and writes
204  */
205 int arm7_9_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
206 {
207         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
208         int retval = ERROR_OK;
209
210         LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32 ", Type: %d" ,
211                           breakpoint->unique_id,
212                           breakpoint->address,
213                           breakpoint->type);
214
215         if (target->state != TARGET_HALTED)
216         {
217                 LOG_WARNING("target not halted");
218                 return ERROR_TARGET_NOT_HALTED;
219         }
220
221         if (breakpoint->type == BKPT_HARD)
222         {
223                 /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
224                 uint32_t mask = (breakpoint->length == 4) ? 0x3u : 0x1u;
225
226                 /* reassign a hw breakpoint */
227                 if (breakpoint->set == 0)
228                 {
229                         arm7_9_assign_wp(arm7_9, breakpoint);
230                 }
231
232                 if (breakpoint->set == 1)
233                 {
234                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], breakpoint->address);
235                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
236                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffffu);
237                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
238                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
239                 }
240                 else if (breakpoint->set == 2)
241                 {
242                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], breakpoint->address);
243                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
244                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffffu);
245                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
246                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
247                 }
248                 else
249                 {
250                         LOG_ERROR("BUG: no hardware comparator available");
251                         return ERROR_OK;
252                 }
253
254                 retval = jtag_execute_queue();
255         }
256         else if (breakpoint->type == BKPT_SOFT)
257         {
258                 /* did we already set this breakpoint? */
259                 if (breakpoint->set)
260                         return ERROR_OK;
261
262                 if (breakpoint->length == 4)
263                 {
264                         uint32_t verify = 0xffffffff;
265                         /* keep the original instruction in target endianness */
266                         if ((retval = target_read_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
267                         {
268                                 return retval;
269                         }
270                         /* write the breakpoint instruction in target endianness (arm7_9->arm_bkpt is host endian) */
271                         if ((retval = target_write_u32(target, breakpoint->address, arm7_9->arm_bkpt)) != ERROR_OK)
272                         {
273                                 return retval;
274                         }
275
276                         if ((retval = target_read_u32(target, breakpoint->address, &verify)) != ERROR_OK)
277                         {
278                                 return retval;
279                         }
280                         if (verify != arm7_9->arm_bkpt)
281                         {
282                                 LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
283                                 return ERROR_OK;
284                         }
285                 }
286                 else
287                 {
288                         uint16_t verify = 0xffff;
289                         /* keep the original instruction in target endianness */
290                         if ((retval = target_read_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
291                         {
292                                 return retval;
293                         }
294                         /* write the breakpoint instruction in target endianness (arm7_9->thumb_bkpt is host endian) */
295                         if ((retval = target_write_u16(target, breakpoint->address, arm7_9->thumb_bkpt)) != ERROR_OK)
296                         {
297                                 return retval;
298                         }
299
300                         if ((retval = target_read_u16(target, breakpoint->address, &verify)) != ERROR_OK)
301                         {
302                                 return retval;
303                         }
304                         if (verify != arm7_9->thumb_bkpt)
305                         {
306                                 LOG_ERROR("Unable to set thumb software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
307                                 return ERROR_OK;
308                         }
309                 }
310
311                 if ((retval = arm7_9_set_software_breakpoints(arm7_9)) != ERROR_OK)
312                         return retval;
313
314                 arm7_9->sw_breakpoint_count++;
315
316                 breakpoint->set = 1;
317         }
318
319         return retval;
320 }
321
322 /**
323  * Unsets an existing breakpoint on an ARM7/9 target.  If it is a hardware
324  * breakpoint, the watchpoint used will be freed and the Embedded ICE registers
325  * will be updated.  Otherwise, the software breakpoint will be restored to its
326  * original instruction if it hasn't already been modified.
327  *
328  * @param target Pointer to ARM7/9 target to unset the breakpoint from
329  * @param breakpoint Pointer to breakpoint to be unset
330  * @return For hardware breakpoints, this is the result of executing the JTAG
331  *         queue.  For software breakpoints, this will be the status of the
332  *         required memory reads and writes
333  */
334 int arm7_9_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
335 {
336         int retval = ERROR_OK;
337         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
338
339         LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32,
340                           breakpoint->unique_id,
341                           breakpoint->address );
342
343         if (!breakpoint->set)
344         {
345                 LOG_WARNING("breakpoint not set");
346                 return ERROR_OK;
347         }
348
349         if (breakpoint->type == BKPT_HARD)
350         {
351                 LOG_DEBUG("BPID: %d Releasing hw wp: %d",
352                                   breakpoint->unique_id,
353                                   breakpoint->set );
354                 if (breakpoint->set == 1)
355                 {
356                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
357                         arm7_9->wp0_used = 0;
358                         arm7_9->wp_available++;
359                 }
360                 else if (breakpoint->set == 2)
361                 {
362                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
363                         arm7_9->wp1_used = 0;
364                         arm7_9->wp_available++;
365                 }
366                 retval = jtag_execute_queue();
367                 breakpoint->set = 0;
368         }
369         else
370         {
371                 /* restore original instruction (kept in target endianness) */
372                 if (breakpoint->length == 4)
373                 {
374                         uint32_t current_instr;
375                         /* check that user program as not modified breakpoint instruction */
376                         if ((retval = target_read_memory(target, breakpoint->address, 4, 1, (uint8_t*)&current_instr)) != ERROR_OK)
377                         {
378                                 return retval;
379                         }
380                         if (current_instr == arm7_9->arm_bkpt)
381                                 if ((retval = target_write_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
382                                 {
383                                         return retval;
384                                 }
385                 }
386                 else
387                 {
388                         uint16_t current_instr;
389                         /* check that user program as not modified breakpoint instruction */
390                         if ((retval = target_read_memory(target, breakpoint->address, 2, 1, (uint8_t*)&current_instr)) != ERROR_OK)
391                         {
392                                 return retval;
393                         }
394                         if (current_instr == arm7_9->thumb_bkpt)
395                                 if ((retval = target_write_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
396                                 {
397                                         return retval;
398                                 }
399                 }
400
401                 if (--arm7_9->sw_breakpoint_count==0)
402                 {
403                         /* We have removed the last sw breakpoint, clear the hw breakpoint we used to implement it */
404                         if (arm7_9->sw_breakpoints_added == 1)
405                         {
406                                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0);
407                         }
408                         else if (arm7_9->sw_breakpoints_added == 2)
409                         {
410                                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0);
411                         }
412                 }
413
414                 breakpoint->set = 0;
415         }
416
417         return retval;
418 }
419
420 /**
421  * Add a breakpoint to an ARM7/9 target.  This makes sure that there are no
422  * dangling breakpoints and that the desired breakpoint can be added.
423  *
424  * @param target Pointer to the target ARM7/9 device to add a breakpoint to
425  * @param breakpoint Pointer to the breakpoint to be added
426  * @return An error status if there is a problem adding the breakpoint or the
427  *         result of setting the breakpoint
428  */
429 int arm7_9_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
430 {
431         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
432
433         if (arm7_9->breakpoint_count == 0)
434         {
435                 /* make sure we don't have any dangling breakpoints. This is vital upon
436                  * GDB connect/disconnect
437                  */
438                 arm7_9_clear_watchpoints(arm7_9);
439         }
440
441         if ((breakpoint->type == BKPT_HARD) && (arm7_9->wp_available < 1))
442         {
443                 LOG_INFO("no watchpoint unit available for hardware breakpoint");
444                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
445         }
446
447         if ((breakpoint->length != 2) && (breakpoint->length != 4))
448         {
449                 LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
450                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
451         }
452
453         if (breakpoint->type == BKPT_HARD)
454         {
455                 arm7_9_assign_wp(arm7_9, breakpoint);
456         }
457
458         arm7_9->breakpoint_count++;
459
460         return arm7_9_set_breakpoint(target, breakpoint);
461 }
462
463 /**
464  * Removes a breakpoint from an ARM7/9 target.  This will make sure there are no
465  * dangling breakpoints and updates available watchpoints if it is a hardware
466  * breakpoint.
467  *
468  * @param target Pointer to the target to have a breakpoint removed
469  * @param breakpoint Pointer to the breakpoint to be removed
470  * @return Error status if there was a problem unsetting the breakpoint or the
471  *         watchpoints could not be cleared
472  */
473 int arm7_9_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
474 {
475         int retval = ERROR_OK;
476         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
477
478         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
479         {
480                 return retval;
481         }
482
483         if (breakpoint->type == BKPT_HARD)
484                 arm7_9->wp_available++;
485
486         arm7_9->breakpoint_count--;
487         if (arm7_9->breakpoint_count == 0)
488         {
489                 /* make sure we don't have any dangling breakpoints */
490                 if ((retval = arm7_9_clear_watchpoints(arm7_9)) != ERROR_OK)
491                 {
492                         return retval;
493                 }
494         }
495
496         return ERROR_OK;
497 }
498
499 /**
500  * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units.  It is
501  * considered a bug to call this function when there are no available watchpoint
502  * units.
503  *
504  * @param target Pointer to an ARM7/9 target to set a watchpoint on
505  * @param watchpoint Pointer to the watchpoint to be set
506  * @return Error status if watchpoint set fails or the result of executing the
507  *         JTAG queue
508  */
509 int arm7_9_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
510 {
511         int retval = ERROR_OK;
512         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
513         int rw_mask = 1;
514         uint32_t mask;
515
516         mask = watchpoint->length - 1;
517
518         if (target->state != TARGET_HALTED)
519         {
520                 LOG_WARNING("target not halted");
521                 return ERROR_TARGET_NOT_HALTED;
522         }
523
524         if (watchpoint->rw == WPT_ACCESS)
525                 rw_mask = 0;
526         else
527                 rw_mask = 1;
528
529         if (!arm7_9->wp0_used)
530         {
531                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], watchpoint->address);
532                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
533                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], watchpoint->mask);
534                 if (watchpoint->mask != 0xffffffffu)
535                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], watchpoint->value);
536                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
537                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
538
539                 if ((retval = jtag_execute_queue()) != ERROR_OK)
540                 {
541                         return retval;
542                 }
543                 watchpoint->set = 1;
544                 arm7_9->wp0_used = 2;
545         }
546         else if (!arm7_9->wp1_used)
547         {
548                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], watchpoint->address);
549                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
550                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], watchpoint->mask);
551                 if (watchpoint->mask != 0xffffffffu)
552                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], watchpoint->value);
553                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
554                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
555
556                 if ((retval = jtag_execute_queue()) != ERROR_OK)
557                 {
558                         return retval;
559                 }
560                 watchpoint->set = 2;
561                 arm7_9->wp1_used = 2;
562         }
563         else
564         {
565                 LOG_ERROR("BUG: no hardware comparator available");
566                 return ERROR_OK;
567         }
568
569         return ERROR_OK;
570 }
571
572 /**
573  * Unset an existing watchpoint and clear the used watchpoint unit.
