ARM7/9: rm arm7_9_get_arch_pointers()
[fw/openocd] / src / target / arm7_9_common.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2008 by Hongtao Zheng                                   *
12  *   hontor@126.com                                                        *
13  *                                                                         *
14  *   This program is free software; you can redistribute it and/or modify  *
15  *   it under the terms of the GNU General Public License as published by  *
16  *   the Free Software Foundation; either version 2 of the License, or     *
17  *   (at your option) any later version.                                   *
18  *                                                                         *
19  *   This program is distributed in the hope that it will be useful,       *
20  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
21  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
22  *   GNU General Public License for more details.                          *
23  *                                                                         *
24  *   You should have received a copy of the GNU General Public License     *
25  *   along with this program; if not, write to the                         *
26  *   Free Software Foundation, Inc.,                                       *
27  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
28  ***************************************************************************/
29 #ifdef HAVE_CONFIG_H
30 #include "config.h"
31 #endif
32
33 #include "embeddedice.h"
34 #include "target_request.h"
35 #include "arm7_9_common.h"
36 #include "time_support.h"
37 #include "arm_simulator.h"
38
39
40 int arm7_9_debug_entry(struct target *target);
41
42 /**
43  * Clear watchpoints for an ARM7/9 target.
44  *
45  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
46  * @return JTAG error status after executing queue
47  */
48 static int arm7_9_clear_watchpoints(struct arm7_9_common *arm7_9)
49 {
50         LOG_DEBUG("-");
51         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
52         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
53         arm7_9->sw_breakpoint_count = 0;
54         arm7_9->sw_breakpoints_added = 0;
55         arm7_9->wp0_used = 0;
56         arm7_9->wp1_used = arm7_9->wp1_used_default;
57         arm7_9->wp_available = arm7_9->wp_available_max;
58
59         return jtag_execute_queue();
60 }
61
62 /**
63  * Assign a watchpoint to one of the two available hardware comparators in an
64  * ARM7 or ARM9 target.
65  *
66  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
67  * @param breakpoint Pointer to the breakpoint to be used as a watchpoint
68  */
69 static void arm7_9_assign_wp(struct arm7_9_common *arm7_9, struct breakpoint *breakpoint)
70 {
71         if (!arm7_9->wp0_used)
72         {
73                 arm7_9->wp0_used = 1;
74                 breakpoint->set = 1;
75                 arm7_9->wp_available--;
76         }
77         else if (!arm7_9->wp1_used)
78         {
79                 arm7_9->wp1_used = 1;
80                 breakpoint->set = 2;
81                 arm7_9->wp_available--;
82         }
83         else
84         {
85                 LOG_ERROR("BUG: no hardware comparator available");
86         }
87         LOG_DEBUG("BPID: %d (0x%08" PRIx32 ") using hw wp: %d",
88                           breakpoint->unique_id,
89                           breakpoint->address,
90                           breakpoint->set );
91 }
92
93 /**
94  * Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
95  *
96  * @param arm7_9 Pointer to common struct for ARM7/9 targets
97  * @return Error codes if there is a problem finding a watchpoint or the result
98  *         of executing the JTAG queue
99  */
100 static int arm7_9_set_software_breakpoints(struct arm7_9_common *arm7_9)
101 {
102         if (arm7_9->sw_breakpoints_added)
103         {
104                 return ERROR_OK;
105         }
106         if (arm7_9->wp_available < 1)
107         {
108                 LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
109                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
110         }
111         arm7_9->wp_available--;
112
113         /* pick a breakpoint unit */
114         if (!arm7_9->wp0_used)
115         {
116                 arm7_9->sw_breakpoints_added = 1;
117                 arm7_9->wp0_used = 3;
118         } else if (!arm7_9->wp1_used)
119         {
120                 arm7_9->sw_breakpoints_added = 2;
121                 arm7_9->wp1_used = 3;
122         }
123         else
124         {
125                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
126                 return ERROR_FAIL;
127         }
128
129         if (arm7_9->sw_breakpoints_added == 1)
130         {
131                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], arm7_9->arm_bkpt);
132                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0x0);
133                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffffu);
134                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
135                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
136         }
137         else if (arm7_9->sw_breakpoints_added == 2)
138         {
139                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], arm7_9->arm_bkpt);
140                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0x0);
141                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0xffffffffu);
142                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
143                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
144         }
145         else
146         {
147                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
148                 return ERROR_FAIL;
149         }
150         LOG_DEBUG("SW BP using hw wp: %d",
151                           arm7_9->sw_breakpoints_added );
152
153         return jtag_execute_queue();
154 }
155
156 /**
157  * Setup the common pieces for an ARM7/9 target after reset or on startup.
158  *
159  * @param target Pointer to an ARM7/9 target to setup
160  * @return Result of clearing the watchpoints on the target
161  */
162 int arm7_9_setup(struct target *target)
163 {
164         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
165
166         return arm7_9_clear_watchpoints(arm7_9);
167 }
168
169 /**
170  * Set either a hardware or software breakpoint on an ARM7/9 target.  The
171  * breakpoint is set up even if it is already set.  Some actions, e.g. reset,
172  * might have erased the values in Embedded ICE.
173  *
174  * @param target Pointer to the target device to set the breakpoints on
175  * @param breakpoint Pointer to the breakpoint to be set
176  * @return For hardware breakpoints, this is the result of executing the JTAG
177  *         queue.  For software breakpoints, this will be the status of the
178  *         required memory reads and writes
179  */
180 int arm7_9_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
181 {
182         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
183         int retval = ERROR_OK;
184
185         LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32 ", Type: %d" ,
186                           breakpoint->unique_id,
187                           breakpoint->address,
188                           breakpoint->type);
189
190         if (target->state != TARGET_HALTED)
191         {
192                 LOG_WARNING("target not halted");
193                 return ERROR_TARGET_NOT_HALTED;
194         }
195
196         if (breakpoint->type == BKPT_HARD)
197         {
198                 /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
199                 uint32_t mask = (breakpoint->length == 4) ? 0x3u : 0x1u;
200
201                 /* reassign a hw breakpoint */
202                 if (breakpoint->set == 0)
203                 {
204                         arm7_9_assign_wp(arm7_9, breakpoint);
205                 }
206
207                 if (breakpoint->set == 1)
208                 {
209                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], breakpoint->address);
210                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
211                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffffu);
212                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
213                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
214                 }
215                 else if (breakpoint->set == 2)
216                 {
217                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], breakpoint->address);
218                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
219                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffffu);
220                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
221                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
222                 }
223                 else
224                 {
225                         LOG_ERROR("BUG: no hardware comparator available");
226                         return ERROR_OK;
227                 }
228
229                 retval = jtag_execute_queue();
230         }
231         else if (breakpoint->type == BKPT_SOFT)
232         {
233                 /* did we already set this breakpoint? */
234                 if (breakpoint->set)
235                         return ERROR_OK;
236
237                 if (breakpoint->length == 4)
238                 {
239                         uint32_t verify = 0xffffffff;
240                         /* keep the original instruction in target endianness */
241                         if ((retval = target_read_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
242                         {
243                                 return retval;
244                         }
245                         /* write the breakpoint instruction in target endianness (arm7_9->arm_bkpt is host endian) */
246                         if ((retval = target_write_u32(target, breakpoint->address, arm7_9->arm_bkpt)) != ERROR_OK)
247                         {
248                                 return retval;
249                         }
250
251                         if ((retval = target_read_u32(target, breakpoint->address, &verify)) != ERROR_OK)
252                         {
253                                 return retval;
254                         }
255                         if (verify != arm7_9->arm_bkpt)
256                         {
257                                 LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
258                                 return ERROR_OK;
259                         }
260                 }
261                 else
262                 {
263                         uint16_t verify = 0xffff;
264                         /* keep the original instruction in target endianness */
265                         if ((retval = target_read_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
266                         {
267                                 return retval;
268                         }
269                         /* write the breakpoint instruction in target endianness (arm7_9->thumb_bkpt is host endian) */
270                         if ((retval = target_write_u16(target, breakpoint->address, arm7_9->thumb_bkpt)) != ERROR_OK)
271                         {
272                                 return retval;
273                         }
274
275                         if ((retval = target_read_u16(target, breakpoint->address, &verify)) != ERROR_OK)
276                         {
277                                 return retval;
278                         }
279                         if (verify != arm7_9->thumb_bkpt)
280                         {
281                                 LOG_ERROR("Unable to set thumb software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
282                                 return ERROR_OK;
283                         }
284                 }
285
286                 if ((retval = arm7_9_set_software_breakpoints(arm7_9)) != ERROR_OK)
287                         return retval;
288
289                 arm7_9->sw_breakpoint_count++;
290
291                 breakpoint->set = 1;
292         }
293
294         return retval;
295 }
296
297 /**
298  * Unsets an existing breakpoint on an ARM7/9 target.  If it is a hardware
299  * breakpoint, the watchpoint used will be freed and the Embedded ICE registers
300  * will be updated.  Otherwise, the software breakpoint will be restored to its
301  * original instruction if it hasn't already been modified.
302  *
303  * @param target Pointer to ARM7/9 target to unset the breakpoint from
304  * @param breakpoint Pointer to breakpoint to be unset
305  * @return For hardware breakpoints, this is the result of executing the JTAG
306  *         queue.  For software breakpoints, this will be the status of the
307  *         required memory reads and writes
308  */
309 int arm7_9_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
310 {
311         int retval = ERROR_OK;
312         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
313
314         LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32,
315                           breakpoint->unique_id,
316                           breakpoint->address );
317
318         if (!breakpoint->set)
319         {
320                 LOG_WARNING("breakpoint not set");
321                 return ERROR_OK;
322         }
323
324         if (breakpoint->type == BKPT_HARD)
325         {
326                 LOG_DEBUG("BPID: %d Releasing hw wp: %d",
327                                   breakpoint->unique_id,
328                                   breakpoint->set );
329                 if (breakpoint->set == 1)
330                 {
331                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
332                         arm7_9->wp0_used = 0;
333                         arm7_9->wp_available++;
334                 }
335                 else if (breakpoint->set == 2)
336                 {
337                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
338                         arm7_9->wp1_used = 0;
339                         arm7_9->wp_available++;
340                 }
341                 retval = jtag_execute_queue();
342                 breakpoint->set = 0;
343         }
344         else
345         {
346                 /* restore original instruction (kept in target endianness) */
347                 if (breakpoint->length == 4)
348                 {
349                         uint32_t current_instr;
350                         /* check that user program as not modified breakpoint instruction */
351                         if ((retval = target_read_memory(target, breakpoint->address, 4, 1, (uint8_t*)&current_instr)) != ERROR_OK)
352                         {
353                                 return retval;
354                         }
355                         if (current_instr == arm7_9->arm_bkpt)
356                                 if ((retval = target_write_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
357                                 {
358                                         return retval;
359                                 }
360                 }
361                 else
362                 {
363                         uint16_t current_instr;
364                         /* check that user program as not modified breakpoint instruction */
365                         if ((retval = target_read_memory(target, breakpoint->address, 2, 1, (uint8_t*)&current_instr)) != ERROR_OK)
366                         {
367                                 return retval;
368                         }
369                         if (current_instr == arm7_9->thumb_bkpt)
370                                 if ((retval = target_write_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
371                                 {
372                                         return retval;
373                                 }
374                 }
375
376                 if (--arm7_9->sw_breakpoint_count==0)
377                 {
378                         /* We have removed the last sw breakpoint, clear the hw breakpoint we used to implement it */
379                         if (arm7_9->sw_breakpoints_added == 1)
380                         {
381                                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0);
382                         }
383                         else if (arm7_9->sw_breakpoints_added == 2)
384                         {
385                                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0);
386                         }
387                 }
388
389                 breakpoint->set = 0;
390         }
391
392         return retval;
393 }
394
395 /**
396  * Add a breakpoint to an ARM7/9 target.  This makes sure that there are no
397  * dangling breakpoints and that the desired breakpoint can be added.
