target: uplevel add_{break,watch}point() error checks
[fw/openocd] / src / target / arm7_9_common.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2008 by Hongtao Zheng                                   *
12  *   hontor@126.com                                                        *
13  *                                                                         *
14  *   This program is free software; you can redistribute it and/or modify  *
15  *   it under the terms of the GNU General Public License as published by  *
16  *   the Free Software Foundation; either version 2 of the License, or     *
17  *   (at your option) any later version.                                   *
18  *                                                                         *
19  *   This program is distributed in the hope that it will be useful,       *
20  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
21  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
22  *   GNU General Public License for more details.                          *
23  *                                                                         *
24  *   You should have received a copy of the GNU General Public License     *
25  *   along with this program; if not, write to the                         *
26  *   Free Software Foundation, Inc.,                                       *
27  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
28  ***************************************************************************/
29 #ifdef HAVE_CONFIG_H
30 #include "config.h"
31 #endif
32
33 #include "breakpoints.h"
34 #include "embeddedice.h"
35 #include "target_request.h"
36 #include "etm.h"
37 #include "time_support.h"
38 #include "arm_simulator.h"
39 #include "algorithm.h"
40 #include "register.h"
41
42
43 /**
44  * @file
45  * Hold common code supporting the ARM7 and ARM9 core generations.
46  *
47  * While the ARM core implementations evolved substantially during these
48  * two generations, they look quite similar from the JTAG perspective.
49  * Both have similar debug facilities, based on the same two scan chains
50  * providing access to the core and to an EmbeddedICE module.  Both can
51  * support similar ETM and ETB modules, for tracing.  And both expose
52  * what could be viewed as "ARM Classic", with multiple processor modes,
53  * shadowed registers, and support for the Thumb instruction set.
54  *
55  * Processor differences include things like presence or absence of MMU
56  * and cache, pipeline sizes, use of a modified Harvard Architecure
57  * (with separate instruction and data busses from the CPU), support
58  * for cpu clock gating during idle, and more.
59  */
60
61 static int arm7_9_debug_entry(struct target *target);
62
63 /**
64  * Clear watchpoints for an ARM7/9 target.
65  *
66  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
67  * @return JTAG error status after executing queue
68  */
69 static int arm7_9_clear_watchpoints(struct arm7_9_common *arm7_9)
70 {
71         LOG_DEBUG("-");
72         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
73         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
74         arm7_9->sw_breakpoint_count = 0;
75         arm7_9->sw_breakpoints_added = 0;
76         arm7_9->wp0_used = 0;
77         arm7_9->wp1_used = arm7_9->wp1_used_default;
78         arm7_9->wp_available = arm7_9->wp_available_max;
79
80         return jtag_execute_queue();
81 }
82
83 /**
84  * Assign a watchpoint to one of the two available hardware comparators in an
85  * ARM7 or ARM9 target.
86  *
87  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
88  * @param breakpoint Pointer to the breakpoint to be used as a watchpoint
89  */
90 static void arm7_9_assign_wp(struct arm7_9_common *arm7_9, struct breakpoint *breakpoint)
91 {
92         if (!arm7_9->wp0_used)
93         {
94                 arm7_9->wp0_used = 1;
95                 breakpoint->set = 1;
96                 arm7_9->wp_available--;
97         }
98         else if (!arm7_9->wp1_used)
99         {
100                 arm7_9->wp1_used = 1;
101                 breakpoint->set = 2;
102                 arm7_9->wp_available--;
103         }
104         else
105         {
106                 LOG_ERROR("BUG: no hardware comparator available");
107         }
108         LOG_DEBUG("BPID: %d (0x%08" PRIx32 ") using hw wp: %d",
109                           breakpoint->unique_id,
110                           breakpoint->address,
111                           breakpoint->set );
112 }
113
114 /**
115  * Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
116  *
117  * @param arm7_9 Pointer to common struct for ARM7/9 targets
118  * @return Error codes if there is a problem finding a watchpoint or the result
119  *         of executing the JTAG queue
120  */
121 static int arm7_9_set_software_breakpoints(struct arm7_9_common *arm7_9)
122 {
123         if (arm7_9->sw_breakpoints_added)
124         {
125                 return ERROR_OK;
126         }
127         if (arm7_9->wp_available < 1)
128         {
129                 LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
130                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
131         }
132         arm7_9->wp_available--;
133
134         /* pick a breakpoint unit */
135         if (!arm7_9->wp0_used)
136         {
137                 arm7_9->sw_breakpoints_added = 1;
138                 arm7_9->wp0_used = 3;
139         } else if (!arm7_9->wp1_used)
140         {
141                 arm7_9->sw_breakpoints_added = 2;
142                 arm7_9->wp1_used = 3;
143         }
144         else
145         {
146                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
147                 return ERROR_FAIL;
148         }
149
150         if (arm7_9->sw_breakpoints_added == 1)
151         {
152                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], arm7_9->arm_bkpt);
153                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0x0);
154                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffffu);
155                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
156                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
157         }
158         else if (arm7_9->sw_breakpoints_added == 2)
159         {
160                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], arm7_9->arm_bkpt);
161                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0x0);
162                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0xffffffffu);
163                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
164                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
165         }
166         else
167         {
168                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
169                 return ERROR_FAIL;
170         }
171         LOG_DEBUG("SW BP using hw wp: %d",
172                           arm7_9->sw_breakpoints_added );
173
174         return jtag_execute_queue();
175 }
176
177 /**
178  * Setup the common pieces for an ARM7/9 target after reset or on startup.
179  *
180  * @param target Pointer to an ARM7/9 target to setup
181  * @return Result of clearing the watchpoints on the target
182  */
183 int arm7_9_setup(struct target *target)
184 {
185         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
186
187         return arm7_9_clear_watchpoints(arm7_9);
188 }
189
190 /**
191  * Set either a hardware or software breakpoint on an ARM7/9 target.  The
192  * breakpoint is set up even if it is already set.  Some actions, e.g. reset,
193  * might have erased the values in Embedded ICE.
194  *
195  * @param target Pointer to the target device to set the breakpoints on
196  * @param breakpoint Pointer to the breakpoint to be set
197  * @return For hardware breakpoints, this is the result of executing the JTAG
198  *         queue.  For software breakpoints, this will be the status of the
199  *         required memory reads and writes
200  */
201 int arm7_9_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
202 {
203         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
204         int retval = ERROR_OK;
205
206         LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32 ", Type: %d" ,
207                           breakpoint->unique_id,
208                           breakpoint->address,
209                           breakpoint->type);
210
211         if (target->state != TARGET_HALTED)
212         {
213                 LOG_WARNING("target not halted");
214                 return ERROR_TARGET_NOT_HALTED;
215         }
216
217         if (breakpoint->type == BKPT_HARD)
218         {
219                 /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
220                 uint32_t mask = (breakpoint->length == 4) ? 0x3u : 0x1u;
221
222                 /* reassign a hw breakpoint */
223                 if (breakpoint->set == 0)
224                 {
225                         arm7_9_assign_wp(arm7_9, breakpoint);
226                 }
227
228                 if (breakpoint->set == 1)
229                 {
230                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], breakpoint->address);
231                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
232                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffffu);
233                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
234                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
235                 }
236                 else if (breakpoint->set == 2)
237                 {
238                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], breakpoint->address);
239                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
240                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffffu);
241                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
242                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
243                 }
244                 else
245                 {
246                         LOG_ERROR("BUG: no hardware comparator available");
247                         return ERROR_OK;
248                 }
249
250                 retval = jtag_execute_queue();
251         }
252         else if (breakpoint->type == BKPT_SOFT)
253         {
254                 /* did we already set this breakpoint? */
255                 if (breakpoint->set)
256                         return ERROR_OK;
257
258                 if (breakpoint->length == 4)
259                 {
260                         uint32_t verify = 0xffffffff;
261                         /* keep the original instruction in target endianness */
262                         if ((retval = target_read_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
263                         {
264                                 return retval;
265                         }
266                         /* write the breakpoint instruction in target endianness (arm7_9->arm_bkpt is host endian) */
267                         if ((retval = target_write_u32(target, breakpoint->address, arm7_9->arm_bkpt)) != ERROR_OK)
268                         {
269                                 return retval;
270                         }
271
272                         if ((retval = target_read_u32(target, breakpoint->address, &verify)) != ERROR_OK)
273                         {
274                                 return retval;
275                         }
276                         if (verify != arm7_9->arm_bkpt)
277                         {
278                                 LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
279                                 return ERROR_OK;
280                         }
281                 }
282                 else
283                 {
284                         uint16_t verify = 0xffff;
285                         /* keep the original instruction in target endianness */
286                         if ((retval = target_read_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
287                         {
288                                 return retval;
289                         }
290                         /* write the breakpoint instruction in target endianness (arm7_9->thumb_bkpt is host endian) */
291                         if ((retval = target_write_u16(target, breakpoint->address, arm7_9->thumb_bkpt)) != ERROR_OK)
292                         {
293                                 return retval;
294                         }
295
296                         if ((retval = target_read_u16(target, breakpoint->address, &verify)) != ERROR_OK)
297                         {
298                                 return retval;
299                         }
300                         if (verify != arm7_9->thumb_bkpt)
301                         {
302                                 LOG_ERROR("Unable to set thumb software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
303                                 return ERROR_OK;
304                         }
305                 }
306
307                 if ((retval = arm7_9_set_software_breakpoints(arm7_9)) != ERROR_OK)
308                         return retval;
309
310                 arm7_9->sw_breakpoint_count++;
311
312                 breakpoint->set = 1;
313         }
314
315         return retval;
316 }
317
318 /**
319  * Unsets an existing breakpoint on an ARM7/9 target.  If it is a hardware
320  * breakpoint, the watchpoint used will be freed and the Embedded ICE registers
321  * will be updated.  Otherwise, the software breakpoint will be restored to its
322  * original instruction if it hasn't already been modified.
