Remove FSF address from GPL notices
[fw/openocd] / src / target / arm7_9_common.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2008 by Hongtao Zheng                                   *
12  *   hontor@126.com                                                        *
13  *                                                                         *
14  *   Copyright (C) 2009 by David Brownell                                  *
15  *                                                                         *
16  *   This program is free software; you can redistribute it and/or modify  *
17  *   it under the terms of the GNU General Public License as published by  *
18  *   the Free Software Foundation; either version 2 of the License, or     *
19  *   (at your option) any later version.                                   *
20  *                                                                         *
21  *   This program is distributed in the hope that it will be useful,       *
22  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
23  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
24  *   GNU General Public License for more details.                          *
25  *                                                                         *
26  *   You should have received a copy of the GNU General Public License     *
27  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
28  ***************************************************************************/
29
30 #ifdef HAVE_CONFIG_H
31 #include "config.h"
32 #endif
33
34 #include "breakpoints.h"
35 #include "embeddedice.h"
36 #include "target_request.h"
37 #include "etm.h"
38 #include <helper/time_support.h>
39 #include "arm_simulator.h"
40 #include "arm_semihosting.h"
41 #include "algorithm.h"
42 #include "register.h"
43 #include "armv4_5.h"
44
45 /**
46  * @file
47  * Hold common code supporting the ARM7 and ARM9 core generations.
48  *
49  * While the ARM core implementations evolved substantially during these
50  * two generations, they look quite similar from the JTAG perspective.
51  * Both have similar debug facilities, based on the same two scan chains
52  * providing access to the core and to an EmbeddedICE module.  Both can
53  * support similar ETM and ETB modules, for tracing.  And both expose
54  * what could be viewed as "ARM Classic", with multiple processor modes,
55  * shadowed registers, and support for the Thumb instruction set.
56  *
57  * Processor differences include things like presence or absence of MMU
58  * and cache, pipeline sizes, use of a modified Harvard Architecure
59  * (with separate instruction and data busses from the CPU), support
60  * for cpu clock gating during idle, and more.
61  */
62
63 static int arm7_9_debug_entry(struct target *target);
64
65 /**
66  * Clear watchpoints for an ARM7/9 target.
67  *
68  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
69  * @return JTAG error status after executing queue
70  */
71 static int arm7_9_clear_watchpoints(struct arm7_9_common *arm7_9)
72 {
73         LOG_DEBUG("-");
74         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
75         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
76         arm7_9->sw_breakpoint_count = 0;
77         arm7_9->sw_breakpoints_added = 0;
78         arm7_9->wp0_used = 0;
79         arm7_9->wp1_used = arm7_9->wp1_used_default;
80         arm7_9->wp_available = arm7_9->wp_available_max;
81
82         return jtag_execute_queue();
83 }
84
85 /**
86  * Assign a watchpoint to one of the two available hardware comparators in an
87  * ARM7 or ARM9 target.
88  *
89  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
90  * @param breakpoint Pointer to the breakpoint to be used as a watchpoint
91  */
92 static void arm7_9_assign_wp(struct arm7_9_common *arm7_9, struct breakpoint *breakpoint)
93 {
94         if (!arm7_9->wp0_used) {
95                 arm7_9->wp0_used = 1;
96                 breakpoint->set = 1;
97                 arm7_9->wp_available--;
98         } else if (!arm7_9->wp1_used) {
99                 arm7_9->wp1_used = 1;
100                 breakpoint->set = 2;
101                 arm7_9->wp_available--;
102         } else
103                 LOG_ERROR("BUG: no hardware comparator available");
104         LOG_DEBUG("BPID: %" PRId32 " (0x%08" PRIx32 ") using hw wp: %d",
105                         breakpoint->unique_id,
106                         breakpoint->address,
107                         breakpoint->set);
108 }
109
110 /**
111  * Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
112  *
113  * @param arm7_9 Pointer to common struct for ARM7/9 targets
114  * @return Error codes if there is a problem finding a watchpoint or the result
115  * of executing the JTAG queue
116  */
117 static int arm7_9_set_software_breakpoints(struct arm7_9_common *arm7_9)
118 {
119         if (arm7_9->sw_breakpoints_added)
120                 return ERROR_OK;
121         if (arm7_9->wp_available < 1) {
122                 LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
123                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
124         }
125         arm7_9->wp_available--;
126
127         /* pick a breakpoint unit */
128         if (!arm7_9->wp0_used) {
129                 arm7_9->sw_breakpoints_added = 1;
130                 arm7_9->wp0_used = 3;
131         } else if (!arm7_9->wp1_used) {
132                 arm7_9->sw_breakpoints_added = 2;
133                 arm7_9->wp1_used = 3;
134         } else {
135                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
136                 return ERROR_FAIL;
137         }
138
139         if (arm7_9->sw_breakpoints_added == 1) {
140                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], arm7_9->arm_bkpt);
141                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0x0);
142                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffffu);
143                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
144                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
145         } else if (arm7_9->sw_breakpoints_added == 2) {
146                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], arm7_9->arm_bkpt);
147                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0x0);
148                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0xffffffffu);
149                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
150                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
151         } else {
152                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
153                 return ERROR_FAIL;
154         }
155         LOG_DEBUG("SW BP using hw wp: %d",
156                 arm7_9->sw_breakpoints_added);
157
158         return jtag_execute_queue();
159 }
160
161 /**
162  * Setup the common pieces for an ARM7/9 target after reset or on startup.
163  *
164  * @param target Pointer to an ARM7/9 target to setup
165  * @return Result of clearing the watchpoints on the target
166  */
167 static int arm7_9_setup(struct target *target)
168 {
169         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
170
171         return arm7_9_clear_watchpoints(arm7_9);
172 }
173
174 /**
175  * Set either a hardware or software breakpoint on an ARM7/9 target.  The
176  * breakpoint is set up even if it is already set.  Some actions, e.g. reset,
177  * might have erased the values in Embedded ICE.
178  *
179  * @param target Pointer to the target device to set the breakpoints on
180  * @param breakpoint Pointer to the breakpoint to be set
181  * @return For hardware breakpoints, this is the result of executing the JTAG
182  * queue.  For software breakpoints, this will be the status of the
183  * required memory reads and writes
184  */
185 static int arm7_9_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
186 {
187         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
188         int retval = ERROR_OK;
189
190         LOG_DEBUG("BPID: %" PRId32 ", Address: 0x%08" PRIx32 ", Type: %d",
191                 breakpoint->unique_id,
192                 breakpoint->address,
193                 breakpoint->type);
194
195         if (target->state != TARGET_HALTED) {
196                 LOG_WARNING("target not halted");
197                 return ERROR_TARGET_NOT_HALTED;
198         }
199
200         if (breakpoint->type == BKPT_HARD) {
201                 /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
202                 uint32_t mask = (breakpoint->length == 4) ? 0x3u : 0x1u;
203
204                 /* reassign a hw breakpoint */
205                 if (breakpoint->set == 0)
206                         arm7_9_assign_wp(arm7_9, breakpoint);
207
208                 if (breakpoint->set == 1) {
209                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], breakpoint->address);
210                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
211                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffffu);
212                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
213                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
214                 } else if (breakpoint->set == 2) {
215                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], breakpoint->address);
216                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
217                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffffu);
218                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
219                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
220                 } else {
221                         LOG_ERROR("BUG: no hardware comparator available");
222                         return ERROR_OK;
223                 }
224
225                 retval = jtag_execute_queue();
226         } else if (breakpoint->type == BKPT_SOFT) {
227                 /* did we already set this breakpoint? */
228                 if (breakpoint->set)
229                         return ERROR_OK;
230
231                 if (breakpoint->length == 4) {
232                         uint32_t verify = 0xffffffff;
233                         /* keep the original instruction in target endianness */
234                         retval = target_read_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr);
235                         if (retval != ERROR_OK)
236                                 return retval;
237                         /* write the breakpoint instruction in target
238                          * endianness (arm7_9->arm_bkpt is host endian) */
239                         retval = target_write_u32(target, breakpoint->address, arm7_9->arm_bkpt);
240                         if (retval != ERROR_OK)
241                                 return retval;
242
243                         retval = target_read_u32(target, breakpoint->address, &verify);
244                         if (retval != ERROR_OK)
245                                 return retval;
246                         if (verify != arm7_9->arm_bkpt) {
247                                 LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" PRIx32
248                                                 " - check that memory is read/writable", breakpoint->address);
249                                 return ERROR_OK;
250                         }
251                 } else {
252                         uint16_t verify = 0xffff;
253                         /* keep the original instruction in target endianness */
254                         retval = target_read_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr);
255                         if (retval != ERROR_OK)
256                                 return retval;
257                         /* write the breakpoint instruction in target
258                          * endianness (arm7_9->thumb_bkpt is host endian) */
259                         retval = target_write_u16(target, breakpoint->address, arm7_9->thumb_bkpt);
260                         if (retval != ERROR_OK)
261                                 return retval;
262
263                         retval = target_read_u16(target, breakpoint->address, &verify);
264                         if (retval != ERROR_OK)
265                                 return retval;
266                         if (verify != arm7_9->thumb_bkpt) {
267                                 LOG_ERROR("Unable to set thumb software breakpoint at address %08" PRIx32
268                                                 " - check that memory is read/writable", breakpoint->address);
269                                 return ERROR_OK;
270                         }
271                 }
272
273                 retval = arm7_9_set_software_breakpoints(arm7_9);
274                 if (retval != ERROR_OK)
275                         return retval;
276
277                 arm7_9->sw_breakpoint_count++;
278
279                 breakpoint->set = 1;
280         }
281
282         return retval;
283 }
284
285 /**
286  * Unsets an existing breakpoint on an ARM7/9 target.  If it is a hardware
287  * breakpoint, the watchpoint used will be freed and the Embedded ICE registers
288  * will be updated.  Otherwise, the software breakpoint will be restored to its
289  * original instruction if it hasn't already been modified.
290  *
291  * @param target Pointer to ARM7/9 target to unset the breakpoint from
292  * @param breakpoint Pointer to breakpoint to be unset
293  * @return For hardware breakpoints, this is the result of executing the JTAG
294  * queue.  For software breakpoints, this will be the status of the
295  * required memory reads and writes
296  */
297 static int arm7_9_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
298 {
299         int retval = ERROR_OK;
300         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
301
302         LOG_DEBUG("BPID: %" PRId32 ", Address: 0x%08" PRIx32,
303                 breakpoint->unique_id,
304                 breakpoint->address);
305
306         if (!breakpoint->set) {
307                 LOG_WARNING("breakpoint not set");
308                 return ERROR_OK;
309         }
310
311         if (breakpoint->type == BKPT_HARD) {
312                 LOG_DEBUG("BPID: %" PRId32 " Releasing hw wp: %d",
313                         breakpoint->unique_id,
314                         breakpoint->set);
315                 if (breakpoint->set == 1) {
316                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
317                         arm7_9->wp0_used = 0;
318                         arm7_9->wp_available++;
319                 } else if (breakpoint->set == 2) {
320                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
321                         arm7_9->wp1_used = 0;
322                         arm7_9->wp_available++;
323                 }
324                 retval = jtag_execute_queue();
325                 breakpoint->set = 0;
326         } else {
327                 /* restore original instruction (kept in target endianness) */
328                 if (breakpoint->length == 4) {
329                         uint32_t current_instr;
330                         /* check that user program as not modified breakpoint instruction */
331                         retval = target_read_memory(target,
332                                         breakpoint->address, 4, 1, (uint8_t *)&current_instr);
333                         if (retval != ERROR_OK)
334                                 return retval;
335                         current_instr = target_buffer_get_u32(target, (uint8_t *)&current_instr);
336                         if (current_instr == arm7_9->arm_bkpt) {
337                                 retval = target_write_memory(target,
338                                                 breakpoint->address, 4, 1, breakpoint->orig_instr);
339                                 if (retval != ERROR_OK)
340                                         return retval;
341                         }
342
343                 } else {
344                         uint16_t current_instr;
345                         /* check that user program as not modified breakpoint instruction */
346                         retval = target_read_memory(target,
347                                         breakpoint->address, 2, 1, (uint8_t *)&current_instr);
348                         if (retval != ERROR_OK)
349                                 return retval;
350                         current_instr = target_buffer_get_u16(target, (uint8_t *)&current_instr);
351                         if (current_instr == arm7_9->thumb_bkpt) {
352                                 retval = target_write_memory(target,
353                                                 breakpoint->address, 2, 1, breakpoint->orig_instr);
354                                 if (retval != ERROR_OK)
355                                         return retval;
356                         }
357                 }
358
359                 if (--arm7_9->sw_breakpoint_count == 0) {
360                         /* We have removed the last sw breakpoint, clear the hw breakpoint we used
361                          *to implement it */
362                         if (arm7_9->sw_breakpoints_added == 1)
363                                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[
364                                                 EICE_W0_CONTROL_VALUE], 0);
365                         else if (arm7_9->sw_breakpoints_added == 2)
366                                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[
367                                                 EICE_W1_CONTROL_VALUE], 0);
368                 }
369
370                 breakpoint->set = 0;
371         }
372
373         return retval;
374 }
375
376 /**
377  * Add a breakpoint to an ARM7/9 target.  This makes sure that there are no
378  * dangling breakpoints and that the desired breakpoint can be added.