574  *
575  * @param target Pointer to the target to have the watchpoint removed
576  * @param watchpoint Pointer to the watchpoint to be removed
577  * @return Error status while trying to unset the watchpoint or the result of
578  *         executing the JTAG queue
579  */
580 int arm7_9_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
581 {
582         int retval = ERROR_OK;
583         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
584
585         if (target->state != TARGET_HALTED)
586         {
587                 LOG_WARNING("target not halted");
588                 return ERROR_TARGET_NOT_HALTED;
589         }
590
591         if (!watchpoint->set)
592         {
593                 LOG_WARNING("breakpoint not set");
594                 return ERROR_OK;
595         }
596
597         if (watchpoint->set == 1)
598         {
599                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
600                 if ((retval = jtag_execute_queue()) != ERROR_OK)
601                 {
602                         return retval;
603                 }
604                 arm7_9->wp0_used = 0;
605         }
606         else if (watchpoint->set == 2)
607         {
608                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
609                 if ((retval = jtag_execute_queue()) != ERROR_OK)
610                 {
611                         return retval;
612                 }
613                 arm7_9->wp1_used = 0;
614         }
615         watchpoint->set = 0;
616
617         return ERROR_OK;
618 }
619
620 /**
621  * Add a watchpoint to an ARM7/9 target.  If there are no watchpoint units
622  * available, an error response is returned.
623  *
624  * @param target Pointer to the ARM7/9 target to add a watchpoint to
625  * @param watchpoint Pointer to the watchpoint to be added
626  * @return Error status while trying to add the watchpoint
627  */
628 int arm7_9_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
629 {
630         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
631
632         if (arm7_9->wp_available < 1)
633         {
634                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
635         }
636
637         if ((watchpoint->length != 1) && (watchpoint->length != 2) && (watchpoint->length != 4))
638         {
639                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
640         }
641
642         arm7_9->wp_available--;
643
644         return ERROR_OK;
645 }
646
647 /**
648  * Remove a watchpoint from an ARM7/9 target.  The watchpoint will be unset and
649  * the used watchpoint unit will be reopened.
650  *
651  * @param target Pointer to the target to remove a watchpoint from
652  * @param watchpoint Pointer to the watchpoint to be removed
653  * @return Result of trying to unset the watchpoint
654  */
655 int arm7_9_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
656 {
657         int retval = ERROR_OK;
658         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
659
660         if (watchpoint->set)
661         {
662                 if ((retval = arm7_9_unset_watchpoint(target, watchpoint)) != ERROR_OK)
663                 {
664                         return retval;
665                 }
666         }
667
668         arm7_9->wp_available++;
669
670         return ERROR_OK;
671 }
672
673 /**
674  * Restarts the target by sending a RESTART instruction and moving the JTAG
675  * state to IDLE.  This includes a timeout waiting for DBGACK and SYSCOMP to be
676  * asserted by the processor.
677  *
678  * @param target Pointer to target to issue commands to
679  * @return Error status if there is a timeout or a problem while executing the
680  *         JTAG queue
681  */
682 int arm7_9_execute_sys_speed(struct target *target)
683 {
684         int retval;
685         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
686         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
687         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
688
689         /* set RESTART instruction */
690         jtag_set_end_state(TAP_IDLE);
691         if (arm7_9->need_bypass_before_restart) {
692                 arm7_9->need_bypass_before_restart = 0;
693                 arm_jtag_set_instr(jtag_info, 0xf, NULL);
694         }
695         arm_jtag_set_instr(jtag_info, 0x4, NULL);
696
697         long long then = timeval_ms();
698         int timeout;
699         while (!(timeout = ((timeval_ms()-then) > 1000)))
700         {
701                 /* read debug status register */
702                 embeddedice_read_reg(dbg_stat);
703                 if ((retval = jtag_execute_queue()) != ERROR_OK)
704                         return retval;
705                 if ((buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
706                                    && (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_SYSCOMP, 1)))
707                         break;
708                 if (debug_level >= 3)
709                 {
710                         alive_sleep(100);
711                 } else
712                 {
713                         keep_alive();
714                 }
715         }
716         if (timeout)
717         {
718                 LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32 "", buf_get_u32(dbg_stat->value, 0, dbg_stat->size));
719                 return ERROR_TARGET_TIMEOUT;
720         }
721
722         return ERROR_OK;
723 }
724
725 /**
726  * Restarts the target by sending a RESTART instruction and moving the JTAG
727  * state to IDLE.  This validates that DBGACK and SYSCOMP are set without
728  * waiting until they are.
729  *
730  * @param target Pointer to the target to issue commands to
731  * @return Always ERROR_OK
732  */
733 int arm7_9_execute_fast_sys_speed(struct target *target)
734 {
735         static int set = 0;
736         static uint8_t check_value[4], check_mask[4];
737
738         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
739         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
740         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
741
742         /* set RESTART instruction */
743         jtag_set_end_state(TAP_IDLE);
744         if (arm7_9->need_bypass_before_restart) {
745                 arm7_9->need_bypass_before_restart = 0;
746                 arm_jtag_set_instr(jtag_info, 0xf, NULL);
747         }
748         arm_jtag_set_instr(jtag_info, 0x4, NULL);
749
750         if (!set)
751         {
752                 /* check for DBGACK and SYSCOMP set (others don't care) */
753
754                 /* NB! These are constants that must be available until after next jtag_execute() and
755                  * we evaluate the values upon first execution in lieu of setting up these constants
756                  * during early setup.
757                  * */
758                 buf_set_u32(check_value, 0, 32, 0x9);
759                 buf_set_u32(check_mask, 0, 32, 0x9);
760                 set = 1;
761         }
762
763         /* read debug status register */
764         embeddedice_read_reg_w_check(dbg_stat, check_value, check_mask);
765
766         return ERROR_OK;
767 }
768
769 /**
770  * Get some data from the ARM7/9 target.
771  *
772  * @param target Pointer to the ARM7/9 target to read data from
773  * @param size The number of 32bit words to be read
774  * @param buffer Pointer to the buffer that will hold the data
775  * @return The result of receiving data from the Embedded ICE unit
776  */
777 int arm7_9_target_request_data(struct target *target, uint32_t size, uint8_t *buffer)
778 {
779         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
780         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
781         uint32_t *data;
782         int retval = ERROR_OK;
783         uint32_t i;
784
785         data = malloc(size * (sizeof(uint32_t)));
786
787         retval = embeddedice_receive(jtag_info, data, size);
788
789         /* return the 32-bit ints in the 8-bit array */
790         for (i = 0; i < size; i++)
791         {
792                 h_u32_to_le(buffer + (i * 4), data[i]);
793         }
794
795         free(data);
796
797         return retval;
798 }
799
800 /**
801  * Handles requests to an ARM7/9 target.  If debug messaging is enabled, the
802  * target is running and the DCC control register has the W bit high, this will
803  * execute the request on the target.
804  *
805  * @param priv Void pointer expected to be a struct target pointer
806  * @return ERROR_OK unless there are issues with the JTAG queue or when reading
807  *                  from the Embedded ICE unit
808  */
809 int arm7_9_handle_target_request(void *priv)
810 {
811         int retval = ERROR_OK;
812         struct target *target = priv;
813         if (!target_was_examined(target))
814                 return ERROR_OK;
815         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
816         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
817         struct reg *dcc_control = &arm7_9->eice_cache->reg_list[EICE_COMMS_CTRL];
818
819         if (!target->dbg_msg_enabled)
820                 return ERROR_OK;
821
822         if (target->state == TARGET_RUNNING)
823         {
824                 /* read DCC control register */
825                 embeddedice_read_reg(dcc_control);
826                 if ((retval = jtag_execute_queue()) != ERROR_OK)
827                 {
828                         return retval;
829                 }
830
831                 /* check W bit */
832                 if (buf_get_u32(dcc_control->value, 1, 1) == 1)
833                 {
834                         uint32_t request;
835
836                         if ((retval = embeddedice_receive(jtag_info, &request, 1)) != ERROR_OK)
837                         {
838                                 return retval;
839                         }
840                         if ((retval = target_request(target, request)) != ERROR_OK)
841                         {
842                                 return retval;
843                         }
844                 }
845         }
846
847         return ERROR_OK;
848 }
849
850 /**
851  * Polls an ARM7/9 target for its current status.  If DBGACK is set, the target
852  * is manipulated to the right halted state based on its current state.  This is
853  * what happens:
854  *
855  * <table>
856  *              <tr><th > State</th><th > Action</th></tr>
857  *              <tr><td > TARGET_RUNNING | TARGET_RESET</td><td > Enters debug mode.  If TARGET_RESET, pc may be checked</td></tr>
858  *              <tr><td > TARGET_UNKNOWN</td><td > Warning is logged</td></tr>
859  *              <tr><td > TARGET_DEBUG_RUNNING</td><td > Enters debug mode</td></tr>
860  *              <tr><td > TARGET_HALTED</td><td > Nothing</td></tr>
861  * </table>
862  *
863  * If the target does not end up in the halted state, a warning is produced.  If
864  * DBGACK is cleared, then the target is expected to either be running or
865  * running in debug.
866  *
867  * @param target Pointer to the ARM7/9 target to poll
868  * @return ERROR_OK or an error status if a command fails
869  */
870 int arm7_9_poll(struct target *target)
871 {
872         int retval;
873         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
874         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
875
876         /* read debug status register */
877         embeddedice_read_reg(dbg_stat);
878         if ((retval = jtag_execute_queue()) != ERROR_OK)
879         {
880                 return retval;
881         }
882
883         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
884         {
885 /*              LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, 32));*/
886                 if (target->state == TARGET_UNKNOWN)
887                 {
888                         /* Starting OpenOCD with target in debug-halt */
889                         target->state = TARGET_RUNNING;
890                         LOG_DEBUG("DBGACK already set during server startup.");
891                 }
892                 if ((target->state == TARGET_RUNNING) || (target->state == TARGET_RESET))
893                 {
894                         target->state = TARGET_HALTED;
895
896                         if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
897                                 return retval;
898
899                         if (arm_semihosting(target, &retval) != 0)
900                                 return retval;
901
902                         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
903                         {
904                                 return retval;
905                         }
906                 }
907                 if (target->state == TARGET_DEBUG_RUNNING)
908                 {
909                         target->state = TARGET_HALTED;
910                         if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
911                                 return retval;
912
913                         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED)) != ERROR_OK)
914                         {
915                                 return retval;
916                         }
917                 }
918                 if (target->state != TARGET_HALTED)
919                 {
920                         LOG_WARNING("DBGACK set, but the target did not end up in the halted state %d", target->state);
921                 }
922         }
923         else
924         {
925                 if (target->state != TARGET_DEBUG_RUNNING)
926                         target->state = TARGET_RUNNING;
927         }
928
929         return ERROR_OK;
930 }
931
932 /**
933  * Asserts the reset (SRST) on an ARM7/9 target.  Some -S targets (ARM966E-S in
934  * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
935  * affected) completely stop the JTAG clock while the core is held in reset
936  * (SRST).  It isn't possible to program the halt condition once reset is
937  * asserted, hence a hook that allows the target to set up its reset-halt
938  * condition is setup prior to asserting reset.