398  *
399  * @param target Pointer to the target ARM7/9 device to add a breakpoint to
400  * @param breakpoint Pointer to the breakpoint to be added
401  * @return An error status if there is a problem adding the breakpoint or the
402  *         result of setting the breakpoint
403  */
404 int arm7_9_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
405 {
406         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
407
408         if (target->state != TARGET_HALTED)
409         {
410                 LOG_WARNING("target not halted");
411                 return ERROR_TARGET_NOT_HALTED;
412         }
413
414         if (arm7_9->breakpoint_count == 0)
415         {
416                 /* make sure we don't have any dangling breakpoints. This is vital upon
417                  * GDB connect/disconnect
418                  */
419                 arm7_9_clear_watchpoints(arm7_9);
420         }
421
422         if ((breakpoint->type == BKPT_HARD) && (arm7_9->wp_available < 1))
423         {
424                 LOG_INFO("no watchpoint unit available for hardware breakpoint");
425                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
426         }
427
428         if ((breakpoint->length != 2) && (breakpoint->length != 4))
429         {
430                 LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
431                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
432         }
433
434         if (breakpoint->type == BKPT_HARD)
435         {
436                 arm7_9_assign_wp(arm7_9, breakpoint);
437         }
438
439         arm7_9->breakpoint_count++;
440
441         return arm7_9_set_breakpoint(target, breakpoint);
442 }
443
444 /**
445  * Removes a breakpoint from an ARM7/9 target.  This will make sure there are no
446  * dangling breakpoints and updates available watchpoints if it is a hardware
447  * breakpoint.
448  *
449  * @param target Pointer to the target to have a breakpoint removed
450  * @param breakpoint Pointer to the breakpoint to be removed
451  * @return Error status if there was a problem unsetting the breakpoint or the
452  *         watchpoints could not be cleared
453  */
454 int arm7_9_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
455 {
456         int retval = ERROR_OK;
457         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
458
459         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
460         {
461                 return retval;
462         }
463
464         if (breakpoint->type == BKPT_HARD)
465                 arm7_9->wp_available++;
466
467         arm7_9->breakpoint_count--;
468         if (arm7_9->breakpoint_count == 0)
469         {
470                 /* make sure we don't have any dangling breakpoints */
471                 if ((retval = arm7_9_clear_watchpoints(arm7_9)) != ERROR_OK)
472                 {
473                         return retval;
474                 }
475         }
476
477         return ERROR_OK;
478 }
479
480 /**
481  * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units.  It is
482  * considered a bug to call this function when there are no available watchpoint
483  * units.
484  *
485  * @param target Pointer to an ARM7/9 target to set a watchpoint on
486  * @param watchpoint Pointer to the watchpoint to be set
487  * @return Error status if watchpoint set fails or the result of executing the
488  *         JTAG queue
489  */
490 int arm7_9_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
491 {
492         int retval = ERROR_OK;
493         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
494         int rw_mask = 1;
495         uint32_t mask;
496
497         mask = watchpoint->length - 1;
498
499         if (target->state != TARGET_HALTED)
500         {
501                 LOG_WARNING("target not halted");
502                 return ERROR_TARGET_NOT_HALTED;
503         }
504
505         if (watchpoint->rw == WPT_ACCESS)
506                 rw_mask = 0;
507         else
508                 rw_mask = 1;
509
510         if (!arm7_9->wp0_used)
511         {
512                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], watchpoint->address);
513                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
514                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], watchpoint->mask);
515                 if (watchpoint->mask != 0xffffffffu)
516                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], watchpoint->value);
517                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
518                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
519
520                 if ((retval = jtag_execute_queue()) != ERROR_OK)
521                 {
522                         return retval;
523                 }
524                 watchpoint->set = 1;
525                 arm7_9->wp0_used = 2;
526         }
527         else if (!arm7_9->wp1_used)
528         {
529                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], watchpoint->address);
530                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
531                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], watchpoint->mask);
532                 if (watchpoint->mask != 0xffffffffu)
533                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], watchpoint->value);
534                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
535                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
536
537                 if ((retval = jtag_execute_queue()) != ERROR_OK)
538                 {
539                         return retval;
540                 }
541                 watchpoint->set = 2;
542                 arm7_9->wp1_used = 2;
543         }
544         else
545         {
546                 LOG_ERROR("BUG: no hardware comparator available");
547                 return ERROR_OK;
548         }
549
550         return ERROR_OK;
551 }
552
553 /**
554  * Unset an existing watchpoint and clear the used watchpoint unit.
555  *
556  * @param target Pointer to the target to have the watchpoint removed
557  * @param watchpoint Pointer to the watchpoint to be removed
558  * @return Error status while trying to unset the watchpoint or the result of
559  *         executing the JTAG queue
560  */
561 int arm7_9_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
562 {
563         int retval = ERROR_OK;
564         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
565
566         if (target->state != TARGET_HALTED)
567         {
568                 LOG_WARNING("target not halted");
569                 return ERROR_TARGET_NOT_HALTED;
570         }
571
572         if (!watchpoint->set)
573         {
574                 LOG_WARNING("breakpoint not set");
575                 return ERROR_OK;
576         }
577
578         if (watchpoint->set == 1)
579         {
580                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
581                 if ((retval = jtag_execute_queue()) != ERROR_OK)
582                 {
583                         return retval;
584                 }
585                 arm7_9->wp0_used = 0;
586         }
587         else if (watchpoint->set == 2)
588         {
589                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
590                 if ((retval = jtag_execute_queue()) != ERROR_OK)
591                 {
592                         return retval;
593                 }
594                 arm7_9->wp1_used = 0;
595         }
596         watchpoint->set = 0;
597
598         return ERROR_OK;
599 }
600
601 /**
602  * Add a watchpoint to an ARM7/9 target.  If there are no watchpoint units
603  * available, an error response is returned.
604  *
605  * @param target Pointer to the ARM7/9 target to add a watchpoint to
606  * @param watchpoint Pointer to the watchpoint to be added
607  * @return Error status while trying to add the watchpoint
608  */
609 int arm7_9_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
610 {
611         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
612
613         if (target->state != TARGET_HALTED)
614         {
615                 LOG_WARNING("target not halted");
616                 return ERROR_TARGET_NOT_HALTED;
617         }
618
619         if (arm7_9->wp_available < 1)
620         {
621                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
622         }
623
624         if ((watchpoint->length != 1) && (watchpoint->length != 2) && (watchpoint->length != 4))
625         {
626                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
627         }
628
629         arm7_9->wp_available--;
630
631         return ERROR_OK;
632 }
633
634 /**
635  * Remove a watchpoint from an ARM7/9 target.  The watchpoint will be unset and
636  * the used watchpoint unit will be reopened.
637  *
638  * @param target Pointer to the target to remove a watchpoint from
639  * @param watchpoint Pointer to the watchpoint to be removed
640  * @return Result of trying to unset the watchpoint
641  */
642 int arm7_9_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
643 {
644         int retval = ERROR_OK;
645         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
646
647         if (watchpoint->set)
648         {
649                 if ((retval = arm7_9_unset_watchpoint(target, watchpoint)) != ERROR_OK)
650                 {
651                         return retval;
652                 }
653         }
654
655         arm7_9->wp_available++;
656
657         return ERROR_OK;
658 }
659
660 /**
661  * Restarts the target by sending a RESTART instruction and moving the JTAG
662  * state to IDLE.  This includes a timeout waiting for DBGACK and SYSCOMP to be
663  * asserted by the processor.
664  *
665  * @param target Pointer to target to issue commands to
666  * @return Error status if there is a timeout or a problem while executing the
667  *         JTAG queue
668  */
669 int arm7_9_execute_sys_speed(struct target *target)
670 {
671         int retval;
672         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
673         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
674         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
675
676         /* set RESTART instruction */
677         jtag_set_end_state(TAP_IDLE);
678         if (arm7_9->need_bypass_before_restart) {
679                 arm7_9->need_bypass_before_restart = 0;
680                 arm_jtag_set_instr(jtag_info, 0xf, NULL);
681         }
682         arm_jtag_set_instr(jtag_info, 0x4, NULL);
683
684         long long then = timeval_ms();
685         int timeout;
686         while (!(timeout = ((timeval_ms()-then) > 1000)))
687         {
688                 /* read debug status register */
689                 embeddedice_read_reg(dbg_stat);
690                 if ((retval = jtag_execute_queue()) != ERROR_OK)
691                         return retval;
692                 if ((buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
693                                    && (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_SYSCOMP, 1)))
694                         break;
695                 if (debug_level >= 3)
696                 {
697                         alive_sleep(100);
698                 } else
699                 {
700                         keep_alive();
701                 }
702         }
703         if (timeout)
704         {
705                 LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32 "", buf_get_u32(dbg_stat->value, 0, dbg_stat->size));
706                 return ERROR_TARGET_TIMEOUT;
707         }
708
709         return ERROR_OK;
710 }
711
712 /**
713  * Restarts the target by sending a RESTART instruction and moving the JTAG
714  * state to IDLE.  This validates that DBGACK and SYSCOMP are set without
715  * waiting until they are.
716  *
717  * @param target Pointer to the target to issue commands to
718  * @return Always ERROR_OK
719  */
720 int arm7_9_execute_fast_sys_speed(struct target *target)
721 {
722         static int set = 0;
723         static uint8_t check_value[4], check_mask[4];
724
725         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
726         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
727         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
728
729         /* set RESTART instruction */
730         jtag_set_end_state(TAP_IDLE);
731         if (arm7_9->need_bypass_before_restart) {
732                 arm7_9->need_bypass_before_restart = 0;
733                 arm_jtag_set_instr(jtag_info, 0xf, NULL);
734         }
735         arm_jtag_set_instr(jtag_info, 0x4, NULL);
736
737         if (!set)
738         {
739                 /* check for DBGACK and SYSCOMP set (others don't care) */
740
741                 /* NB! These are constants that must be available until after next jtag_execute() and
742                  * we evaluate the values upon first execution in lieu of setting up these constants
743                  * during early setup.
744                  * */
745                 buf_set_u32(check_value, 0, 32, 0x9);
746                 buf_set_u32(check_mask, 0, 32, 0x9);
747                 set = 1;
748         }
749
750         /* read debug status register */
751         embeddedice_read_reg_w_check(dbg_stat, check_value, check_mask);
752
753         return ERROR_OK;
754 }
755
756 /**
757  * Get some data from the ARM7/9 target.
758  *
759  * @param target Pointer to the ARM7/9 target to read data from
760  * @param size The number of 32bit words to be read
761  * @param buffer Pointer to the buffer that will hold the data
762  * @return The result of receiving data from the Embedded ICE unit
763  */
764 int arm7_9_target_request_data(struct target *target, uint32_t size, uint8_t *buffer)
765 {
766         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
767         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
768         uint32_t *data;
769         int retval = ERROR_OK;
770         uint32_t i;
771
772         data = malloc(size * (sizeof(uint32_t)));
773
774         retval = embeddedice_receive(jtag_info, data, size);
775
776         /* return the 32-bit ints in the 8-bit array */
777         for (i = 0; i < size; i++)
778         {
779                 h_u32_to_le(buffer + (i * 4), data[i]);
780         }
781
782         free(data);
783
784         return retval;
785 }
786
787 /**
788  * Handles requests to an ARM7/9 target.  If debug messaging is enabled, the
789  * target is running and the DCC control register has the W bit high, this will
790  * execute the request on the target.
791  *
792  * @param priv Void pointer expected to be a struct target pointer
793  * @return ERROR_OK unless there are issues with the JTAG queue or when reading
794  *                  from the Embedded ICE unit
795  */
796 int arm7_9_handle_target_request(void *priv)
797 {
798         int retval = ERROR_OK;
799         struct target *target = priv;
800         if (!target_was_examined(target))
801                 return ERROR_OK;
802         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
803         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
804         struct reg *dcc_control = &arm7_9->eice_cache->reg_list[EICE_COMMS_CTRL];
805
806         if (!target->dbg_msg_enabled)
807                 return ERROR_OK;
808
809         if (target->state == TARGET_RUNNING)
810         {
811                 /* read DCC control register */
812                 embeddedice_read_reg(dcc_control);
813                 if ((retval = jtag_execute_queue()) != ERROR_OK)
814                 {
815                         return retval;
816                 }
817
818                 /* check W bit */
819                 if (buf_get_u32(dcc_control->value, 1, 1) == 1)
820                 {
821                         uint32_t request;
822
823                         if ((retval = embeddedice_receive(jtag_info, &request, 1)) != ERROR_OK)
824                         {
825                                 return retval;
826                         }
827                         if ((retval = target_request(target, request)) != ERROR_OK)
828                         {
829                                 return retval;
830                         }
831                 }
832         }
833
834         return ERROR_OK;
835 }
836
837 /**
838  * Polls an ARM7/9 target for its current status.  If DBGACK is set, the target
839  * is manipulated to the right halted state based on its current state.  This is
840  * what happens:
841  *
842  * <table>
843  *              <tr><th > State</th><th > Action</th></tr>
844  *              <tr><td > TARGET_RUNNING | TARGET_RESET</td><td > Enters debug mode.  If TARGET_RESET, pc may be checked</td></tr>
845  *              <tr><td > TARGET_UNKNOWN</td><td > Warning is logged</td></tr>
846  *              <tr><td > TARGET_DEBUG_RUNNING</td><td > Enters debug mode</td></tr>
847  *              <tr><td > TARGET_HALTED</td><td > Nothing</td></tr>
848  * </table>
849  *
850  * If the target does not end up in the halted state, a warning is produced.  If
851  * DBGACK is cleared, then the target is expected to either be running or
852  * running in debug.