379  *
380  * @param target Pointer to the target ARM7/9 device to add a breakpoint to
381  * @param breakpoint Pointer to the breakpoint to be added
382  * @return An error status if there is a problem adding the breakpoint or the
383  * result of setting the breakpoint
384  */
385 int arm7_9_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
386 {
387         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
388
389         if (arm7_9->breakpoint_count == 0) {
390                 /* make sure we don't have any dangling breakpoints. This is vital upon
391                  * GDB connect/disconnect
392                  */
393                 arm7_9_clear_watchpoints(arm7_9);
394         }
395
396         if ((breakpoint->type == BKPT_HARD) && (arm7_9->wp_available < 1)) {
397                 LOG_INFO("no watchpoint unit available for hardware breakpoint");
398                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
399         }
400
401         if ((breakpoint->length != 2) && (breakpoint->length != 4)) {
402                 LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
403                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
404         }
405
406         if (breakpoint->type == BKPT_HARD)
407                 arm7_9_assign_wp(arm7_9, breakpoint);
408
409         arm7_9->breakpoint_count++;
410
411         return arm7_9_set_breakpoint(target, breakpoint);
412 }
413
414 /**
415  * Removes a breakpoint from an ARM7/9 target.  This will make sure there are no
416  * dangling breakpoints and updates available watchpoints if it is a hardware
417  * breakpoint.
418  *
419  * @param target Pointer to the target to have a breakpoint removed
420  * @param breakpoint Pointer to the breakpoint to be removed
421  * @return Error status if there was a problem unsetting the breakpoint or the
422  * watchpoints could not be cleared
423  */
424 int arm7_9_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
425 {
426         int retval = ERROR_OK;
427         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
428
429         retval = arm7_9_unset_breakpoint(target, breakpoint);
430         if (retval != ERROR_OK)
431                 return retval;
432
433         if (breakpoint->type == BKPT_HARD)
434                 arm7_9->wp_available++;
435
436         arm7_9->breakpoint_count--;
437         if (arm7_9->breakpoint_count == 0) {
438                 /* make sure we don't have any dangling breakpoints */
439                 retval = arm7_9_clear_watchpoints(arm7_9);
440                 if (retval != ERROR_OK)
441                         return retval;
442         }
443
444         return ERROR_OK;
445 }
446
447 /**
448  * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units.  It is
449  * considered a bug to call this function when there are no available watchpoint
450  * units.
451  *
452  * @param target Pointer to an ARM7/9 target to set a watchpoint on
453  * @param watchpoint Pointer to the watchpoint to be set
454  * @return Error status if watchpoint set fails or the result of executing the
455  * JTAG queue
456  */
457 static int arm7_9_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
458 {
459         int retval = ERROR_OK;
460         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
461         int rw_mask = 1;
462         uint32_t mask;
463
464         mask = watchpoint->length - 1;
465
466         if (target->state != TARGET_HALTED) {
467                 LOG_WARNING("target not halted");
468                 return ERROR_TARGET_NOT_HALTED;
469         }
470
471         if (watchpoint->rw == WPT_ACCESS)
472                 rw_mask = 0;
473         else
474                 rw_mask = 1;
475
476         if (!arm7_9->wp0_used) {
477                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE],
478                         watchpoint->address);
479                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
480                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK],
481                         watchpoint->mask);
482                 if (watchpoint->mask != 0xffffffffu)
483                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE],
484                                 watchpoint->value);
485                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK],
486                         0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
487                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE],
488                         EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
489
490                 retval = jtag_execute_queue();
491                 if (retval != ERROR_OK)
492                         return retval;
493                 watchpoint->set = 1;
494                 arm7_9->wp0_used = 2;
495         } else if (!arm7_9->wp1_used) {
496                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE],
497                         watchpoint->address);
498                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
499                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK],
500                         watchpoint->mask);
501                 if (watchpoint->mask != 0xffffffffu)
502                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE],
503                                 watchpoint->value);
504                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK],
505                         0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
506                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE],
507                         EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
508
509                 retval = jtag_execute_queue();
510                 if (retval != ERROR_OK)
511                         return retval;
512                 watchpoint->set = 2;
513                 arm7_9->wp1_used = 2;
514         } else {
515                 LOG_ERROR("BUG: no hardware comparator available");
516                 return ERROR_OK;
517         }
518
519         return ERROR_OK;
520 }
521
522 /**
523  * Unset an existing watchpoint and clear the used watchpoint unit.
524  *
525  * @param target Pointer to the target to have the watchpoint removed
526  * @param watchpoint Pointer to the watchpoint to be removed
527  * @return Error status while trying to unset the watchpoint or the result of
528  *         executing the JTAG queue
529  */
530 static int arm7_9_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
531 {
532         int retval = ERROR_OK;
533         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
534
535         if (target->state != TARGET_HALTED) {
536                 LOG_WARNING("target not halted");
537                 return ERROR_TARGET_NOT_HALTED;
538         }
539
540         if (!watchpoint->set) {
541                 LOG_WARNING("breakpoint not set");
542                 return ERROR_OK;
543         }
544
545         if (watchpoint->set == 1) {
546                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
547                 retval = jtag_execute_queue();
548                 if (retval != ERROR_OK)
549                         return retval;
550                 arm7_9->wp0_used = 0;
551         } else if (watchpoint->set == 2) {
552                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
553                 retval = jtag_execute_queue();
554                 if (retval != ERROR_OK)
555                         return retval;
556                 arm7_9->wp1_used = 0;
557         }
558         watchpoint->set = 0;
559
560         return ERROR_OK;
561 }
562
563 /**
564  * Add a watchpoint to an ARM7/9 target.  If there are no watchpoint units
565  * available, an error response is returned.
566  *
567  * @param target Pointer to the ARM7/9 target to add a watchpoint to
568  * @param watchpoint Pointer to the watchpoint to be added
569  * @return Error status while trying to add the watchpoint
570  */
571 int arm7_9_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
572 {
573         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
574
575         if (arm7_9->wp_available < 1)
576                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
577
578         if ((watchpoint->length != 1) && (watchpoint->length != 2) && (watchpoint->length != 4))
579                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
580
581         arm7_9->wp_available--;
582
583         return ERROR_OK;
584 }
585
586 /**
587  * Remove a watchpoint from an ARM7/9 target.  The watchpoint will be unset and
588  * the used watchpoint unit will be reopened.
589  *
590  * @param target Pointer to the target to remove a watchpoint from
591  * @param watchpoint Pointer to the watchpoint to be removed
592  * @return Result of trying to unset the watchpoint
593  */
594 int arm7_9_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
595 {
596         int retval = ERROR_OK;
597         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
598
599         if (watchpoint->set) {
600                 retval = arm7_9_unset_watchpoint(target, watchpoint);
601                 if (retval != ERROR_OK)
602                         return retval;
603         }
604
605         arm7_9->wp_available++;
606
607         return ERROR_OK;
608 }
609
610 /**
611  * Restarts the target by sending a RESTART instruction and moving the JTAG
612  * state to IDLE.  This includes a timeout waiting for DBGACK and SYSCOMP to be
613  * asserted by the processor.
614  *
615  * @param target Pointer to target to issue commands to
616  * @return Error status if there is a timeout or a problem while executing the
617  * JTAG queue
618  */
619 int arm7_9_execute_sys_speed(struct target *target)
620 {
621         int retval;
622         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
623         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
624         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
625
626         /* set RESTART instruction */
627         if (arm7_9->need_bypass_before_restart) {
628                 arm7_9->need_bypass_before_restart = 0;
629                 retval = arm_jtag_set_instr(jtag_info->tap, 0xf, NULL, TAP_IDLE);
630                 if (retval != ERROR_OK)
631                         return retval;
632         }
633         retval = arm_jtag_set_instr(jtag_info->tap, 0x4, NULL, TAP_IDLE);
634         if (retval != ERROR_OK)
635                 return retval;
636
637         long long then = timeval_ms();
638         int timeout;
639         while (!(timeout = ((timeval_ms()-then) > 1000))) {
640                 /* read debug status register */
641                 embeddedice_read_reg(dbg_stat);
642                 retval = jtag_execute_queue();
643                 if (retval != ERROR_OK)
644                         return retval;
645                 if ((buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
646                                 && (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_SYSCOMP, 1)))
647                         break;
648                 if (debug_level >= 3)
649                         alive_sleep(100);
650                 else
651                         keep_alive();
652         }
653         if (timeout) {
654                 LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32 "",
655                         buf_get_u32(dbg_stat->value, 0, dbg_stat->size));
656                 return ERROR_TARGET_TIMEOUT;
657         }
658
659         return ERROR_OK;
660 }
661
662 /**
663  * Restarts the target by sending a RESTART instruction and moving the JTAG
664  * state to IDLE.  This validates that DBGACK and SYSCOMP are set without
665  * waiting until they are.
666  *
667  * @param target Pointer to the target to issue commands to
668  * @return Always ERROR_OK
669  */
670 static int arm7_9_execute_fast_sys_speed(struct target *target)
671 {
672         static int set;
673         static uint8_t check_value[4], check_mask[4];
674
675         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
676         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
677         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
678         int retval;
679
680         /* set RESTART instruction */
681         if (arm7_9->need_bypass_before_restart) {
682                 arm7_9->need_bypass_before_restart = 0;
683                 retval = arm_jtag_set_instr(jtag_info->tap, 0xf, NULL, TAP_IDLE);
684                 if (retval != ERROR_OK)
685                         return retval;
686         }
687         retval = arm_jtag_set_instr(jtag_info->tap, 0x4, NULL, TAP_IDLE);
688         if (retval != ERROR_OK)
689                 return retval;
690
691         if (!set) {
692                 /* check for DBGACK and SYSCOMP set (others don't care) */
693
694                 /* NB! These are constants that must be available until after next jtag_execute() and
695                  * we evaluate the values upon first execution in lieu of setting up these constants
696                  * during early setup.
697                  * */
698                 buf_set_u32(check_value, 0, 32, 0x9);
699                 buf_set_u32(check_mask, 0, 32, 0x9);
700                 set = 1;
701         }
702
703         /* read debug status register */
704         embeddedice_read_reg_w_check(dbg_stat, check_value, check_mask);
705
706         return ERROR_OK;
707 }
708
709 /**
710  * Get some data from the ARM7/9 target.
711  *
712  * @param target Pointer to the ARM7/9 target to read data from
713  * @param size The number of 32bit words to be read
714  * @param buffer Pointer to the buffer that will hold the data
715  * @return The result of receiving data from the Embedded ICE unit
716  */
717 int arm7_9_target_request_data(struct target *target, uint32_t size, uint8_t *buffer)
718 {
719         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
720         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
721         uint32_t *data;
722         int retval = ERROR_OK;
723         uint32_t i;
724
725         data = malloc(size * (sizeof(uint32_t)));
726
727         retval = embeddedice_receive(jtag_info, data, size);
728
729         /* return the 32-bit ints in the 8-bit array */
730         for (i = 0; i < size; i++)
731                 h_u32_to_le(buffer + (i * 4), data[i]);
732
733         free(data);
734
735         return retval;
736 }
737
738 /**
739  * Handles requests to an ARM7/9 target.  If debug messaging is enabled, the
740  * target is running and the DCC control register has the W bit high, this will
741  * execute the request on the target.