323  *
324  * @param target Pointer to ARM7/9 target to unset the breakpoint from
325  * @param breakpoint Pointer to breakpoint to be unset
326  * @return For hardware breakpoints, this is the result of executing the JTAG
327  *         queue.  For software breakpoints, this will be the status of the
328  *         required memory reads and writes
329  */
330 int arm7_9_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
331 {
332         int retval = ERROR_OK;
333         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
334
335         LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32,
336                           breakpoint->unique_id,
337                           breakpoint->address );
338
339         if (!breakpoint->set)
340         {
341                 LOG_WARNING("breakpoint not set");
342                 return ERROR_OK;
343         }
344
345         if (breakpoint->type == BKPT_HARD)
346         {
347                 LOG_DEBUG("BPID: %d Releasing hw wp: %d",
348                                   breakpoint->unique_id,
349                                   breakpoint->set );
350                 if (breakpoint->set == 1)
351                 {
352                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
353                         arm7_9->wp0_used = 0;
354                         arm7_9->wp_available++;
355                 }
356                 else if (breakpoint->set == 2)
357                 {
358                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
359                         arm7_9->wp1_used = 0;
360                         arm7_9->wp_available++;
361                 }
362                 retval = jtag_execute_queue();
363                 breakpoint->set = 0;
364         }
365         else
366         {
367                 /* restore original instruction (kept in target endianness) */
368                 if (breakpoint->length == 4)
369                 {
370                         uint32_t current_instr;
371                         /* check that user program as not modified breakpoint instruction */
372                         if ((retval = target_read_memory(target, breakpoint->address, 4, 1, (uint8_t*)&current_instr)) != ERROR_OK)
373                         {
374                                 return retval;
375                         }
376                         if (current_instr == arm7_9->arm_bkpt)
377                                 if ((retval = target_write_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
378                                 {
379                                         return retval;
380                                 }
381                 }
382                 else
383                 {
384                         uint16_t current_instr;
385                         /* check that user program as not modified breakpoint instruction */
386                         if ((retval = target_read_memory(target, breakpoint->address, 2, 1, (uint8_t*)&current_instr)) != ERROR_OK)
387                         {
388                                 return retval;
389                         }
390                         if (current_instr == arm7_9->thumb_bkpt)
391                                 if ((retval = target_write_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
392                                 {
393                                         return retval;
394                                 }
395                 }
396
397                 if (--arm7_9->sw_breakpoint_count==0)
398                 {
399                         /* We have removed the last sw breakpoint, clear the hw breakpoint we used to implement it */
400                         if (arm7_9->sw_breakpoints_added == 1)
401                         {
402                                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0);
403                         }
404                         else if (arm7_9->sw_breakpoints_added == 2)
405                         {
406                                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0);
407                         }
408                 }
409
410                 breakpoint->set = 0;
411         }
412
413         return retval;
414 }
415
416 /**
417  * Add a breakpoint to an ARM7/9 target.  This makes sure that there are no
418  * dangling breakpoints and that the desired breakpoint can be added.
419  *
420  * @param target Pointer to the target ARM7/9 device to add a breakpoint to
421  * @param breakpoint Pointer to the breakpoint to be added
422  * @return An error status if there is a problem adding the breakpoint or the
423  *         result of setting the breakpoint
424  */
425 int arm7_9_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
426 {
427         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
428
429         if (arm7_9->breakpoint_count == 0)
430         {
431                 /* make sure we don't have any dangling breakpoints. This is vital upon
432                  * GDB connect/disconnect
433                  */
434                 arm7_9_clear_watchpoints(arm7_9);
435         }
436
437         if ((breakpoint->type == BKPT_HARD) && (arm7_9->wp_available < 1))
438         {
439                 LOG_INFO("no watchpoint unit available for hardware breakpoint");
440                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
441         }
442
443         if ((breakpoint->length != 2) && (breakpoint->length != 4))
444         {
445                 LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
446                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
447         }
448
449         if (breakpoint->type == BKPT_HARD)
450         {
451                 arm7_9_assign_wp(arm7_9, breakpoint);
452         }
453
454         arm7_9->breakpoint_count++;
455
456         return arm7_9_set_breakpoint(target, breakpoint);
457 }
458
459 /**
460  * Removes a breakpoint from an ARM7/9 target.  This will make sure there are no
461  * dangling breakpoints and updates available watchpoints if it is a hardware
462  * breakpoint.
463  *
464  * @param target Pointer to the target to have a breakpoint removed
465  * @param breakpoint Pointer to the breakpoint to be removed
466  * @return Error status if there was a problem unsetting the breakpoint or the
467  *         watchpoints could not be cleared
468  */
469 int arm7_9_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
470 {
471         int retval = ERROR_OK;
472         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
473
474         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
475         {
476                 return retval;
477         }
478
479         if (breakpoint->type == BKPT_HARD)
480                 arm7_9->wp_available++;
481
482         arm7_9->breakpoint_count--;
483         if (arm7_9->breakpoint_count == 0)
484         {
485                 /* make sure we don't have any dangling breakpoints */
486                 if ((retval = arm7_9_clear_watchpoints(arm7_9)) != ERROR_OK)
487                 {
488                         return retval;
489                 }
490         }
491
492         return ERROR_OK;
493 }
494
495 /**
496  * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units.  It is
497  * considered a bug to call this function when there are no available watchpoint
498  * units.
499  *
500  * @param target Pointer to an ARM7/9 target to set a watchpoint on
501  * @param watchpoint Pointer to the watchpoint to be set
502  * @return Error status if watchpoint set fails or the result of executing the
503  *         JTAG queue
504  */
505 int arm7_9_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
506 {
507         int retval = ERROR_OK;
508         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
509         int rw_mask = 1;
510         uint32_t mask;
511
512         mask = watchpoint->length - 1;
513
514         if (target->state != TARGET_HALTED)
515         {
516                 LOG_WARNING("target not halted");
517                 return ERROR_TARGET_NOT_HALTED;
518         }
519
520         if (watchpoint->rw == WPT_ACCESS)
521                 rw_mask = 0;
522         else
523                 rw_mask = 1;
524
525         if (!arm7_9->wp0_used)
526         {
527                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], watchpoint->address);
528                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
529                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], watchpoint->mask);
530                 if (watchpoint->mask != 0xffffffffu)
531                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], watchpoint->value);
532                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
533                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
534
535                 if ((retval = jtag_execute_queue()) != ERROR_OK)
536                 {
537                         return retval;
538                 }
539                 watchpoint->set = 1;
540                 arm7_9->wp0_used = 2;
541         }
542         else if (!arm7_9->wp1_used)
543         {
544                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], watchpoint->address);
545                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
546                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], watchpoint->mask);
547                 if (watchpoint->mask != 0xffffffffu)
548                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], watchpoint->value);
549                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
550                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
551
552                 if ((retval = jtag_execute_queue()) != ERROR_OK)
553                 {
554                         return retval;
555                 }
556                 watchpoint->set = 2;
557                 arm7_9->wp1_used = 2;
558         }
559         else
560         {
561                 LOG_ERROR("BUG: no hardware comparator available");
562                 return ERROR_OK;
563         }
564
565         return ERROR_OK;
566 }
567
568 /**
569  * Unset an existing watchpoint and clear the used watchpoint unit.
570  *
571  * @param target Pointer to the target to have the watchpoint removed
572  * @param watchpoint Pointer to the watchpoint to be removed
573  * @return Error status while trying to unset the watchpoint or the result of
574  *         executing the JTAG queue
575  */
576 int arm7_9_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
577 {
578         int retval = ERROR_OK;
579         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
580
581         if (target->state != TARGET_HALTED)
582         {
583                 LOG_WARNING("target not halted");
584                 return ERROR_TARGET_NOT_HALTED;
585         }
586
587         if (!watchpoint->set)
588         {
589                 LOG_WARNING("breakpoint not set");
590                 return ERROR_OK;
591         }
592
593         if (watchpoint->set == 1)
594         {
595                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
596                 if ((retval = jtag_execute_queue()) != ERROR_OK)
597                 {
598                         return retval;
599                 }
600                 arm7_9->wp0_used = 0;
601         }
602         else if (watchpoint->set == 2)
603         {
604                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
605                 if ((retval = jtag_execute_queue()) != ERROR_OK)
606                 {
607                         return retval;
608                 }
609                 arm7_9->wp1_used = 0;
610         }
611         watchpoint->set = 0;
612
613         return ERROR_OK;
614 }
615
616 /**
617  * Add a watchpoint to an ARM7/9 target.  If there are no watchpoint units
618  * available, an error response is returned.
619  *
620  * @param target Pointer to the ARM7/9 target to add a watchpoint to
621  * @param watchpoint Pointer to the watchpoint to be added
622  * @return Error status while trying to add the watchpoint
623  */
624 int arm7_9_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
625 {
626         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
627
628         if (arm7_9->wp_available < 1)
629         {
630                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
631         }
632
633         if ((watchpoint->length != 1) && (watchpoint->length != 2) && (watchpoint->length != 4))
634         {
635                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
636         }
637
638         arm7_9->wp_available--;
639
640         return ERROR_OK;
641 }
642
643 /**
644  * Remove a watchpoint from an ARM7/9 target.  The watchpoint will be unset and
645  * the used watchpoint unit will be reopened.