853  *
854  * @param target Pointer to the ARM7/9 target to poll
855  * @return ERROR_OK or an error status if a command fails
856  */
857 int arm7_9_poll(struct target *target)
858 {
859         int retval;
860         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
861         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
862
863         /* read debug status register */
864         embeddedice_read_reg(dbg_stat);
865         if ((retval = jtag_execute_queue()) != ERROR_OK)
866         {
867                 return retval;
868         }
869
870         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
871         {
872 /*              LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, 32));*/
873                 if (target->state == TARGET_UNKNOWN)
874                 {
875                         /* Starting OpenOCD with target in debug-halt */
876                         target->state = TARGET_RUNNING;
877                         LOG_DEBUG("DBGACK already set during server startup.");
878                 }
879                 if ((target->state == TARGET_RUNNING) || (target->state == TARGET_RESET))
880                 {
881                         int check_pc = 0;
882                         if (target->state == TARGET_RESET)
883                         {
884                                 if (target->reset_halt)
885                                 {
886                                         enum reset_types jtag_reset_config = jtag_get_reset_config();
887                                         if ((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0)
888                                         {
889                                                 check_pc = 1;
890                                         }
891                                 }
892                         }
893
894                         target->state = TARGET_HALTED;
895
896                         if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
897                                 return retval;
898
899                         if (check_pc)
900                         {
901                                 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
902                                 uint32_t t=*((uint32_t *)reg->value);
903                                 if (t != 0)
904                                 {
905                                         LOG_ERROR("PC was not 0. Does this target need srst_pulls_trst?");
906                                 }
907                         }
908
909                         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
910                         {
911                                 return retval;
912                         }
913                 }
914                 if (target->state == TARGET_DEBUG_RUNNING)
915                 {
916                         target->state = TARGET_HALTED;
917                         if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
918                                 return retval;
919
920                         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED)) != ERROR_OK)
921                         {
922                                 return retval;
923                         }
924                 }
925                 if (target->state != TARGET_HALTED)
926                 {
927                         LOG_WARNING("DBGACK set, but the target did not end up in the halted state %d", target->state);
928                 }
929         }
930         else
931         {
932                 if (target->state != TARGET_DEBUG_RUNNING)
933                         target->state = TARGET_RUNNING;
934         }
935
936         return ERROR_OK;
937 }
938
939 /**
940  * Asserts the reset (SRST) on an ARM7/9 target.  Some -S targets (ARM966E-S in
941  * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
942  * affected) completely stop the JTAG clock while the core is held in reset
943  * (SRST).  It isn't possible to program the halt condition once reset is
944  * asserted, hence a hook that allows the target to set up its reset-halt
945  * condition is setup prior to asserting reset.
946  *
947  * @param target Pointer to an ARM7/9 target to assert reset on
948  * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
949  */
950 int arm7_9_assert_reset(struct target *target)
951 {
952         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
953
954         LOG_DEBUG("target->state: %s",
955                   target_state_name(target));
956
957         enum reset_types jtag_reset_config = jtag_get_reset_config();
958         if (!(jtag_reset_config & RESET_HAS_SRST))
959         {
960                 LOG_ERROR("Can't assert SRST");
961                 return ERROR_FAIL;
962         }
963
964         /* At this point trst has been asserted/deasserted once. We would
965          * like to program EmbeddedICE while SRST is asserted, instead of
966          * depending on SRST to leave that module alone.  However, many CPUs
967          * gate the JTAG clock while SRST is asserted; or JTAG may need
968          * clock stability guarantees (adaptive clocking might help).
969          *
970          * So we assume JTAG access during SRST is off the menu unless it's
971          * been specifically enabled.
972          */
973         bool srst_asserted = false;
974
975         if (((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0)
976                         && (jtag_reset_config & RESET_SRST_NO_GATING))
977         {
978                 jtag_add_reset(0, 1);
979                 srst_asserted = true;
980         }
981
982         if (target->reset_halt)
983         {
984                 /*
985                  * Some targets do not support communication while SRST is asserted. We need to
986                  * set up the reset vector catch here.
987                  *
988                  * If TRST is asserted, then these settings will be reset anyway, so setting them
989                  * here is harmless.
990                  */
991                 if (arm7_9->has_vector_catch)
992                 {
993                         /* program vector catch register to catch reset vector */
994                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH], 0x1);
995
996                         /* extra runtest added as issues were found with certain ARM9 cores (maybe more) - AT91SAM9260 and STR9 */
997                         jtag_add_runtest(1, jtag_get_end_state());
998                 }
999                 else
1000                 {
1001                         /* program watchpoint unit to match on reset vector address */
1002                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], 0x0);
1003                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0x3);
1004                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1005                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1006                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1007                 }
1008         }
1009
1010         /* here we should issue an SRST only, but we may have to assert TRST as well */
1011         if (jtag_reset_config & RESET_SRST_PULLS_TRST)
1012         {
1013                 jtag_add_reset(1, 1);
1014         } else if (!srst_asserted)
1015         {
1016                 jtag_add_reset(0, 1);
1017         }
1018
1019         target->state = TARGET_RESET;
1020         jtag_add_sleep(50000);
1021
1022         armv4_5_invalidate_core_regs(target);
1023
1024         if ((target->reset_halt) && ((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0))
1025         {
1026                 /* debug entry was already prepared in arm7_9_assert_reset() */
1027                 target->debug_reason = DBG_REASON_DBGRQ;
1028         }
1029
1030         return ERROR_OK;
1031 }
1032
1033 /**
1034  * Deassert the reset (SRST) signal on an ARM7/9 target.  If SRST pulls TRST
1035  * and the target is being reset into a halt, a warning will be triggered
1036  * because it is not possible to reset into a halted mode in this case.  The
1037  * target is halted using the target's functions.
1038  *
1039  * @param target Pointer to the target to have the reset deasserted
1040  * @return ERROR_OK or an error from polling or halting the target
1041  */
1042 int arm7_9_deassert_reset(struct target *target)
1043 {
1044         int retval = ERROR_OK;
1045         LOG_DEBUG("target->state: %s",
1046                 target_state_name(target));
1047
1048         /* deassert reset lines */
1049         jtag_add_reset(0, 0);
1050
1051         enum reset_types jtag_reset_config = jtag_get_reset_config();
1052         if (target->reset_halt && (jtag_reset_config & RESET_SRST_PULLS_TRST) != 0)
1053         {
1054                 LOG_WARNING("srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
1055                 /* set up embedded ice registers again */
1056                 if ((retval = target_examine_one(target)) != ERROR_OK)
1057                         return retval;
1058
1059                 if ((retval = target_poll(target)) != ERROR_OK)
1060                 {
1061                         return retval;
1062                 }
1063
1064                 if ((retval = target_halt(target)) != ERROR_OK)
1065                 {
1066                         return retval;
1067                 }
1068
1069         }
1070         return retval;
1071 }
1072
1073 /**
1074  * Clears the halt condition for an ARM7/9 target.  If it isn't coming out of
1075  * reset and if DBGRQ is used, it is progammed to be deasserted.  If the reset
1076  * vector catch was used, it is restored.  Otherwise, the control value is
1077  * restored and the watchpoint unit is restored if it was in use.
1078  *
1079  * @param target Pointer to the ARM7/9 target to have halt cleared
1080  * @return Always ERROR_OK
1081  */
1082 int arm7_9_clear_halt(struct target *target)
1083 {
1084         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1085         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1086
1087         /* we used DBGRQ only if we didn't come out of reset */
1088         if (!arm7_9->debug_entry_from_reset && arm7_9->use_dbgrq)
1089         {
1090                 /* program EmbeddedICE Debug Control Register to deassert DBGRQ
1091                  */
1092                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1093                 embeddedice_store_reg(dbg_ctrl);
1094         }
1095         else
1096         {
1097                 if (arm7_9->debug_entry_from_reset && arm7_9->has_vector_catch)
1098                 {
1099                         /* if we came out of reset, and vector catch is supported, we used
1100                          * vector catch to enter debug state
1101                          * restore the register in that case
1102                          */
1103                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH]);
1104                 }
1105                 else
1106                 {
1107                         /* restore registers if watchpoint unit 0 was in use
1108                          */
1109                         if (arm7_9->wp0_used)
1110                         {
1111                                 if (arm7_9->debug_entry_from_reset)
1112                                 {
1113                                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE]);
1114                                 }
1115                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1116                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1117                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1118                         }
1119                         /* control value always has to be restored, as it was either disabled,
1120                          * or enabled with possibly different bits
1121                          */
1122                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1123                 }
1124         }
1125
1126         return ERROR_OK;
1127 }
1128
1129 /**
1130  * Issue a software reset and halt to an ARM7/9 target.  The target is halted
1131  * and then there is a wait until the processor shows the halt.  This wait can
1132  * timeout and results in an error being returned.  The software reset involves
1133  * clearing the halt, updating the debug control register, changing to ARM mode,
1134  * reset of the program counter, and reset of all of the registers.
1135  *
1136  * @param target Pointer to the ARM7/9 target to be reset and halted by software
1137  * @return Error status if any of the commands fail, otherwise ERROR_OK
1138  */
1139 int arm7_9_soft_reset_halt(struct target *target)
1140 {
1141         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1142         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1143         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1144         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1145         int i;
1146         int retval;
1147
1148         /* FIX!!! replace some of this code with tcl commands
1149          *
1150          * halt # the halt command is synchronous
1151          * armv4_5 core_state arm
1152          *
1153          */
1154
1155         if ((retval = target_halt(target)) != ERROR_OK)
1156                 return retval;
1157
1158         long long then = timeval_ms();
1159         int timeout;
1160         while (!(timeout = ((timeval_ms()-then) > 1000)))
1161         {
1162                 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) != 0)
1163                         break;
1164                 embeddedice_read_reg(dbg_stat);
1165                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1166                         return retval;
1167                 if (debug_level >= 3)
1168                 {
1169                         alive_sleep(100);
1170                 } else
1171                 {
1172                         keep_alive();
1173                 }
1174         }
1175         if (timeout)
1176         {
1177                 LOG_ERROR("Failed to halt CPU after 1 sec");
1178                 return ERROR_TARGET_TIMEOUT;
1179         }
1180         target->state = TARGET_HALTED;
1181
1182         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1183          * ensure that DBGRQ is cleared
1184          */
1185         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1186         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1187         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1188         embeddedice_store_reg(dbg_ctrl);
1189
1190         if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1191         {
1192                 return retval;
1193         }
1194
1195         /* if the target is in Thumb state, change to ARM state */
1196         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1197         {
1198                 uint32_t r0_thumb, pc_thumb;
1199                 LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
1200                 /* Entered debug from Thumb mode */
1201                 armv4_5->core_state = ARMV4_5_STATE_THUMB;
1202                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1203         }
1204
1205         /* all register content is now invalid */
1206         if ((retval = armv4_5_invalidate_core_regs(target)) != ERROR_OK)
1207         {
1208                 return retval;
1209         }
1210
1211         /* SVC, ARM state, IRQ and FIQ disabled */
1212         buf_set_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8, 0xd3);
1213         armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 1;
1214         armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
1215
1216         /* start fetching from 0x0 */
1217         buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, 0x0);
1218         armv4_5->core_cache->reg_list[15].dirty = 1;
1219         armv4_5->core_cache->reg_list[15].valid = 1;
1220
1221         armv4_5->core_mode = ARMV4_5_MODE_SVC;
1222         armv4_5->core_state = ARMV4_5_STATE_ARM;
1223
1224         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1225                 return ERROR_FAIL;
1226
1227         /* reset registers */
1228         for (i = 0; i <= 14; i++)
1229         {
1230                 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).value, 0, 32, 0xffffffff);
1231                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = 1;
1232                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid = 1;
1233         }
1234
1235         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
1236         {
1237                 return retval;
1238         }
1239
1240         return ERROR_OK;
1241 }
1242
1243 /**
1244  * Halt an ARM7/9 target.  This is accomplished by either asserting the DBGRQ
1245  * line or by programming a watchpoint to trigger on any address.  It is
1246  * considered a bug to call this function while the target is in the
1247  * TARGET_RESET state.