742  *
743  * @param priv Void pointer expected to be a struct target pointer
744  * @return ERROR_OK unless there are issues with the JTAG queue or when reading
745  * from the Embedded ICE unit
746  */
747 static int arm7_9_handle_target_request(void *priv)
748 {
749         int retval = ERROR_OK;
750         struct target *target = priv;
751         if (!target_was_examined(target))
752                 return ERROR_OK;
753         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
754         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
755         struct reg *dcc_control = &arm7_9->eice_cache->reg_list[EICE_COMMS_CTRL];
756
757         if (!target->dbg_msg_enabled)
758                 return ERROR_OK;
759
760         if (target->state == TARGET_RUNNING) {
761                 /* read DCC control register */
762                 embeddedice_read_reg(dcc_control);
763                 retval = jtag_execute_queue();
764                 if (retval != ERROR_OK)
765                         return retval;
766
767                 /* check W bit */
768                 if (buf_get_u32(dcc_control->value, 1, 1) == 1) {
769                         uint32_t request;
770
771                         retval = embeddedice_receive(jtag_info, &request, 1);
772                         if (retval != ERROR_OK)
773                                 return retval;
774                         retval = target_request(target, request);
775                         if (retval != ERROR_OK)
776                                 return retval;
777                 }
778         }
779
780         return ERROR_OK;
781 }
782
783 /**
784  * Polls an ARM7/9 target for its current status.  If DBGACK is set, the target
785  * is manipulated to the right halted state based on its current state.  This is
786  * what happens:
787  *
788  * <table>
789  *   <tr><th > State</th><th > Action</th></tr>
790  *   <tr><td > TARGET_RUNNING | TARGET_RESET</td>
791  *     <td > Enters debug mode.  If TARGET_RESET, pc may be checked</td></tr>
792  *   <tr><td > TARGET_UNKNOWN</td><td > Warning is logged</td></tr>
793  *   <tr><td > TARGET_DEBUG_RUNNING</td><td > Enters debug mode</td></tr>
794  *   <tr><td > TARGET_HALTED</td><td > Nothing</td></tr>
795  * </table>
796  *
797  * If the target does not end up in the halted state, a warning is produced.  If
798  * DBGACK is cleared, then the target is expected to either be running or
799  * running in debug.
800  *
801  * @param target Pointer to the ARM7/9 target to poll
802  * @return ERROR_OK or an error status if a command fails
803  */
804 int arm7_9_poll(struct target *target)
805 {
806         int retval;
807         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
808         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
809
810         /* read debug status register */
811         embeddedice_read_reg(dbg_stat);
812         retval = jtag_execute_queue();
813         if (retval != ERROR_OK)
814                 return retval;
815
816         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1)) {
817                 /* LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, *32));*/
818                 if (target->state == TARGET_UNKNOWN) {
819                         /* Starting OpenOCD with target in debug-halt */
820                         target->state = TARGET_RUNNING;
821                         LOG_DEBUG("DBGACK already set during server startup.");
822                 }
823                 if ((target->state == TARGET_RUNNING) || (target->state == TARGET_RESET)) {
824                         target->state = TARGET_HALTED;
825
826                         retval = arm7_9_debug_entry(target);
827                         if (retval != ERROR_OK)
828                                 return retval;
829
830                         if (arm_semihosting(target, &retval) != 0)
831                                 return retval;
832
833                         retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED);
834                         if (retval != ERROR_OK)
835                                 return retval;
836                 }
837                 if (target->state == TARGET_DEBUG_RUNNING) {
838                         target->state = TARGET_HALTED;
839                         retval = arm7_9_debug_entry(target);
840                         if (retval != ERROR_OK)
841                                 return retval;
842
843                         retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
844                         if (retval != ERROR_OK)
845                                 return retval;
846                 }
847                 if (target->state != TARGET_HALTED)
848                         LOG_WARNING(
849                                 "DBGACK set, but the target did not end up in the halted state %d",
850                                 target->state);
851         } else {
852                 if (target->state != TARGET_DEBUG_RUNNING)
853                         target->state = TARGET_RUNNING;
854         }
855
856         return ERROR_OK;
857 }
858
859 /**
860  * Asserts the reset (SRST) on an ARM7/9 target.  Some -S targets (ARM966E-S in
861  * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
862  * affected) completely stop the JTAG clock while the core is held in reset
863  * (SRST).  It isn't possible to program the halt condition once reset is
864  * asserted, hence a hook that allows the target to set up its reset-halt
865  * condition is setup prior to asserting reset.
866  *
867  * @param target Pointer to an ARM7/9 target to assert reset on
868  * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
869  */
870 int arm7_9_assert_reset(struct target *target)
871 {
872         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
873         enum reset_types jtag_reset_config = jtag_get_reset_config();
874         bool use_event = false;
875
876         /* TODO: apply hw reset signal in not examined state */
877         if (!(target_was_examined(target))) {
878                 LOG_WARNING("Reset is not asserted because the target is not examined.");
879                 LOG_WARNING("Use a reset button or power cycle the target.");
880                 return ERROR_TARGET_NOT_EXAMINED;
881         }
882
883         LOG_DEBUG("target->state: %s", target_state_name(target));
884
885         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
886                 use_event = true;
887         else if (!(jtag_reset_config & RESET_HAS_SRST)) {
888                 LOG_ERROR("%s: how to reset?", target_name(target));
889                 return ERROR_FAIL;
890         }
891
892         /* At this point trst has been asserted/deasserted once. We would
893          * like to program EmbeddedICE while SRST is asserted, instead of
894          * depending on SRST to leave that module alone.  However, many CPUs
895          * gate the JTAG clock while SRST is asserted; or JTAG may need
896          * clock stability guarantees (adaptive clocking might help).
897          *
898          * So we assume JTAG access during SRST is off the menu unless it's
899          * been specifically enabled.
900          */
901         bool srst_asserted = false;
902
903         if (!use_event && !(jtag_reset_config & RESET_SRST_PULLS_TRST)
904                         && (jtag_reset_config & RESET_SRST_NO_GATING)) {
905                 jtag_add_reset(0, 1);
906                 srst_asserted = true;
907         }
908
909         if (target->reset_halt) {
910                 /*
911                  * For targets that don't support communication while SRST is
912                  * asserted, we need to set up the reset vector catch first.
913                  *
914                  * When we use TRST+SRST and that's equivalent to a power-up
915                  * reset, these settings may well be reset anyway; so setting
916                  * them here won't matter.
917                  */
918                 if (arm7_9->has_vector_catch) {
919                         /* program vector catch register to catch reset */
920                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH], 0x1);
921
922                         /* extra runtest added as issues were found with
923                          * certain ARM9 cores (maybe more) - AT91SAM9260
924                          * and STR9
925                          */
926                         jtag_add_runtest(1, TAP_IDLE);
927                 } else {
928                         /* program watchpoint unit to match on reset vector
929                          * address
930                          */
931                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], 0x0);
932                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0x3);
933                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
934                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
935                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
936                 }
937         }
938
939         if (use_event)
940                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
941         else {
942                 /* If we use SRST ... we'd like to issue just SRST, but the
943                  * board or chip may be set up so we have to assert TRST as
944                  * well.  On some chips that combination is equivalent to a
945                  * power-up reset, and generally clobbers EICE state.
946                  */
947                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
948                         jtag_add_reset(1, 1);
949                 else if (!srst_asserted)
950                         jtag_add_reset(0, 1);
951                 jtag_add_sleep(50000);
952         }
953
954         target->state = TARGET_RESET;
955         register_cache_invalidate(arm7_9->arm.core_cache);
956
957         /* REVISIT why isn't standard debug entry logic sufficient?? */
958         if (target->reset_halt && (!(jtag_reset_config & RESET_SRST_PULLS_TRST) || use_event)) {
959                 /* debug entry was prepared above */
960                 target->debug_reason = DBG_REASON_DBGRQ;
961         }
962
963         return ERROR_OK;
964 }
965
966 /**
967  * Deassert the reset (SRST) signal on an ARM7/9 target.  If SRST pulls TRST
968  * and the target is being reset into a halt, a warning will be triggered
969  * because it is not possible to reset into a halted mode in this case.  The
970  * target is halted using the target's functions.
971  *
972  * @param target Pointer to the target to have the reset deasserted
973  * @return ERROR_OK or an error from polling or halting the target
974  */
975 int arm7_9_deassert_reset(struct target *target)
976 {
977         int retval = ERROR_OK;
978         LOG_DEBUG("target->state: %s", target_state_name(target));
979
980         /* deassert reset lines */
981         jtag_add_reset(0, 0);
982
983         /* In case polling is disabled, we need to examine the
984          * target and poll here for this target to work correctly.
985          *
986          * Otherwise, e.g. halt will fail afterwards with bogus
987          * error messages as halt will believe that reset is
988          * still in effect.
989          */
990         retval = target_examine_one(target);
991         if (retval != ERROR_OK)
992                 return retval;
993
994         retval = target_poll(target);
995         if (retval != ERROR_OK)
996                 return retval;
997
998         enum reset_types jtag_reset_config = jtag_get_reset_config();
999         if (target->reset_halt && (jtag_reset_config & RESET_SRST_PULLS_TRST) != 0) {
1000                 LOG_WARNING(
1001                         "srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
1002                 retval = target_halt(target);
1003                 if (retval != ERROR_OK)
1004                         return retval;
1005         }
1006         return retval;
1007 }
1008
1009 /**
1010  * Clears the halt condition for an ARM7/9 target.  If it isn't coming out of
1011  * reset and if DBGRQ is used, it is progammed to be deasserted.  If the reset
1012  * vector catch was used, it is restored.  Otherwise, the control value is
1013  * restored and the watchpoint unit is restored if it was in use.
1014  *
1015  * @param target Pointer to the ARM7/9 target to have halt cleared
1016  * @return Always ERROR_OK
1017  */
1018 static int arm7_9_clear_halt(struct target *target)
1019 {
1020         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1021         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1022
1023         /* we used DBGRQ only if we didn't come out of reset */
1024         if (!arm7_9->debug_entry_from_reset && arm7_9->use_dbgrq) {
1025                 /* program EmbeddedICE Debug Control Register to deassert DBGRQ
1026                  */
1027                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1028                 embeddedice_store_reg(dbg_ctrl);
1029         } else {
1030                 if (arm7_9->debug_entry_from_reset && arm7_9->has_vector_catch) {
1031                         /* if we came out of reset, and vector catch is supported, we used
1032                          * vector catch to enter debug state
1033                          * restore the register in that case
1034                          */
1035                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH]);
1036                 } else {
1037                         /* restore registers if watchpoint unit 0 was in use
1038                          */
1039                         if (arm7_9->wp0_used) {
1040                                 if (arm7_9->debug_entry_from_reset)
1041                                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[
1042                                                         EICE_W0_ADDR_VALUE]);
1043                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[
1044                                                 EICE_W0_ADDR_MASK]);
1045                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[
1046                                                 EICE_W0_DATA_MASK]);
1047                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[
1048                                                 EICE_W0_CONTROL_MASK]);
1049                         }
1050                         /* control value always has to be restored, as it was either disabled,
1051                          * or enabled with possibly different bits
1052                          */
1053                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1054                 }
1055         }
1056
1057         return ERROR_OK;
1058 }
1059
1060 /**
1061  * Issue a software reset and halt to an ARM7/9 target.  The target is halted
1062  * and then there is a wait until the processor shows the halt.  This wait can
1063  * timeout and results in an error being returned.  The software reset involves
1064  * clearing the halt, updating the debug control register, changing to ARM mode,
1065  * reset of the program counter, and reset of all of the registers.
1066  *
1067  * @param target Pointer to the ARM7/9 target to be reset and halted by software
1068  * @return Error status if any of the commands fail, otherwise ERROR_OK
1069  */
1070 int arm7_9_soft_reset_halt(struct target *target)
1071 {
1072         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1073         struct arm *arm = &arm7_9->arm;
1074         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1075         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1076         int i;
1077         int retval;
1078
1079         /* FIX!!! replace some of this code with tcl commands
1080          *
1081          * halt # the halt command is synchronous
1082          * armv4_5 core_state arm
1083          *
1084          */
1085
1086         retval = target_halt(target);
1087         if (retval != ERROR_OK)
1088                 return retval;
1089
1090         long long then = timeval_ms();
1091         int timeout;
1092         while (!(timeout = ((timeval_ms()-then) > 1000))) {
1093                 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) != 0)
1094                         break;
1095                 embeddedice_read_reg(dbg_stat);
1096                 retval = jtag_execute_queue();
1097                 if (retval != ERROR_OK)
1098                         return retval;
1099                 if (debug_level >= 3)
1100                         alive_sleep(100);
1101                 else
1102                         keep_alive();
1103         }
1104         if (timeout) {
1105                 LOG_ERROR("Failed to halt CPU after 1 sec");
1106                 return ERROR_TARGET_TIMEOUT;
1107         }
1108         target->state = TARGET_HALTED;
1109
1110         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1111          * ensure that DBGRQ is cleared
1112          */
1113         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1114         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1115         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1116         embeddedice_store_reg(dbg_ctrl);
1117
1118         retval = arm7_9_clear_halt(target);
1119         if (retval != ERROR_OK)
1120                 return retval;
1121
1122         /* if the target is in Thumb state, change to ARM state */
1123         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1)) {
1124                 uint32_t r0_thumb, pc_thumb;
1125                 LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
1126                 /* Entered debug from Thumb mode */
1127                 arm->core_state = ARM_STATE_THUMB;
1128                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1129         }
1130
1131         /* REVISIT likewise for bit 5 -- switch Jazelle-to-ARM */
1132
1133         /* all register content is now invalid */
1134         register_cache_invalidate(arm->core_cache);
1135
1136         /* SVC, ARM state, IRQ and FIQ disabled */
1137         uint32_t cpsr;
1138
1139         cpsr = buf_get_u32(arm->cpsr->value, 0, 32);
1140         cpsr &= ~0xff;
1141         cpsr |= 0xd3;
1142         arm_set_cpsr(arm, cpsr);
1143         arm->cpsr->dirty = 1;
1144
1145         /* start fetching from 0x0 */
1146         buf_set_u32(arm->pc->value, 0, 32, 0x0);
1147         arm->pc->dirty = 1;
1148         arm->pc->valid = 1;
1149
1150         /* reset registers */
1151         for (i = 0; i <= 14; i++) {
1152                 struct reg *r = arm_reg_current(arm, i);
1153
1154                 buf_set_u32(r->value, 0, 32, 0xffffffff);
1155                 r->dirty = 1;
1156                 r->valid = 1;
1157         }
1158
1159         retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED);
1160         if (retval != ERROR_OK)
1161                 return retval;
1162
1163         return ERROR_OK;
1164 }
1165
1166 /**
1167  * Halt an ARM7/9 target.  This is accomplished by either asserting the DBGRQ
1168  * line or by programming a watchpoint to trigger on any address.  It is
1169  * considered a bug to call this function while the target is in the
1170  * TARGET_RESET state.