646  *
647  * @param target Pointer to the target to remove a watchpoint from
648  * @param watchpoint Pointer to the watchpoint to be removed
649  * @return Result of trying to unset the watchpoint
650  */
651 int arm7_9_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
652 {
653         int retval = ERROR_OK;
654         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
655
656         if (watchpoint->set)
657         {
658                 if ((retval = arm7_9_unset_watchpoint(target, watchpoint)) != ERROR_OK)
659                 {
660                         return retval;
661                 }
662         }
663
664         arm7_9->wp_available++;
665
666         return ERROR_OK;
667 }
668
669 /**
670  * Restarts the target by sending a RESTART instruction and moving the JTAG
671  * state to IDLE.  This includes a timeout waiting for DBGACK and SYSCOMP to be
672  * asserted by the processor.
673  *
674  * @param target Pointer to target to issue commands to
675  * @return Error status if there is a timeout or a problem while executing the
676  *         JTAG queue
677  */
678 int arm7_9_execute_sys_speed(struct target *target)
679 {
680         int retval;
681         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
682         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
683         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
684
685         /* set RESTART instruction */
686         jtag_set_end_state(TAP_IDLE);
687         if (arm7_9->need_bypass_before_restart) {
688                 arm7_9->need_bypass_before_restart = 0;
689                 arm_jtag_set_instr(jtag_info, 0xf, NULL);
690         }
691         arm_jtag_set_instr(jtag_info, 0x4, NULL);
692
693         long long then = timeval_ms();
694         int timeout;
695         while (!(timeout = ((timeval_ms()-then) > 1000)))
696         {
697                 /* read debug status register */
698                 embeddedice_read_reg(dbg_stat);
699                 if ((retval = jtag_execute_queue()) != ERROR_OK)
700                         return retval;
701                 if ((buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
702                                    && (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_SYSCOMP, 1)))
703                         break;
704                 if (debug_level >= 3)
705                 {
706                         alive_sleep(100);
707                 } else
708                 {
709                         keep_alive();
710                 }
711         }
712         if (timeout)
713         {
714                 LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32 "", buf_get_u32(dbg_stat->value, 0, dbg_stat->size));
715                 return ERROR_TARGET_TIMEOUT;
716         }
717
718         return ERROR_OK;
719 }
720
721 /**
722  * Restarts the target by sending a RESTART instruction and moving the JTAG
723  * state to IDLE.  This validates that DBGACK and SYSCOMP are set without
724  * waiting until they are.
725  *
726  * @param target Pointer to the target to issue commands to
727  * @return Always ERROR_OK
728  */
729 int arm7_9_execute_fast_sys_speed(struct target *target)
730 {
731         static int set = 0;
732         static uint8_t check_value[4], check_mask[4];
733
734         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
735         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
736         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
737
738         /* set RESTART instruction */
739         jtag_set_end_state(TAP_IDLE);
740         if (arm7_9->need_bypass_before_restart) {
741                 arm7_9->need_bypass_before_restart = 0;
742                 arm_jtag_set_instr(jtag_info, 0xf, NULL);
743         }
744         arm_jtag_set_instr(jtag_info, 0x4, NULL);
745
746         if (!set)
747         {
748                 /* check for DBGACK and SYSCOMP set (others don't care) */
749
750                 /* NB! These are constants that must be available until after next jtag_execute() and
751                  * we evaluate the values upon first execution in lieu of setting up these constants
752                  * during early setup.
753                  * */
754                 buf_set_u32(check_value, 0, 32, 0x9);
755                 buf_set_u32(check_mask, 0, 32, 0x9);
756                 set = 1;
757         }
758
759         /* read debug status register */
760         embeddedice_read_reg_w_check(dbg_stat, check_value, check_mask);
761
762         return ERROR_OK;
763 }
764
765 /**
766  * Get some data from the ARM7/9 target.
767  *
768  * @param target Pointer to the ARM7/9 target to read data from
769  * @param size The number of 32bit words to be read
770  * @param buffer Pointer to the buffer that will hold the data
771  * @return The result of receiving data from the Embedded ICE unit
772  */
773 int arm7_9_target_request_data(struct target *target, uint32_t size, uint8_t *buffer)
774 {
775         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
776         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
777         uint32_t *data;
778         int retval = ERROR_OK;
779         uint32_t i;
780
781         data = malloc(size * (sizeof(uint32_t)));
782
783         retval = embeddedice_receive(jtag_info, data, size);
784
785         /* return the 32-bit ints in the 8-bit array */
786         for (i = 0; i < size; i++)
787         {
788                 h_u32_to_le(buffer + (i * 4), data[i]);
789         }
790
791         free(data);
792
793         return retval;
794 }
795
796 /**
797  * Handles requests to an ARM7/9 target.  If debug messaging is enabled, the
798  * target is running and the DCC control register has the W bit high, this will
799  * execute the request on the target.
800  *
801  * @param priv Void pointer expected to be a struct target pointer
802  * @return ERROR_OK unless there are issues with the JTAG queue or when reading
803  *                  from the Embedded ICE unit
804  */
805 int arm7_9_handle_target_request(void *priv)
806 {
807         int retval = ERROR_OK;
808         struct target *target = priv;
809         if (!target_was_examined(target))
810                 return ERROR_OK;
811         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
812         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
813         struct reg *dcc_control = &arm7_9->eice_cache->reg_list[EICE_COMMS_CTRL];
814
815         if (!target->dbg_msg_enabled)
816                 return ERROR_OK;
817
818         if (target->state == TARGET_RUNNING)
819         {
820                 /* read DCC control register */
821                 embeddedice_read_reg(dcc_control);
822                 if ((retval = jtag_execute_queue()) != ERROR_OK)
823                 {
824                         return retval;
825                 }
826
827                 /* check W bit */
828                 if (buf_get_u32(dcc_control->value, 1, 1) == 1)
829                 {
830                         uint32_t request;
831
832                         if ((retval = embeddedice_receive(jtag_info, &request, 1)) != ERROR_OK)
833                         {
834                                 return retval;
835                         }
836                         if ((retval = target_request(target, request)) != ERROR_OK)
837                         {
838                                 return retval;
839                         }
840                 }
841         }
842
843         return ERROR_OK;
844 }
845
846 /**
847  * Polls an ARM7/9 target for its current status.  If DBGACK is set, the target
848  * is manipulated to the right halted state based on its current state.  This is
849  * what happens:
850  *
851  * <table>
852  *              <tr><th > State</th><th > Action</th></tr>
853  *              <tr><td > TARGET_RUNNING | TARGET_RESET</td><td > Enters debug mode.  If TARGET_RESET, pc may be checked</td></tr>
854  *              <tr><td > TARGET_UNKNOWN</td><td > Warning is logged</td></tr>
855  *              <tr><td > TARGET_DEBUG_RUNNING</td><td > Enters debug mode</td></tr>
856  *              <tr><td > TARGET_HALTED</td><td > Nothing</td></tr>
857  * </table>
858  *
859  * If the target does not end up in the halted state, a warning is produced.  If
860  * DBGACK is cleared, then the target is expected to either be running or
861  * running in debug.
862  *
863  * @param target Pointer to the ARM7/9 target to poll
864  * @return ERROR_OK or an error status if a command fails
865  */
866 int arm7_9_poll(struct target *target)
867 {
868         int retval;
869         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
870         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
871
872         /* read debug status register */
873         embeddedice_read_reg(dbg_stat);
874         if ((retval = jtag_execute_queue()) != ERROR_OK)
875         {
876                 return retval;
877         }
878
879         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
880         {
881 /*              LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, 32));*/
882                 if (target->state == TARGET_UNKNOWN)
883                 {
884                         /* Starting OpenOCD with target in debug-halt */
885                         target->state = TARGET_RUNNING;
886                         LOG_DEBUG("DBGACK already set during server startup.");
887                 }
888                 if ((target->state == TARGET_RUNNING) || (target->state == TARGET_RESET))
889                 {
890                         int check_pc = 0;
891                         if (target->state == TARGET_RESET)
892                         {
893                                 if (target->reset_halt)
894                                 {
895                                         enum reset_types jtag_reset_config = jtag_get_reset_config();
896                                         if ((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0)
897                                         {
898                                                 check_pc = 1;
899                                         }
900                                 }
901                         }
902
903                         target->state = TARGET_HALTED;
904
905                         if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
906                                 return retval;
907
908                         if (check_pc)
909                         {
910                                 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
911                                 uint32_t t=*((uint32_t *)reg->value);
912                                 if (t != 0)
913                                 {
914                                         LOG_ERROR("PC was not 0. Does this target need srst_pulls_trst?");
915                                 }
916                         }
917
918                         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
919                         {
920                                 return retval;
921                         }
922                 }
923                 if (target->state == TARGET_DEBUG_RUNNING)
924                 {
925                         target->state = TARGET_HALTED;
926                         if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
927                                 return retval;
928
929                         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED)) != ERROR_OK)
930                         {
931                                 return retval;
932                         }
933                 }
934                 if (target->state != TARGET_HALTED)
935                 {
936                         LOG_WARNING("DBGACK set, but the target did not end up in the halted state %d", target->state);
937                 }
938         }
939         else
940         {
941                 if (target->state != TARGET_DEBUG_RUNNING)
942                         target->state = TARGET_RUNNING;
943         }
944
945         return ERROR_OK;
946 }
947
948 /**
949  * Asserts the reset (SRST) on an ARM7/9 target.  Some -S targets (ARM966E-S in
950  * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
951  * affected) completely stop the JTAG clock while the core is held in reset
952  * (SRST).  It isn't possible to program the halt condition once reset is
953  * asserted, hence a hook that allows the target to set up its reset-halt
954  * condition is setup prior to asserting reset.