1248  *
1249  * @param target Pointer to the ARM7/9 target to be halted
1250  * @return Always ERROR_OK
1251  */
1252 int arm7_9_halt(struct target *target)
1253 {
1254         if (target->state == TARGET_RESET)
1255         {
1256                 LOG_ERROR("BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
1257                 return ERROR_OK;
1258         }
1259
1260         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1261         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1262
1263         LOG_DEBUG("target->state: %s",
1264                   target_state_name(target));
1265
1266         if (target->state == TARGET_HALTED)
1267         {
1268                 LOG_DEBUG("target was already halted");
1269                 return ERROR_OK;
1270         }
1271
1272         if (target->state == TARGET_UNKNOWN)
1273         {
1274                 LOG_WARNING("target was in unknown state when halt was requested");
1275         }
1276
1277         if (arm7_9->use_dbgrq)
1278         {
1279                 /* program EmbeddedICE Debug Control Register to assert DBGRQ
1280                  */
1281                 if (arm7_9->set_special_dbgrq) {
1282                         arm7_9->set_special_dbgrq(target);
1283                 } else {
1284                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 1);
1285                         embeddedice_store_reg(dbg_ctrl);
1286                 }
1287         }
1288         else
1289         {
1290                 /* program watchpoint unit to match on any address
1291                  */
1292                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1293                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1294                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1295                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1296         }
1297
1298         target->debug_reason = DBG_REASON_DBGRQ;
1299
1300         return ERROR_OK;
1301 }
1302
1303 /**
1304  * Handle an ARM7/9 target's entry into debug mode.  The halt is cleared on the
1305  * ARM.  The JTAG queue is then executed and the reason for debug entry is
1306  * examined.  Once done, the target is verified to be halted and the processor
1307  * is forced into ARM mode.  The core registers are saved for the current core
1308  * mode and the program counter (register 15) is updated as needed.  The core
1309  * registers and CPSR and SPSR are saved for restoration later.
1310  *
1311  * @param target Pointer to target that is entering debug mode
1312  * @return Error code if anything fails, otherwise ERROR_OK
1313  */
1314 int arm7_9_debug_entry(struct target *target)
1315 {
1316         int i;
1317         uint32_t context[16];
1318         uint32_t* context_p[16];
1319         uint32_t r0_thumb, pc_thumb;
1320         uint32_t cpsr;
1321         int retval;
1322         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1323         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1324         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1325         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1326
1327 #ifdef _DEBUG_ARM7_9_
1328         LOG_DEBUG("-");
1329 #endif
1330
1331         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1332          * ensure that DBGRQ is cleared
1333          */
1334         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1335         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1336         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1337         embeddedice_store_reg(dbg_ctrl);
1338
1339         if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1340         {
1341                 return retval;
1342         }
1343
1344         if ((retval = jtag_execute_queue()) != ERROR_OK)
1345         {
1346                 return retval;
1347         }
1348
1349         if ((retval = arm7_9->examine_debug_reason(target)) != ERROR_OK)
1350                 return retval;
1351
1352
1353         if (target->state != TARGET_HALTED)
1354         {
1355                 LOG_WARNING("target not halted");
1356                 return ERROR_TARGET_NOT_HALTED;
1357         }
1358
1359         /* if the target is in Thumb state, change to ARM state */
1360         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1361         {
1362                 LOG_DEBUG("target entered debug from Thumb state");
1363                 /* Entered debug from Thumb mode */
1364                 armv4_5->core_state = ARMV4_5_STATE_THUMB;
1365                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1366                 LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32 ", pc_thumb: 0x%8.8" PRIx32 "", r0_thumb, pc_thumb);
1367         }
1368         else
1369         {
1370                 LOG_DEBUG("target entered debug from ARM state");
1371                 /* Entered debug from ARM mode */
1372                 armv4_5->core_state = ARMV4_5_STATE_ARM;
1373         }
1374
1375         for (i = 0; i < 16; i++)
1376                 context_p[i] = &context[i];
1377         /* save core registers (r0 - r15 of current core mode) */
1378         arm7_9->read_core_regs(target, 0xffff, context_p);
1379
1380         arm7_9->read_xpsr(target, &cpsr, 0);
1381
1382         if ((retval = jtag_execute_queue()) != ERROR_OK)
1383                 return retval;
1384
1385         /* if the core has been executing in Thumb state, set the T bit */
1386         if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1387                 cpsr |= 0x20;
1388
1389         buf_set_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32, cpsr);
1390         armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 0;
1391         armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
1392
1393         armv4_5->core_mode = cpsr & 0x1f;
1394
1395         if (armv4_5_mode_to_number(armv4_5->core_mode) == -1)
1396         {
1397                 target->state = TARGET_UNKNOWN;
1398                 LOG_ERROR("cpsr contains invalid mode value - communication failure");
1399                 return ERROR_TARGET_FAILURE;
1400         }
1401
1402         LOG_DEBUG("target entered debug state in %s mode", armv4_5_mode_strings[armv4_5_mode_to_number(armv4_5->core_mode)]);
1403
1404         if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1405         {
1406                 LOG_DEBUG("thumb state, applying fixups");
1407                 context[0] = r0_thumb;
1408                 context[15] = pc_thumb;
1409         } else if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1410         {
1411                 /* adjust value stored by STM */
1412                 context[15] -= 3 * 4;
1413         }
1414
1415         if ((target->debug_reason != DBG_REASON_DBGRQ) || (!arm7_9->use_dbgrq))
1416                 context[15] -= 3 * ((armv4_5->core_state == ARMV4_5_STATE_ARM) ? 4 : 2);
1417         else
1418                 context[15] -= arm7_9->dbgreq_adjust_pc * ((armv4_5->core_state == ARMV4_5_STATE_ARM) ? 4 : 2);
1419
1420         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1421                 return ERROR_FAIL;
1422
1423         for (i = 0; i <= 15; i++)
1424         {
1425                 LOG_DEBUG("r%i: 0x%8.8" PRIx32 "", i, context[i]);
1426                 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).value, 0, 32, context[i]);
1427                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = 0;
1428                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid = 1;
1429         }
1430
1431         LOG_DEBUG("entered debug state at PC 0x%" PRIx32 "", context[15]);
1432
1433         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1434                 return ERROR_FAIL;
1435
1436         /* exceptions other than USR & SYS have a saved program status register */
1437         if ((armv4_5->core_mode != ARMV4_5_MODE_USR) && (armv4_5->core_mode != ARMV4_5_MODE_SYS))
1438         {
1439                 uint32_t spsr;
1440                 arm7_9->read_xpsr(target, &spsr, 1);
1441                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1442                 {
1443                         return retval;
1444                 }
1445                 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).value, 0, 32, spsr);
1446                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).dirty = 0;
1447                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).valid = 1;
1448         }
1449
1450         /* r0 and r15 (pc) have to be restored later */
1451         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).valid;
1452         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).valid;
1453
1454         if ((retval = jtag_execute_queue()) != ERROR_OK)
1455                 return retval;
1456
1457         if (arm7_9->post_debug_entry)
1458                 arm7_9->post_debug_entry(target);
1459
1460         return ERROR_OK;
1461 }
1462
1463 /**
1464  * Validate the full context for an ARM7/9 target in all processor modes.  If
1465  * there are any invalid registers for the target, they will all be read.  This
1466  * includes the PSR.
1467  *
1468  * @param target Pointer to the ARM7/9 target to capture the full context from
1469  * @return Error if the target is not halted, has an invalid core mode, or if
1470  *         the JTAG queue fails to execute
1471  */
1472 int arm7_9_full_context(struct target *target)
1473 {
1474         int i;
1475         int retval;
1476         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1477         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1478
1479         LOG_DEBUG("-");
1480
1481         if (target->state != TARGET_HALTED)
1482         {
1483                 LOG_WARNING("target not halted");
1484                 return ERROR_TARGET_NOT_HALTED;
1485         }
1486
1487         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1488                 return ERROR_FAIL;
1489
1490         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1491          * SYS shares registers with User, so we don't touch SYS
1492          */
1493         for (i = 0; i < 6; i++)
1494         {
1495                 uint32_t mask = 0;
1496                 uint32_t* reg_p[16];
1497                 int j;
1498                 int valid = 1;
1499
1500                 /* check if there are invalid registers in the current mode
1501                  */
1502                 for (j = 0; j <= 16; j++)
1503                 {
1504                         if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1505                                 valid = 0;
1506                 }
1507
1508                 if (!valid)
1509                 {
1510                         uint32_t tmp_cpsr;
1511
1512                         /* change processor mode (and mask T bit) */
1513                         tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
1514                         tmp_cpsr |= armv4_5_number_to_mode(i);
1515                         tmp_cpsr &= ~0x20;
1516                         arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1517
1518                         for (j = 0; j < 15; j++)
1519                         {
1520                                 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1521                                 {
1522                                         reg_p[j] = (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).value;
1523                                         mask |= 1 << j;
1524                                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid = 1;
1525                                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).dirty = 0;
1526                                 }
1527                         }
1528
1529                         /* if only the PSR is invalid, mask is all zeroes */
1530                         if (mask)
1531                                 arm7_9->read_core_regs(target, mask, reg_p);
1532
1533                         /* check if the PSR has to be read */
1534                         if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid == 0)
1535                         {
1536                                 arm7_9->read_xpsr(target, (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).value, 1);
1537                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid = 1;
1538                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).dirty = 0;
1539                         }
1540                 }
1541         }
1542
1543         /* restore processor mode (mask T bit) */
1544         arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
1545
1546         if ((retval = jtag_execute_queue()) != ERROR_OK)
1547         {
1548                 return retval;
1549         }
1550         return ERROR_OK;
1551 }
1552
1553 /**
1554  * Restore the processor context on an ARM7/9 target.  The full processor
1555  * context is analyzed to see if any of the registers are dirty on this end, but
1556  * have a valid new value.  If this is the case, the processor is changed to the
1557  * appropriate mode and the new register values are written out to the
1558  * processor.  If there happens to be a dirty register with an invalid value, an
1559  * error will be logged.
1560  *
1561  * @param target Pointer to the ARM7/9 target to have its context restored
1562  * @return Error status if the target is not halted or the core mode in the
1563  *         armv4_5 struct is invalid.