1171  *
1172  * @param target Pointer to the ARM7/9 target to be halted
1173  * @return Always ERROR_OK
1174  */
1175 int arm7_9_halt(struct target *target)
1176 {
1177         if (target->state == TARGET_RESET) {
1178                 LOG_ERROR(
1179                         "BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
1180                 return ERROR_OK;
1181         }
1182
1183         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1184         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1185
1186         LOG_DEBUG("target->state: %s",
1187                 target_state_name(target));
1188
1189         if (target->state == TARGET_HALTED) {
1190                 LOG_DEBUG("target was already halted");
1191                 return ERROR_OK;
1192         }
1193
1194         if (target->state == TARGET_UNKNOWN)
1195                 LOG_WARNING("target was in unknown state when halt was requested");
1196
1197         if (arm7_9->use_dbgrq) {
1198                 /* program EmbeddedICE Debug Control Register to assert DBGRQ
1199                  */
1200                 if (arm7_9->set_special_dbgrq)
1201                         arm7_9->set_special_dbgrq(target);
1202                 else {
1203                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 1);
1204                         embeddedice_store_reg(dbg_ctrl);
1205                 }
1206         } else {
1207                 /* program watchpoint unit to match on any address
1208                  */
1209                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1210                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1211                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE],
1212                         EICE_W_CTRL_ENABLE);
1213                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK],
1214                         ~EICE_W_CTRL_nOPC & 0xff);
1215         }
1216
1217         target->debug_reason = DBG_REASON_DBGRQ;
1218
1219         return ERROR_OK;
1220 }
1221
1222 /**
1223  * Handle an ARM7/9 target's entry into debug mode.  The halt is cleared on the
1224  * ARM.  The JTAG queue is then executed and the reason for debug entry is
1225  * examined.  Once done, the target is verified to be halted and the processor
1226  * is forced into ARM mode.  The core registers are saved for the current core
1227  * mode and the program counter (register 15) is updated as needed.  The core
1228  * registers and CPSR and SPSR are saved for restoration later.
1229  *
1230  * @param target Pointer to target that is entering debug mode
1231  * @return Error code if anything fails, otherwise ERROR_OK
1232  */
1233 static int arm7_9_debug_entry(struct target *target)
1234 {
1235         int i;
1236         uint32_t context[16];
1237         uint32_t *context_p[16];
1238         uint32_t r0_thumb, pc_thumb;
1239         uint32_t cpsr, cpsr_mask = 0;
1240         int retval;
1241         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1242         struct arm *arm = &arm7_9->arm;
1243         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1244         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1245
1246 #ifdef _DEBUG_ARM7_9_
1247         LOG_DEBUG("-");
1248 #endif
1249
1250         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1251          * ensure that DBGRQ is cleared
1252          */
1253         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1254         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1255         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1256         embeddedice_store_reg(dbg_ctrl);
1257
1258         retval = arm7_9_clear_halt(target);
1259         if (retval != ERROR_OK)
1260                 return retval;
1261
1262         retval = jtag_execute_queue();
1263         if (retval != ERROR_OK)
1264                 return retval;
1265
1266         retval = arm7_9->examine_debug_reason(target);
1267         if (retval != ERROR_OK)
1268                 return retval;
1269
1270         if (target->state != TARGET_HALTED) {
1271                 LOG_WARNING("target not halted");
1272                 return ERROR_TARGET_NOT_HALTED;
1273         }
1274
1275         /* if the target is in Thumb state, change to ARM state */
1276         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1)) {
1277                 LOG_DEBUG("target entered debug from Thumb state");
1278                 /* Entered debug from Thumb mode */
1279                 arm->core_state = ARM_STATE_THUMB;
1280                 cpsr_mask = 1 << 5;
1281                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1282                 LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32
1283                         ", pc_thumb: 0x%8.8" PRIx32, r0_thumb, pc_thumb);
1284         } else if (buf_get_u32(dbg_stat->value, 5, 1)) {
1285                 /* \todo Get some vaguely correct handling of Jazelle, if
1286                  * anyone ever uses it and full info becomes available.
1287                  * See ARM9EJS TRM B.7.1 for how to switch J->ARM; and
1288                  * B.7.3 for the reverse.  That'd be the bare minimum...
1289                  */
1290                 LOG_DEBUG("target entered debug from Jazelle state");
1291                 arm->core_state = ARM_STATE_JAZELLE;
1292                 cpsr_mask = 1 << 24;
1293                 LOG_ERROR("Jazelle debug entry -- BROKEN!");
1294         } else {
1295                 LOG_DEBUG("target entered debug from ARM state");
1296                 /* Entered debug from ARM mode */
1297                 arm->core_state = ARM_STATE_ARM;
1298         }
1299
1300         for (i = 0; i < 16; i++)
1301                 context_p[i] = &context[i];
1302         /* save core registers (r0 - r15 of current core mode) */
1303         arm7_9->read_core_regs(target, 0xffff, context_p);
1304
1305         arm7_9->read_xpsr(target, &cpsr, 0);
1306
1307         retval = jtag_execute_queue();
1308         if (retval != ERROR_OK)
1309                 return retval;
1310
1311         /* Sync our CPSR copy with J or T bits EICE reported, but
1312          * which we then erased by putting the core into ARM mode.
1313          */
1314         arm_set_cpsr(arm, cpsr | cpsr_mask);
1315
1316         if (!is_arm_mode(arm->core_mode)) {
1317                 target->state = TARGET_UNKNOWN;
1318                 LOG_ERROR("cpsr contains invalid mode value - communication failure");
1319                 return ERROR_TARGET_FAILURE;
1320         }
1321
1322         LOG_DEBUG("target entered debug state in %s mode",
1323                 arm_mode_name(arm->core_mode));
1324
1325         if (arm->core_state == ARM_STATE_THUMB) {
1326                 LOG_DEBUG("thumb state, applying fixups");
1327                 context[0] = r0_thumb;
1328                 context[15] = pc_thumb;
1329         } else if (arm->core_state == ARM_STATE_ARM) {
1330                 /* adjust value stored by STM */
1331                 context[15] -= 3 * 4;
1332         }
1333
1334         if ((target->debug_reason != DBG_REASON_DBGRQ) || (!arm7_9->use_dbgrq))
1335                 context[15] -= 3 * ((arm->core_state == ARM_STATE_ARM) ? 4 : 2);
1336         else
1337                 context[15] -= arm7_9->dbgreq_adjust_pc *
1338                         ((arm->core_state == ARM_STATE_ARM) ? 4 : 2);
1339
1340         for (i = 0; i <= 15; i++) {
1341                 struct reg *r = arm_reg_current(arm, i);
1342
1343                 LOG_DEBUG("r%i: 0x%8.8" PRIx32 "", i, context[i]);
1344
1345                 buf_set_u32(r->value, 0, 32, context[i]);
1346                 /* r0 and r15 (pc) have to be restored later */
1347                 r->dirty = (i == 0) || (i == 15);
1348                 r->valid = 1;
1349         }
1350
1351         LOG_DEBUG("entered debug state at PC 0x%" PRIx32 "", context[15]);
1352
1353         /* exceptions other than USR & SYS have a saved program status register */
1354         if (arm->spsr) {
1355                 uint32_t spsr;
1356                 arm7_9->read_xpsr(target, &spsr, 1);
1357                 retval = jtag_execute_queue();
1358                 if (retval != ERROR_OK)
1359                         return retval;
1360                 buf_set_u32(arm->spsr->value, 0, 32, spsr);
1361                 arm->spsr->dirty = 0;
1362                 arm->spsr->valid = 1;
1363         }
1364
1365         retval = jtag_execute_queue();
1366         if (retval != ERROR_OK)
1367                 return retval;
1368
1369         if (arm7_9->post_debug_entry) {
1370                 retval = arm7_9->post_debug_entry(target);
1371                 if (retval != ERROR_OK)
1372                         return retval;
1373         }
1374
1375         return ERROR_OK;
1376 }
1377
1378 /**
1379  * Validate the full context for an ARM7/9 target in all processor modes.  If
1380  * there are any invalid registers for the target, they will all be read.  This
1381  * includes the PSR.
1382  *
1383  * @param target Pointer to the ARM7/9 target to capture the full context from
1384  * @return Error if the target is not halted, has an invalid core mode, or if
1385  *         the JTAG queue fails to execute
1386  */
1387 static int arm7_9_full_context(struct target *target)
1388 {
1389         int i;
1390         int retval;
1391         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1392         struct arm *arm = &arm7_9->arm;
1393
1394         LOG_DEBUG("-");
1395
1396         if (target->state != TARGET_HALTED) {
1397                 LOG_WARNING("target not halted");
1398                 return ERROR_TARGET_NOT_HALTED;
1399         }
1400
1401         if (!is_arm_mode(arm->core_mode)) {
1402                 LOG_ERROR("not a valid arm core mode - communication failure?");
1403                 return ERROR_FAIL;
1404         }
1405
1406         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1407          * SYS shares registers with User, so we don't touch SYS
1408          */
1409         for (i = 0; i < 6; i++) {
1410                 uint32_t mask = 0;
1411                 uint32_t *reg_p[16];
1412                 int j;
1413                 int valid = 1;
1414
1415                 /* check if there are invalid registers in the current mode
1416                  */
1417                 for (j = 0; j <= 16; j++) {
1418                         if (ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1419                                 valid = 0;
1420                 }
1421
1422                 if (!valid) {
1423                         uint32_t tmp_cpsr;
1424
1425                         /* change processor mode (and mask T bit) */
1426                         tmp_cpsr = buf_get_u32(arm->cpsr->value, 0, 8)
1427                                 & 0xe0;
1428                         tmp_cpsr |= armv4_5_number_to_mode(i);
1429                         tmp_cpsr &= ~0x20;
1430                         arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1431
1432                         for (j = 0; j < 15; j++) {
1433                                 if (ARMV4_5_CORE_REG_MODE(arm->core_cache,
1434                                                 armv4_5_number_to_mode(i), j).valid == 0) {
1435                                         reg_p[j] = (uint32_t *)ARMV4_5_CORE_REG_MODE(
1436                                                         arm->core_cache,
1437                                                         armv4_5_number_to_mode(i),
1438                                                         j).value;
1439                                         mask |= 1 << j;
1440                                         ARMV4_5_CORE_REG_MODE(arm->core_cache,
1441                                                 armv4_5_number_to_mode(i),
1442                                                 j).valid = 1;
1443                                         ARMV4_5_CORE_REG_MODE(arm->core_cache,
1444                                                 armv4_5_number_to_mode(i),
1445                                                 j).dirty = 0;
1446                                 }
1447                         }
1448
1449                         /* if only the PSR is invalid, mask is all zeroes */
1450                         if (mask)
1451                                 arm7_9->read_core_regs(target, mask, reg_p);
1452
1453                         /* check if the PSR has to be read */
1454                         if (ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i),
1455                                         16).valid == 0) {
1456                                 arm7_9->read_xpsr(target,
1457                                         (uint32_t *)ARMV4_5_CORE_REG_MODE(arm->core_cache,
1458                                                 armv4_5_number_to_mode(i), 16).value, 1);
1459                                 ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i),
1460                                         16).valid = 1;
1461                                 ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i),
1462                                         16).dirty = 0;
1463                         }
1464                 }
1465         }
1466
1467         /* restore processor mode (mask T bit) */
1468         arm7_9->write_xpsr_im8(target,
1469                 buf_get_u32(arm->cpsr->value, 0, 8) & ~0x20, 0, 0);
1470
1471         retval = jtag_execute_queue();
1472         if (retval != ERROR_OK)
1473                 return retval;
1474         return ERROR_OK;
1475 }
1476
1477 /**
1478  * Restore the processor context on an ARM7/9 target.  The full processor
1479  * context is analyzed to see if any of the registers are dirty on this end, but
1480  * have a valid new value.  If this is the case, the processor is changed to the
1481  * appropriate mode and the new register values are written out to the
1482  * processor.  If there happens to be a dirty register with an invalid value, an
1483  * error will be logged.