955  *
956  * @param target Pointer to an ARM7/9 target to assert reset on
957  * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
958  */
959 int arm7_9_assert_reset(struct target *target)
960 {
961         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
962
963         LOG_DEBUG("target->state: %s",
964                   target_state_name(target));
965
966         enum reset_types jtag_reset_config = jtag_get_reset_config();
967         if (!(jtag_reset_config & RESET_HAS_SRST))
968         {
969                 LOG_ERROR("Can't assert SRST");
970                 return ERROR_FAIL;
971         }
972
973         /* At this point trst has been asserted/deasserted once. We would
974          * like to program EmbeddedICE while SRST is asserted, instead of
975          * depending on SRST to leave that module alone.  However, many CPUs
976          * gate the JTAG clock while SRST is asserted; or JTAG may need
977          * clock stability guarantees (adaptive clocking might help).
978          *
979          * So we assume JTAG access during SRST is off the menu unless it's
980          * been specifically enabled.
981          */
982         bool srst_asserted = false;
983
984         if (((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0)
985                         && (jtag_reset_config & RESET_SRST_NO_GATING))
986         {
987                 jtag_add_reset(0, 1);
988                 srst_asserted = true;
989         }
990
991         if (target->reset_halt)
992         {
993                 /*
994                  * Some targets do not support communication while SRST is asserted. We need to
995                  * set up the reset vector catch here.
996                  *
997                  * If TRST is asserted, then these settings will be reset anyway, so setting them
998                  * here is harmless.
999                  */
1000                 if (arm7_9->has_vector_catch)
1001                 {
1002                         /* program vector catch register to catch reset vector */
1003                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH], 0x1);
1004
1005                         /* extra runtest added as issues were found with certain ARM9 cores (maybe more) - AT91SAM9260 and STR9 */
1006                         jtag_add_runtest(1, jtag_get_end_state());
1007                 }
1008                 else
1009                 {
1010                         /* program watchpoint unit to match on reset vector address */
1011                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], 0x0);
1012                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0x3);
1013                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1014                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1015                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1016                 }
1017         }
1018
1019         /* here we should issue an SRST only, but we may have to assert TRST as well */
1020         if (jtag_reset_config & RESET_SRST_PULLS_TRST)
1021         {
1022                 jtag_add_reset(1, 1);
1023         } else if (!srst_asserted)
1024         {
1025                 jtag_add_reset(0, 1);
1026         }
1027
1028         target->state = TARGET_RESET;
1029         jtag_add_sleep(50000);
1030
1031         register_cache_invalidate(arm7_9->armv4_5_common.core_cache);
1032
1033         if ((target->reset_halt) && ((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0))
1034         {
1035                 /* debug entry was already prepared in arm7_9_assert_reset() */
1036                 target->debug_reason = DBG_REASON_DBGRQ;
1037         }
1038
1039         return ERROR_OK;
1040 }
1041
1042 /**
1043  * Deassert the reset (SRST) signal on an ARM7/9 target.  If SRST pulls TRST
1044  * and the target is being reset into a halt, a warning will be triggered
1045  * because it is not possible to reset into a halted mode in this case.  The
1046  * target is halted using the target's functions.
1047  *
1048  * @param target Pointer to the target to have the reset deasserted
1049  * @return ERROR_OK or an error from polling or halting the target
1050  */
1051 int arm7_9_deassert_reset(struct target *target)
1052 {
1053         int retval = ERROR_OK;
1054         LOG_DEBUG("target->state: %s",
1055                 target_state_name(target));
1056
1057         /* deassert reset lines */
1058         jtag_add_reset(0, 0);
1059
1060         enum reset_types jtag_reset_config = jtag_get_reset_config();
1061         if (target->reset_halt && (jtag_reset_config & RESET_SRST_PULLS_TRST) != 0)
1062         {
1063                 LOG_WARNING("srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
1064                 /* set up embedded ice registers again */
1065                 if ((retval = target_examine_one(target)) != ERROR_OK)
1066                         return retval;
1067
1068                 if ((retval = target_poll(target)) != ERROR_OK)
1069                 {
1070                         return retval;
1071                 }
1072
1073                 if ((retval = target_halt(target)) != ERROR_OK)
1074                 {
1075                         return retval;
1076                 }
1077
1078         }
1079         return retval;
1080 }
1081
1082 /**
1083  * Clears the halt condition for an ARM7/9 target.  If it isn't coming out of
1084  * reset and if DBGRQ is used, it is progammed to be deasserted.  If the reset
1085  * vector catch was used, it is restored.  Otherwise, the control value is
1086  * restored and the watchpoint unit is restored if it was in use.
1087  *
1088  * @param target Pointer to the ARM7/9 target to have halt cleared
1089  * @return Always ERROR_OK
1090  */
1091 int arm7_9_clear_halt(struct target *target)
1092 {
1093         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1094         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1095
1096         /* we used DBGRQ only if we didn't come out of reset */
1097         if (!arm7_9->debug_entry_from_reset && arm7_9->use_dbgrq)
1098         {
1099                 /* program EmbeddedICE Debug Control Register to deassert DBGRQ
1100                  */
1101                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1102                 embeddedice_store_reg(dbg_ctrl);
1103         }
1104         else
1105         {
1106                 if (arm7_9->debug_entry_from_reset && arm7_9->has_vector_catch)
1107                 {
1108                         /* if we came out of reset, and vector catch is supported, we used
1109                          * vector catch to enter debug state
1110                          * restore the register in that case
1111                          */
1112                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH]);
1113                 }
1114                 else
1115                 {
1116                         /* restore registers if watchpoint unit 0 was in use
1117                          */
1118                         if (arm7_9->wp0_used)
1119                         {
1120                                 if (arm7_9->debug_entry_from_reset)
1121                                 {
1122                                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE]);
1123                                 }
1124                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1125                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1126                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1127                         }
1128                         /* control value always has to be restored, as it was either disabled,
1129                          * or enabled with possibly different bits
1130                          */
1131                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1132                 }
1133         }
1134
1135         return ERROR_OK;
1136 }
1137
1138 /**
1139  * Issue a software reset and halt to an ARM7/9 target.  The target is halted
1140  * and then there is a wait until the processor shows the halt.  This wait can
1141  * timeout and results in an error being returned.  The software reset involves
1142  * clearing the halt, updating the debug control register, changing to ARM mode,
1143  * reset of the program counter, and reset of all of the registers.
1144  *
1145  * @param target Pointer to the ARM7/9 target to be reset and halted by software
1146  * @return Error status if any of the commands fail, otherwise ERROR_OK
1147  */
1148 int arm7_9_soft_reset_halt(struct target *target)
1149 {
1150         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1151         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1152         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1153         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1154         int i;
1155         int retval;
1156
1157         /* FIX!!! replace some of this code with tcl commands
1158          *
1159          * halt # the halt command is synchronous
1160          * armv4_5 core_state arm
1161          *
1162          */
1163
1164         if ((retval = target_halt(target)) != ERROR_OK)
1165                 return retval;
1166
1167         long long then = timeval_ms();
1168         int timeout;
1169         while (!(timeout = ((timeval_ms()-then) > 1000)))
1170         {
1171                 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) != 0)
1172                         break;
1173                 embeddedice_read_reg(dbg_stat);
1174                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1175                         return retval;
1176                 if (debug_level >= 3)
1177                 {
1178                         alive_sleep(100);
1179                 } else
1180                 {
1181                         keep_alive();
1182                 }
1183         }
1184         if (timeout)
1185         {
1186                 LOG_ERROR("Failed to halt CPU after 1 sec");
1187                 return ERROR_TARGET_TIMEOUT;
1188         }
1189         target->state = TARGET_HALTED;
1190
1191         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1192          * ensure that DBGRQ is cleared
1193          */
1194         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1195         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1196         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1197         embeddedice_store_reg(dbg_ctrl);
1198
1199         if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1200         {
1201                 return retval;
1202         }
1203
1204         /* if the target is in Thumb state, change to ARM state */
1205         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1206         {
1207                 uint32_t r0_thumb, pc_thumb;
1208                 LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
1209                 /* Entered debug from Thumb mode */
1210                 armv4_5->core_state = ARMV4_5_STATE_THUMB;
1211                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1212         }
1213
1214         /* REVISIT likewise for bit 5 -- switch Jazelle-to-ARM */
1215
1216         /* all register content is now invalid */
1217         register_cache_invalidate(armv4_5->core_cache);
1218
1219         /* SVC, ARM state, IRQ and FIQ disabled */
1220         uint32_t cpsr;
1221
1222         cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 32);
1223         cpsr &= ~0xff;
1224         cpsr |= 0xd3;
1225         arm_set_cpsr(armv4_5, cpsr);
1226         armv4_5->cpsr->dirty = 1;
1227
1228         /* start fetching from 0x0 */
1229         buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, 0x0);
1230         armv4_5->core_cache->reg_list[15].dirty = 1;
1231         armv4_5->core_cache->reg_list[15].valid = 1;
1232
1233         /* reset registers */
1234         for (i = 0; i <= 14; i++)
1235         {
1236                 struct reg *r = arm_reg_current(armv4_5, i);
1237
1238                 buf_set_u32(r->value, 0, 32, 0xffffffff);
1239                 r->dirty = 1;
1240                 r->valid = 1;
1241         }
1242
1243         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
1244         {
1245                 return retval;
1246         }
1247
1248         return ERROR_OK;
1249 }
1250
1251 /**
1252  * Halt an ARM7/9 target.  This is accomplished by either asserting the DBGRQ
1253  * line or by programming a watchpoint to trigger on any address.  It is
1254  * considered a bug to call this function while the target is in the
1255  * TARGET_RESET state.