939  *
940  * @param target Pointer to an ARM7/9 target to assert reset on
941  * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
942  */
943 int arm7_9_assert_reset(struct target *target)
944 {
945         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
946         enum reset_types jtag_reset_config = jtag_get_reset_config();
947
948         LOG_DEBUG("target->state: %s",
949                   target_state_name(target));
950
951         if (!(jtag_reset_config & RESET_HAS_SRST))
952         {
953                 LOG_ERROR("Can't assert SRST");
954                 return ERROR_FAIL;
955         }
956
957         /* At this point trst has been asserted/deasserted once. We would
958          * like to program EmbeddedICE while SRST is asserted, instead of
959          * depending on SRST to leave that module alone.  However, many CPUs
960          * gate the JTAG clock while SRST is asserted; or JTAG may need
961          * clock stability guarantees (adaptive clocking might help).
962          *
963          * So we assume JTAG access during SRST is off the menu unless it's
964          * been specifically enabled.
965          */
966         bool srst_asserted = false;
967
968         if (((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0)
969                         && (jtag_reset_config & RESET_SRST_NO_GATING))
970         {
971                 jtag_add_reset(0, 1);
972                 srst_asserted = true;
973         }
974
975         if (target->reset_halt)
976         {
977                 /*
978                  * For targets that don't support communication while SRST is
979                  * asserted, we need to set up the reset vector catch first.
980                  *
981                  * When we use TRST+SRST and that's equivalent to a power-up
982                  * reset, these settings may well be reset anyway; so setting
983                  * them here won't matter.
984                  */
985                 if (arm7_9->has_vector_catch)
986                 {
987                         /* program vector catch register to catch reset */
988                         embeddedice_write_reg(&arm7_9->eice_cache
989                                         ->reg_list[EICE_VEC_CATCH], 0x1);
990
991                         /* extra runtest added as issues were found with
992                          * certain ARM9 cores (maybe more) - AT91SAM9260
993                          * and STR9
994                          */
995                         jtag_add_runtest(1, jtag_get_end_state());
996                 }
997                 else
998                 {
999                         /* program watchpoint unit to match on reset vector
1000                          * address
1001                          */
1002                         embeddedice_write_reg(&arm7_9->eice_cache
1003                                         ->reg_list[EICE_W0_ADDR_VALUE], 0x0);
1004                         embeddedice_write_reg(&arm7_9->eice_cache
1005                                         ->reg_list[EICE_W0_ADDR_MASK], 0x3);
1006                         embeddedice_write_reg(&arm7_9->eice_cache
1007                                         ->reg_list[EICE_W0_DATA_MASK],
1008                                                 0xffffffff);
1009                         embeddedice_write_reg(&arm7_9->eice_cache
1010                                         ->reg_list[EICE_W0_CONTROL_VALUE],
1011                                                 EICE_W_CTRL_ENABLE);
1012                         embeddedice_write_reg(&arm7_9->eice_cache
1013                                         ->reg_list[EICE_W0_CONTROL_MASK],
1014                                                 ~EICE_W_CTRL_nOPC & 0xff);
1015                 }
1016         }
1017
1018         /* here we should issue an SRST only, but we may have to assert TRST as well */
1019         if (jtag_reset_config & RESET_SRST_PULLS_TRST)
1020         {
1021                 jtag_add_reset(1, 1);
1022         } else if (!srst_asserted)
1023         {
1024                 jtag_add_reset(0, 1);
1025         }
1026
1027         target->state = TARGET_RESET;
1028         jtag_add_sleep(50000);
1029
1030         register_cache_invalidate(arm7_9->armv4_5_common.core_cache);
1031
1032         if (target->reset_halt
1033                         && !(jtag_reset_config & RESET_SRST_PULLS_TRST))
1034         {
1035                 /* debug entry was prepared above */
1036                 target->debug_reason = DBG_REASON_DBGRQ;
1037         }
1038
1039         return ERROR_OK;
1040 }
1041
1042 /**
1043  * Deassert the reset (SRST) signal on an ARM7/9 target.  If SRST pulls TRST
1044  * and the target is being reset into a halt, a warning will be triggered
1045  * because it is not possible to reset into a halted mode in this case.  The
1046  * target is halted using the target's functions.
1047  *
1048  * @param target Pointer to the target to have the reset deasserted
1049  * @return ERROR_OK or an error from polling or halting the target
1050  */
1051 int arm7_9_deassert_reset(struct target *target)
1052 {
1053         int retval = ERROR_OK;
1054         LOG_DEBUG("target->state: %s",
1055                 target_state_name(target));
1056
1057         /* deassert reset lines */
1058         jtag_add_reset(0, 0);
1059
1060         enum reset_types jtag_reset_config = jtag_get_reset_config();
1061         if (target->reset_halt && (jtag_reset_config & RESET_SRST_PULLS_TRST) != 0)
1062         {
1063                 LOG_WARNING("srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
1064                 /* set up embedded ice registers again */
1065                 if ((retval = target_examine_one(target)) != ERROR_OK)
1066                         return retval;
1067
1068                 if ((retval = target_poll(target)) != ERROR_OK)
1069                 {
1070                         return retval;
1071                 }
1072
1073                 if ((retval = target_halt(target)) != ERROR_OK)
1074                 {
1075                         return retval;
1076                 }
1077
1078         }
1079         return retval;
1080 }
1081
1082 /**
1083  * Clears the halt condition for an ARM7/9 target.  If it isn't coming out of
1084  * reset and if DBGRQ is used, it is progammed to be deasserted.  If the reset
1085  * vector catch was used, it is restored.  Otherwise, the control value is
1086  * restored and the watchpoint unit is restored if it was in use.
1087  *
1088  * @param target Pointer to the ARM7/9 target to have halt cleared
1089  * @return Always ERROR_OK
1090  */
1091 int arm7_9_clear_halt(struct target *target)
1092 {
1093         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1094         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1095
1096         /* we used DBGRQ only if we didn't come out of reset */
1097         if (!arm7_9->debug_entry_from_reset && arm7_9->use_dbgrq)
1098         {
1099                 /* program EmbeddedICE Debug Control Register to deassert DBGRQ
1100                  */
1101                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1102                 embeddedice_store_reg(dbg_ctrl);
1103         }
1104         else
1105         {
1106                 if (arm7_9->debug_entry_from_reset && arm7_9->has_vector_catch)
1107                 {
1108                         /* if we came out of reset, and vector catch is supported, we used
1109                          * vector catch to enter debug state
1110                          * restore the register in that case
1111                          */
1112                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH]);
1113                 }
1114                 else
1115                 {
1116                         /* restore registers if watchpoint unit 0 was in use
1117                          */
1118                         if (arm7_9->wp0_used)
1119                         {
1120                                 if (arm7_9->debug_entry_from_reset)
1121                                 {
1122                                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE]);
1123                                 }
1124                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1125                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1126                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1127                         }
1128                         /* control value always has to be restored, as it was either disabled,
1129                          * or enabled with possibly different bits
1130                          */
1131                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1132                 }
1133         }
1134
1135         return ERROR_OK;
1136 }
1137
1138 /**
1139  * Issue a software reset and halt to an ARM7/9 target.  The target is halted
1140  * and then there is a wait until the processor shows the halt.  This wait can
1141  * timeout and results in an error being returned.  The software reset involves
1142  * clearing the halt, updating the debug control register, changing to ARM mode,
1143  * reset of the program counter, and reset of all of the registers.
1144  *
1145  * @param target Pointer to the ARM7/9 target to be reset and halted by software
1146  * @return Error status if any of the commands fail, otherwise ERROR_OK
1147  */
1148 int arm7_9_soft_reset_halt(struct target *target)
1149 {
1150         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1151         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1152         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1153         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1154         int i;
1155         int retval;
1156
1157         /* FIX!!! replace some of this code with tcl commands
1158          *
1159          * halt # the halt command is synchronous
1160          * armv4_5 core_state arm
1161          *
1162          */
1163
1164         if ((retval = target_halt(target)) != ERROR_OK)
1165                 return retval;
1166
1167         long long then = timeval_ms();
1168         int timeout;
1169         while (!(timeout = ((timeval_ms()-then) > 1000)))
1170         {
1171                 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) != 0)
1172                         break;
1173                 embeddedice_read_reg(dbg_stat);
1174                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1175                         return retval;
1176                 if (debug_level >= 3)
1177                 {
1178                         alive_sleep(100);
1179                 } else
1180                 {
1181                         keep_alive();
1182                 }
1183         }
1184         if (timeout)
1185         {
1186                 LOG_ERROR("Failed to halt CPU after 1 sec");
1187                 return ERROR_TARGET_TIMEOUT;
1188         }
1189         target->state = TARGET_HALTED;
1190
1191         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1192          * ensure that DBGRQ is cleared
1193          */
1194         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1195         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1196         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1197         embeddedice_store_reg(dbg_ctrl);
1198
1199         if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1200         {
1201                 return retval;
1202         }
1203
1204         /* if the target is in Thumb state, change to ARM state */
1205         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1206         {
1207                 uint32_t r0_thumb, pc_thumb;
1208                 LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
1209                 /* Entered debug from Thumb mode */
1210                 armv4_5->core_state = ARM_STATE_THUMB;
1211                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1212         }
1213
1214         /* REVISIT likewise for bit 5 -- switch Jazelle-to-ARM */
1215
1216         /* all register content is now invalid */
1217         register_cache_invalidate(armv4_5->core_cache);
1218
1219         /* SVC, ARM state, IRQ and FIQ disabled */
1220         uint32_t cpsr;
1221
1222         cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 32);
1223         cpsr &= ~0xff;
1224         cpsr |= 0xd3;
1225         arm_set_cpsr(armv4_5, cpsr);
1226         armv4_5->cpsr->dirty = 1;
1227
1228         /* start fetching from 0x0 */
1229         buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, 0x0);
1230         armv4_5->core_cache->reg_list[15].dirty = 1;
1231         armv4_5->core_cache->reg_list[15].valid = 1;
1232
1233         /* reset registers */
1234         for (i = 0; i <= 14; i++)
1235         {
1236                 struct reg *r = arm_reg_current(armv4_5, i);
1237
1238                 buf_set_u32(r->value, 0, 32, 0xffffffff);
1239                 r->dirty = 1;
1240                 r->valid = 1;
1241         }
1242
1243         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
1244         {
1245                 return retval;
1246         }
1247
1248         return ERROR_OK;
1249 }
1250
1251 /**
1252  * Halt an ARM7/9 target.  This is accomplished by either asserting the DBGRQ
1253  * line or by programming a watchpoint to trigger on any address.  It is
1254  * considered a bug to call this function while the target is in the
1255  * TARGET_RESET state.