1484  *
1485  * @param target Pointer to the ARM7/9 target to have its context restored
1486  * @return Error status if the target is not halted or the core mode in the
1487  * armv4_5 struct is invalid.
1488  */
1489 static int arm7_9_restore_context(struct target *target)
1490 {
1491         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1492         struct arm *arm = &arm7_9->arm;
1493         struct reg *reg;
1494         enum arm_mode current_mode = arm->core_mode;
1495         int i, j;
1496         int dirty;
1497         int mode_change;
1498
1499         LOG_DEBUG("-");
1500
1501         if (target->state != TARGET_HALTED) {
1502                 LOG_WARNING("target not halted");
1503                 return ERROR_TARGET_NOT_HALTED;
1504         }
1505
1506         if (arm7_9->pre_restore_context)
1507                 arm7_9->pre_restore_context(target);
1508
1509         if (!is_arm_mode(arm->core_mode)) {
1510                 LOG_ERROR("not a valid arm core mode - communication failure?");
1511                 return ERROR_FAIL;
1512         }
1513
1514         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1515          * SYS shares registers with User, so we don't touch SYS
1516          */
1517         for (i = 0; i < 6; i++) {
1518                 LOG_DEBUG("examining %s mode",
1519                         arm_mode_name(arm->core_mode));
1520                 dirty = 0;
1521                 mode_change = 0;
1522                 /* check if there are dirty registers in the current mode
1523                 */
1524                 for (j = 0; j <= 16; j++) {
1525                         reg = &ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i), j);
1526                         if (reg->dirty == 1) {
1527                                 if (reg->valid == 1) {
1528                                         dirty = 1;
1529                                         LOG_DEBUG("examining dirty reg: %s", reg->name);
1530                                         struct arm_reg *reg_arch_info;
1531                                         reg_arch_info = reg->arch_info;
1532                                         if ((reg_arch_info->mode != ARM_MODE_ANY)
1533                                                         && (reg_arch_info->mode != current_mode)
1534                                                         && !((reg_arch_info->mode == ARM_MODE_USR)
1535                                                         && (arm->core_mode == ARM_MODE_SYS))
1536                                                         && !((reg_arch_info->mode == ARM_MODE_SYS)
1537                                                         && (arm->core_mode == ARM_MODE_USR))) {
1538                                                 mode_change = 1;
1539                                                 LOG_DEBUG("require mode change");
1540                                         }
1541                                 } else
1542                                         LOG_ERROR("BUG: dirty register '%s', but no valid data",
1543                                                 reg->name);
1544                         }
1545                 }
1546
1547                 if (dirty) {
1548                         uint32_t mask = 0x0;
1549                         int num_regs = 0;
1550                         uint32_t regs[16];
1551
1552                         if (mode_change) {
1553                                 uint32_t tmp_cpsr;
1554
1555                                 /* change processor mode (mask T bit) */
1556                                 tmp_cpsr = buf_get_u32(arm->cpsr->value,
1557                                                 0, 8) & 0xe0;
1558                                 tmp_cpsr |= armv4_5_number_to_mode(i);
1559                                 tmp_cpsr &= ~0x20;
1560                                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1561                                 current_mode = armv4_5_number_to_mode(i);
1562                         }
1563
1564                         for (j = 0; j <= 14; j++) {
1565                                 reg = &ARMV4_5_CORE_REG_MODE(arm->core_cache,
1566                                                 armv4_5_number_to_mode(i),
1567                                                 j);
1568
1569                                 if (reg->dirty == 1) {
1570                                         regs[j] = buf_get_u32(reg->value, 0, 32);
1571                                         mask |= 1 << j;
1572                                         num_regs++;
1573                                         reg->dirty = 0;
1574                                         reg->valid = 1;
1575                                         LOG_DEBUG("writing register %i mode %s "
1576                                                 "with value 0x%8.8" PRIx32, j,
1577                                                 arm_mode_name(arm->core_mode),
1578                                                 regs[j]);
1579                                 }
1580                         }
1581
1582                         if (mask)
1583                                 arm7_9->write_core_regs(target, mask, regs);
1584
1585                         reg =
1586                                 &ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(
1587                                                 i), 16);
1588                         struct arm_reg *reg_arch_info;
1589                         reg_arch_info = reg->arch_info;
1590                         if ((reg->dirty) && (reg_arch_info->mode != ARM_MODE_ANY)) {
1591                                 LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32 "",
1592                                         i,
1593                                         buf_get_u32(reg->value, 0, 32));
1594                                 arm7_9->write_xpsr(target, buf_get_u32(reg->value, 0, 32), 1);
1595                         }
1596                 }
1597         }
1598
1599         if (!arm->cpsr->dirty && (arm->core_mode != current_mode)) {
1600                 /* restore processor mode (mask T bit) */
1601                 uint32_t tmp_cpsr;
1602
1603                 tmp_cpsr = buf_get_u32(arm->cpsr->value, 0, 8) & 0xE0;
1604                 tmp_cpsr |= armv4_5_number_to_mode(i);
1605                 tmp_cpsr &= ~0x20;
1606                 LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr));
1607                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1608
1609         } else if (arm->cpsr->dirty) {
1610                 /* CPSR has been changed, full restore necessary (mask T bit) */
1611                 LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32,
1612                         buf_get_u32(arm->cpsr->value, 0, 32));
1613                 arm7_9->write_xpsr(target,
1614                         buf_get_u32(arm->cpsr->value, 0, 32)
1615                         & ~0x20, 0);
1616                 arm->cpsr->dirty = 0;
1617                 arm->cpsr->valid = 1;
1618         }
1619
1620         /* restore PC */
1621         LOG_DEBUG("writing PC with value 0x%8.8" PRIx32,
1622                 buf_get_u32(arm->pc->value, 0, 32));
1623         arm7_9->write_pc(target, buf_get_u32(arm->pc->value, 0, 32));
1624         arm->pc->dirty = 0;
1625
1626         return ERROR_OK;
1627 }
1628
1629 /**
1630  * Restart the core of an ARM7/9 target.  A RESTART command is sent to the
1631  * instruction register and the JTAG state is set to TAP_IDLE causing a core
1632  * restart.
1633  *
1634  * @param target Pointer to the ARM7/9 target to be restarted
1635  * @return Result of executing the JTAG queue
1636  */
1637 static int arm7_9_restart_core(struct target *target)
1638 {
1639         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1640         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
1641         int retval;
1642
1643         /* set RESTART instruction */
1644         if (arm7_9->need_bypass_before_restart) {
1645                 arm7_9->need_bypass_before_restart = 0;
1646
1647                 retval = arm_jtag_set_instr(jtag_info->tap, 0xf, NULL, TAP_IDLE);
1648                 if (retval != ERROR_OK)
1649                         return retval;
1650         }
1651         retval = arm_jtag_set_instr(jtag_info->tap, 0x4, NULL, TAP_IDLE);
1652         if (retval != ERROR_OK)
1653                 return retval;
1654
1655         jtag_add_runtest(1, TAP_IDLE);
1656         return jtag_execute_queue();
1657 }
1658
1659 /**
1660  * Enable the watchpoints on an ARM7/9 target.  The target's watchpoints are
1661  * iterated through and are set on the target if they aren't already set.
1662  *
1663  * @param target Pointer to the ARM7/9 target to enable watchpoints on
1664  */
1665 static void arm7_9_enable_watchpoints(struct target *target)
1666 {
1667         struct watchpoint *watchpoint = target->watchpoints;
1668
1669         while (watchpoint) {
1670                 if (watchpoint->set == 0)
1671                         arm7_9_set_watchpoint(target, watchpoint);
1672                 watchpoint = watchpoint->next;
1673         }
1674 }
1675
1676 /**
1677  * Enable the breakpoints on an ARM7/9 target.  The target's breakpoints are
1678  * iterated through and are set on the target.
1679  *
1680  * @param target Pointer to the ARM7/9 target to enable breakpoints on
1681  */
1682 static void arm7_9_enable_breakpoints(struct target *target)
1683 {
1684         struct breakpoint *breakpoint = target->breakpoints;
1685
1686         /* set any pending breakpoints */
1687         while (breakpoint) {
1688                 arm7_9_set_breakpoint(target, breakpoint);
1689                 breakpoint = breakpoint->next;
1690         }
1691 }
1692
1693 int arm7_9_resume(struct target *target,
1694         int current,
1695         uint32_t address,
1696         int handle_breakpoints,
1697         int debug_execution)
1698 {
1699         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1700         struct arm *arm = &arm7_9->arm;
1701         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1702         int err, retval = ERROR_OK;
1703
1704         LOG_DEBUG("-");
1705
1706         if (target->state != TARGET_HALTED) {
1707                 LOG_WARNING("target not halted");
1708                 return ERROR_TARGET_NOT_HALTED;
1709         }
1710
1711         if (!debug_execution)
1712                 target_free_all_working_areas(target);
1713
1714         /* current = 1: continue on current pc, otherwise continue at <address> */
1715         if (!current)
1716                 buf_set_u32(arm->pc->value, 0, 32, address);
1717
1718         uint32_t current_pc;
1719         current_pc = buf_get_u32(arm->pc->value, 0, 32);
1720
1721         /* the front-end may request us not to handle breakpoints */
1722         if (handle_breakpoints) {
1723                 struct breakpoint *breakpoint;
1724                 breakpoint = breakpoint_find(target,
1725                                 buf_get_u32(arm->pc->value, 0, 32));
1726                 if (breakpoint != NULL) {
1727                         LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (id: %" PRId32,
1728                                 breakpoint->address,
1729                                 breakpoint->unique_id);
1730                         retval = arm7_9_unset_breakpoint(target, breakpoint);
1731                         if (retval != ERROR_OK)
1732                                 return retval;
1733
1734                         /* calculate PC of next instruction */
1735                         uint32_t next_pc;
1736                         retval = arm_simulate_step(target, &next_pc);
1737                         if (retval != ERROR_OK) {
1738                                 uint32_t current_opcode;
1739                                 target_read_u32(target, current_pc, &current_opcode);
1740                                 LOG_ERROR(
1741                                         "Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "",
1742                                         current_opcode);
1743                                 return retval;
1744                         }
1745
1746                         LOG_DEBUG("enable single-step");
1747                         arm7_9->enable_single_step(target, next_pc);
1748
1749                         target->debug_reason = DBG_REASON_SINGLESTEP;
1750
1751                         retval = arm7_9_restore_context(target);
1752                         if (retval != ERROR_OK)
1753                                 return retval;
1754
1755                         if (arm->core_state == ARM_STATE_ARM)
1756                                 arm7_9->branch_resume(target);
1757                         else if (arm->core_state == ARM_STATE_THUMB)
1758                                 arm7_9->branch_resume_thumb(target);
1759                         else {
1760                                 LOG_ERROR("unhandled core state");
1761                                 return ERROR_FAIL;
1762                         }
1763
1764                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1765                         embeddedice_write_reg(dbg_ctrl,
1766                                 buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1767                         err = arm7_9_execute_sys_speed(target);
1768
1769                         LOG_DEBUG("disable single-step");
1770                         arm7_9->disable_single_step(target);
1771
1772                         if (err != ERROR_OK) {
1773                                 retval = arm7_9_set_breakpoint(target, breakpoint);
1774                                 if (retval != ERROR_OK)
1775                                         return retval;
1776                                 target->state = TARGET_UNKNOWN;
1777                                 return err;
1778                         }
1779
1780                         retval = arm7_9_debug_entry(target);
1781                         if (retval != ERROR_OK)
1782                                 return retval;
1783                         LOG_DEBUG("new PC after step: 0x%8.8" PRIx32,
1784                                 buf_get_u32(arm->pc->value, 0, 32));
1785
1786                         LOG_DEBUG("set breakpoint at 0x%8.8" PRIx32 "", breakpoint->address);
1787                         retval = arm7_9_set_breakpoint(target, breakpoint);
1788                         if (retval != ERROR_OK)
1789                                 return retval;
1790                 }
1791         }
1792
1793         /* enable any pending breakpoints and watchpoints */
1794         arm7_9_enable_breakpoints(target);
1795         arm7_9_enable_watchpoints(target);
1796
1797         retval = arm7_9_restore_context(target);
1798         if (retval != ERROR_OK)
1799                 return retval;
1800
1801         if (arm->core_state == ARM_STATE_ARM)
1802                 arm7_9->branch_resume(target);
1803         else if (arm->core_state == ARM_STATE_THUMB)
1804                 arm7_9->branch_resume_thumb(target);
1805         else {
1806                 LOG_ERROR("unhandled core state");
1807                 return ERROR_FAIL;
1808         }
1809
1810         /* deassert DBGACK and INTDIS */
1811         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1812         /* INTDIS only when we really resume, not during debug execution */
1813         if (!debug_execution)
1814                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 0);
1815         embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1816
1817         retval = arm7_9_restart_core(target);
1818         if (retval != ERROR_OK)
1819                 return retval;
1820