1256  *
1257  * @param target Pointer to the ARM7/9 target to be halted
1258  * @return Always ERROR_OK
1259  */
1260 int arm7_9_halt(struct target *target)
1261 {
1262         if (target->state == TARGET_RESET)
1263         {
1264                 LOG_ERROR("BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
1265                 return ERROR_OK;
1266         }
1267
1268         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1269         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1270
1271         LOG_DEBUG("target->state: %s",
1272                   target_state_name(target));
1273
1274         if (target->state == TARGET_HALTED)
1275         {
1276                 LOG_DEBUG("target was already halted");
1277                 return ERROR_OK;
1278         }
1279
1280         if (target->state == TARGET_UNKNOWN)
1281         {
1282                 LOG_WARNING("target was in unknown state when halt was requested");
1283         }
1284
1285         if (arm7_9->use_dbgrq)
1286         {
1287                 /* program EmbeddedICE Debug Control Register to assert DBGRQ
1288                  */
1289                 if (arm7_9->set_special_dbgrq) {
1290                         arm7_9->set_special_dbgrq(target);
1291                 } else {
1292                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 1);
1293                         embeddedice_store_reg(dbg_ctrl);
1294                 }
1295         }
1296         else
1297         {
1298                 /* program watchpoint unit to match on any address
1299                  */
1300                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1301                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1302                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1303                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1304         }
1305
1306         target->debug_reason = DBG_REASON_DBGRQ;
1307
1308         return ERROR_OK;
1309 }
1310
1311 /**
1312  * Handle an ARM7/9 target's entry into debug mode.  The halt is cleared on the
1313  * ARM.  The JTAG queue is then executed and the reason for debug entry is
1314  * examined.  Once done, the target is verified to be halted and the processor
1315  * is forced into ARM mode.  The core registers are saved for the current core
1316  * mode and the program counter (register 15) is updated as needed.  The core
1317  * registers and CPSR and SPSR are saved for restoration later.
1318  *
1319  * @param target Pointer to target that is entering debug mode
1320  * @return Error code if anything fails, otherwise ERROR_OK
1321  */
1322 static int arm7_9_debug_entry(struct target *target)
1323 {
1324         int i;
1325         uint32_t context[16];
1326         uint32_t* context_p[16];
1327         uint32_t r0_thumb, pc_thumb;
1328         uint32_t cpsr, cpsr_mask = 0;
1329         int retval;
1330         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1331         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1332         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1333         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1334
1335 #ifdef _DEBUG_ARM7_9_
1336         LOG_DEBUG("-");
1337 #endif
1338
1339         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1340          * ensure that DBGRQ is cleared
1341          */
1342         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1343         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1344         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1345         embeddedice_store_reg(dbg_ctrl);
1346
1347         if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1348         {
1349                 return retval;
1350         }
1351
1352         if ((retval = jtag_execute_queue()) != ERROR_OK)
1353         {
1354                 return retval;
1355         }
1356
1357         if ((retval = arm7_9->examine_debug_reason(target)) != ERROR_OK)
1358                 return retval;
1359
1360
1361         if (target->state != TARGET_HALTED)
1362         {
1363                 LOG_WARNING("target not halted");
1364                 return ERROR_TARGET_NOT_HALTED;
1365         }
1366
1367         /* if the target is in Thumb state, change to ARM state */
1368         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1369         {
1370                 LOG_DEBUG("target entered debug from Thumb state");
1371                 /* Entered debug from Thumb mode */
1372                 armv4_5->core_state = ARMV4_5_STATE_THUMB;
1373                 cpsr_mask = 1 << 5;
1374                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1375                 LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32
1376                         ", pc_thumb: 0x%8.8" PRIx32, r0_thumb, pc_thumb);
1377         } else if (buf_get_u32(dbg_stat->value, 5, 1)) {
1378                 /* \todo Get some vaguely correct handling of Jazelle, if
1379                  * anyone ever uses it and full info becomes available.
1380                  * See ARM9EJS TRM B.7.1 for how to switch J->ARM; and
1381                  * B.7.3 for the reverse.  That'd be the bare minimum...
1382                  */
1383                 LOG_DEBUG("target entered debug from Jazelle state");
1384                 armv4_5->core_state = ARMV4_5_STATE_JAZELLE;
1385                 cpsr_mask = 1 << 24;
1386                 LOG_ERROR("Jazelle debug entry -- BROKEN!");
1387         } else {
1388                 LOG_DEBUG("target entered debug from ARM state");
1389                 /* Entered debug from ARM mode */
1390                 armv4_5->core_state = ARMV4_5_STATE_ARM;
1391         }
1392
1393         for (i = 0; i < 16; i++)
1394                 context_p[i] = &context[i];
1395         /* save core registers (r0 - r15 of current core mode) */
1396         arm7_9->read_core_regs(target, 0xffff, context_p);
1397
1398         arm7_9->read_xpsr(target, &cpsr, 0);
1399
1400         if ((retval = jtag_execute_queue()) != ERROR_OK)
1401                 return retval;
1402
1403         /* Sync our CPSR copy with J or T bits EICE reported, but
1404          * which we then erased by putting the core into ARM mode.
1405          */
1406         arm_set_cpsr(armv4_5, cpsr | cpsr_mask);
1407
1408         if (!is_arm_mode(armv4_5->core_mode))
1409         {
1410                 target->state = TARGET_UNKNOWN;
1411                 LOG_ERROR("cpsr contains invalid mode value - communication failure");
1412                 return ERROR_TARGET_FAILURE;
1413         }
1414
1415         LOG_DEBUG("target entered debug state in %s mode",
1416                          arm_mode_name(armv4_5->core_mode));
1417
1418         if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1419         {
1420                 LOG_DEBUG("thumb state, applying fixups");
1421                 context[0] = r0_thumb;
1422                 context[15] = pc_thumb;
1423         } else if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1424         {
1425                 /* adjust value stored by STM */
1426                 context[15] -= 3 * 4;
1427         }
1428
1429         if ((target->debug_reason != DBG_REASON_DBGRQ) || (!arm7_9->use_dbgrq))
1430                 context[15] -= 3 * ((armv4_5->core_state == ARMV4_5_STATE_ARM) ? 4 : 2);
1431         else
1432                 context[15] -= arm7_9->dbgreq_adjust_pc * ((armv4_5->core_state == ARMV4_5_STATE_ARM) ? 4 : 2);
1433
1434         for (i = 0; i <= 15; i++)
1435         {
1436                 struct reg *r = arm_reg_current(armv4_5, i);
1437
1438                 LOG_DEBUG("r%i: 0x%8.8" PRIx32 "", i, context[i]);
1439
1440                 buf_set_u32(r->value, 0, 32, context[i]);
1441                 /* r0 and r15 (pc) have to be restored later */
1442                 r->dirty = (i == 0) || (i == 15);
1443                 r->valid = 1;
1444         }
1445
1446         LOG_DEBUG("entered debug state at PC 0x%" PRIx32 "", context[15]);
1447
1448         /* exceptions other than USR & SYS have a saved program status register */
1449         if (armv4_5->spsr) {
1450                 uint32_t spsr;
1451                 arm7_9->read_xpsr(target, &spsr, 1);
1452                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1453                 {
1454                         return retval;
1455                 }
1456                 buf_set_u32(armv4_5->spsr->value, 0, 32, spsr);
1457                 armv4_5->spsr->dirty = 0;
1458                 armv4_5->spsr->valid = 1;
1459         }
1460
1461         if ((retval = jtag_execute_queue()) != ERROR_OK)
1462                 return retval;
1463
1464         if (arm7_9->post_debug_entry)
1465                 arm7_9->post_debug_entry(target);
1466
1467         return ERROR_OK;
1468 }
1469
1470 /**
1471  * Validate the full context for an ARM7/9 target in all processor modes.  If
1472  * there are any invalid registers for the target, they will all be read.  This
1473  * includes the PSR.
1474  *
1475  * @param target Pointer to the ARM7/9 target to capture the full context from
1476  * @return Error if the target is not halted, has an invalid core mode, or if
1477  *         the JTAG queue fails to execute
1478  */
1479 int arm7_9_full_context(struct target *target)
1480 {
1481         int i;
1482         int retval;
1483         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1484         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1485
1486         LOG_DEBUG("-");
1487
1488         if (target->state != TARGET_HALTED)
1489         {
1490                 LOG_WARNING("target not halted");
1491                 return ERROR_TARGET_NOT_HALTED;
1492         }
1493
1494         if (!is_arm_mode(armv4_5->core_mode))
1495                 return ERROR_FAIL;
1496
1497         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1498          * SYS shares registers with User, so we don't touch SYS
1499          */
1500         for (i = 0; i < 6; i++)
1501         {
1502                 uint32_t mask = 0;
1503                 uint32_t* reg_p[16];
1504                 int j;
1505                 int valid = 1;
1506
1507                 /* check if there are invalid registers in the current mode
1508                  */
1509                 for (j = 0; j <= 16; j++)
1510                 {
1511                         if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1512                                 valid = 0;
1513                 }
1514
1515                 if (!valid)
1516                 {
1517                         uint32_t tmp_cpsr;
1518
1519                         /* change processor mode (and mask T bit) */
1520                         tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8)
1521                                         & 0xe0;
1522                         tmp_cpsr |= armv4_5_number_to_mode(i);
1523                         tmp_cpsr &= ~0x20;
1524                         arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1525
1526                         for (j = 0; j < 15; j++)
1527                         {
1528                                 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1529                                 {
1530                                         reg_p[j] = (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).value;
1531                                         mask |= 1 << j;
1532                                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid = 1;
1533                                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).dirty = 0;
1534                                 }
1535                         }
1536
1537                         /* if only the PSR is invalid, mask is all zeroes */
1538                         if (mask)
1539                                 arm7_9->read_core_regs(target, mask, reg_p);
1540
1541                         /* check if the PSR has to be read */
1542                         if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid == 0)
1543                         {
1544                                 arm7_9->read_xpsr(target, (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).value, 1);
1545                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid = 1;
1546                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).dirty = 0;
1547                         }
1548                 }
1549         }
1550
1551         /* restore processor mode (mask T bit) */
1552         arm7_9->write_xpsr_im8(target,
1553                         buf_get_u32(armv4_5->cpsr->value, 0, 8) & ~0x20,
1554                         0, 0);
1555
1556         if ((retval = jtag_execute_queue()) != ERROR_OK)
1557         {
1558                 return retval;
1559         }
1560         return ERROR_OK;
1561 }
1562
1563 /**
1564  * Restore the processor context on an ARM7/9 target.  The full processor
1565  * context is analyzed to see if any of the registers are dirty on this end, but
1566  * have a valid new value.  If this is the case, the processor is changed to the
1567  * appropriate mode and the new register values are written out to the
1568  * processor.  If there happens to be a dirty register with an invalid value, an
1569  * error will be logged.