1256  *
1257  * @param target Pointer to the ARM7/9 target to be halted
1258  * @return Always ERROR_OK
1259  */
1260 int arm7_9_halt(struct target *target)
1261 {
1262         if (target->state == TARGET_RESET)
1263         {
1264                 LOG_ERROR("BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
1265                 return ERROR_OK;
1266         }
1267
1268         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1269         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1270
1271         LOG_DEBUG("target->state: %s",
1272                   target_state_name(target));
1273
1274         if (target->state == TARGET_HALTED)
1275         {
1276                 LOG_DEBUG("target was already halted");
1277                 return ERROR_OK;
1278         }
1279
1280         if (target->state == TARGET_UNKNOWN)
1281         {
1282                 LOG_WARNING("target was in unknown state when halt was requested");
1283         }
1284
1285         if (arm7_9->use_dbgrq)
1286         {
1287                 /* program EmbeddedICE Debug Control Register to assert DBGRQ
1288                  */
1289                 if (arm7_9->set_special_dbgrq) {
1290                         arm7_9->set_special_dbgrq(target);
1291                 } else {
1292                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 1);
1293                         embeddedice_store_reg(dbg_ctrl);
1294                 }
1295         }
1296         else
1297         {
1298                 /* program watchpoint unit to match on any address
1299                  */
1300                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1301                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1302                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1303                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1304         }
1305
1306         target->debug_reason = DBG_REASON_DBGRQ;
1307
1308         return ERROR_OK;
1309 }
1310
1311 /**
1312  * Handle an ARM7/9 target's entry into debug mode.  The halt is cleared on the
1313  * ARM.  The JTAG queue is then executed and the reason for debug entry is
1314  * examined.  Once done, the target is verified to be halted and the processor
1315  * is forced into ARM mode.  The core registers are saved for the current core
1316  * mode and the program counter (register 15) is updated as needed.  The core
1317  * registers and CPSR and SPSR are saved for restoration later.
1318  *
1319  * @param target Pointer to target that is entering debug mode
1320  * @return Error code if anything fails, otherwise ERROR_OK
1321  */
1322 static int arm7_9_debug_entry(struct target *target)
1323 {
1324         int i;
1325         uint32_t context[16];
1326         uint32_t* context_p[16];
1327         uint32_t r0_thumb, pc_thumb;
1328         uint32_t cpsr, cpsr_mask = 0;
1329         int retval;
1330         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1331         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1332         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1333         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1334
1335 #ifdef _DEBUG_ARM7_9_
1336         LOG_DEBUG("-");
1337 #endif
1338
1339         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1340          * ensure that DBGRQ is cleared
1341          */
1342         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1343         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1344         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1345         embeddedice_store_reg(dbg_ctrl);
1346
1347         if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1348         {
1349                 return retval;
1350         }
1351
1352         if ((retval = jtag_execute_queue()) != ERROR_OK)
1353         {
1354                 return retval;
1355         }
1356
1357         if ((retval = arm7_9->examine_debug_reason(target)) != ERROR_OK)
1358                 return retval;
1359
1360
1361         if (target->state != TARGET_HALTED)
1362         {
1363                 LOG_WARNING("target not halted");
1364                 return ERROR_TARGET_NOT_HALTED;
1365         }
1366
1367         /* if the target is in Thumb state, change to ARM state */
1368         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1369         {
1370                 LOG_DEBUG("target entered debug from Thumb state");
1371                 /* Entered debug from Thumb mode */
1372                 armv4_5->core_state = ARM_STATE_THUMB;
1373                 cpsr_mask = 1 << 5;
1374                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1375                 LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32
1376                         ", pc_thumb: 0x%8.8" PRIx32, r0_thumb, pc_thumb);
1377         } else if (buf_get_u32(dbg_stat->value, 5, 1)) {
1378                 /* \todo Get some vaguely correct handling of Jazelle, if
1379                  * anyone ever uses it and full info becomes available.
1380                  * See ARM9EJS TRM B.7.1 for how to switch J->ARM; and
1381                  * B.7.3 for the reverse.  That'd be the bare minimum...
1382                  */
1383                 LOG_DEBUG("target entered debug from Jazelle state");
1384                 armv4_5->core_state = ARM_STATE_JAZELLE;
1385                 cpsr_mask = 1 << 24;
1386                 LOG_ERROR("Jazelle debug entry -- BROKEN!");
1387         } else {
1388                 LOG_DEBUG("target entered debug from ARM state");
1389                 /* Entered debug from ARM mode */
1390                 armv4_5->core_state = ARM_STATE_ARM;
1391         }
1392
1393         for (i = 0; i < 16; i++)
1394                 context_p[i] = &context[i];
1395         /* save core registers (r0 - r15 of current core mode) */
1396         arm7_9->read_core_regs(target, 0xffff, context_p);
1397
1398         arm7_9->read_xpsr(target, &cpsr, 0);
1399
1400         if ((retval = jtag_execute_queue()) != ERROR_OK)
1401                 return retval;
1402
1403         /* Sync our CPSR copy with J or T bits EICE reported, but
1404          * which we then erased by putting the core into ARM mode.
1405          */
1406         arm_set_cpsr(armv4_5, cpsr | cpsr_mask);
1407
1408         if (!is_arm_mode(armv4_5->core_mode))
1409         {
1410                 target->state = TARGET_UNKNOWN;
1411                 LOG_ERROR("cpsr contains invalid mode value - communication failure");
1412                 return ERROR_TARGET_FAILURE;
1413         }
1414
1415         LOG_DEBUG("target entered debug state in %s mode",
1416                          arm_mode_name(armv4_5->core_mode));
1417
1418         if (armv4_5->core_state == ARM_STATE_THUMB)
1419         {
1420                 LOG_DEBUG("thumb state, applying fixups");
1421                 context[0] = r0_thumb;
1422                 context[15] = pc_thumb;
1423         } else if (armv4_5->core_state == ARM_STATE_ARM)
1424         {
1425                 /* adjust value stored by STM */
1426                 context[15] -= 3 * 4;
1427         }
1428
1429         if ((target->debug_reason != DBG_REASON_DBGRQ) || (!arm7_9->use_dbgrq))
1430                 context[15] -= 3 * ((armv4_5->core_state == ARM_STATE_ARM) ? 4 : 2);
1431         else
1432                 context[15] -= arm7_9->dbgreq_adjust_pc * ((armv4_5->core_state == ARM_STATE_ARM) ? 4 : 2);
1433
1434         for (i = 0; i <= 15; i++)
1435         {
1436                 struct reg *r = arm_reg_current(armv4_5, i);
1437
1438                 LOG_DEBUG("r%i: 0x%8.8" PRIx32 "", i, context[i]);
1439
1440                 buf_set_u32(r->value, 0, 32, context[i]);
1441                 /* r0 and r15 (pc) have to be restored later */
1442                 r->dirty = (i == 0) || (i == 15);
1443                 r->valid = 1;
1444         }
1445
1446         LOG_DEBUG("entered debug state at PC 0x%" PRIx32 "", context[15]);
1447
1448         /* exceptions other than USR & SYS have a saved program status register */
1449         if (armv4_5->spsr) {
1450                 uint32_t spsr;
1451                 arm7_9->read_xpsr(target, &spsr, 1);
1452                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1453                 {
1454                         return retval;
1455                 }
1456                 buf_set_u32(armv4_5->spsr->value, 0, 32, spsr);
1457                 armv4_5->spsr->dirty = 0;
1458                 armv4_5->spsr->valid = 1;
1459         }
1460
1461         if ((retval = jtag_execute_queue()) != ERROR_OK)
1462                 return retval;
1463
1464         if (arm7_9->post_debug_entry)
1465                 arm7_9->post_debug_entry(target);
1466
1467         return ERROR_OK;
1468 }
1469
1470 /**
1471  * Validate the full context for an ARM7/9 target in all processor modes.  If
1472  * there are any invalid registers for the target, they will all be read.  This
1473  * includes the PSR.
1474  *
1475  * @param target Pointer to the ARM7/9 target to capture the full context from
1476  * @return Error if the target is not halted, has an invalid core mode, or if
1477  *         the JTAG queue fails to execute
1478  */
1479 int arm7_9_full_context(struct target *target)
1480 {
1481         int i;
1482         int retval;
1483         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1484         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1485
1486         LOG_DEBUG("-");
1487
1488         if (target->state != TARGET_HALTED)
1489         {
1490                 LOG_WARNING("target not halted");
1491                 return ERROR_TARGET_NOT_HALTED;
1492         }
1493
1494         if (!is_arm_mode(armv4_5->core_mode))
1495                 return ERROR_FAIL;
1496
1497         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1498          * SYS shares registers with User, so we don't touch SYS
1499          */
1500         for (i = 0; i < 6; i++)
1501         {
1502                 uint32_t mask = 0;
1503                 uint32_t* reg_p[16];
1504                 int j;
1505                 int valid = 1;
1506
1507                 /* check if there are invalid registers in the current mode
1508                  */
1509                 for (j = 0; j <= 16; j++)
1510                 {
1511                         if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1512                                 valid = 0;
1513                 }
1514
1515                 if (!valid)
1516                 {
1517                         uint32_t tmp_cpsr;
1518
1519                         /* change processor mode (and mask T bit) */
1520                         tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8)
1521                                         & 0xe0;
1522                         tmp_cpsr |= armv4_5_number_to_mode(i);
1523                         tmp_cpsr &= ~0x20;
1524                         arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1525
1526                         for (j = 0; j < 15; j++)
1527                         {
1528                                 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1529                                 {
1530                                         reg_p[j] = (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).value;
1531                                         mask |= 1 << j;
1532                                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid = 1;
1533                                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).dirty = 0;
1534                                 }
1535                         }
1536
1537                         /* if only the PSR is invalid, mask is all zeroes */
1538                         if (mask)
1539                                 arm7_9->read_core_regs(target, mask, reg_p);
1540
1541                         /* check if the PSR has to be read */
1542                         if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid == 0)
1543                         {
1544                                 arm7_9->read_xpsr(target, (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).value, 1);
1545                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid = 1;
1546                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).dirty = 0;
1547                         }
1548                 }
1549         }
1550
1551         /* restore processor mode (mask T bit) */
1552         arm7_9->write_xpsr_im8(target,
1553                         buf_get_u32(armv4_5->cpsr->value, 0, 8) & ~0x20,
1554                         0, 0);
1555
1556         if ((retval = jtag_execute_queue()) != ERROR_OK)
1557         {
1558                 return retval;
1559         }
1560         return ERROR_OK;
1561 }
1562
1563 /**
1564  * Restore the processor context on an ARM7/9 target.  The full processor
1565  * context is analyzed to see if any of the registers are dirty on this end, but
1566  * have a valid new value.  If this is the case, the processor is changed to the
1567  * appropriate mode and the new register values are written out to the
1568  * processor.  If there happens to be a dirty register with an invalid value, an
1569  * error will be logged.
1570  *
1571  * @param target Pointer to the ARM7/9 target to have its context restored
1572  * @return Error status if the target is not halted or the core mode in the
1573  *         armv4_5 struct is invalid.