1564  */
1565 int arm7_9_restore_context(struct target *target)
1566 {
1567         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1568         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1569         struct reg *reg;
1570         struct armv4_5_core_reg *reg_arch_info;
1571         enum armv4_5_mode current_mode = armv4_5->core_mode;
1572         int i, j;
1573         int dirty;
1574         int mode_change;
1575
1576         LOG_DEBUG("-");
1577
1578         if (target->state != TARGET_HALTED)
1579         {
1580                 LOG_WARNING("target not halted");
1581                 return ERROR_TARGET_NOT_HALTED;
1582         }
1583
1584         if (arm7_9->pre_restore_context)
1585                 arm7_9->pre_restore_context(target);
1586
1587         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1588                 return ERROR_FAIL;
1589
1590         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1591          * SYS shares registers with User, so we don't touch SYS
1592          */
1593         for (i = 0; i < 6; i++)
1594         {
1595                 LOG_DEBUG("examining %s mode", armv4_5_mode_strings[i]);
1596                 dirty = 0;
1597                 mode_change = 0;
1598                 /* check if there are dirty registers in the current mode
1599                 */
1600                 for (j = 0; j <= 16; j++)
1601                 {
1602                         reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1603                         reg_arch_info = reg->arch_info;
1604                         if (reg->dirty == 1)
1605                         {
1606                                 if (reg->valid == 1)
1607                                 {
1608                                         dirty = 1;
1609                                         LOG_DEBUG("examining dirty reg: %s", reg->name);
1610                                         if ((reg_arch_info->mode != ARMV4_5_MODE_ANY)
1611                                                 && (reg_arch_info->mode != current_mode)
1612                                                 && !((reg_arch_info->mode == ARMV4_5_MODE_USR) && (armv4_5->core_mode == ARMV4_5_MODE_SYS))
1613                                                 && !((reg_arch_info->mode == ARMV4_5_MODE_SYS) && (armv4_5->core_mode == ARMV4_5_MODE_USR)))
1614                                         {
1615                                                 mode_change = 1;
1616                                                 LOG_DEBUG("require mode change");
1617                                         }
1618                                 }
1619                                 else
1620                                 {
1621                                         LOG_ERROR("BUG: dirty register '%s', but no valid data", reg->name);
1622                                 }
1623                         }
1624                 }
1625
1626                 if (dirty)
1627                 {
1628                         uint32_t mask = 0x0;
1629                         int num_regs = 0;
1630                         uint32_t regs[16];
1631
1632                         if (mode_change)
1633                         {
1634                                 uint32_t tmp_cpsr;
1635
1636                                 /* change processor mode (mask T bit) */
1637                                 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
1638                                 tmp_cpsr |= armv4_5_number_to_mode(i);
1639                                 tmp_cpsr &= ~0x20;
1640                                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1641                                 current_mode = armv4_5_number_to_mode(i);
1642                         }
1643
1644                         for (j = 0; j <= 14; j++)
1645                         {
1646                                 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1647                                 reg_arch_info = reg->arch_info;
1648
1649
1650                                 if (reg->dirty == 1)
1651                                 {
1652                                         regs[j] = buf_get_u32(reg->value, 0, 32);
1653                                         mask |= 1 << j;
1654                                         num_regs++;
1655                                         reg->dirty = 0;
1656                                         reg->valid = 1;
1657                                         LOG_DEBUG("writing register %i of mode %s with value 0x%8.8" PRIx32 "", j, armv4_5_mode_strings[i], regs[j]);
1658                                 }
1659                         }
1660
1661                         if (mask)
1662                         {
1663                                 arm7_9->write_core_regs(target, mask, regs);
1664                         }
1665
1666                         reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16);
1667                         reg_arch_info = reg->arch_info;
1668                         if ((reg->dirty) && (reg_arch_info->mode != ARMV4_5_MODE_ANY))
1669                         {
1670                                 LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32 "", i, buf_get_u32(reg->value, 0, 32));
1671                                 arm7_9->write_xpsr(target, buf_get_u32(reg->value, 0, 32), 1);
1672                         }
1673                 }
1674         }
1675
1676         if ((armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty == 0) && (armv4_5->core_mode != current_mode))
1677         {
1678                 /* restore processor mode (mask T bit) */
1679                 uint32_t tmp_cpsr;
1680
1681                 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
1682                 tmp_cpsr |= armv4_5_number_to_mode(i);
1683                 tmp_cpsr &= ~0x20;
1684                 LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr));
1685                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1686         }
1687         else if (armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty == 1)
1688         {
1689                 /* CPSR has been changed, full restore necessary (mask T bit) */
1690                 LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32));
1691                 arm7_9->write_xpsr(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32) & ~0x20, 0);
1692                 armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 0;
1693                 armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
1694         }
1695
1696         /* restore PC */
1697         LOG_DEBUG("writing PC with value 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1698         arm7_9->write_pc(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1699         armv4_5->core_cache->reg_list[15].dirty = 0;
1700
1701         if (arm7_9->post_restore_context)
1702                 arm7_9->post_restore_context(target);
1703
1704         return ERROR_OK;
1705 }
1706
1707 /**
1708  * Restart the core of an ARM7/9 target.  A RESTART command is sent to the
1709  * instruction register and the JTAG state is set to TAP_IDLE causing a core
1710  * restart.
1711  *
1712  * @param target Pointer to the ARM7/9 target to be restarted
1713  * @return Result of executing the JTAG queue
1714  */
1715 int arm7_9_restart_core(struct target *target)
1716 {
1717         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1718         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
1719
1720         /* set RESTART instruction */
1721         jtag_set_end_state(TAP_IDLE);
1722         if (arm7_9->need_bypass_before_restart) {
1723                 arm7_9->need_bypass_before_restart = 0;
1724                 arm_jtag_set_instr(jtag_info, 0xf, NULL);
1725         }
1726         arm_jtag_set_instr(jtag_info, 0x4, NULL);
1727
1728         jtag_add_runtest(1, jtag_set_end_state(TAP_IDLE));
1729         return jtag_execute_queue();
1730 }
1731
1732 /**
1733  * Enable the watchpoints on an ARM7/9 target.  The target's watchpoints are
1734  * iterated through and are set on the target if they aren't already set.
1735  *
1736  * @param target Pointer to the ARM7/9 target to enable watchpoints on
1737  */
1738 void arm7_9_enable_watchpoints(struct target *target)
1739 {
1740         struct watchpoint *watchpoint = target->watchpoints;
1741
1742         while (watchpoint)
1743         {
1744                 if (watchpoint->set == 0)
1745                         arm7_9_set_watchpoint(target, watchpoint);
1746                 watchpoint = watchpoint->next;
1747         }
1748 }
1749
1750 /**
1751  * Enable the breakpoints on an ARM7/9 target.  The target's breakpoints are
1752  * iterated through and are set on the target.
1753  *
1754  * @param target Pointer to the ARM7/9 target to enable breakpoints on
1755  */
1756 void arm7_9_enable_breakpoints(struct target *target)
1757 {
1758         struct breakpoint *breakpoint = target->breakpoints;
1759
1760         /* set any pending breakpoints */
1761         while (breakpoint)
1762         {
1763                 arm7_9_set_breakpoint(target, breakpoint);
1764                 breakpoint = breakpoint->next;
1765         }
1766 }
1767
1768 int arm7_9_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
1769 {
1770         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1771         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1772         struct breakpoint *breakpoint = target->breakpoints;
1773         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1774         int err, retval = ERROR_OK;
1775
1776         LOG_DEBUG("-");
1777
1778         if (target->state != TARGET_HALTED)
1779         {
1780                 LOG_WARNING("target not halted");
1781                 return ERROR_TARGET_NOT_HALTED;
1782         }
1783
1784         if (!debug_execution)
1785         {
1786                 target_free_all_working_areas(target);
1787         }
1788
1789         /* current = 1: continue on current pc, otherwise continue at <address> */
1790         if (!current)
1791                 buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
1792
1793         uint32_t current_pc;
1794         current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
1795
1796         /* the front-end may request us not to handle breakpoints */
1797         if (handle_breakpoints)
1798         {
1799                 if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
1800                 {
1801                         LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (id: %d)", breakpoint->address, breakpoint->unique_id );
1802                         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
1803                         {
1804                                 return retval;
1805                         }
1806
1807                         /* calculate PC of next instruction */
1808                         uint32_t next_pc;
1809                         if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
1810                         {
1811                                 uint32_t current_opcode;
1812                                 target_read_u32(target, current_pc, &current_opcode);
1813                                 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
1814                                 return retval;
1815                         }
1816
1817                         LOG_DEBUG("enable single-step");
1818                         arm7_9->enable_single_step(target, next_pc);
1819
1820                         target->debug_reason = DBG_REASON_SINGLESTEP;
1821
1822                         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1823                         {
1824                                 return retval;
1825                         }
1826
1827                         if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1828                                 arm7_9->branch_resume(target);
1829                         else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1830                         {
1831                                 arm7_9->branch_resume_thumb(target);
1832                         }
1833                         else
1834                         {
1835                                 LOG_ERROR("unhandled core state");
1836                                 return ERROR_FAIL;
1837                         }
1838
1839                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1840                         embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1841                         err = arm7_9_execute_sys_speed(target);
1842
1843                         LOG_DEBUG("disable single-step");
1844                         arm7_9->disable_single_step(target);
1845
1846                         if (err != ERROR_OK)
1847                         {
1848                                 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1849                                 {
1850                                         return retval;
1851                                 }
1852                                 target->state = TARGET_UNKNOWN;
1853                                 return err;
1854                         }
1855
1856                         arm7_9_debug_entry(target);
1857                         LOG_DEBUG("new PC after step: 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1858
1859                         LOG_DEBUG("set breakpoint at 0x%8.8" PRIx32 "", breakpoint->address);
1860                         if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1861                         {
1862                                 return retval;
1863                         }
1864                 }
1865         }
1866
1867         /* enable any pending breakpoints and watchpoints */
1868         arm7_9_enable_breakpoints(target);
1869         arm7_9_enable_watchpoints(target);
1870
1871         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1872         {
1873                 return retval;
1874         }
1875
1876         if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1877         {
1878                 arm7_9->branch_resume(target);
1879         }
1880         else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1881         {
1882                 arm7_9->branch_resume_thumb(target);
1883         }
1884         else
1885         {
1886                 LOG_ERROR("unhandled core state");
1887                 return ERROR_FAIL;
1888         }
1889
1890         /* deassert DBGACK and INTDIS */
1891         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1892         /* INTDIS only when we really resume, not during debug execution */
1893         if (!debug_execution)
1894                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 0);
1895         embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1896
1897         if ((retval = arm7_9_restart_core(target)) != ERROR_OK)
1898         {
1899                 return retval;
1900         }
1901
1902         target->debug_reason = DBG_REASON_NOTHALTED;
1903
1904         if (!debug_execution)
1905         {
1906                 /* registers are now invalid */
1907                 armv4_5_invalidate_core_regs(target);
1908                 target->state = TARGET_RUNNING;
1909                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
1910                 {
1911                         return retval;
1912                 }
1913         }
1914         else
1915         {
1916                 target->state = TARGET_DEBUG_RUNNING;
1917                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED)) != ERROR_OK)
1918                 {
1919                         return retval;
1920                 }
1921         }
1922
1923         LOG_DEBUG("target resumed");
1924
1925         return ERROR_OK;
1926 }
1927
1928 void arm7_9_enable_eice_step(struct target *target, uint32_t next_pc)
1929 {
1930         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1931         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1932         uint32_t current_pc;
1933         current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
1934
1935         if (next_pc != current_pc)
1936         {
1937                 /* setup an inverse breakpoint on the current PC
1938                 * - comparator 1 matches the current address
1939                 * - rangeout from comparator 1 is connected to comparator 0 rangein
1940                 * - comparator 0 matches any address, as long as rangein is low */
1941                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1942                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1943                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1944                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~(EICE_W_CTRL_RANGE | EICE_W_CTRL_nOPC) & 0xff);
1945                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], current_pc);