1570  *
1571  * @param target Pointer to the ARM7/9 target to have its context restored
1572  * @return Error status if the target is not halted or the core mode in the
1573  *         armv4_5 struct is invalid.
1574  */
1575 int arm7_9_restore_context(struct target *target)
1576 {
1577         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1578         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1579         struct reg *reg;
1580         struct arm_reg *reg_arch_info;
1581         enum armv4_5_mode current_mode = armv4_5->core_mode;
1582         int i, j;
1583         int dirty;
1584         int mode_change;
1585
1586         LOG_DEBUG("-");
1587
1588         if (target->state != TARGET_HALTED)
1589         {
1590                 LOG_WARNING("target not halted");
1591                 return ERROR_TARGET_NOT_HALTED;
1592         }
1593
1594         if (arm7_9->pre_restore_context)
1595                 arm7_9->pre_restore_context(target);
1596
1597         if (!is_arm_mode(armv4_5->core_mode))
1598                 return ERROR_FAIL;
1599
1600         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1601          * SYS shares registers with User, so we don't touch SYS
1602          */
1603         for (i = 0; i < 6; i++)
1604         {
1605                 LOG_DEBUG("examining %s mode",
1606                                 arm_mode_name(armv4_5->core_mode));
1607                 dirty = 0;
1608                 mode_change = 0;
1609                 /* check if there are dirty registers in the current mode
1610                 */
1611                 for (j = 0; j <= 16; j++)
1612                 {
1613                         reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1614                         reg_arch_info = reg->arch_info;
1615                         if (reg->dirty == 1)
1616                         {
1617                                 if (reg->valid == 1)
1618                                 {
1619                                         dirty = 1;
1620                                         LOG_DEBUG("examining dirty reg: %s", reg->name);
1621                                         if ((reg_arch_info->mode != ARMV4_5_MODE_ANY)
1622                                                 && (reg_arch_info->mode != current_mode)
1623                                                 && !((reg_arch_info->mode == ARMV4_5_MODE_USR) && (armv4_5->core_mode == ARMV4_5_MODE_SYS))
1624                                                 && !((reg_arch_info->mode == ARMV4_5_MODE_SYS) && (armv4_5->core_mode == ARMV4_5_MODE_USR)))
1625                                         {
1626                                                 mode_change = 1;
1627                                                 LOG_DEBUG("require mode change");
1628                                         }
1629                                 }
1630                                 else
1631                                 {
1632                                         LOG_ERROR("BUG: dirty register '%s', but no valid data", reg->name);
1633                                 }
1634                         }
1635                 }
1636
1637                 if (dirty)
1638                 {
1639                         uint32_t mask = 0x0;
1640                         int num_regs = 0;
1641                         uint32_t regs[16];
1642
1643                         if (mode_change)
1644                         {
1645                                 uint32_t tmp_cpsr;
1646
1647                                 /* change processor mode (mask T bit) */
1648                                 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value,
1649                                                 0, 8) & 0xe0;
1650                                 tmp_cpsr |= armv4_5_number_to_mode(i);
1651                                 tmp_cpsr &= ~0x20;
1652                                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1653                                 current_mode = armv4_5_number_to_mode(i);
1654                         }
1655
1656                         for (j = 0; j <= 14; j++)
1657                         {
1658                                 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1659                                 reg_arch_info = reg->arch_info;
1660
1661
1662                                 if (reg->dirty == 1)
1663                                 {
1664                                         regs[j] = buf_get_u32(reg->value, 0, 32);
1665                                         mask |= 1 << j;
1666                                         num_regs++;
1667                                         reg->dirty = 0;
1668                                         reg->valid = 1;
1669                                         LOG_DEBUG("writing register %i mode %s "
1670                                                 "with value 0x%8.8" PRIx32, j,
1671                                                 arm_mode_name(armv4_5->core_mode),
1672                                                 regs[j]);
1673                                 }
1674                         }
1675
1676                         if (mask)
1677                         {
1678                                 arm7_9->write_core_regs(target, mask, regs);
1679                         }
1680
1681                         reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16);
1682                         reg_arch_info = reg->arch_info;
1683                         if ((reg->dirty) && (reg_arch_info->mode != ARMV4_5_MODE_ANY))
1684                         {
1685                                 LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32 "", i, buf_get_u32(reg->value, 0, 32));
1686                                 arm7_9->write_xpsr(target, buf_get_u32(reg->value, 0, 32), 1);
1687                         }
1688                 }
1689         }
1690
1691         if (!armv4_5->cpsr->dirty && (armv4_5->core_mode != current_mode))
1692         {
1693                 /* restore processor mode (mask T bit) */
1694                 uint32_t tmp_cpsr;
1695
1696                 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
1697                 tmp_cpsr |= armv4_5_number_to_mode(i);
1698                 tmp_cpsr &= ~0x20;
1699                 LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr));
1700                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1701         }
1702         else if (armv4_5->cpsr->dirty)
1703         {
1704                 /* CPSR has been changed, full restore necessary (mask T bit) */
1705                 LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32,
1706                                 buf_get_u32(armv4_5->cpsr->value, 0, 32));
1707                 arm7_9->write_xpsr(target,
1708                                 buf_get_u32(armv4_5->cpsr->value, 0, 32)
1709                                         & ~0x20, 0);
1710                 armv4_5->cpsr->dirty = 0;
1711                 armv4_5->cpsr->valid = 1;
1712         }
1713
1714         /* restore PC */
1715         LOG_DEBUG("writing PC with value 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1716         arm7_9->write_pc(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1717         armv4_5->core_cache->reg_list[15].dirty = 0;
1718
1719         if (arm7_9->post_restore_context)
1720                 arm7_9->post_restore_context(target);
1721
1722         return ERROR_OK;
1723 }
1724
1725 /**
1726  * Restart the core of an ARM7/9 target.  A RESTART command is sent to the
1727  * instruction register and the JTAG state is set to TAP_IDLE causing a core
1728  * restart.
1729  *
1730  * @param target Pointer to the ARM7/9 target to be restarted
1731  * @return Result of executing the JTAG queue
1732  */
1733 int arm7_9_restart_core(struct target *target)
1734 {
1735         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1736         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
1737
1738         /* set RESTART instruction */
1739         jtag_set_end_state(TAP_IDLE);
1740         if (arm7_9->need_bypass_before_restart) {
1741                 arm7_9->need_bypass_before_restart = 0;
1742                 arm_jtag_set_instr(jtag_info, 0xf, NULL);
1743         }
1744         arm_jtag_set_instr(jtag_info, 0x4, NULL);
1745
1746         jtag_add_runtest(1, jtag_set_end_state(TAP_IDLE));
1747         return jtag_execute_queue();
1748 }
1749
1750 /**
1751  * Enable the watchpoints on an ARM7/9 target.  The target's watchpoints are
1752  * iterated through and are set on the target if they aren't already set.
1753  *
1754  * @param target Pointer to the ARM7/9 target to enable watchpoints on
1755  */
1756 void arm7_9_enable_watchpoints(struct target *target)
1757 {
1758         struct watchpoint *watchpoint = target->watchpoints;
1759
1760         while (watchpoint)
1761         {
1762                 if (watchpoint->set == 0)
1763                         arm7_9_set_watchpoint(target, watchpoint);
1764                 watchpoint = watchpoint->next;
1765         }
1766 }
1767
1768 /**
1769  * Enable the breakpoints on an ARM7/9 target.  The target's breakpoints are
1770  * iterated through and are set on the target.