1574  */
1575 int arm7_9_restore_context(struct target *target)
1576 {
1577         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1578         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1579         struct reg *reg;
1580         struct arm_reg *reg_arch_info;
1581         enum arm_mode current_mode = armv4_5->core_mode;
1582         int i, j;
1583         int dirty;
1584         int mode_change;
1585
1586         LOG_DEBUG("-");
1587
1588         if (target->state != TARGET_HALTED)
1589         {
1590                 LOG_WARNING("target not halted");
1591                 return ERROR_TARGET_NOT_HALTED;
1592         }
1593
1594         if (arm7_9->pre_restore_context)
1595                 arm7_9->pre_restore_context(target);
1596
1597         if (!is_arm_mode(armv4_5->core_mode))
1598                 return ERROR_FAIL;
1599
1600         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1601          * SYS shares registers with User, so we don't touch SYS
1602          */
1603         for (i = 0; i < 6; i++)
1604         {
1605                 LOG_DEBUG("examining %s mode",
1606                                 arm_mode_name(armv4_5->core_mode));
1607                 dirty = 0;
1608                 mode_change = 0;
1609                 /* check if there are dirty registers in the current mode
1610                 */
1611                 for (j = 0; j <= 16; j++)
1612                 {
1613                         reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1614                         reg_arch_info = reg->arch_info;
1615                         if (reg->dirty == 1)
1616                         {
1617                                 if (reg->valid == 1)
1618                                 {
1619                                         dirty = 1;
1620                                         LOG_DEBUG("examining dirty reg: %s", reg->name);
1621                                         if ((reg_arch_info->mode != ARM_MODE_ANY)
1622                                                 && (reg_arch_info->mode != current_mode)
1623                                                 && !((reg_arch_info->mode == ARM_MODE_USR) && (armv4_5->core_mode == ARM_MODE_SYS))
1624                                                 && !((reg_arch_info->mode == ARM_MODE_SYS) && (armv4_5->core_mode == ARM_MODE_USR)))
1625                                         {
1626                                                 mode_change = 1;
1627                                                 LOG_DEBUG("require mode change");
1628                                         }
1629                                 }
1630                                 else
1631                                 {
1632                                         LOG_ERROR("BUG: dirty register '%s', but no valid data", reg->name);
1633                                 }
1634                         }
1635                 }
1636
1637                 if (dirty)
1638                 {
1639                         uint32_t mask = 0x0;
1640                         int num_regs = 0;
1641                         uint32_t regs[16];
1642
1643                         if (mode_change)
1644                         {
1645                                 uint32_t tmp_cpsr;
1646
1647                                 /* change processor mode (mask T bit) */
1648                                 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value,
1649                                                 0, 8) & 0xe0;
1650                                 tmp_cpsr |= armv4_5_number_to_mode(i);
1651                                 tmp_cpsr &= ~0x20;
1652                                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1653                                 current_mode = armv4_5_number_to_mode(i);
1654                         }
1655
1656                         for (j = 0; j <= 14; j++)
1657                         {
1658                                 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1659                                 reg_arch_info = reg->arch_info;
1660
1661
1662                                 if (reg->dirty == 1)
1663                                 {
1664                                         regs[j] = buf_get_u32(reg->value, 0, 32);
1665                                         mask |= 1 << j;
1666                                         num_regs++;
1667                                         reg->dirty = 0;
1668                                         reg->valid = 1;
1669                                         LOG_DEBUG("writing register %i mode %s "
1670                                                 "with value 0x%8.8" PRIx32, j,
1671                                                 arm_mode_name(armv4_5->core_mode),
1672                                                 regs[j]);
1673                                 }
1674                         }
1675
1676                         if (mask)
1677                         {
1678                                 arm7_9->write_core_regs(target, mask, regs);
1679                         }
1680
1681                         reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16);
1682                         reg_arch_info = reg->arch_info;
1683                         if ((reg->dirty) && (reg_arch_info->mode != ARM_MODE_ANY))
1684                         {
1685                                 LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32 "", i, buf_get_u32(reg->value, 0, 32));
1686                                 arm7_9->write_xpsr(target, buf_get_u32(reg->value, 0, 32), 1);
1687                         }
1688                 }
1689         }
1690
1691         if (!armv4_5->cpsr->dirty && (armv4_5->core_mode != current_mode))
1692         {
1693                 /* restore processor mode (mask T bit) */
1694                 uint32_t tmp_cpsr;
1695
1696                 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
1697                 tmp_cpsr |= armv4_5_number_to_mode(i);
1698                 tmp_cpsr &= ~0x20;
1699                 LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr));
1700                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1701         }
1702         else if (armv4_5->cpsr->dirty)
1703         {
1704                 /* CPSR has been changed, full restore necessary (mask T bit) */
1705                 LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32,
1706                                 buf_get_u32(armv4_5->cpsr->value, 0, 32));
1707                 arm7_9->write_xpsr(target,
1708                                 buf_get_u32(armv4_5->cpsr->value, 0, 32)
1709                                         & ~0x20, 0);
1710                 armv4_5->cpsr->dirty = 0;
1711                 armv4_5->cpsr->valid = 1;
1712         }
1713
1714         /* restore PC */
1715         LOG_DEBUG("writing PC with value 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1716         arm7_9->write_pc(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1717         armv4_5->core_cache->reg_list[15].dirty = 0;
1718
1719         if (arm7_9->post_restore_context)
1720                 arm7_9->post_restore_context(target);
1721
1722         return ERROR_OK;
1723 }
1724
1725 /**
1726  * Restart the core of an ARM7/9 target.  A RESTART command is sent to the
1727  * instruction register and the JTAG state is set to TAP_IDLE causing a core
1728  * restart.
1729  *
1730  * @param target Pointer to the ARM7/9 target to be restarted
1731  * @return Result of executing the JTAG queue
1732  */
1733 int arm7_9_restart_core(struct target *target)
1734 {
1735         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1736         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
1737
1738         /* set RESTART instruction */
1739         jtag_set_end_state(TAP_IDLE);
1740         if (arm7_9->need_bypass_before_restart) {
1741                 arm7_9->need_bypass_before_restart = 0;
1742                 arm_jtag_set_instr(jtag_info, 0xf, NULL);
1743         }
1744         arm_jtag_set_instr(jtag_info, 0x4, NULL);
1745
1746         jtag_add_runtest(1, jtag_set_end_state(TAP_IDLE));
1747         return jtag_execute_queue();
1748 }
1749
1750 /**
1751  * Enable the watchpoints on an ARM7/9 target.  The target's watchpoints are
1752  * iterated through and are set on the target if they aren't already set.
1753  *
1754  * @param target Pointer to the ARM7/9 target to enable watchpoints on
1755  */
1756 void arm7_9_enable_watchpoints(struct target *target)
1757 {
1758         struct watchpoint *watchpoint = target->watchpoints;
1759
1760         while (watchpoint)
1761         {
1762                 if (watchpoint->set == 0)
1763                         arm7_9_set_watchpoint(target, watchpoint);
1764                 watchpoint = watchpoint->next;
1765         }
1766 }
1767
1768 /**
1769  * Enable the breakpoints on an ARM7/9 target.  The target's breakpoints are
1770  * iterated through and are set on the target.
1771  *
1772  * @param target Pointer to the ARM7/9 target to enable breakpoints on
1773  */
1774 void arm7_9_enable_breakpoints(struct target *target)
1775 {
1776         struct breakpoint *breakpoint = target->breakpoints;
1777
1778         /* set any pending breakpoints */
1779         while (breakpoint)
1780         {
1781                 arm7_9_set_breakpoint(target, breakpoint);
1782                 breakpoint = breakpoint->next;
1783         }
1784 }
1785
1786 int arm7_9_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
1787 {
1788         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1789         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1790         struct breakpoint *breakpoint = target->breakpoints;
1791         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1792         int err, retval = ERROR_OK;
1793
1794         LOG_DEBUG("-");
1795
1796         if (target->state != TARGET_HALTED)
1797         {
1798                 LOG_WARNING("target not halted");
1799                 return ERROR_TARGET_NOT_HALTED;
1800         }
1801
1802         if (!debug_execution)
1803         {
1804                 target_free_all_working_areas(target);
1805         }
1806
1807         /* current = 1: continue on current pc, otherwise continue at <address> */
1808         if (!current)
1809                 buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
1810
1811         uint32_t current_pc;
1812         current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
1813
1814         /* the front-end may request us not to handle breakpoints */
1815         if (handle_breakpoints)
1816         {
1817                 if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
1818                 {
1819                         LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (id: %d)", breakpoint->address, breakpoint->unique_id );
1820                         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
1821                         {
1822                                 return retval;
1823                         }
1824
1825                         /* calculate PC of next instruction */
1826                         uint32_t next_pc;
1827                         if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
1828                         {
1829                                 uint32_t current_opcode;
1830                                 target_read_u32(target, current_pc, &current_opcode);
1831                                 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
1832                                 return retval;
1833                         }
1834
1835                         LOG_DEBUG("enable single-step");
1836                         arm7_9->enable_single_step(target, next_pc);
1837
1838                         target->debug_reason = DBG_REASON_SINGLESTEP;
1839
1840                         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1841                         {
1842                                 return retval;
1843                         }
1844
1845                         if (armv4_5->core_state == ARM_STATE_ARM)
1846                                 arm7_9->branch_resume(target);
1847                         else if (armv4_5->core_state == ARM_STATE_THUMB)
1848                         {
1849                                 arm7_9->branch_resume_thumb(target);
1850                         }
1851                         else
1852                         {
1853                                 LOG_ERROR("unhandled core state");
1854                                 return ERROR_FAIL;
1855                         }
1856
1857                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1858                         embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1859                         err = arm7_9_execute_sys_speed(target);
1860
1861                         LOG_DEBUG("disable single-step");
1862                         arm7_9->disable_single_step(target);
1863
1864                         if (err != ERROR_OK)
1865                         {
1866                                 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1867                                 {
1868                                         return retval;
1869                                 }
1870                                 target->state = TARGET_UNKNOWN;
1871                                 return err;
1872                         }
1873
1874                         arm7_9_debug_entry(target);
1875                         LOG_DEBUG("new PC after step: 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1876
1877                         LOG_DEBUG("set breakpoint at 0x%8.8" PRIx32 "", breakpoint->address);
1878                         if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1879                         {
1880                                 return retval;
1881                         }
1882                 }
1883         }
1884
1885         /* enable any pending breakpoints and watchpoints */
1886         arm7_9_enable_breakpoints(target);
1887         arm7_9_enable_watchpoints(target);
1888
1889         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1890         {
1891                 return retval;
1892         }
1893
1894         if (armv4_5->core_state == ARM_STATE_ARM)
1895         {
1896                 arm7_9->branch_resume(target);
1897         }
1898         else if (armv4_5->core_state == ARM_STATE_THUMB)
1899         {
1900                 arm7_9->branch_resume_thumb(target);
1901         }
1902         else
1903         {
1904                 LOG_ERROR("unhandled core state");
1905                 return ERROR_FAIL;
1906         }
1907
1908         /* deassert DBGACK and INTDIS */
1909         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1910         /* INTDIS only when we really resume, not during debug execution */
1911         if (!debug_execution)
1912                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 0);
1913         embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1914
1915         if ((retval = arm7_9_restart_core(target)) != ERROR_OK)
1916         {
1917                 return retval;
1918         }
1919
1920         target->debug_reason = DBG_REASON_NOTHALTED;
1921
1922         if (!debug_execution)
1923         {
1924                 /* registers are now invalid */
1925                 register_cache_invalidate(armv4_5->core_cache);
1926                 target->state = TARGET_RUNNING;
1927                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
1928                 {
1929                         return retval;
1930                 }
1931         }
1932         else
1933         {
1934                 target->state = TARGET_DEBUG_RUNNING;
1935                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED)) != ERROR_OK)
1936                 {
1937                         return retval;
1938                 }
1939         }
1940
1941         LOG_DEBUG("target resumed");
1942
1943         return ERROR_OK;
1944 }
1945
1946 void arm7_9_enable_eice_step(struct target *target, uint32_t next_pc)
1947 {
1948         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1949         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1950         uint32_t current_pc;
1951         current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
1952
1953         if (next_pc != current_pc)
1954         {