1946                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1947                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1948                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
1949                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1950         }
1951         else
1952         {
1953                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1954                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1955                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
1956                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff);
1957                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], next_pc);
1958                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1959                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1960                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1961                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1962         }
1963 }
1964
1965 void arm7_9_disable_eice_step(struct target *target)
1966 {
1967         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1968
1969         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1970         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1971         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1972         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1973         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE]);
1974         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK]);
1975         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK]);
1976         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK]);
1977         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE]);
1978 }
1979
1980 int arm7_9_step(struct target *target, int current, uint32_t address, int handle_breakpoints)
1981 {
1982         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1983         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1984         struct breakpoint *breakpoint = NULL;
1985         int err, retval;
1986
1987         if (target->state != TARGET_HALTED)
1988         {
1989                 LOG_WARNING("target not halted");
1990                 return ERROR_TARGET_NOT_HALTED;
1991         }
1992
1993         /* current = 1: continue on current pc, otherwise continue at <address> */
1994         if (!current)
1995                 buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
1996
1997         uint32_t current_pc;
1998         current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
1999
2000         /* the front-end may request us not to handle breakpoints */
2001         if (handle_breakpoints)
2002                 if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
2003                         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
2004                         {
2005                                 return retval;
2006                         }
2007
2008         target->debug_reason = DBG_REASON_SINGLESTEP;
2009
2010         /* calculate PC of next instruction */
2011         uint32_t next_pc;
2012         if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
2013         {
2014                 uint32_t current_opcode;
2015                 target_read_u32(target, current_pc, &current_opcode);
2016                 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
2017                 return retval;
2018         }
2019
2020         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
2021         {
2022                 return retval;
2023         }
2024
2025         arm7_9->enable_single_step(target, next_pc);
2026
2027         if (armv4_5->core_state == ARMV4_5_STATE_ARM)
2028         {
2029                 arm7_9->branch_resume(target);
2030         }
2031         else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
2032         {
2033                 arm7_9->branch_resume_thumb(target);
2034         }
2035         else
2036         {
2037                 LOG_ERROR("unhandled core state");
2038                 return ERROR_FAIL;
2039         }
2040
2041         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
2042         {
2043                 return retval;
2044         }
2045
2046         err = arm7_9_execute_sys_speed(target);
2047         arm7_9->disable_single_step(target);
2048
2049         /* registers are now invalid */
2050         armv4_5_invalidate_core_regs(target);
2051
2052         if (err != ERROR_OK)
2053         {
2054                 target->state = TARGET_UNKNOWN;
2055         } else {
2056                 arm7_9_debug_entry(target);
2057                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
2058                 {
2059                         return retval;
2060                 }
2061                 LOG_DEBUG("target stepped");
2062         }
2063
2064         if (breakpoint)
2065                 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
2066                 {
2067                         return retval;
2068                 }
2069
2070         return err;
2071 }
2072
2073 int arm7_9_read_core_reg(struct target *target, int num, enum armv4_5_mode mode)
2074 {
2075         uint32_t* reg_p[16];
2076         uint32_t value;
2077         int retval;
2078         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2079         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
2080
2081         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2082                 return ERROR_FAIL;
2083
2084         enum armv4_5_mode reg_mode = ((struct armv4_5_core_reg*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info)->mode;
2085
2086         if ((num < 0) || (num > 16))
2087                 return ERROR_INVALID_ARGUMENTS;
2088
2089         if ((mode != ARMV4_5_MODE_ANY)
2090                         && (mode != armv4_5->core_mode)
2091                         && (reg_mode != ARMV4_5_MODE_ANY))
2092         {
2093                 uint32_t tmp_cpsr;
2094
2095                 /* change processor mode (mask T bit) */
2096                 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
2097                 tmp_cpsr |= mode;
2098                 tmp_cpsr &= ~0x20;
2099                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2100         }
2101
2102         if ((num >= 0) && (num <= 15))
2103         {
2104                 /* read a normal core register */
2105                 reg_p[num] = &value;
2106
2107                 arm7_9->read_core_regs(target, 1 << num, reg_p);
2108         }
2109         else
2110         {
2111                 /* read a program status register
2112                  * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
2113                  */
2114                 struct armv4_5_core_reg *arch_info = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info;
2115                 int spsr = (arch_info->mode == ARMV4_5_MODE_ANY) ? 0 : 1;
2116
2117                 arm7_9->read_xpsr(target, &value, spsr);
2118         }
2119
2120         if ((retval = jtag_execute_queue()) != ERROR_OK)
2121         {
2122                 return retval;
2123         }
2124
2125         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
2126         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
2127         buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).value, 0, 32, value);
2128
2129         if ((mode != ARMV4_5_MODE_ANY)
2130                         && (mode != armv4_5->core_mode)
2131                         && (reg_mode != ARMV4_5_MODE_ANY))      {
2132                 /* restore processor mode (mask T bit) */
2133                 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2134         }
2135
2136         return ERROR_OK;
2137 }
2138
2139 int arm7_9_write_core_reg(struct target *target, int num, enum armv4_5_mode mode, uint32_t value)
2140 {
2141         uint32_t reg[16];
2142         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2143         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
2144
2145         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2146                 return ERROR_FAIL;
2147
2148         enum armv4_5_mode reg_mode = ((struct armv4_5_core_reg*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info)->mode;
2149
2150         if ((num < 0) || (num > 16))
2151                 return ERROR_INVALID_ARGUMENTS;
2152
2153         if ((mode != ARMV4_5_MODE_ANY)
2154                         && (mode != armv4_5->core_mode)
2155                         && (reg_mode != ARMV4_5_MODE_ANY))      {
2156                 uint32_t tmp_cpsr;
2157
2158                 /* change processor mode (mask T bit) */
2159                 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
2160                 tmp_cpsr |= mode;
2161                 tmp_cpsr &= ~0x20;
2162                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2163         }
2164
2165         if ((num >= 0) && (num <= 15))
2166         {
2167                 /* write a normal core register */
2168                 reg[num] = value;
2169
2170                 arm7_9->write_core_regs(target, 1 << num, reg);
2171         }
2172         else
2173         {
2174                 /* write a program status register
2175                 * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
2176                 */
2177                 struct armv4_5_core_reg *arch_info = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info;
2178                 int spsr = (arch_info->mode == ARMV4_5_MODE_ANY) ? 0 : 1;
2179
2180                 /* if we're writing the CPSR, mask the T bit */
2181                 if (!spsr)
2182                         value &= ~0x20;
2183
2184                 arm7_9->write_xpsr(target, value, spsr);
2185         }
2186
2187         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
2188         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
2189
2190         if ((mode != ARMV4_5_MODE_ANY)
2191                         && (mode != armv4_5->core_mode)
2192                         && (reg_mode != ARMV4_5_MODE_ANY))      {
2193                 /* restore processor mode (mask T bit) */
2194                 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2195         }
2196
2197         return jtag_execute_queue();
2198 }
2199
2200 int arm7_9_read_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2201 {
2202         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2203         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
2204         uint32_t reg[16];
2205         uint32_t num_accesses = 0;
2206         int thisrun_accesses;
2207         int i;
2208         uint32_t cpsr;
2209         int retval;
2210         int last_reg = 0;
2211
2212         LOG_DEBUG("address: 0x%8.8" PRIx32 ", size: 0x%8.8" PRIx32 ", count: 0x%8.8" PRIx32 "", address, size, count);
2213
2214         if (target->state != TARGET_HALTED)
2215         {
2216                 LOG_WARNING("target not halted");
2217                 return ERROR_TARGET_NOT_HALTED;
2218         }
2219
2220         /* sanitize arguments */
2221         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2222                 return ERROR_INVALID_ARGUMENTS;
2223
2224         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2225                 return ERROR_TARGET_UNALIGNED_ACCESS;
2226
2227         /* load the base register with the address of the first word */
2228         reg[0] = address;
2229         arm7_9->write_core_regs(target, 0x1, reg);
2230
2231         int j = 0;
2232
2233         switch (size)
2234         {
2235                 case 4:
2236                         while (num_accesses < count)
2237                         {
2238                                 uint32_t reg_list;
2239                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2240                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2241
2242                                 if (last_reg <= thisrun_accesses)
2243                                         last_reg = thisrun_accesses;
2244
2245                                 arm7_9->load_word_regs(target, reg_list);
2246
2247                                 /* fast memory reads are only safe when the target is running
2248                                  * from a sufficiently high clock (32 kHz is usually too slow)
2249                                  */
2250                                 if (arm7_9->fast_memory_access)
2251                                         retval = arm7_9_execute_fast_sys_speed(target);
2252                                 else
2253                                         retval = arm7_9_execute_sys_speed(target);
2254                                 if (retval != ERROR_OK)
2255                                         return retval;
2256
2257                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 4);
2258
2259                                 /* advance buffer, count number of accesses */
2260                                 buffer += thisrun_accesses * 4;
2261                                 num_accesses += thisrun_accesses;
2262
2263                                 if ((j++%1024) == 0)
2264                                 {
2265                                         keep_alive();
2266                                 }
2267                         }
2268                         break;
2269                 case 2:
2270                         while (num_accesses < count)
2271                         {
2272                                 uint32_t reg_list;
2273                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2274                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2275
2276                                 for (i = 1; i <= thisrun_accesses; i++)
2277                                 {
2278                                         if (i > last_reg)
2279                                                 last_reg = i;
2280                                         arm7_9->load_hword_reg(target, i);
2281                                         /* fast memory reads are only safe when the target is running
2282                                          * from a sufficiently high clock (32 kHz is usually too slow)
2283                                          */
2284                                         if (arm7_9->fast_memory_access)
2285                                                 retval = arm7_9_execute_fast_sys_speed(target);
2286                                         else
2287                                                 retval = arm7_9_execute_sys_speed(target);
2288                                         if (retval != ERROR_OK)
2289                                         {
2290                                                 return retval;
2291                                         }
2292
2293                                 }
2294
2295                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 2);
2296
2297                                 /* advance buffer, count number of accesses */
2298                                 buffer += thisrun_accesses * 2;
2299                                 num_accesses += thisrun_accesses;
2300
2301                                 if ((j++%1024) == 0)
2302                                 {
2303                                         keep_alive();
2304                                 }
2305                         }
2306                         break;
2307                 case 1:
2308                         while (num_accesses < count)
2309                         {
2310                                 uint32_t reg_list;
2311                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2312                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2313
2314                                 for (i = 1; i <= thisrun_accesses; i++)
2315                                 {
2316                                         if (i > last_reg)
2317                                                 last_reg = i;
2318                                         arm7_9->load_byte_reg(target, i);
2319                                         /* fast memory reads are only safe when the target is running
2320                                          * from a sufficiently high clock (32 kHz is usually too slow)
2321                                          */
2322                                         if (arm7_9->fast_memory_access)
2323                                                 retval = arm7_9_execute_fast_sys_speed(target);
2324                                         else
2325                                                 retval = arm7_9_execute_sys_speed(target);
2326                                         if (retval != ERROR_OK)
2327                                         {
2328                                                 return retval;
2329                                         }
2330                                 }