1821         target->debug_reason = DBG_REASON_NOTHALTED;
1822
1823         if (!debug_execution) {
1824                 /* registers are now invalid */
1825                 register_cache_invalidate(arm->core_cache);
1826                 target->state = TARGET_RUNNING;
1827                 retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1828                 if (retval != ERROR_OK)
1829                         return retval;
1830         } else {
1831                 target->state = TARGET_DEBUG_RUNNING;
1832                 retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
1833                 if (retval != ERROR_OK)
1834                         return retval;
1835         }
1836
1837         LOG_DEBUG("target resumed");
1838
1839         return ERROR_OK;
1840 }
1841
1842 void arm7_9_enable_eice_step(struct target *target, uint32_t next_pc)
1843 {
1844         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1845         struct arm *arm = &arm7_9->arm;
1846         uint32_t current_pc;
1847         current_pc = buf_get_u32(arm->pc->value, 0, 32);
1848
1849         if (next_pc != current_pc) {
1850                 /* setup an inverse breakpoint on the current PC
1851                 * - comparator 1 matches the current address
1852                 * - rangeout from comparator 1 is connected to comparator 0 rangein
1853                 * - comparator 0 matches any address, as long as rangein is low */
1854                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1855                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1856                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE],
1857                         EICE_W_CTRL_ENABLE);
1858                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK],
1859                         ~(EICE_W_CTRL_RANGE | EICE_W_CTRL_nOPC) & 0xff);
1860                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE],
1861                         current_pc);
1862                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1863                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1864                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
1865                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK],
1866                         ~EICE_W_CTRL_nOPC & 0xff);
1867         } else {
1868                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1869                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1870                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
1871                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff);
1872                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], next_pc);
1873                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1874                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1875                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE],
1876                         EICE_W_CTRL_ENABLE);
1877                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK],
1878                         ~EICE_W_CTRL_nOPC & 0xff);
1879         }
1880 }
1881
1882 void arm7_9_disable_eice_step(struct target *target)
1883 {
1884         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1885
1886         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1887         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1888         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1889         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1890         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE]);
1891         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK]);
1892         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK]);
1893         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK]);
1894         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE]);
1895 }
1896
1897 int arm7_9_step(struct target *target, int current, uint32_t address, int handle_breakpoints)
1898 {
1899         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1900         struct arm *arm = &arm7_9->arm;
1901         struct breakpoint *breakpoint = NULL;
1902         int err, retval;
1903
1904         if (target->state != TARGET_HALTED) {
1905                 LOG_WARNING("target not halted");
1906                 return ERROR_TARGET_NOT_HALTED;
1907         }
1908
1909         /* current = 1: continue on current pc, otherwise continue at <address> */
1910         if (!current)
1911                 buf_set_u32(arm->pc->value, 0, 32, address);
1912
1913         uint32_t current_pc = buf_get_u32(arm->pc->value, 0, 32);
1914
1915         /* the front-end may request us not to handle breakpoints */
1916         if (handle_breakpoints)
1917                 breakpoint = breakpoint_find(target, current_pc);
1918         if (breakpoint != NULL) {
1919                 retval = arm7_9_unset_breakpoint(target, breakpoint);
1920                 if (retval != ERROR_OK)
1921                         return retval;
1922         }
1923
1924         target->debug_reason = DBG_REASON_SINGLESTEP;
1925
1926         /* calculate PC of next instruction */
1927         uint32_t next_pc;
1928         retval = arm_simulate_step(target, &next_pc);
1929         if (retval != ERROR_OK) {
1930                 uint32_t current_opcode;
1931                 target_read_u32(target, current_pc, &current_opcode);
1932                 LOG_ERROR(
1933                         "Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "",
1934                         current_opcode);
1935                 return retval;
1936         }
1937
1938         retval = arm7_9_restore_context(target);
1939         if (retval != ERROR_OK)
1940                 return retval;
1941
1942         arm7_9->enable_single_step(target, next_pc);
1943
1944         if (arm->core_state == ARM_STATE_ARM)
1945                 arm7_9->branch_resume(target);
1946         else if (arm->core_state == ARM_STATE_THUMB)
1947                 arm7_9->branch_resume_thumb(target);
1948         else {
1949                 LOG_ERROR("unhandled core state");
1950                 return ERROR_FAIL;
1951         }
1952
1953         retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1954         if (retval != ERROR_OK)
1955                 return retval;
1956
1957         err = arm7_9_execute_sys_speed(target);
1958         arm7_9->disable_single_step(target);
1959
1960         /* registers are now invalid */
1961         register_cache_invalidate(arm->core_cache);
1962
1963         if (err != ERROR_OK)
1964                 target->state = TARGET_UNKNOWN;
1965         else {
1966                 retval = arm7_9_debug_entry(target);
1967                 if (retval != ERROR_OK)
1968                         return retval;
1969                 retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED);
1970                 if (retval != ERROR_OK)
1971                         return retval;
1972                 LOG_DEBUG("target stepped");
1973         }
1974
1975         if (breakpoint) {
1976                 retval = arm7_9_set_breakpoint(target, breakpoint);
1977                 if (retval != ERROR_OK)
1978                         return retval;
1979         }
1980
1981         return err;
1982 }
1983
1984 static int arm7_9_read_core_reg(struct target *target, struct reg *r,
1985         int num, enum arm_mode mode)
1986 {
1987         uint32_t *reg_p[16];
1988         int retval;
1989         struct arm_reg *areg = r->arch_info;
1990         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1991         struct arm *arm = &arm7_9->arm;
1992
1993         if (!is_arm_mode(arm->core_mode))
1994                 return ERROR_FAIL;
1995         if ((num < 0) || (num > 16))
1996                 return ERROR_COMMAND_SYNTAX_ERROR;
1997
1998         if ((mode != ARM_MODE_ANY) && (mode != arm->core_mode)
1999                         && (areg->mode != ARM_MODE_ANY)) {
2000                 uint32_t tmp_cpsr;
2001
2002                 /* change processor mode (mask T bit) */
2003                 tmp_cpsr = buf_get_u32(arm->cpsr->value, 0, 8) & 0xE0;
2004                 tmp_cpsr |= mode;
2005                 tmp_cpsr &= ~0x20;
2006                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2007         }
2008
2009         uint32_t value = 0;
2010         if ((num >= 0) && (num <= 15)) {
2011                 /* read a normal core register */
2012                 reg_p[num] = &value;
2013
2014                 arm7_9->read_core_regs(target, 1 << num, reg_p);
2015         } else {
2016                 /* read a program status register
2017                  * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
2018                  */
2019                 arm7_9->read_xpsr(target, &value, areg->mode != ARM_MODE_ANY);
2020         }
2021
2022         retval = jtag_execute_queue();
2023         if (retval != ERROR_OK)
2024                 return retval;
2025
2026         r->valid = 1;
2027         r->dirty = 0;
2028         buf_set_u32(r->value, 0, 32, value);
2029
2030         if ((mode != ARM_MODE_ANY) && (mode != arm->core_mode)
2031                         && (areg->mode != ARM_MODE_ANY)) {
2032                 /* restore processor mode (mask T bit) */
2033                 arm7_9->write_xpsr_im8(target,
2034                         buf_get_u32(arm->cpsr->value, 0, 8) & ~0x20, 0, 0);
2035         }
2036
2037         return ERROR_OK;
2038 }
2039
2040 static int arm7_9_write_core_reg(struct target *target, struct reg *r,
2041         int num, enum arm_mode mode, uint8_t *value)
2042 {
2043         uint32_t reg[16];
2044         struct arm_reg *areg = r->arch_info;
2045         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2046         struct arm *arm = &arm7_9->arm;
2047
2048         if (!is_arm_mode(arm->core_mode))
2049                 return ERROR_FAIL;
2050         if ((num < 0) || (num > 16))
2051                 return ERROR_COMMAND_SYNTAX_ERROR;
2052
2053         if ((mode != ARM_MODE_ANY) && (mode != arm->core_mode)
2054                         && (areg->mode != ARM_MODE_ANY)) {
2055                 uint32_t tmp_cpsr;
2056
2057                 /* change processor mode (mask T bit) */
2058                 tmp_cpsr = buf_get_u32(arm->cpsr->value, 0, 8) & 0xE0;
2059                 tmp_cpsr |= mode;
2060                 tmp_cpsr &= ~0x20;
2061                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2062         }
2063
2064         if ((num >= 0) && (num <= 15)) {
2065                 /* write a normal core register */
2066                 reg[num] = buf_get_u32(value, 0, 32);
2067
2068                 arm7_9->write_core_regs(target, 1 << num, reg);
2069         } else {
2070                 /* write a program status register
2071                 * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
2072                 */
2073                 int spsr = (areg->mode != ARM_MODE_ANY);
2074
2075                 uint32_t t = buf_get_u32(value, 0, 32);
2076                 /* if we're writing the CPSR, mask the T bit */
2077                 if (!spsr)
2078                         t &= ~0x20;
2079
2080                 arm7_9->write_xpsr(target, t, spsr);
2081         }
2082
2083         r->valid = 1;
2084         r->dirty = 0;
2085
2086         if ((mode != ARM_MODE_ANY) && (mode != arm->core_mode)
2087                         && (areg->mode != ARM_MODE_ANY)) {
2088                 /* restore processor mode (mask T bit) */
2089                 arm7_9->write_xpsr_im8(target,
2090                                 buf_get_u32(arm->cpsr->value, 0, 8) & ~0x20, 0, 0);
2091         }
2092
2093         return jtag_execute_queue();
2094 }
2095
2096 int arm7_9_read_memory(struct target *target,
2097         uint32_t address,
2098         uint32_t size,
2099         uint32_t count,
2100         uint8_t *buffer)
2101 {
2102         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2103         struct arm *arm = &arm7_9->arm;
2104         uint32_t reg[16];
2105         uint32_t num_accesses = 0;
2106         int thisrun_accesses;
2107         int i;
2108         uint32_t cpsr;
2109         int retval;
2110         int last_reg = 0;
2111
2112         LOG_DEBUG("address: 0x%8.8" PRIx32 ", size: 0x%8.8" PRIx32 ", count: 0x%8.8" PRIx32 "",
2113                 address, size, count);
2114
2115         if (target->state != TARGET_HALTED) {
2116                 LOG_WARNING("target not halted");
2117                 return ERROR_TARGET_NOT_HALTED;
2118         }
2119
2120         /* sanitize arguments */
2121         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2122                 return ERROR_COMMAND_SYNTAX_ERROR;
2123
2124         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2125                 return ERROR_TARGET_UNALIGNED_ACCESS;
2126
2127         /* load the base register with the address of the first word */
2128         reg[0] = address;
2129         arm7_9->write_core_regs(target, 0x1, reg);
2130
2131         int j = 0;
2132
2133         switch (size) {
2134                 case 4:
2135                         while (num_accesses < count) {
2136                                 uint32_t reg_list;
2137                                 thisrun_accesses =
2138                                                 ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2139                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2140
2141                                 if (last_reg <= thisrun_accesses)
2142                                         last_reg = thisrun_accesses;
2143
2144                                 arm7_9->load_word_regs(target, reg_list);
2145
2146                                 /* fast memory reads are only safe when the target is running
2147                                  * from a sufficiently high clock (32 kHz is usually too slow)
2148                                  */
2149                                 if (arm7_9->fast_memory_access)
2150                                         retval = arm7_9_execute_fast_sys_speed(target);
2151                                 else
2152                                         retval = arm7_9_execute_sys_speed(target);
2153                                 if (retval != ERROR_OK)
2154                                         return retval;
2155
2156                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 4);
2157
2158                                 /* advance buffer, count number of accesses */
2159                                 buffer += thisrun_accesses * 4;
2160                                 num_accesses += thisrun_accesses;
2161
2162                                 if ((j++%1024) == 0)
2163                                         keep_alive();
2164                         }
2165                         break;
2166                 case 2:
2167                         while (num_accesses < count) {
2168                                 uint32_t reg_list;
2169                                 thisrun_accesses =
2170                                                 ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2171                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2172
2173                                 for (i = 1; i <= thisrun_accesses; i++) {
2174                                         if (i > last_reg)
2175                                             last_reg = i;
2176                                         arm7_9->load_hword_reg(target, i);
2177                                         /* fast memory reads are only safe when the target is running
2178                                          * from a sufficiently high clock (32 kHz is usually too slow)