1955                 /* setup an inverse breakpoint on the current PC
1956                 * - comparator 1 matches the current address
1957                 * - rangeout from comparator 1 is connected to comparator 0 rangein
1958                 * - comparator 0 matches any address, as long as rangein is low */
1959                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1960                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1961                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1962                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~(EICE_W_CTRL_RANGE | EICE_W_CTRL_nOPC) & 0xff);
1963                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], current_pc);
1964                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1965                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1966                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
1967                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1968         }
1969         else
1970         {
1971                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1972                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1973                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
1974                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff);
1975                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], next_pc);
1976                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1977                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1978                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1979                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1980         }
1981 }
1982
1983 void arm7_9_disable_eice_step(struct target *target)
1984 {
1985         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1986
1987         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1988         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1989         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1990         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1991         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE]);
1992         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK]);
1993         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK]);
1994         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK]);
1995         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE]);
1996 }
1997
1998 int arm7_9_step(struct target *target, int current, uint32_t address, int handle_breakpoints)
1999 {
2000         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2001         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2002         struct breakpoint *breakpoint = NULL;
2003         int err, retval;
2004
2005         if (target->state != TARGET_HALTED)
2006         {
2007                 LOG_WARNING("target not halted");
2008                 return ERROR_TARGET_NOT_HALTED;
2009         }
2010
2011         /* current = 1: continue on current pc, otherwise continue at <address> */
2012         if (!current)
2013                 buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
2014
2015         uint32_t current_pc;
2016         current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
2017
2018         /* the front-end may request us not to handle breakpoints */
2019         if (handle_breakpoints)
2020                 if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
2021                         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
2022                         {
2023                                 return retval;
2024                         }
2025
2026         target->debug_reason = DBG_REASON_SINGLESTEP;
2027
2028         /* calculate PC of next instruction */
2029         uint32_t next_pc;
2030         if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
2031         {
2032                 uint32_t current_opcode;
2033                 target_read_u32(target, current_pc, &current_opcode);
2034                 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
2035                 return retval;
2036         }
2037
2038         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
2039         {
2040                 return retval;
2041         }
2042
2043         arm7_9->enable_single_step(target, next_pc);
2044
2045         if (armv4_5->core_state == ARM_STATE_ARM)
2046         {
2047                 arm7_9->branch_resume(target);
2048         }
2049         else if (armv4_5->core_state == ARM_STATE_THUMB)
2050         {
2051                 arm7_9->branch_resume_thumb(target);
2052         }
2053         else
2054         {
2055                 LOG_ERROR("unhandled core state");
2056                 return ERROR_FAIL;
2057         }
2058
2059         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
2060         {
2061                 return retval;
2062         }
2063
2064         err = arm7_9_execute_sys_speed(target);
2065         arm7_9->disable_single_step(target);
2066
2067         /* registers are now invalid */
2068         register_cache_invalidate(armv4_5->core_cache);
2069
2070         if (err != ERROR_OK)
2071         {
2072                 target->state = TARGET_UNKNOWN;
2073         } else {
2074                 arm7_9_debug_entry(target);
2075                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
2076                 {
2077                         return retval;
2078                 }
2079                 LOG_DEBUG("target stepped");
2080         }
2081
2082         if (breakpoint)
2083                 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
2084                 {
2085                         return retval;
2086                 }
2087
2088         return err;
2089 }
2090
2091 static int arm7_9_read_core_reg(struct target *target, struct reg *r,
2092                 int num, enum arm_mode mode)
2093 {
2094         uint32_t* reg_p[16];
2095         uint32_t value;
2096         int retval;
2097         struct arm_reg *areg = r->arch_info;
2098         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2099         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2100
2101         if (!is_arm_mode(armv4_5->core_mode))
2102                 return ERROR_FAIL;
2103         if ((num < 0) || (num > 16))
2104                 return ERROR_INVALID_ARGUMENTS;
2105
2106         if ((mode != ARM_MODE_ANY)
2107                         && (mode != armv4_5->core_mode)
2108                         && (areg->mode != ARM_MODE_ANY))
2109         {
2110                 uint32_t tmp_cpsr;
2111
2112                 /* change processor mode (mask T bit) */
2113                 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
2114                 tmp_cpsr |= mode;
2115                 tmp_cpsr &= ~0x20;
2116                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2117         }
2118
2119         if ((num >= 0) && (num <= 15))
2120         {
2121                 /* read a normal core register */
2122                 reg_p[num] = &value;
2123
2124                 arm7_9->read_core_regs(target, 1 << num, reg_p);
2125         }
2126         else
2127         {
2128                 /* read a program status register
2129                  * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
2130                  */
2131                 arm7_9->read_xpsr(target, &value, areg->mode != ARM_MODE_ANY);
2132         }
2133
2134         if ((retval = jtag_execute_queue()) != ERROR_OK)
2135         {
2136                 return retval;
2137         }
2138
2139         r->valid = 1;
2140         r->dirty = 0;
2141         buf_set_u32(r->value, 0, 32, value);
2142
2143         if ((mode != ARM_MODE_ANY)
2144                         && (mode != armv4_5->core_mode)
2145                         && (areg->mode != ARM_MODE_ANY))        {
2146                 /* restore processor mode (mask T bit) */
2147                 arm7_9->write_xpsr_im8(target,
2148                                 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2149                                         & ~0x20, 0, 0);
2150         }
2151
2152         return ERROR_OK;
2153 }
2154
2155 static int arm7_9_write_core_reg(struct target *target, struct reg *r,
2156                 int num, enum arm_mode mode, uint32_t value)
2157 {
2158         uint32_t reg[16];
2159         struct arm_reg *areg = r->arch_info;
2160         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2161         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2162
2163         if (!is_arm_mode(armv4_5->core_mode))
2164                 return ERROR_FAIL;
2165         if ((num < 0) || (num > 16))
2166                 return ERROR_INVALID_ARGUMENTS;
2167
2168         if ((mode != ARM_MODE_ANY)
2169                         && (mode != armv4_5->core_mode)
2170                         && (areg->mode != ARM_MODE_ANY))        {
2171                 uint32_t tmp_cpsr;
2172
2173                 /* change processor mode (mask T bit) */
2174                 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
2175                 tmp_cpsr |= mode;
2176                 tmp_cpsr &= ~0x20;
2177                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2178         }
2179
2180         if ((num >= 0) && (num <= 15))
2181         {
2182                 /* write a normal core register */
2183                 reg[num] = value;
2184
2185                 arm7_9->write_core_regs(target, 1 << num, reg);
2186         }
2187         else
2188         {
2189                 /* write a program status register
2190                 * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
2191                 */
2192                 int spsr = (areg->mode != ARM_MODE_ANY);
2193
2194                 /* if we're writing the CPSR, mask the T bit */
2195                 if (!spsr)
2196                         value &= ~0x20;
2197
2198                 arm7_9->write_xpsr(target, value, spsr);
2199         }
2200
2201         r->valid = 1;
2202         r->dirty = 0;
2203
2204         if ((mode != ARM_MODE_ANY)
2205                         && (mode != armv4_5->core_mode)
2206                         && (areg->mode != ARM_MODE_ANY))        {
2207                 /* restore processor mode (mask T bit) */
2208                 arm7_9->write_xpsr_im8(target,
2209                                 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2210                                         & ~0x20, 0, 0);
2211         }
2212
2213         return jtag_execute_queue();
2214 }
2215
2216 int arm7_9_read_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2217 {
2218         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2219         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2220         uint32_t reg[16];
2221         uint32_t num_accesses = 0;
2222         int thisrun_accesses;
2223         int i;
2224         uint32_t cpsr;
2225         int retval;
2226         int last_reg = 0;
2227
2228         LOG_DEBUG("address: 0x%8.8" PRIx32 ", size: 0x%8.8" PRIx32 ", count: 0x%8.8" PRIx32 "", address, size, count);
2229
2230         if (target->state != TARGET_HALTED)
2231         {
2232                 LOG_WARNING("target not halted");
2233                 return ERROR_TARGET_NOT_HALTED;
2234         }
2235
2236         /* sanitize arguments */
2237         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2238                 return ERROR_INVALID_ARGUMENTS;
2239
2240         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2241                 return ERROR_TARGET_UNALIGNED_ACCESS;
2242
2243         /* load the base register with the address of the first word */
2244         reg[0] = address;
2245         arm7_9->write_core_regs(target, 0x1, reg);
2246
2247         int j = 0;
2248
2249         switch (size)
2250         {
2251                 case 4:
2252                         while (num_accesses < count)
2253                         {
2254                                 uint32_t reg_list;
2255                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2256                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2257
2258                                 if (last_reg <= thisrun_accesses)
2259                                         last_reg = thisrun_accesses;
2260
2261                                 arm7_9->load_word_regs(target, reg_list);
2262
2263                                 /* fast memory reads are only safe when the target is running
2264                                  * from a sufficiently high clock (32 kHz is usually too slow)
2265                                  */
2266                                 if (arm7_9->fast_memory_access)
2267                                         retval = arm7_9_execute_fast_sys_speed(target);
2268                                 else
2269                                         retval = arm7_9_execute_sys_speed(target);
2270                                 if (retval != ERROR_OK)
2271                                         return retval;
2272
2273                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 4);
2274
2275                                 /* advance buffer, count number of accesses */
2276                                 buffer += thisrun_accesses * 4;
2277                                 num_accesses += thisrun_accesses;
2278
2279                                 if ((j++%1024) == 0)
2280                                 {
2281                                         keep_alive();
2282                                 }
2283                         }
2284                         break;
2285                 case 2:
2286                         while (num_accesses < count)
2287                         {
2288                                 uint32_t reg_list;
2289                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2290                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2291
2292                                 for (i = 1; i <= thisrun_accesses; i++)
2293                                 {
2294                                         if (i > last_reg)
2295                                                 last_reg = i;
2296                                         arm7_9->load_hword_reg(target, i);
2297                                         /* fast memory reads are only safe when the target is running
2298                                          * from a sufficiently high clock (32 kHz is usually too slow)
2299                                          */
2300                                         if (arm7_9->fast_memory_access)
2301                                                 retval = arm7_9_execute_fast_sys_speed(target);
2302                                         else
2303                                                 retval = arm7_9_execute_sys_speed(target);
2304                                         if (retval != ERROR_OK)
2305                                         {
2306                                                 return retval;
2307                                         }
2308
2309                                 }
2310
2311                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 2);
2312
2313                                 /* advance buffer, count number of accesses */
2314                                 buffer += thisrun_accesses * 2;
2315                                 num_accesses += thisrun_accesses;
2316
2317                                 if ((j++%1024) == 0)
2318                                 {
2319                                         keep_alive();
2320                                 }
2321                         }
2322                         break;
2323                 case 1:
2324                         while (num_accesses < count)
2325                         {
2326                                 uint32_t reg_list;
2327                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2328                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2329
2330                                 for (i = 1; i <= thisrun_accesses; i++)
2331                                 {
2332                                         if (i > last_reg)
2333                                                 last_reg = i;
2334                                         arm7_9->load_byte_reg(target, i);
2335                                         /* fast memory reads are only safe when the target is running