2331
2332                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 1);
2333
2334                                 /* advance buffer, count number of accesses */
2335                                 buffer += thisrun_accesses * 1;
2336                                 num_accesses += thisrun_accesses;
2337
2338                                 if ((j++%1024) == 0)
2339                                 {
2340                                         keep_alive();
2341                                 }
2342                         }
2343                         break;
2344                 default:
2345                         LOG_ERROR("BUG: we shouldn't get here");
2346                         exit(-1);
2347                         break;
2348         }
2349
2350         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2351                 return ERROR_FAIL;
2352
2353         for (i = 0; i <= last_reg; i++)
2354                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid;
2355
2356         arm7_9->read_xpsr(target, &cpsr, 0);
2357         if ((retval = jtag_execute_queue()) != ERROR_OK)
2358         {
2359                 LOG_ERROR("JTAG error while reading cpsr");
2360                 return ERROR_TARGET_DATA_ABORT;
2361         }
2362
2363         if (((cpsr & 0x1f) == ARMV4_5_MODE_ABT) && (armv4_5->core_mode != ARMV4_5_MODE_ABT))
2364         {
2365                 LOG_WARNING("memory read caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2366
2367                 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2368
2369                 return ERROR_TARGET_DATA_ABORT;
2370         }
2371
2372         return ERROR_OK;
2373 }
2374
2375 int arm7_9_write_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2376 {
2377         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2378         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
2379         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
2380
2381         uint32_t reg[16];
2382         uint32_t num_accesses = 0;
2383         int thisrun_accesses;
2384         int i;
2385         uint32_t cpsr;
2386         int retval;
2387         int last_reg = 0;
2388
2389 #ifdef _DEBUG_ARM7_9_
2390         LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address, size, count);
2391 #endif
2392
2393         if (target->state != TARGET_HALTED)
2394         {
2395                 LOG_WARNING("target not halted");
2396                 return ERROR_TARGET_NOT_HALTED;
2397         }
2398
2399         /* sanitize arguments */
2400         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2401                 return ERROR_INVALID_ARGUMENTS;
2402
2403         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2404                 return ERROR_TARGET_UNALIGNED_ACCESS;
2405
2406         /* load the base register with the address of the first word */
2407         reg[0] = address;
2408         arm7_9->write_core_regs(target, 0x1, reg);
2409
2410         /* Clear DBGACK, to make sure memory fetches work as expected */
2411         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
2412         embeddedice_store_reg(dbg_ctrl);
2413
2414         switch (size)
2415         {
2416                 case 4:
2417                         while (num_accesses < count)
2418                         {
2419                                 uint32_t reg_list;
2420                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2421                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2422
2423                                 for (i = 1; i <= thisrun_accesses; i++)
2424                                 {
2425                                         if (i > last_reg)
2426                                                 last_reg = i;
2427                                         reg[i] = target_buffer_get_u32(target, buffer);
2428                                         buffer += 4;
2429                                 }
2430
2431                                 arm7_9->write_core_regs(target, reg_list, reg);
2432
2433                                 arm7_9->store_word_regs(target, reg_list);
2434
2435                                 /* fast memory writes are only safe when the target is running
2436                                  * from a sufficiently high clock (32 kHz is usually too slow)
2437                                  */
2438                                 if (arm7_9->fast_memory_access)
2439                                         retval = arm7_9_execute_fast_sys_speed(target);
2440                                 else
2441                                         retval = arm7_9_execute_sys_speed(target);
2442                                 if (retval != ERROR_OK)
2443                                 {
2444                                         return retval;
2445                                 }
2446
2447                                 num_accesses += thisrun_accesses;
2448                         }
2449                         break;
2450                 case 2:
2451                         while (num_accesses < count)
2452                         {
2453                                 uint32_t reg_list;
2454                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2455                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2456
2457                                 for (i = 1; i <= thisrun_accesses; i++)
2458                                 {
2459                                         if (i > last_reg)
2460                                                 last_reg = i;
2461                                         reg[i] = target_buffer_get_u16(target, buffer) & 0xffff;
2462                                         buffer += 2;
2463                                 }
2464
2465                                 arm7_9->write_core_regs(target, reg_list, reg);
2466
2467                                 for (i = 1; i <= thisrun_accesses; i++)
2468                                 {
2469                                         arm7_9->store_hword_reg(target, i);
2470
2471                                         /* fast memory writes are only safe when the target is running
2472                                          * from a sufficiently high clock (32 kHz is usually too slow)
2473                                          */
2474                                         if (arm7_9->fast_memory_access)
2475                                                 retval = arm7_9_execute_fast_sys_speed(target);
2476                                         else
2477                                                 retval = arm7_9_execute_sys_speed(target);
2478                                         if (retval != ERROR_OK)
2479                                         {
2480                                                 return retval;
2481                                         }
2482                                 }
2483
2484                                 num_accesses += thisrun_accesses;
2485                         }
2486                         break;
2487                 case 1:
2488                         while (num_accesses < count)
2489                         {
2490                                 uint32_t reg_list;
2491                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2492                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2493
2494                                 for (i = 1; i <= thisrun_accesses; i++)
2495                                 {
2496                                         if (i > last_reg)
2497                                                 last_reg = i;
2498                                         reg[i] = *buffer++ & 0xff;
2499                                 }
2500
2501                                 arm7_9->write_core_regs(target, reg_list, reg);
2502
2503                                 for (i = 1; i <= thisrun_accesses; i++)
2504                                 {
2505                                         arm7_9->store_byte_reg(target, i);
2506                                         /* fast memory writes are only safe when the target is running
2507                                          * from a sufficiently high clock (32 kHz is usually too slow)
2508                                          */
2509                                         if (arm7_9->fast_memory_access)
2510                                                 retval = arm7_9_execute_fast_sys_speed(target);
2511                                         else
2512                                                 retval = arm7_9_execute_sys_speed(target);
2513                                         if (retval != ERROR_OK)
2514                                         {
2515                                                 return retval;
2516                                         }
2517
2518                                 }
2519
2520                                 num_accesses += thisrun_accesses;
2521                         }
2522                         break;
2523                 default:
2524                         LOG_ERROR("BUG: we shouldn't get here");
2525                         exit(-1);
2526                         break;
2527         }
2528
2529         /* Re-Set DBGACK */
2530         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
2531         embeddedice_store_reg(dbg_ctrl);
2532
2533         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2534                 return ERROR_FAIL;
2535
2536         for (i = 0; i <= last_reg; i++)
2537                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid;
2538
2539         arm7_9->read_xpsr(target, &cpsr, 0);
2540         if ((retval = jtag_execute_queue()) != ERROR_OK)
2541         {
2542                 LOG_ERROR("JTAG error while reading cpsr");
2543                 return ERROR_TARGET_DATA_ABORT;
2544         }
2545
2546         if (((cpsr & 0x1f) == ARMV4_5_MODE_ABT) && (armv4_5->core_mode != ARMV4_5_MODE_ABT))
2547         {
2548                 LOG_WARNING("memory write caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2549
2550                 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2551
2552                 return ERROR_TARGET_DATA_ABORT;
2553         }
2554
2555         return ERROR_OK;
2556 }
2557
2558 static int dcc_count;
2559 static uint8_t *dcc_buffer;
2560
2561 static int arm7_9_dcc_completion(struct target *target, uint32_t exit_point, int timeout_ms, void *arch_info)
2562 {
2563         int retval = ERROR_OK;
2564         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2565
2566         if ((retval = target_wait_state(target, TARGET_DEBUG_RUNNING, 500)) != ERROR_OK)
2567                 return retval;
2568
2569         int little = target->endianness == TARGET_LITTLE_ENDIAN;
2570         int count = dcc_count;
2571         uint8_t *buffer = dcc_buffer;
2572         if (count > 2)
2573         {
2574                 /* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
2575                  * core function repeated. */
2576                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2577                 buffer += 4;
2578
2579                 struct embeddedice_reg *ice_reg = arm7_9->eice_cache->reg_list[EICE_COMMS_DATA].arch_info;
2580                 uint8_t reg_addr = ice_reg->addr & 0x1f;
2581                 struct jtag_tap *tap;
2582                 tap = ice_reg->jtag_info->tap;
2583
2584                 embeddedice_write_dcc(tap, reg_addr, buffer, little, count-2);
2585                 buffer += (count-2)*4;
2586
2587                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2588         } else
2589         {
2590                 int i;
2591                 for (i = 0; i < count; i++)
2592                 {
2593                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2594                         buffer += 4;
2595                 }
2596         }
2597
2598         if ((retval = target_halt(target))!= ERROR_OK)
2599         {
2600                 return retval;
2601         }
2602         return target_wait_state(target, TARGET_HALTED, 500);
2603 }
2604
2605 static const uint32_t dcc_code[] =
2606 {
2607         /* r0 == input, points to memory buffer
2608          * r1 == scratch
2609          */
2610
2611         /* spin until DCC control (c0) reports data arrived */
2612         0xee101e10,     /* w: mrc p14, #0, r1, c0, c0 */
2613         0xe3110001,     /*    tst r1, #1              */
2614         0x0afffffc,     /*    bne w                   */
2615
2616         /* read word from DCC (c1), write to memory */
2617         0xee111e10,     /*    mrc p14, #0, r1, c1, c0 */
2618         0xe4801004,     /*    str r1, [r0], #4        */
2619
2620         /* repeat */
2621         0xeafffff9      /*    b   w                   */
2622 };
2623
2624 int armv4_5_run_algorithm_inner(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_params, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info, int (*run_it)(struct target *target, uint32_t exit_point, int timeout_ms, void *arch_info));
2625
2626 int arm7_9_bulk_write_memory(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
2627 {
2628         int retval;
2629         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2630         int i;
2631
2632         if (!arm7_9->dcc_downloads)
2633                 return target_write_memory(target, address, 4, count, buffer);
2634
2635         /* regrab previously allocated working_area, or allocate a new one */
2636         if (!arm7_9->dcc_working_area)
2637         {
2638                 uint8_t dcc_code_buf[6 * 4];
2639
2640                 /* make sure we have a working area */
2641                 if (target_alloc_working_area(target, 24, &arm7_9->dcc_working_area) != ERROR_OK)
2642                 {
2643                         LOG_INFO("no working area available, falling back to memory writes");
2644                         return target_write_memory(target, address, 4, count, buffer);
2645                 }
2646
2647                 /* copy target instructions to target endianness */
2648                 for (i = 0; i < 6; i++)
2649                 {
2650                         target_buffer_set_u32(target, dcc_code_buf + i*4, dcc_code[i]);
2651                 }
2652
2653                 /* write DCC code to working area */
2654                 if ((retval = target_write_memory(target, arm7_9->dcc_working_area->address, 4, 6, dcc_code_buf)) != ERROR_OK)
2655                 {
2656                         return retval;
2657                 }
2658         }
2659
2660         struct armv4_5_algorithm armv4_5_info;
2661         struct reg_param reg_params[1];
2662
2663         armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
2664         armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
2665         armv4_5_info.core_state = ARMV4_5_STATE_ARM;
2666
2667         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
2668
2669         buf_set_u32(reg_params[0].value, 0, 32, address);
2670
2671         dcc_count = count;
2672         dcc_buffer = buffer;
2673         retval = armv4_5_run_algorithm_inner(target, 0, NULL, 1, reg_params,
2674                         arm7_9->dcc_working_area->address, arm7_9->dcc_working_area->address + 6*4, 20*1000, &armv4_5_info, arm7_9_dcc_completion);
2675
2676         if (retval == ERROR_OK)
2677         {
2678                 uint32_t endaddress = buf_get_u32(reg_params[0].value, 0, 32);
2679                 if (endaddress != (address + count*4))
2680                 {
2681                         LOG_ERROR("DCC write failed, expected end address 0x%08" PRIx32 " got 0x%0" PRIx32 "", (address + count*4), endaddress);
2682                         retval = ERROR_FAIL;
2683                 }
2684         }
2685
2686         destroy_reg_param(&reg_params[0]);
2687
2688         return retval;
2689 }
2690
2691 int arm7_9_checksum_memory(struct target *target, uint32_t address, uint32_t count, uint32_t* checksum)
2692 {
2693         struct working_area *crc_algorithm;
2694         struct armv4_5_algorithm armv4_5_info;
2695         struct reg_param reg_params[2];
2696         int retval;
2697
2698         static const uint32_t arm7_9_crc_code[] = {
2699                 0xE1A02000,                             /* mov          r2, r0 */
2700                 0xE3E00000,                             /* mov          r0, #0xffffffff */
2701                 0xE1A03001,                             /* mov          r3, r1 */
2702                 0xE3A04000,                             /* mov          r4, #0 */
2703                 0xEA00000B,                             /* b            ncomp */
2704                                                                 /* nbyte: */
2705                 0xE7D21004,                             /* ldrb r1, [r2, r4] */
2706                 0xE59F7030,                             /* ldr          r7, CRC32XOR */