1771  *
1772  * @param target Pointer to the ARM7/9 target to enable breakpoints on
1773  */
1774 void arm7_9_enable_breakpoints(struct target *target)
1775 {
1776         struct breakpoint *breakpoint = target->breakpoints;
1777
1778         /* set any pending breakpoints */
1779         while (breakpoint)
1780         {
1781                 arm7_9_set_breakpoint(target, breakpoint);
1782                 breakpoint = breakpoint->next;
1783         }
1784 }
1785
1786 int arm7_9_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
1787 {
1788         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1789         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1790         struct breakpoint *breakpoint = target->breakpoints;
1791         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1792         int err, retval = ERROR_OK;
1793
1794         LOG_DEBUG("-");
1795
1796         if (target->state != TARGET_HALTED)
1797         {
1798                 LOG_WARNING("target not halted");
1799                 return ERROR_TARGET_NOT_HALTED;
1800         }
1801
1802         if (!debug_execution)
1803         {
1804                 target_free_all_working_areas(target);
1805         }
1806
1807         /* current = 1: continue on current pc, otherwise continue at <address> */
1808         if (!current)
1809                 buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
1810
1811         uint32_t current_pc;
1812         current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
1813
1814         /* the front-end may request us not to handle breakpoints */
1815         if (handle_breakpoints)
1816         {
1817                 if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
1818                 {
1819                         LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (id: %d)", breakpoint->address, breakpoint->unique_id );
1820                         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
1821                         {
1822                                 return retval;
1823                         }
1824
1825                         /* calculate PC of next instruction */
1826                         uint32_t next_pc;
1827                         if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
1828                         {
1829                                 uint32_t current_opcode;
1830                                 target_read_u32(target, current_pc, &current_opcode);
1831                                 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
1832                                 return retval;
1833                         }
1834
1835                         LOG_DEBUG("enable single-step");
1836                         arm7_9->enable_single_step(target, next_pc);
1837
1838                         target->debug_reason = DBG_REASON_SINGLESTEP;
1839
1840                         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1841                         {
1842                                 return retval;
1843                         }
1844
1845                         if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1846                                 arm7_9->branch_resume(target);
1847                         else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1848                         {
1849                                 arm7_9->branch_resume_thumb(target);
1850                         }
1851                         else
1852                         {
1853                                 LOG_ERROR("unhandled core state");
1854                                 return ERROR_FAIL;
1855                         }
1856
1857                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1858                         embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1859                         err = arm7_9_execute_sys_speed(target);
1860
1861                         LOG_DEBUG("disable single-step");
1862                         arm7_9->disable_single_step(target);
1863
1864                         if (err != ERROR_OK)
1865                         {
1866                                 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1867                                 {
1868                                         return retval;
1869                                 }
1870                                 target->state = TARGET_UNKNOWN;
1871                                 return err;
1872                         }
1873
1874                         arm7_9_debug_entry(target);
1875                         LOG_DEBUG("new PC after step: 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1876
1877                         LOG_DEBUG("set breakpoint at 0x%8.8" PRIx32 "", breakpoint->address);
1878                         if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1879                         {
1880                                 return retval;
1881                         }
1882                 }
1883         }
1884
1885         /* enable any pending breakpoints and watchpoints */
1886         arm7_9_enable_breakpoints(target);
1887         arm7_9_enable_watchpoints(target);
1888
1889         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1890         {
1891                 return retval;
1892         }
1893
1894         if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1895         {
1896                 arm7_9->branch_resume(target);
1897         }
1898         else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1899         {
1900                 arm7_9->branch_resume_thumb(target);
1901         }
1902         else
1903         {
1904                 LOG_ERROR("unhandled core state");
1905                 return ERROR_FAIL;
1906         }
1907
1908         /* deassert DBGACK and INTDIS */
1909         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1910         /* INTDIS only when we really resume, not during debug execution */
1911         if (!debug_execution)
1912                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 0);
1913         embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1914
1915         if ((retval = arm7_9_restart_core(target)) != ERROR_OK)
1916         {
1917                 return retval;
1918         }
1919
1920         target->debug_reason = DBG_REASON_NOTHALTED;
1921
1922         if (!debug_execution)
1923         {
1924                 /* registers are now invalid */
1925                 register_cache_invalidate(armv4_5->core_cache);
1926                 target->state = TARGET_RUNNING;
1927                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
1928                 {
1929                         return retval;
1930                 }
1931         }
1932         else
1933         {
1934                 target->state = TARGET_DEBUG_RUNNING;
1935                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED)) != ERROR_OK)
1936                 {
1937                         return retval;
1938                 }
1939         }
1940
1941         LOG_DEBUG("target resumed");
1942
1943         return ERROR_OK;
1944 }
1945
1946 void arm7_9_enable_eice_step(struct target *target, uint32_t next_pc)
1947 {
1948         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1949         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1950         uint32_t current_pc;
1951         current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
1952
1953         if (next_pc != current_pc)
1954         {
1955                 /* setup an inverse breakpoint on the current PC
1956                 * - comparator 1 matches the current address
1957                 * - rangeout from comparator 1 is connected to comparator 0 rangein
1958                 * - comparator 0 matches any address, as long as rangein is low */
1959                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1960                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1961                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1962                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~(EICE_W_CTRL_RANGE | EICE_W_CTRL_nOPC) & 0xff);
1963                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], current_pc);
1964                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1965                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1966                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
1967                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1968         }
1969         else
1970         {
1971                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1972                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1973                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
1974                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff);
1975                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], next_pc);
1976                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1977                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1978                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1979                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1980         }
1981 }
1982
1983 void arm7_9_disable_eice_step(struct target *target)
1984 {
1985         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1986
1987         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1988         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1989         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1990         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1991         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE]);
1992         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK]);
1993         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK]);
1994         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK]);
1995         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE]);
1996 }
1997
1998 int arm7_9_step(struct target *target, int current, uint32_t address, int handle_breakpoints)
1999 {
2000         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2001         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2002         struct breakpoint *breakpoint = NULL;
2003         int err, retval;
2004
2005         if (target->state != TARGET_HALTED)
2006         {
2007                 LOG_WARNING("target not halted");
2008                 return ERROR_TARGET_NOT_HALTED;
2009         }
2010
2011         /* current = 1: continue on current pc, otherwise continue at <address> */
2012         if (!current)
2013                 buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
2014
2015         uint32_t current_pc;
2016         current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
2017
2018         /* the front-end may request us not to handle breakpoints */
2019         if (handle_breakpoints)
2020                 if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
2021                         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
2022                         {
2023                                 return retval;
2024                         }
2025
2026         target->debug_reason = DBG_REASON_SINGLESTEP;
2027
2028         /* calculate PC of next instruction */
2029         uint32_t next_pc;
2030         if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
2031         {
2032                 uint32_t current_opcode;
2033                 target_read_u32(target, current_pc, &current_opcode);
2034                 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
2035                 return retval;
2036         }
2037
2038         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
2039         {
2040                 return retval;
2041         }
2042
2043         arm7_9->enable_single_step(target, next_pc);
2044
2045         if (armv4_5->core_state == ARMV4_5_STATE_ARM)
2046         {
2047                 arm7_9->branch_resume(target);
2048         }
2049         else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
2050         {
2051                 arm7_9->branch_resume_thumb(target);
2052         }
2053         else
2054         {
2055                 LOG_ERROR("unhandled core state");
2056                 return ERROR_FAIL;
2057         }
2058
2059         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
2060         {
2061                 return retval;
2062         }
2063
2064         err = arm7_9_execute_sys_speed(target);
2065         arm7_9->disable_single_step(target);
2066
2067         /* registers are now invalid */
2068         register_cache_invalidate(armv4_5->core_cache);
2069
2070         if (err != ERROR_OK)
2071         {
2072                 target->state = TARGET_UNKNOWN;
2073         } else {
2074                 arm7_9_debug_entry(target);
2075                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
2076                 {
2077                         return retval;
2078                 }
2079                 LOG_DEBUG("target stepped");
2080         }
2081
2082         if (breakpoint)
2083                 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
2084                 {
2085                         return retval;
2086                 }
2087
2088         return err;
2089 }
2090
2091 static int arm7_9_read_core_reg(struct target *target, struct reg *r,
2092                 int num, enum armv4_5_mode mode)
2093 {
2094         uint32_t* reg_p[16];
2095         uint32_t value;
2096         int retval;
2097         struct arm_reg *areg = r->arch_info;
2098         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2099         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2100
2101         if (!is_arm_mode(armv4_5->core_mode))
2102                 return ERROR_FAIL;
2103         if ((num < 0) || (num > 16))
2104                 return ERROR_INVALID_ARGUMENTS;
2105
2106         if ((mode != ARMV4_5_MODE_ANY)
2107                         && (mode != armv4_5->core_mode)
2108                         && (areg->mode != ARMV4_5_MODE_ANY))
2109         {
2110                 uint32_t tmp_cpsr;
2111
2112                 /* change processor mode (mask T bit) */
2113                 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
2114                 tmp_cpsr |= mode;
2115                 tmp_cpsr &= ~0x20;
2116                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2117         }
2118
2119         if ((num >= 0) && (num <= 15))
2120         {
2121                 /* read a normal core register */
2122                 reg_p[num] = &value;
2123
2124                 arm7_9->read_core_regs(target, 1 << num, reg_p);
2125         }
2126         else
2127         {
2128                 /* read a program status register
2129                  * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
2130                  */
2131                 arm7_9->read_xpsr(target, &value, areg->mode != ARMV4_5_MODE_ANY);