2336                                          * from a sufficiently high clock (32 kHz is usually too slow)
2337                                          */
2338                                         if (arm7_9->fast_memory_access)
2339                                                 retval = arm7_9_execute_fast_sys_speed(target);
2340                                         else
2341                                                 retval = arm7_9_execute_sys_speed(target);
2342                                         if (retval != ERROR_OK)
2343                                         {
2344                                                 return retval;
2345                                         }
2346                                 }
2347
2348                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 1);
2349
2350                                 /* advance buffer, count number of accesses */
2351                                 buffer += thisrun_accesses * 1;
2352                                 num_accesses += thisrun_accesses;
2353
2354                                 if ((j++%1024) == 0)
2355                                 {
2356                                         keep_alive();
2357                                 }
2358                         }
2359                         break;
2360         }
2361
2362         if (!is_arm_mode(armv4_5->core_mode))
2363                 return ERROR_FAIL;
2364
2365         for (i = 0; i <= last_reg; i++) {
2366                 struct reg *r = arm_reg_current(armv4_5, i);
2367
2368                 r->dirty = r->valid;
2369         }
2370
2371         arm7_9->read_xpsr(target, &cpsr, 0);
2372         if ((retval = jtag_execute_queue()) != ERROR_OK)
2373         {
2374                 LOG_ERROR("JTAG error while reading cpsr");
2375                 return ERROR_TARGET_DATA_ABORT;
2376         }
2377
2378         if (((cpsr & 0x1f) == ARM_MODE_ABT) && (armv4_5->core_mode != ARM_MODE_ABT))
2379         {
2380                 LOG_WARNING("memory read caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2381
2382                 arm7_9->write_xpsr_im8(target,
2383                                 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2384                                         & ~0x20, 0, 0);
2385
2386                 return ERROR_TARGET_DATA_ABORT;
2387         }
2388
2389         return ERROR_OK;
2390 }
2391
2392 int arm7_9_write_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2393 {
2394         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2395         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2396         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
2397
2398         uint32_t reg[16];
2399         uint32_t num_accesses = 0;
2400         int thisrun_accesses;
2401         int i;
2402         uint32_t cpsr;
2403         int retval;
2404         int last_reg = 0;
2405
2406 #ifdef _DEBUG_ARM7_9_
2407         LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address, size, count);
2408 #endif
2409
2410         if (target->state != TARGET_HALTED)
2411         {
2412                 LOG_WARNING("target not halted");
2413                 return ERROR_TARGET_NOT_HALTED;
2414         }
2415
2416         /* sanitize arguments */
2417         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2418                 return ERROR_INVALID_ARGUMENTS;
2419
2420         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2421                 return ERROR_TARGET_UNALIGNED_ACCESS;
2422
2423         /* load the base register with the address of the first word */
2424         reg[0] = address;
2425         arm7_9->write_core_regs(target, 0x1, reg);
2426
2427         /* Clear DBGACK, to make sure memory fetches work as expected */
2428         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
2429         embeddedice_store_reg(dbg_ctrl);
2430
2431         switch (size)
2432         {
2433                 case 4:
2434                         while (num_accesses < count)
2435                         {
2436                                 uint32_t reg_list;
2437                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2438                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2439
2440                                 for (i = 1; i <= thisrun_accesses; i++)
2441                                 {
2442                                         if (i > last_reg)
2443                                                 last_reg = i;
2444                                         reg[i] = target_buffer_get_u32(target, buffer);
2445                                         buffer += 4;
2446                                 }
2447
2448                                 arm7_9->write_core_regs(target, reg_list, reg);
2449
2450                                 arm7_9->store_word_regs(target, reg_list);
2451
2452                                 /* fast memory writes are only safe when the target is running
2453                                  * from a sufficiently high clock (32 kHz is usually too slow)
2454                                  */
2455                                 if (arm7_9->fast_memory_access)
2456                                         retval = arm7_9_execute_fast_sys_speed(target);
2457                                 else
2458                                         retval = arm7_9_execute_sys_speed(target);
2459                                 if (retval != ERROR_OK)
2460                                 {
2461                                         return retval;
2462                                 }
2463
2464                                 num_accesses += thisrun_accesses;
2465                         }
2466                         break;
2467                 case 2:
2468                         while (num_accesses < count)
2469                         {
2470                                 uint32_t reg_list;
2471                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2472                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2473
2474                                 for (i = 1; i <= thisrun_accesses; i++)
2475                                 {
2476                                         if (i > last_reg)
2477                                                 last_reg = i;
2478                                         reg[i] = target_buffer_get_u16(target, buffer) & 0xffff;
2479                                         buffer += 2;
2480                                 }
2481
2482                                 arm7_9->write_core_regs(target, reg_list, reg);
2483
2484                                 for (i = 1; i <= thisrun_accesses; i++)
2485                                 {
2486                                         arm7_9->store_hword_reg(target, i);
2487
2488                                         /* fast memory writes are only safe when the target is running
2489                                          * from a sufficiently high clock (32 kHz is usually too slow)
2490                                          */
2491                                         if (arm7_9->fast_memory_access)
2492                                                 retval = arm7_9_execute_fast_sys_speed(target);
2493                                         else
2494                                                 retval = arm7_9_execute_sys_speed(target);
2495                                         if (retval != ERROR_OK)
2496                                         {
2497                                                 return retval;
2498                                         }
2499                                 }
2500
2501                                 num_accesses += thisrun_accesses;
2502                         }
2503                         break;
2504                 case 1:
2505                         while (num_accesses < count)
2506                         {
2507                                 uint32_t reg_list;
2508                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2509                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2510
2511                                 for (i = 1; i <= thisrun_accesses; i++)
2512                                 {
2513                                         if (i > last_reg)
2514                                                 last_reg = i;
2515                                         reg[i] = *buffer++ & 0xff;
2516                                 }
2517
2518                                 arm7_9->write_core_regs(target, reg_list, reg);
2519
2520                                 for (i = 1; i <= thisrun_accesses; i++)
2521                                 {
2522                                         arm7_9->store_byte_reg(target, i);
2523                                         /* fast memory writes are only safe when the target is running
2524                                          * from a sufficiently high clock (32 kHz is usually too slow)
2525                                          */
2526                                         if (arm7_9->fast_memory_access)
2527                                                 retval = arm7_9_execute_fast_sys_speed(target);
2528                                         else
2529                                                 retval = arm7_9_execute_sys_speed(target);
2530                                         if (retval != ERROR_OK)
2531                                         {
2532                                                 return retval;
2533                                         }
2534
2535                                 }
2536
2537                                 num_accesses += thisrun_accesses;
2538                         }
2539                         break;
2540         }
2541
2542         /* Re-Set DBGACK */
2543         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
2544         embeddedice_store_reg(dbg_ctrl);
2545
2546         if (!is_arm_mode(armv4_5->core_mode))
2547                 return ERROR_FAIL;
2548
2549         for (i = 0; i <= last_reg; i++) {
2550                 struct reg *r = arm_reg_current(armv4_5, i);
2551
2552                 r->dirty = r->valid;
2553         }
2554
2555         arm7_9->read_xpsr(target, &cpsr, 0);
2556         if ((retval = jtag_execute_queue()) != ERROR_OK)
2557         {
2558                 LOG_ERROR("JTAG error while reading cpsr");
2559                 return ERROR_TARGET_DATA_ABORT;
2560         }
2561
2562         if (((cpsr & 0x1f) == ARM_MODE_ABT) && (armv4_5->core_mode != ARM_MODE_ABT))
2563         {
2564                 LOG_WARNING("memory write caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2565
2566                 arm7_9->write_xpsr_im8(target,
2567                                 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2568                                         & ~0x20, 0, 0);
2569
2570                 return ERROR_TARGET_DATA_ABORT;
2571         }
2572
2573         return ERROR_OK;
2574 }
2575
2576 static int dcc_count;
2577 static uint8_t *dcc_buffer;
2578
2579 static int arm7_9_dcc_completion(struct target *target, uint32_t exit_point, int timeout_ms, void *arch_info)
2580 {
2581         int retval = ERROR_OK;
2582         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2583
2584         if ((retval = target_wait_state(target, TARGET_DEBUG_RUNNING, 500)) != ERROR_OK)
2585                 return retval;
2586
2587         int little = target->endianness == TARGET_LITTLE_ENDIAN;
2588         int count = dcc_count;
2589         uint8_t *buffer = dcc_buffer;
2590         if (count > 2)
2591         {
2592                 /* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
2593                  * core function repeated. */
2594                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2595                 buffer += 4;
2596
2597                 struct embeddedice_reg *ice_reg = arm7_9->eice_cache->reg_list[EICE_COMMS_DATA].arch_info;
2598                 uint8_t reg_addr = ice_reg->addr & 0x1f;
2599                 struct jtag_tap *tap;
2600                 tap = ice_reg->jtag_info->tap;
2601
2602                 embeddedice_write_dcc(tap, reg_addr, buffer, little, count-2);
2603                 buffer += (count-2)*4;
2604
2605                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2606         } else
2607         {
2608                 int i;
2609                 for (i = 0; i < count; i++)
2610                 {
2611                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2612                         buffer += 4;
2613                 }
2614         }
2615
2616         if ((retval = target_halt(target))!= ERROR_OK)
2617         {
2618                 return retval;
2619         }
2620         return target_wait_state(target, TARGET_HALTED, 500);
2621 }
2622
2623 static const uint32_t dcc_code[] =
2624 {
2625         /* r0 == input, points to memory buffer
2626          * r1 == scratch
2627          */
2628
2629         /* spin until DCC control (c0) reports data arrived */
2630         0xee101e10,     /* w: mrc p14, #0, r1, c0, c0 */
2631         0xe3110001,     /*    tst r1, #1              */
2632         0x0afffffc,     /*    bne w                   */
2633
2634         /* read word from DCC (c1), write to memory */
2635         0xee111e10,     /*    mrc p14, #0, r1, c1, c0 */
2636         0xe4801004,     /*    str r1, [r0], #4        */
2637
2638         /* repeat */
2639         0xeafffff9      /*    b   w                   */
2640 };
2641
2642 int arm7_9_bulk_write_memory(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
2643 {
2644         int retval;
2645         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2646         int i;
2647
2648         if (!arm7_9->dcc_downloads)
2649                 return target_write_memory(target, address, 4, count, buffer);
2650
2651         /* regrab previously allocated working_area, or allocate a new one */
2652         if (!arm7_9->dcc_working_area)
2653         {
2654                 uint8_t dcc_code_buf[6 * 4];
2655
2656                 /* make sure we have a working area */
2657                 if (target_alloc_working_area(target, 24, &arm7_9->dcc_working_area) != ERROR_OK)
2658                 {
2659                         LOG_INFO("no working area available, falling back to memory writes");
2660                         return target_write_memory(target, address, 4, count, buffer);
2661                 }
2662
2663                 /* copy target instructions to target endianness */
2664                 for (i = 0; i < 6; i++)
2665                 {
2666                         target_buffer_set_u32(target, dcc_code_buf + i*4, dcc_code[i]);
2667                 }
2668
2669                 /* write DCC code to working area */
2670                 if ((retval = target_write_memory(target, arm7_9->dcc_working_area->address, 4, 6, dcc_code_buf)) != ERROR_OK)
2671                 {
2672                         return retval;
2673                 }
2674         }
2675
2676         struct arm_algorithm armv4_5_info;
2677         struct reg_param reg_params[1];
2678
2679         armv4_5_info.common_magic = ARM_COMMON_MAGIC;
2680         armv4_5_info.core_mode = ARM_MODE_SVC;
2681         armv4_5_info.core_state = ARM_STATE_ARM;
2682
2683         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
2684
2685         buf_set_u32(reg_params[0].value, 0, 32, address);
2686
2687         dcc_count = count;
2688         dcc_buffer = buffer;
2689         retval = armv4_5_run_algorithm_inner(target, 0, NULL, 1, reg_params,
2690                         arm7_9->dcc_working_area->address,
2691                                 arm7_9->dcc_working_area->address + 6*4,
2692                         20*1000, &armv4_5_info, arm7_9_dcc_completion);
2693
2694         if (retval == ERROR_OK)
2695         {
2696                 uint32_t endaddress = buf_get_u32(reg_params[0].value, 0, 32);
2697                 if (endaddress != (address + count*4))
2698                 {
2699                         LOG_ERROR("DCC write failed, expected end address 0x%08" PRIx32 " got 0x%0" PRIx32 "", (address + count*4), endaddress);
2700                         retval = ERROR_FAIL;
2701                 }
2702         }
2703
2704         destroy_reg_param(&reg_params[0]);
2705
2706         return retval;
2707 }
2708
2709 /**
2710  * Perform per-target setup that requires JTAG access.