2707                 0xE0200C01,                             /* eor          r0, r0, r1, asl 24 */
2708                 0xE3A05000,                             /* mov          r5, #0 */
2709                                                                 /* loop: */
2710                 0xE3500000,                             /* cmp          r0, #0 */
2711                 0xE1A06080,                             /* mov          r6, r0, asl #1 */
2712                 0xE2855001,                             /* add          r5, r5, #1 */
2713                 0xE1A00006,                             /* mov          r0, r6 */
2714                 0xB0260007,                             /* eorlt        r0, r6, r7 */
2715                 0xE3550008,                             /* cmp          r5, #8 */
2716                 0x1AFFFFF8,                             /* bne          loop */
2717                 0xE2844001,                             /* add          r4, r4, #1 */
2718                                                                 /* ncomp: */
2719                 0xE1540003,                             /* cmp          r4, r3 */
2720                 0x1AFFFFF1,                             /* bne          nbyte */
2721                                                                 /* end: */
2722                 0xEAFFFFFE,                             /* b            end */
2723                 0x04C11DB7                              /* CRC32XOR:    .word 0x04C11DB7 */
2724         };
2725
2726         uint32_t i;
2727
2728         if (target_alloc_working_area(target, sizeof(arm7_9_crc_code), &crc_algorithm) != ERROR_OK)
2729         {
2730                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2731         }
2732
2733         /* convert flash writing code into a buffer in target endianness */
2734         for (i = 0; i < (sizeof(arm7_9_crc_code)/sizeof(uint32_t)); i++)
2735         {
2736                 if ((retval = target_write_u32(target, crc_algorithm->address + i*sizeof(uint32_t), arm7_9_crc_code[i])) != ERROR_OK)
2737                 {
2738                         return retval;
2739                 }
2740         }
2741
2742         armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
2743         armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
2744         armv4_5_info.core_state = ARMV4_5_STATE_ARM;
2745
2746         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
2747         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
2748
2749         buf_set_u32(reg_params[0].value, 0, 32, address);
2750         buf_set_u32(reg_params[1].value, 0, 32, count);
2751
2752         /* 20 second timeout/megabyte */
2753         int timeout = 20000 * (1 + (count / (1024*1024)));
2754
2755         if ((retval = target_run_algorithm(target, 0, NULL, 2, reg_params,
2756                 crc_algorithm->address, crc_algorithm->address + (sizeof(arm7_9_crc_code) - 8), timeout, &armv4_5_info)) != ERROR_OK)
2757         {
2758                 LOG_ERROR("error executing arm7_9 crc algorithm");
2759                 destroy_reg_param(&reg_params[0]);
2760                 destroy_reg_param(&reg_params[1]);
2761                 target_free_working_area(target, crc_algorithm);
2762                 return retval;
2763         }
2764
2765         *checksum = buf_get_u32(reg_params[0].value, 0, 32);
2766
2767         destroy_reg_param(&reg_params[0]);
2768         destroy_reg_param(&reg_params[1]);
2769
2770         target_free_working_area(target, crc_algorithm);
2771
2772         return ERROR_OK;
2773 }
2774
2775 int arm7_9_blank_check_memory(struct target *target, uint32_t address, uint32_t count, uint32_t* blank)
2776 {
2777         struct working_area *erase_check_algorithm;
2778         struct reg_param reg_params[3];
2779         struct armv4_5_algorithm armv4_5_info;
2780         int retval;
2781         uint32_t i;
2782
2783         static const uint32_t erase_check_code[] =
2784         {
2785                 /* loop: */
2786                 0xe4d03001,             /* ldrb r3, [r0], #1 */
2787                 0xe0022003,             /* and r2, r2, r3    */
2788                 0xe2511001,             /* subs r1, r1, #1   */
2789                 0x1afffffb,             /* bne loop          */
2790                 /* end: */
2791                 0xeafffffe              /* b end             */
2792         };
2793
2794         /* make sure we have a working area */
2795         if (target_alloc_working_area(target, sizeof(erase_check_code), &erase_check_algorithm) != ERROR_OK)
2796         {
2797                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2798         }
2799
2800         /* convert flash writing code into a buffer in target endianness */
2801         for (i = 0; i < (sizeof(erase_check_code)/sizeof(uint32_t)); i++)
2802                 if ((retval = target_write_u32(target, erase_check_algorithm->address + i*sizeof(uint32_t), erase_check_code[i])) != ERROR_OK)
2803                 {
2804                         return retval;
2805                 }
2806
2807         armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
2808         armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
2809         armv4_5_info.core_state = ARMV4_5_STATE_ARM;
2810
2811         init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
2812         buf_set_u32(reg_params[0].value, 0, 32, address);
2813
2814         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
2815         buf_set_u32(reg_params[1].value, 0, 32, count);
2816
2817         init_reg_param(&reg_params[2], "r2", 32, PARAM_IN_OUT);
2818         buf_set_u32(reg_params[2].value, 0, 32, 0xff);
2819
2820         if ((retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
2821                         erase_check_algorithm->address, erase_check_algorithm->address + (sizeof(erase_check_code) - 4), 10000, &armv4_5_info)) != ERROR_OK)
2822         {
2823                 destroy_reg_param(&reg_params[0]);
2824                 destroy_reg_param(&reg_params[1]);
2825                 destroy_reg_param(&reg_params[2]);
2826                 target_free_working_area(target, erase_check_algorithm);
2827                 return 0;
2828         }
2829
2830         *blank = buf_get_u32(reg_params[2].value, 0, 32);
2831
2832         destroy_reg_param(&reg_params[0]);
2833         destroy_reg_param(&reg_params[1]);
2834         destroy_reg_param(&reg_params[2]);
2835
2836         target_free_working_area(target, erase_check_algorithm);
2837
2838         return ERROR_OK;
2839 }
2840
2841 COMMAND_HANDLER(handle_arm7_9_write_xpsr_command)
2842 {
2843         uint32_t value;
2844         int spsr;
2845         int retval;
2846         struct target *target = get_current_target(cmd_ctx);
2847         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2848
2849         if (!is_arm7_9(arm7_9))
2850         {
2851                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
2852                 return ERROR_TARGET_INVALID;
2853         }
2854
2855         if (target->state != TARGET_HALTED)
2856         {
2857                 command_print(cmd_ctx, "can't write registers while running");
2858                 return ERROR_FAIL;
2859         }
2860
2861         if (argc < 2)
2862         {
2863                 command_print(cmd_ctx, "usage: write_xpsr <value> <not cpsr | spsr>");
2864                 return ERROR_FAIL;
2865         }
2866
2867         COMMAND_PARSE_NUMBER(u32, args[0], value);
2868         COMMAND_PARSE_NUMBER(int, args[1], spsr);
2869
2870         /* if we're writing the CPSR, mask the T bit */
2871         if (!spsr)
2872                 value &= ~0x20;
2873
2874         arm7_9->write_xpsr(target, value, spsr);
2875         if ((retval = jtag_execute_queue()) != ERROR_OK)
2876         {
2877                 LOG_ERROR("JTAG error while writing to xpsr");
2878                 return retval;
2879         }
2880
2881         return ERROR_OK;
2882 }
2883
2884 COMMAND_HANDLER(handle_arm7_9_write_xpsr_im8_command)
2885 {
2886         uint32_t value;
2887         int rotate;
2888         int spsr;
2889         int retval;
2890         struct target *target = get_current_target(cmd_ctx);
2891         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2892
2893         if (!is_arm7_9(arm7_9))
2894         {
2895                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
2896                 return ERROR_TARGET_INVALID;
2897         }
2898
2899         if (target->state != TARGET_HALTED)
2900         {
2901                 command_print(cmd_ctx, "can't write registers while running");
2902                 return ERROR_FAIL;
2903         }
2904
2905         if (argc < 3)
2906         {
2907                 command_print(cmd_ctx, "usage: write_xpsr_im8 <im8> <rotate> <not cpsr | spsr>");
2908                 return ERROR_FAIL;
2909         }
2910
2911         COMMAND_PARSE_NUMBER(u32, args[0], value);
2912         COMMAND_PARSE_NUMBER(int, args[1], rotate);
2913         COMMAND_PARSE_NUMBER(int, args[2], spsr);
2914
2915         arm7_9->write_xpsr_im8(target, value, rotate, spsr);
2916         if ((retval = jtag_execute_queue()) != ERROR_OK)
2917         {
2918                 LOG_ERROR("JTAG error while writing 8-bit immediate to xpsr");
2919                 return retval;
2920         }
2921
2922         return ERROR_OK;
2923 }
2924
2925 COMMAND_HANDLER(handle_arm7_9_write_core_reg_command)
2926 {
2927         uint32_t value;
2928         uint32_t mode;
2929         int num;
2930         struct target *target = get_current_target(cmd_ctx);
2931         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2932
2933         if (!is_arm7_9(arm7_9))
2934         {
2935                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
2936                 return ERROR_TARGET_INVALID;
2937         }
2938
2939         if (target->state != TARGET_HALTED)
2940         {
2941                 command_print(cmd_ctx, "can't write registers while running");
2942                 return ERROR_FAIL;
2943         }
2944
2945         if (argc < 3)
2946         {
2947                 command_print(cmd_ctx, "usage: write_core_reg <num> <mode> <value>");
2948                 return ERROR_FAIL;
2949         }
2950
2951         COMMAND_PARSE_NUMBER(int, args[0], num);
2952         COMMAND_PARSE_NUMBER(u32, args[1], mode);
2953         COMMAND_PARSE_NUMBER(u32, args[2], value);
2954
2955         return arm7_9_write_core_reg(target, num, mode, value);
2956 }
2957
2958 COMMAND_HANDLER(handle_arm7_9_dbgrq_command)
2959 {
2960         struct target *target = get_current_target(cmd_ctx);
2961         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2962
2963         if (!is_arm7_9(arm7_9))
2964         {
2965                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
2966                 return ERROR_TARGET_INVALID;
2967         }
2968
2969         if (argc > 0)
2970         {
2971                 if (strcmp("enable", args[0]) == 0)
2972                 {
2973                         arm7_9->use_dbgrq = 1;
2974                 }
2975                 else if (strcmp("disable", args[0]) == 0)
2976                 {
2977                         arm7_9->use_dbgrq = 0;
2978                 }
2979                 else
2980                 {
2981                         command_print(cmd_ctx, "usage: arm7_9 dbgrq <enable | disable>");
2982                 }
2983         }
2984
2985         command_print(cmd_ctx, "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s", (arm7_9->use_dbgrq) ? "enabled" : "disabled");
2986
2987         return ERROR_OK;
2988 }
2989
2990 COMMAND_HANDLER(handle_arm7_9_fast_memory_access_command)
2991 {
2992         struct target *target = get_current_target(cmd_ctx);
2993         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2994
2995         if (!is_arm7_9(arm7_9))
2996         {
2997                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
2998                 return ERROR_TARGET_INVALID;
2999         }
3000
3001         if (argc > 0)
3002         {
3003                 if (strcmp("enable", args[0]) == 0)
3004                 {
3005                         arm7_9->fast_memory_access = 1;
3006                 }
3007                 else if (strcmp("disable", args[0]) == 0)
3008                 {
3009                         arm7_9->fast_memory_access = 0;
3010                 }
3011                 else
3012                 {
3013                         command_print(cmd_ctx, "usage: arm7_9 fast_memory_access <enable | disable>");
3014                 }
3015         }
3016
3017         command_print(cmd_ctx, "fast memory access is %s", (arm7_9->fast_memory_access) ? "enabled" : "disabled");
3018
3019         return ERROR_OK;
3020 }
3021
3022 COMMAND_HANDLER(handle_arm7_9_dcc_downloads_command)
3023 {
3024         struct target *target = get_current_target(cmd_ctx);
3025         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
3026
3027         if (!is_arm7_9(arm7_9))
3028         {
3029                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
3030                 return ERROR_TARGET_INVALID;
3031         }
3032
3033         if (argc > 0)
3034         {
3035                 if (strcmp("enable", args[0]) == 0)
3036                 {
3037                         arm7_9->dcc_downloads = 1;
3038                 }
3039                 else if (strcmp("disable", args[0]) == 0)
3040                 {
3041                         arm7_9->dcc_downloads = 0;
3042                 }
3043                 else
3044                 {
3045                         command_print(cmd_ctx, "usage: arm7_9 dcc_downloads <enable | disable>");
3046                 }
3047         }
3048
3049         command_print(cmd_ctx, "dcc downloads are %s", (arm7_9->dcc_downloads) ? "enabled" : "disabled");
3050
3051         return ERROR_OK;
3052 }
3053
3054 int arm7_9_init_arch_info(struct target *target, struct arm7_9_common *arm7_9)
3055 {
3056         int retval = ERROR_OK;
3057         struct arm *armv4_5 = &arm7_9->armv4_5_common;
3058
3059         arm7_9->common_magic = ARM7_9_COMMON_MAGIC;
3060
3061         if ((retval = arm_jtag_setup_connection(&arm7_9->jtag_info)) != ERROR_OK)
3062                 return retval;
3063
3064         /* caller must have allocated via calloc(), so everything's zeroed */
3065
3066         arm7_9->wp_available_max = 2;
3067
3068         arm7_9->fast_memory_access = fast_and_dangerous;
3069         arm7_9->dcc_downloads = fast_and_dangerous;
3070
3071         armv4_5->arch_info = arm7_9;
3072         armv4_5->read_core_reg = arm7_9_read_core_reg;
3073         armv4_5->write_core_reg = arm7_9_write_core_reg;
3074         armv4_5->full_context = arm7_9_full_context;
3075
3076         if ((retval = armv4_5_init_arch_info(target, armv4_5)) != ERROR_OK)
3077                 return retval;
3078
3079         return target_register_timer_callback(arm7_9_handle_target_request,
3080                         1, 1, target);
3081 }
3082
3083 int arm7_9_register_commands(struct command_context *cmd_ctx)
3084 {
3085         struct command *arm7_9_cmd;
3086
3087         arm7_9_cmd = register_command(cmd_ctx, NULL, "arm7_9",
3088                         NULL, COMMAND_ANY, "arm7/9 specific commands");
3089
3090         register_command(cmd_ctx, arm7_9_cmd, "write_xpsr",
3091                         handle_arm7_9_write_xpsr_command, COMMAND_EXEC,
3092                         "write program status register <value> <not cpsr | spsr>");
3093         register_command(cmd_ctx, arm7_9_cmd, "write_xpsr_im8",
3094                         handle_arm7_9_write_xpsr_im8_command, COMMAND_EXEC,
3095                         "write program status register "
3096                         "<8bit immediate> <rotate> <not cpsr | spsr>");
3097
3098         register_command(cmd_ctx, arm7_9_cmd, "write_core_reg",
3099                         handle_arm7_9_write_core_reg_command, COMMAND_EXEC,
3100                         "write core register <num> <mode> <value>");
3101
3102         register_command(cmd_ctx, arm7_9_cmd, "dbgrq",
3103                         handle_arm7_9_dbgrq_command, COMMAND_ANY,
3104                         "use EmbeddedICE dbgrq instead of breakpoint "
3105                         "for target halt requests <enable | disable>");
3106         register_command(cmd_ctx, arm7_9_cmd, "fast_memory_access",
3107                         handle_arm7_9_fast_memory_access_command, COMMAND_ANY,
3108                         "use fast memory accesses instead of slower "
3109                         "but potentially safer accesses <enable | disable>");
3110         register_command(cmd_ctx, arm7_9_cmd, "dcc_downloads",
3111                         handle_arm7_9_dcc_downloads_command, COMMAND_ANY,
3112                         "use DCC downloads for larger memory writes <enable | disable>");
3113
3114         armv4_5_register_commands(cmd_ctx);
3115
3116         etm_register_commands(cmd_ctx);
3117
3118         return ERROR_OK;
3119 }