2179                                          */
2180                                         if (arm7_9->fast_memory_access)
2181                                                 retval = arm7_9_execute_fast_sys_speed(target);
2182                                         else
2183                                                 retval = arm7_9_execute_sys_speed(target);
2184                                         if (retval != ERROR_OK)
2185                                                 return retval;
2186
2187                                 }
2188
2189                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 2);
2190
2191                                 /* advance buffer, count number of accesses */
2192                                 buffer += thisrun_accesses * 2;
2193                                 num_accesses += thisrun_accesses;
2194
2195                                 if ((j++%1024) == 0)
2196                                         keep_alive();
2197                         }
2198                         break;
2199                 case 1:
2200                         while (num_accesses < count) {
2201                                 uint32_t reg_list;
2202                                 thisrun_accesses =
2203                                                 ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2204                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2205
2206                                 for (i = 1; i <= thisrun_accesses; i++) {
2207                                         if (i > last_reg)
2208                                                 last_reg = i;
2209                                         arm7_9->load_byte_reg(target, i);
2210                                         /* fast memory reads are only safe when the target is running
2211                                          * from a sufficiently high clock (32 kHz is usually too slow)
2212                                          */
2213                                         if (arm7_9->fast_memory_access)
2214                                                 retval = arm7_9_execute_fast_sys_speed(target);
2215                                         else
2216                                                 retval = arm7_9_execute_sys_speed(target);
2217                                         if (retval != ERROR_OK)
2218                                                 return retval;
2219                                 }
2220
2221                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 1);
2222
2223                                 /* advance buffer, count number of accesses */
2224                                 buffer += thisrun_accesses * 1;
2225                                 num_accesses += thisrun_accesses;
2226
2227                                 if ((j++%1024) == 0)
2228                                         keep_alive();
2229                         }
2230                         break;
2231         }
2232
2233         if (!is_arm_mode(arm->core_mode))
2234                 return ERROR_FAIL;
2235
2236         for (i = 0; i <= last_reg; i++) {
2237                 struct reg *r = arm_reg_current(arm, i);
2238                 r->dirty = r->valid;
2239         }
2240
2241         arm7_9->read_xpsr(target, &cpsr, 0);
2242         retval = jtag_execute_queue();
2243         if (retval != ERROR_OK) {
2244                 LOG_ERROR("JTAG error while reading cpsr");
2245                 return ERROR_TARGET_DATA_ABORT;
2246         }
2247
2248         if (((cpsr & 0x1f) == ARM_MODE_ABT) && (arm->core_mode != ARM_MODE_ABT)) {
2249                 LOG_WARNING(
2250                         "memory read caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")",
2251                         address,
2252                         size,
2253                         count);
2254
2255                 arm7_9->write_xpsr_im8(target,
2256                         buf_get_u32(arm->cpsr->value, 0, 8)
2257                         & ~0x20, 0, 0);
2258
2259                 return ERROR_TARGET_DATA_ABORT;
2260         }
2261
2262         return ERROR_OK;
2263 }
2264
2265 int arm7_9_write_memory(struct target *target,
2266         uint32_t address,
2267         uint32_t size,
2268         uint32_t count,
2269         const uint8_t *buffer)
2270 {
2271         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2272         struct arm *arm = &arm7_9->arm;
2273         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
2274
2275         uint32_t reg[16];
2276         uint32_t num_accesses = 0;
2277         int thisrun_accesses;
2278         int i;
2279         uint32_t cpsr;
2280         int retval;
2281         int last_reg = 0;
2282
2283 #ifdef _DEBUG_ARM7_9_
2284         LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address, size, count);
2285 #endif
2286
2287         if (target->state != TARGET_HALTED) {
2288                 LOG_WARNING("target not halted");
2289                 return ERROR_TARGET_NOT_HALTED;
2290         }
2291
2292         /* sanitize arguments */
2293         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2294                 return ERROR_COMMAND_SYNTAX_ERROR;
2295
2296         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2297                 return ERROR_TARGET_UNALIGNED_ACCESS;
2298
2299         /* load the base register with the address of the first word */
2300         reg[0] = address;
2301         arm7_9->write_core_regs(target, 0x1, reg);
2302
2303         /* Clear DBGACK, to make sure memory fetches work as expected */
2304         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
2305         embeddedice_store_reg(dbg_ctrl);
2306
2307         switch (size) {
2308                 case 4:
2309                         while (num_accesses < count) {
2310                                 uint32_t reg_list;
2311                                 thisrun_accesses =
2312                                                 ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2313                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2314
2315                                 for (i = 1; i <= thisrun_accesses; i++) {
2316                                         if (i > last_reg)
2317                                                 last_reg = i;
2318                                         reg[i] = target_buffer_get_u32(target, buffer);
2319                                         buffer += 4;
2320                                 }
2321
2322                                 arm7_9->write_core_regs(target, reg_list, reg);
2323
2324                                 arm7_9->store_word_regs(target, reg_list);
2325
2326                                 /* fast memory writes are only safe when the target is running
2327                                  * from a sufficiently high clock (32 kHz is usually too slow)
2328                                  */
2329                                 if (arm7_9->fast_memory_access)
2330                                         retval = arm7_9_execute_fast_sys_speed(target);
2331                                 else {
2332                                         retval = arm7_9_execute_sys_speed(target);
2333
2334                                         /*
2335                                          * if memory writes are made when the clock is running slow
2336                                          * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2337                                          * processor operations after a "reset halt" or "reset init",
2338                                          * need to immediately stroke the keep alive or will end up with
2339                                          * gdb "keep alive not sent error message" problem.
2340                                          */
2341
2342                                         keep_alive();
2343                                 }
2344
2345                                 if (retval != ERROR_OK)
2346                                         return retval;
2347
2348                                 num_accesses += thisrun_accesses;
2349                         }
2350                         break;
2351                 case 2:
2352                         while (num_accesses < count) {
2353                                 uint32_t reg_list;
2354                                 thisrun_accesses =
2355                                                 ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2356                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2357
2358                                 for (i = 1; i <= thisrun_accesses; i++) {
2359                                         if (i > last_reg)
2360                                                 last_reg = i;
2361                                         reg[i] = target_buffer_get_u16(target, buffer) & 0xffff;
2362                                         buffer += 2;
2363                                 }
2364
2365                                 arm7_9->write_core_regs(target, reg_list, reg);
2366
2367                                 for (i = 1; i <= thisrun_accesses; i++) {
2368                                         arm7_9->store_hword_reg(target, i);
2369
2370                                         /* fast memory writes are only safe when the target is running
2371                                          * from a sufficiently high clock (32 kHz is usually too slow)
2372                                          */
2373                                         if (arm7_9->fast_memory_access)
2374                                                 retval = arm7_9_execute_fast_sys_speed(target);
2375                                         else {
2376                                                 retval = arm7_9_execute_sys_speed(target);
2377
2378                                                 /*
2379                                                  * if memory writes are made when the clock is running slow
2380                                                  * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2381                                                  * processor operations after a "reset halt" or "reset init",
2382                                                  * need to immediately stroke the keep alive or will end up with
2383                                                  * gdb "keep alive not sent error message" problem.
2384                                                  */
2385
2386                                                 keep_alive();
2387                                         }
2388
2389                                         if (retval != ERROR_OK)
2390                                                 return retval;
2391                                 }
2392
2393                                 num_accesses += thisrun_accesses;
2394                         }
2395                         break;
2396                 case 1:
2397                         while (num_accesses < count) {
2398                                 uint32_t reg_list;
2399                                 thisrun_accesses =
2400                                                 ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2401                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2402
2403                                 for (i = 1; i <= thisrun_accesses; i++) {
2404                                         if (i > last_reg)
2405                                                 last_reg = i;
2406                                         reg[i] = *buffer++ & 0xff;
2407                                 }
2408
2409                                 arm7_9->write_core_regs(target, reg_list, reg);
2410
2411                                 for (i = 1; i <= thisrun_accesses; i++) {
2412                                         arm7_9->store_byte_reg(target, i);
2413                                         /* fast memory writes are only safe when the target is running
2414                                          * from a sufficiently high clock (32 kHz is usually too slow)
2415                                          */
2416                                         if (arm7_9->fast_memory_access)
2417                                                 retval = arm7_9_execute_fast_sys_speed(target);
2418                                         else {
2419                                                 retval = arm7_9_execute_sys_speed(target);
2420
2421                                                 /*
2422                                                  * if memory writes are made when the clock is running slow
2423                                                  * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2424                                                  * processor operations after a "reset halt" or "reset init",
2425                                                  * need to immediately stroke the keep alive or will end up with
2426                                                  * gdb "keep alive not sent error message" problem.
2427                                                  */
2428
2429                                                 keep_alive();
2430                                         }
2431
2432                                         if (retval != ERROR_OK)
2433                                                 return retval;
2434
2435                                 }
2436
2437                                 num_accesses += thisrun_accesses;
2438                         }
2439                         break;
2440         }
2441
2442         /* Re-Set DBGACK */
2443         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
2444         embeddedice_store_reg(dbg_ctrl);
2445
2446         if (!is_arm_mode(arm->core_mode))
2447                 return ERROR_FAIL;
2448
2449         for (i = 0; i <= last_reg; i++) {
2450                 struct reg *r = arm_reg_current(arm, i);
2451                 r->dirty = r->valid;
2452         }
2453
2454         arm7_9->read_xpsr(target, &cpsr, 0);
2455         retval = jtag_execute_queue();
2456         if (retval != ERROR_OK) {
2457                 LOG_ERROR("JTAG error while reading cpsr");
2458                 return ERROR_TARGET_DATA_ABORT;
2459         }
2460
2461         if (((cpsr & 0x1f) == ARM_MODE_ABT) && (arm->core_mode != ARM_MODE_ABT)) {
2462                 LOG_WARNING(
2463                         "memory write caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")",
2464                         address,
2465                         size,
2466                         count);
2467
2468                 arm7_9->write_xpsr_im8(target,
2469                         buf_get_u32(arm->cpsr->value, 0, 8)
2470                         & ~0x20, 0, 0);
2471
2472                 return ERROR_TARGET_DATA_ABORT;
2473         }
2474
2475         return ERROR_OK;
2476 }
2477
2478 int arm7_9_write_memory_opt(struct target *target,
2479         uint32_t address,
2480         uint32_t size,
2481         uint32_t count,
2482         const uint8_t *buffer)
2483 {
2484         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2485         int retval;
2486
2487         if (size == 4 && count > 32 && arm7_9->bulk_write_memory) {
2488                 /* Attempt to do a bulk write */
2489                 retval = arm7_9->bulk_write_memory(target, address, count, buffer);
2490
2491                 if (retval == ERROR_OK)
2492                         return ERROR_OK;
2493         }
2494
2495         return arm7_9->write_memory(target, address, size, count, buffer);
2496 }
2497
2498 int arm7_9_write_memory_no_opt(struct target *target,
2499         uint32_t address,
2500         uint32_t size,