2711  */
2712 int arm7_9_examine(struct target *target)
2713 {
2714         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2715         int retval;
2716
2717         if (!target_was_examined(target)) {
2718                 struct reg_cache *t, **cache_p;
2719
2720                 t = embeddedice_build_reg_cache(target, arm7_9);
2721                 if (t == NULL)
2722                         return ERROR_FAIL;
2723
2724                 cache_p = register_get_last_cache_p(&target->reg_cache);
2725                 (*cache_p) = t;
2726                 arm7_9->eice_cache = (*cache_p);
2727
2728                 if (arm7_9->armv4_5_common.etm)
2729                         (*cache_p)->next = etm_build_reg_cache(target,
2730                                         &arm7_9->jtag_info,
2731                                         arm7_9->armv4_5_common.etm);
2732
2733                 target_set_examined(target);
2734         }
2735
2736         retval = embeddedice_setup(target);
2737         if (retval == ERROR_OK)
2738                 retval = arm7_9_setup(target);
2739         if (retval == ERROR_OK && arm7_9->armv4_5_common.etm)
2740                 retval = etm_setup(target);
2741         return retval;
2742 }
2743
2744
2745 int arm7_9_check_reset(struct target *target)
2746 {
2747         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2748
2749         if (get_target_reset_nag() && !arm7_9->dcc_downloads)
2750         {
2751                 LOG_WARNING("NOTE! DCC downloads have not been enabled, defaulting to slow memory writes. Type 'help dcc'.");
2752         }
2753
2754         return ERROR_OK;
2755 }
2756
2757 COMMAND_HANDLER(handle_arm7_9_dbgrq_command)
2758 {
2759         struct target *target = get_current_target(CMD_CTX);
2760         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2761
2762         if (!is_arm7_9(arm7_9))
2763         {
2764                 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2765                 return ERROR_TARGET_INVALID;
2766         }
2767
2768         if (CMD_ARGC > 0)
2769                 COMMAND_PARSE_ENABLE(CMD_ARGV[0],arm7_9->use_dbgrq);
2770
2771         command_print(CMD_CTX, "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s", (arm7_9->use_dbgrq) ? "enabled" : "disabled");
2772
2773         return ERROR_OK;
2774 }
2775
2776 COMMAND_HANDLER(handle_arm7_9_fast_memory_access_command)
2777 {
2778         struct target *target = get_current_target(CMD_CTX);
2779         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2780
2781         if (!is_arm7_9(arm7_9))
2782         {
2783                 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2784                 return ERROR_TARGET_INVALID;
2785         }
2786
2787         if (CMD_ARGC > 0)
2788                 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->fast_memory_access);
2789
2790         command_print(CMD_CTX, "fast memory access is %s", (arm7_9->fast_memory_access) ? "enabled" : "disabled");
2791
2792         return ERROR_OK;
2793 }
2794
2795 COMMAND_HANDLER(handle_arm7_9_dcc_downloads_command)
2796 {
2797         struct target *target = get_current_target(CMD_CTX);
2798         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2799
2800         if (!is_arm7_9(arm7_9))
2801         {
2802                 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2803                 return ERROR_TARGET_INVALID;
2804         }
2805
2806         if (CMD_ARGC > 0)
2807                 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->dcc_downloads);
2808
2809         command_print(CMD_CTX, "dcc downloads are %s", (arm7_9->dcc_downloads) ? "enabled" : "disabled");
2810
2811         return ERROR_OK;
2812 }
2813
2814 COMMAND_HANDLER(handle_arm7_9_semihosting_command)
2815 {
2816         struct target *target = get_current_target(CMD_CTX);
2817         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2818
2819         if (!is_arm7_9(arm7_9))
2820         {
2821                 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2822                 return ERROR_TARGET_INVALID;
2823         }
2824
2825         if (CMD_ARGC > 0)
2826         {
2827                 int semihosting;
2828
2829                 COMMAND_PARSE_ENABLE(CMD_ARGV[0], semihosting);
2830
2831                 if (!target_was_examined(target))
2832                 {
2833                         LOG_ERROR("Target not examined yet");
2834                         return ERROR_FAIL;
2835                 }
2836
2837                 if (arm7_9->has_vector_catch) {
2838                         struct reg *vector_catch = &arm7_9->eice_cache
2839                                         ->reg_list[EICE_VEC_CATCH];
2840
2841                         if (!vector_catch->valid)
2842                                 embeddedice_read_reg(vector_catch);
2843                         buf_set_u32(vector_catch->value, 2, 1, semihosting);
2844                         embeddedice_store_reg(vector_catch);
2845                 } else {
2846                         /* TODO: allow optional high vectors and/or BKPT_HARD */
2847                         if (semihosting)
2848                                 breakpoint_add(target, 8, 4, BKPT_SOFT);
2849                         else
2850                                 breakpoint_remove(target, 8); 
2851                 }
2852
2853                 /* FIXME never let that "catch" be dropped! */
2854                 arm7_9->armv4_5_common.is_semihosting = semihosting;
2855
2856         }
2857
2858         command_print(CMD_CTX, "semihosting is %s",
2859                         arm7_9->armv4_5_common.is_semihosting
2860                         ? "enabled" : "disabled");
2861
2862         return ERROR_OK;
2863 }
2864
2865 int arm7_9_init_arch_info(struct target *target, struct arm7_9_common *arm7_9)
2866 {
2867         int retval = ERROR_OK;
2868         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2869
2870         arm7_9->common_magic = ARM7_9_COMMON_MAGIC;
2871
2872         if ((retval = arm_jtag_setup_connection(&arm7_9->jtag_info)) != ERROR_OK)
2873                 return retval;
2874
2875         /* caller must have allocated via calloc(), so everything's zeroed */
2876
2877         arm7_9->wp_available_max = 2;
2878
2879         arm7_9->fast_memory_access = false;
2880         arm7_9->dcc_downloads = false;
2881
2882         armv4_5->arch_info = arm7_9;
2883         armv4_5->read_core_reg = arm7_9_read_core_reg;
2884         armv4_5->write_core_reg = arm7_9_write_core_reg;
2885         armv4_5->full_context = arm7_9_full_context;
2886
2887         retval = arm_init_arch_info(target, armv4_5);
2888         if (retval != ERROR_OK)
2889                 return retval;
2890
2891         return target_register_timer_callback(arm7_9_handle_target_request,
2892                         1, 1, target);
2893 }
2894
2895 static const struct command_registration arm7_9_any_command_handlers[] = {
2896         {
2897                 "dbgrq",
2898                 .handler = handle_arm7_9_dbgrq_command,
2899                 .mode = COMMAND_ANY,
2900                 .usage = "['enable'|'disable']",
2901                 .help = "use EmbeddedICE dbgrq instead of breakpoint "
2902                         "for target halt requests",
2903         },
2904         {
2905                 "fast_memory_access",
2906                 .handler = handle_arm7_9_fast_memory_access_command,
2907                 .mode = COMMAND_ANY,
2908                 .usage = "['enable'|'disable']",
2909                 .help = "use fast memory accesses instead of slower "
2910                         "but potentially safer accesses",
2911         },
2912         {
2913                 "dcc_downloads",
2914                 .handler = handle_arm7_9_dcc_downloads_command,
2915                 .mode = COMMAND_ANY,
2916                 .usage = "['enable'|'disable']",
2917                 .help = "use DCC downloads for larger memory writes",
2918         },
2919         {
2920                 "semihosting",
2921                 .handler = handle_arm7_9_semihosting_command,
2922                 .mode = COMMAND_EXEC,
2923                 .usage = "['enable'|'disable']",
2924                 .help = "activate support for semihosting operations",
2925         },
2926         COMMAND_REGISTRATION_DONE
2927 };
2928 const struct command_registration arm7_9_command_handlers[] = {
2929         {
2930                 .chain = arm_command_handlers,
2931         },
2932         {
2933                 .chain = etm_command_handlers,
2934         },
2935         {
2936                 .name = "arm7_9",
2937                 .mode = COMMAND_ANY,
2938                 .help = "arm7/9 specific commands",
2939                 .chain = arm7_9_any_command_handlers,
2940         },
2941         COMMAND_REGISTRATION_DONE
2942 };