2501         uint32_t count,
2502         const uint8_t *buffer)
2503 {
2504         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2505
2506         return arm7_9->write_memory(target, address, size, count, buffer);
2507 }
2508
2509 static int dcc_count;
2510 static const uint8_t *dcc_buffer;
2511
2512 static int arm7_9_dcc_completion(struct target *target,
2513         uint32_t exit_point,
2514         int timeout_ms,
2515         void *arch_info)
2516 {
2517         int retval = ERROR_OK;
2518         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2519
2520         retval = target_wait_state(target, TARGET_DEBUG_RUNNING, 500);
2521         if (retval != ERROR_OK)
2522                 return retval;
2523
2524         int little = target->endianness == TARGET_LITTLE_ENDIAN;
2525         int count = dcc_count;
2526         const uint8_t *buffer = dcc_buffer;
2527         if (count > 2) {
2528                 /* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
2529                  * core function repeated. */
2530                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA],
2531                         fast_target_buffer_get_u32(buffer, little));
2532                 buffer += 4;
2533
2534                 struct embeddedice_reg *ice_reg =
2535                         arm7_9->eice_cache->reg_list[EICE_COMMS_DATA].arch_info;
2536                 uint8_t reg_addr = ice_reg->addr & 0x1f;
2537                 struct jtag_tap *tap;
2538                 tap = ice_reg->jtag_info->tap;
2539
2540                 embeddedice_write_dcc(tap, reg_addr, buffer, little, count-2);
2541                 buffer += (count-2)*4;
2542
2543                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA],
2544                         fast_target_buffer_get_u32(buffer, little));
2545         } else {
2546                 int i;
2547                 for (i = 0; i < count; i++) {
2548                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA],
2549                                 fast_target_buffer_get_u32(buffer, little));
2550                         buffer += 4;
2551                 }
2552         }
2553
2554         retval = target_halt(target);
2555         if (retval != ERROR_OK)
2556                 return retval;
2557         return target_wait_state(target, TARGET_HALTED, 500);
2558 }
2559
2560 static const uint32_t dcc_code[] = {
2561         /* r0 == input, points to memory buffer
2562          * r1 == scratch
2563          */
2564
2565         /* spin until DCC control (c0) reports data arrived */
2566         0xee101e10,     /* w: mrc p14, #0, r1, c0, c0 */
2567         0xe3110001,     /*    tst r1, #1              */
2568         0x0afffffc,     /*    bne w                   */
2569
2570         /* read word from DCC (c1), write to memory */
2571         0xee111e10,     /*    mrc p14, #0, r1, c1, c0 */
2572         0xe4801004,     /*    str r1, [r0], #4        */
2573
2574         /* repeat */
2575         0xeafffff9      /*    b   w                   */
2576 };
2577
2578 int arm7_9_bulk_write_memory(struct target *target,
2579         uint32_t address,
2580         uint32_t count,
2581         const uint8_t *buffer)
2582 {
2583         int retval;
2584         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2585
2586         if (address % 4 != 0)
2587                 return ERROR_TARGET_UNALIGNED_ACCESS;
2588
2589         if (!arm7_9->dcc_downloads)
2590                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2591
2592         /* regrab previously allocated working_area, or allocate a new one */
2593         if (!arm7_9->dcc_working_area) {
2594                 uint8_t dcc_code_buf[6 * 4];
2595
2596                 /* make sure we have a working area */
2597                 if (target_alloc_working_area(target, 24, &arm7_9->dcc_working_area) != ERROR_OK) {
2598                         LOG_INFO("no working area available, falling back to memory writes");
2599                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2600                 }
2601
2602                 /* copy target instructions to target endianness */
2603                 target_buffer_set_u32_array(target, dcc_code_buf, ARRAY_SIZE(dcc_code), dcc_code);
2604
2605                 /* write DCC code to working area, using the non-optimized
2606                  * memory write to avoid ending up here again */
2607                 retval = arm7_9_write_memory_no_opt(target,
2608                                 arm7_9->dcc_working_area->address, 4, 6, dcc_code_buf);
2609                 if (retval != ERROR_OK)
2610                         return retval;
2611         }
2612
2613         struct arm_algorithm arm_algo;
2614         struct reg_param reg_params[1];
2615
2616         arm_algo.common_magic = ARM_COMMON_MAGIC;
2617         arm_algo.core_mode = ARM_MODE_SVC;
2618         arm_algo.core_state = ARM_STATE_ARM;
2619
2620         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
2621
2622         buf_set_u32(reg_params[0].value, 0, 32, address);
2623
2624         dcc_count = count;
2625         dcc_buffer = buffer;
2626         retval = armv4_5_run_algorithm_inner(target, 0, NULL, 1, reg_params,
2627                         arm7_9->dcc_working_area->address,
2628                         arm7_9->dcc_working_area->address + 6*4,
2629                         20*1000, &arm_algo, arm7_9_dcc_completion);
2630
2631         if (retval == ERROR_OK) {
2632                 uint32_t endaddress = buf_get_u32(reg_params[0].value, 0, 32);
2633                 if (endaddress != (address + count*4)) {
2634                         LOG_ERROR(
2635                                 "DCC write failed, expected end address 0x%08" PRIx32 " got 0x%0" PRIx32 "",
2636                                 (address + count*4),
2637                                 endaddress);
2638                         retval = ERROR_FAIL;
2639                 }
2640         }
2641
2642         destroy_reg_param(&reg_params[0]);
2643
2644         return retval;
2645 }
2646
2647 /**
2648  * Perform per-target setup that requires JTAG access.
2649  */
2650 int arm7_9_examine(struct target *target)
2651 {
2652         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2653         int retval;
2654
2655         if (!target_was_examined(target)) {
2656                 struct reg_cache *t, **cache_p;
2657
2658                 t = embeddedice_build_reg_cache(target, arm7_9);
2659                 if (t == NULL)
2660                         return ERROR_FAIL;
2661
2662                 cache_p = register_get_last_cache_p(&target->reg_cache);
2663                 (*cache_p) = t;
2664                 arm7_9->eice_cache = (*cache_p);
2665
2666                 if (arm7_9->arm.etm)
2667                         (*cache_p)->next = etm_build_reg_cache(target,
2668                                         &arm7_9->jtag_info,
2669                                         arm7_9->arm.etm);
2670
2671                 target_set_examined(target);
2672         }
2673
2674         retval = embeddedice_setup(target);
2675         if (retval == ERROR_OK)
2676                 retval = arm7_9_setup(target);
2677         if (retval == ERROR_OK && arm7_9->arm.etm)
2678                 retval = etm_setup(target);
2679         return retval;
2680 }
2681
2682
2683 int arm7_9_check_reset(struct target *target)
2684 {
2685         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2686
2687         if (get_target_reset_nag() && !arm7_9->dcc_downloads)
2688                 LOG_WARNING(
2689                         "NOTE! DCC downloads have not been enabled, defaulting to slow memory writes. Type 'help dcc'.");
2690
2691         if (get_target_reset_nag() && (target->working_area_size == 0))
2692                 LOG_WARNING("NOTE! Severe performance degradation without working memory enabled.");
2693
2694         if (get_target_reset_nag() && !arm7_9->fast_memory_access)
2695                 LOG_WARNING(
2696                         "NOTE! Severe performance degradation without fast memory access enabled. Type 'help fast'.");
2697
2698         return ERROR_OK;
2699 }
2700
2701 int arm7_9_endianness_callback(jtag_callback_data_t pu8_in,
2702                 jtag_callback_data_t i_size, jtag_callback_data_t i_be,
2703                 jtag_callback_data_t i_flip)
2704 {
2705         uint8_t *in = (uint8_t *)pu8_in;
2706         int size = (int)i_size;
2707         int be = (int)i_be;
2708         int flip = (int)i_flip;
2709         uint32_t readback;
2710
2711         switch (size) {
2712         case 4:
2713                 readback = le_to_h_u32(in);
2714                 if (flip)
2715                         readback = flip_u32(readback, 32);
2716                 if (be)
2717                         h_u32_to_be(in, readback);
2718                 else
2719                         h_u32_to_le(in, readback);
2720                 break;
2721         case 2:
2722                 readback = le_to_h_u16(in);
2723                 if (flip)
2724                         readback = flip_u32(readback, 16);
2725                 if (be)
2726                         h_u16_to_be(in, readback & 0xffff);
2727                 else
2728                         h_u16_to_le(in, readback & 0xffff);
2729                 break;
2730         case 1:
2731                 readback = *in;
2732                 if (flip)
2733                         readback = flip_u32(readback, 8);
2734                 *in = readback & 0xff;
2735                 break;
2736         }
2737
2738         return ERROR_OK;
2739 }
2740
2741 COMMAND_HANDLER(handle_arm7_9_dbgrq_command)
2742 {
2743         struct target *target = get_current_target(CMD_CTX);
2744         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2745
2746         if (!is_arm7_9(arm7_9)) {
2747                 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2748                 return ERROR_TARGET_INVALID;
2749         }
2750
2751         if (CMD_ARGC > 0)
2752                 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->use_dbgrq);
2753
2754         command_print(CMD_CTX,
2755                 "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s",
2756                 (arm7_9->use_dbgrq) ? "enabled" : "disabled");
2757
2758         return ERROR_OK;
2759 }
2760
2761 COMMAND_HANDLER(handle_arm7_9_fast_memory_access_command)
2762 {
2763         struct target *target = get_current_target(CMD_CTX);
2764         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2765
2766         if (!is_arm7_9(arm7_9)) {
2767                 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2768                 return ERROR_TARGET_INVALID;
2769         }
2770
2771         if (CMD_ARGC > 0)
2772                 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->fast_memory_access);
2773
2774         command_print(CMD_CTX,
2775                 "fast memory access is %s",
2776                 (arm7_9->fast_memory_access) ? "enabled" : "disabled");
2777
2778         return ERROR_OK;
2779 }
2780
2781 COMMAND_HANDLER(handle_arm7_9_dcc_downloads_command)
2782 {
2783         struct target *target = get_current_target(CMD_CTX);
2784         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2785
2786         if (!is_arm7_9(arm7_9)) {
2787                 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2788                 return ERROR_TARGET_INVALID;
2789         }
2790
2791         if (CMD_ARGC > 0)
2792                 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->dcc_downloads);
2793
2794         command_print(CMD_CTX,
2795                 "dcc downloads are %s",
2796                 (arm7_9->dcc_downloads) ? "enabled" : "disabled");
2797
2798         return ERROR_OK;
2799 }
2800
2801 static int arm7_9_setup_semihosting(struct target *target, int enable)
2802 {
2803         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2804
2805         if (!is_arm7_9(arm7_9)) {
2806                 LOG_USER("current target isn't an ARM7/ARM9 target");
2807                 return ERROR_TARGET_INVALID;
2808         }
2809
2810         if (arm7_9->has_vector_catch) {
2811                 struct reg *vector_catch = &arm7_9->eice_cache
2812                         ->reg_list[EICE_VEC_CATCH];
2813
2814                 if (!vector_catch->valid)
2815                         embeddedice_read_reg(vector_catch);
2816                 buf_set_u32(vector_catch->value, 2, 1, enable);
2817                 embeddedice_store_reg(vector_catch);
2818         } else {
2819                 /* TODO: allow optional high vectors and/or BKPT_HARD */
2820                 if (enable)
2821                         breakpoint_add(target, 8, 4, BKPT_SOFT);
2822                 else
2823                         breakpoint_remove(target, 8);
2824         }
2825
2826         return ERROR_OK;
2827 }
2828
2829 int arm7_9_init_arch_info(struct target *target, struct arm7_9_common *arm7_9)
2830 {
2831         int retval = ERROR_OK;
2832         struct arm *arm = &arm7_9->arm;
2833
2834         arm7_9->common_magic = ARM7_9_COMMON_MAGIC;
2835
2836         retval = arm_jtag_setup_connection(&arm7_9->jtag_info);
2837         if (retval != ERROR_OK)
2838                 return retval;
2839
2840         /* caller must have allocated via calloc(), so everything's zeroed */
2841
2842         arm7_9->wp_available_max = 2;
2843
2844         arm7_9->fast_memory_access = false;
2845         arm7_9->dcc_downloads = false;
2846
2847         arm->arch_info = arm7_9;
2848         arm->core_type = ARM_MODE_ANY;
2849         arm->read_core_reg = arm7_9_read_core_reg;
2850         arm->write_core_reg = arm7_9_write_core_reg;
2851         arm->full_context = arm7_9_full_context;
2852         arm->setup_semihosting = arm7_9_setup_semihosting;
2853
2854         retval = arm_init_arch_info(target, arm);
2855         if (retval != ERROR_OK)
2856                 return retval;
2857
2858         return target_register_timer_callback(arm7_9_handle_target_request,
2859                 1, 1, target);
2860 }
2861
2862 static const struct command_registration arm7_9_any_command_handlers[] = {
2863         {
2864                 "dbgrq",
2865                 .handler = handle_arm7_9_dbgrq_command,
2866                 .mode = COMMAND_ANY,
2867                 .usage = "['enable'|'disable']",
2868                 .help = "use EmbeddedICE dbgrq instead of breakpoint "
2869                         "for target halt requests",
2870         },
2871         {
2872                 "fast_memory_access",
2873                 .handler = handle_arm7_9_fast_memory_access_command,
2874                 .mode = COMMAND_ANY,
2875                 .usage = "['enable'|'disable']",
2876                 .help = "use fast memory accesses instead of slower "
2877                         "but potentially safer accesses",
2878         },
2879         {
2880                 "dcc_downloads",
2881                 .handler = handle_arm7_9_dcc_downloads_command,
2882                 .mode = COMMAND_ANY,
2883                 .usage = "['enable'|'disable']",
2884                 .help = "use DCC downloads for larger memory writes",
2885         },
2886         COMMAND_REGISTRATION_DONE
2887 };
2888 const struct command_registration arm7_9_command_handlers[] = {
2889         {
2890                 .chain = arm_command_handlers,
2891         },
2892         {
2893                 .chain = etm_command_handlers,
2894         },
2895         {
2896                 .name = "arm7_9",
2897                 .mode = COMMAND_ANY,
2898                 .help = "arm7/9 specific commands",
2899                 .usage = "",
2900                 .chain = arm7_9_any_command_handlers,
2901         },
2902         COMMAND_REGISTRATION_DONE
2903 };