2132         }
2133
2134         if ((retval = jtag_execute_queue()) != ERROR_OK)
2135         {
2136                 return retval;
2137         }
2138
2139         r->valid = 1;
2140         r->dirty = 0;
2141         buf_set_u32(r->value, 0, 32, value);
2142
2143         if ((mode != ARMV4_5_MODE_ANY)
2144                         && (mode != armv4_5->core_mode)
2145                         && (areg->mode != ARMV4_5_MODE_ANY))    {
2146                 /* restore processor mode (mask T bit) */
2147                 arm7_9->write_xpsr_im8(target,
2148                                 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2149                                         & ~0x20, 0, 0);
2150         }
2151
2152         return ERROR_OK;
2153 }
2154
2155 static int arm7_9_write_core_reg(struct target *target, struct reg *r,
2156                 int num, enum armv4_5_mode mode, uint32_t value)
2157 {
2158         uint32_t reg[16];
2159         struct arm_reg *areg = r->arch_info;
2160         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2161         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2162
2163         if (!is_arm_mode(armv4_5->core_mode))
2164                 return ERROR_FAIL;
2165         if ((num < 0) || (num > 16))
2166                 return ERROR_INVALID_ARGUMENTS;
2167
2168         if ((mode != ARMV4_5_MODE_ANY)
2169                         && (mode != armv4_5->core_mode)
2170                         && (areg->mode != ARMV4_5_MODE_ANY))    {
2171                 uint32_t tmp_cpsr;
2172
2173                 /* change processor mode (mask T bit) */
2174                 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
2175                 tmp_cpsr |= mode;
2176                 tmp_cpsr &= ~0x20;
2177                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2178         }
2179
2180         if ((num >= 0) && (num <= 15))
2181         {
2182                 /* write a normal core register */
2183                 reg[num] = value;
2184
2185                 arm7_9->write_core_regs(target, 1 << num, reg);
2186         }
2187         else
2188         {
2189                 /* write a program status register
2190                 * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
2191                 */
2192                 int spsr = (areg->mode != ARMV4_5_MODE_ANY);
2193
2194                 /* if we're writing the CPSR, mask the T bit */
2195                 if (!spsr)
2196                         value &= ~0x20;
2197
2198                 arm7_9->write_xpsr(target, value, spsr);
2199         }
2200
2201         r->valid = 1;
2202         r->dirty = 0;
2203
2204         if ((mode != ARMV4_5_MODE_ANY)
2205                         && (mode != armv4_5->core_mode)
2206                         && (areg->mode != ARMV4_5_MODE_ANY))    {
2207                 /* restore processor mode (mask T bit) */
2208                 arm7_9->write_xpsr_im8(target,
2209                                 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2210                                         & ~0x20, 0, 0);
2211         }
2212
2213         return jtag_execute_queue();
2214 }
2215
2216 int arm7_9_read_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2217 {
2218         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2219         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2220         uint32_t reg[16];
2221         uint32_t num_accesses = 0;
2222         int thisrun_accesses;
2223         int i;
2224         uint32_t cpsr;
2225         int retval;
2226         int last_reg = 0;
2227
2228         LOG_DEBUG("address: 0x%8.8" PRIx32 ", size: 0x%8.8" PRIx32 ", count: 0x%8.8" PRIx32 "", address, size, count);
2229
2230         if (target->state != TARGET_HALTED)
2231         {
2232                 LOG_WARNING("target not halted");
2233                 return ERROR_TARGET_NOT_HALTED;
2234         }
2235
2236         /* sanitize arguments */
2237         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2238                 return ERROR_INVALID_ARGUMENTS;
2239
2240         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2241                 return ERROR_TARGET_UNALIGNED_ACCESS;
2242
2243         /* load the base register with the address of the first word */
2244         reg[0] = address;
2245         arm7_9->write_core_regs(target, 0x1, reg);
2246
2247         int j = 0;
2248
2249         switch (size)
2250         {
2251                 case 4:
2252                         while (num_accesses < count)
2253                         {
2254                                 uint32_t reg_list;
2255                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2256                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2257
2258                                 if (last_reg <= thisrun_accesses)
2259                                         last_reg = thisrun_accesses;
2260
2261                                 arm7_9->load_word_regs(target, reg_list);
2262
2263                                 /* fast memory reads are only safe when the target is running
2264                                  * from a sufficiently high clock (32 kHz is usually too slow)
2265                                  */
2266                                 if (arm7_9->fast_memory_access)
2267                                         retval = arm7_9_execute_fast_sys_speed(target);
2268                                 else
2269                                         retval = arm7_9_execute_sys_speed(target);
2270                                 if (retval != ERROR_OK)
2271                                         return retval;
2272
2273                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 4);
2274
2275                                 /* advance buffer, count number of accesses */
2276                                 buffer += thisrun_accesses * 4;
2277                                 num_accesses += thisrun_accesses;
2278
2279                                 if ((j++%1024) == 0)
2280                                 {
2281                                         keep_alive();
2282                                 }
2283                         }
2284                         break;
2285                 case 2:
2286                         while (num_accesses < count)
2287                         {
2288                                 uint32_t reg_list;
2289                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2290                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2291
2292                                 for (i = 1; i <= thisrun_accesses; i++)
2293                                 {
2294                                         if (i > last_reg)
2295                                                 last_reg = i;
2296                                         arm7_9->load_hword_reg(target, i);
2297                                         /* fast memory reads are only safe when the target is running
2298                                          * from a sufficiently high clock (32 kHz is usually too slow)
2299                                          */
2300                                         if (arm7_9->fast_memory_access)
2301                                                 retval = arm7_9_execute_fast_sys_speed(target);
2302                                         else
2303                                                 retval = arm7_9_execute_sys_speed(target);
2304                                         if (retval != ERROR_OK)
2305                                         {
2306                                                 return retval;
2307                                         }
2308
2309                                 }
2310
2311                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 2);
2312
2313                                 /* advance buffer, count number of accesses */
2314                                 buffer += thisrun_accesses * 2;
2315                                 num_accesses += thisrun_accesses;
2316
2317                                 if ((j++%1024) == 0)
2318                                 {
2319                                         keep_alive();
2320                                 }
2321                         }
2322                         break;
2323                 case 1:
2324                         while (num_accesses < count)
2325                         {
2326                                 uint32_t reg_list;
2327                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2328                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2329
2330                                 for (i = 1; i <= thisrun_accesses; i++)
2331                                 {
2332                                         if (i > last_reg)
2333                                                 last_reg = i;
2334                                         arm7_9->load_byte_reg(target, i);
2335                                         /* fast memory reads are only safe when the target is running
2336                                          * from a sufficiently high clock (32 kHz is usually too slow)
2337                                          */
2338                                         if (arm7_9->fast_memory_access)
2339                                                 retval = arm7_9_execute_fast_sys_speed(target);
2340                                         else
2341                                                 retval = arm7_9_execute_sys_speed(target);
2342                                         if (retval != ERROR_OK)
2343                                         {
2344                                                 return retval;
2345                                         }
2346                                 }
2347
2348                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 1);
2349
2350                                 /* advance buffer, count number of accesses */
2351                                 buffer += thisrun_accesses * 1;
2352                                 num_accesses += thisrun_accesses;
2353
2354                                 if ((j++%1024) == 0)
2355                                 {
2356                                         keep_alive();
2357                                 }
2358                         }
2359                         break;
2360                 default:
2361                         LOG_ERROR("BUG: we shouldn't get here");
2362                         exit(-1);
2363                         break;
2364         }
2365
2366         if (!is_arm_mode(armv4_5->core_mode))
2367                 return ERROR_FAIL;
2368
2369         for (i = 0; i <= last_reg; i++) {
2370                 struct reg *r = arm_reg_current(armv4_5, i);
2371
2372                 r->dirty = r->valid;
2373         }
2374
2375         arm7_9->read_xpsr(target, &cpsr, 0);
2376         if ((retval = jtag_execute_queue()) != ERROR_OK)
2377         {
2378                 LOG_ERROR("JTAG error while reading cpsr");
2379                 return ERROR_TARGET_DATA_ABORT;
2380         }
2381
2382         if (((cpsr & 0x1f) == ARMV4_5_MODE_ABT) && (armv4_5->core_mode != ARMV4_5_MODE_ABT))
2383         {
2384                 LOG_WARNING("memory read caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2385
2386                 arm7_9->write_xpsr_im8(target,
2387                                 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2388                                         & ~0x20, 0, 0);
2389
2390                 return ERROR_TARGET_DATA_ABORT;
2391         }
2392
2393         return ERROR_OK;
2394 }
2395
2396 int arm7_9_write_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2397 {
2398         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2399         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2400         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
2401
2402         uint32_t reg[16];
2403         uint32_t num_accesses = 0;
2404         int thisrun_accesses;
2405         int i;
2406         uint32_t cpsr;
2407         int retval;
2408         int last_reg = 0;
2409
2410 #ifdef _DEBUG_ARM7_9_
2411         LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address, size, count);
2412 #endif
2413
2414         if (target->state != TARGET_HALTED)
2415         {
2416                 LOG_WARNING("target not halted");
2417                 return ERROR_TARGET_NOT_HALTED;
2418         }
2419
2420         /* sanitize arguments */
2421         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2422                 return ERROR_INVALID_ARGUMENTS;
2423
2424         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2425                 return ERROR_TARGET_UNALIGNED_ACCESS;
2426
2427         /* load the base register with the address of the first word */
2428         reg[0] = address;
2429         arm7_9->write_core_regs(target, 0x1, reg);
2430
2431         /* Clear DBGACK, to make sure memory fetches work as expected */
2432         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
2433         embeddedice_store_reg(dbg_ctrl);
2434
2435         switch (size)
2436         {
2437                 case 4:
2438                         while (num_accesses < count)
2439                         {
2440                                 uint32_t reg_list;
2441                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2442                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2443
2444                                 for (i = 1; i <= thisrun_accesses; i++)
2445                                 {
2446                                         if (i > last_reg)
2447                                                 last_reg = i;
2448                                         reg[i] = target_buffer_get_u32(target, buffer);
2449                                         buffer += 4;
2450                                 }
2451
2452                                 arm7_9->write_core_regs(target, reg_list, reg);
2453
2454                                 arm7_9->store_word_regs(target, reg_list);
2455
2456                                 /* fast memory writes are only safe when the target is running
2457                                  * from a sufficiently high clock (32 kHz is usually too slow)
2458                                  */
2459                                 if (arm7_9->fast_memory_access)
2460                                         retval = arm7_9_execute_fast_sys_speed(target);
2461                                 else
2462                                         retval = arm7_9_execute_sys_speed(target);
2463                                 if (retval != ERROR_OK)
2464                                 {
2465                                         return retval;
2466                                 }
2467
2468                                 num_accesses += thisrun_accesses;
2469                         }
2470                         break;
2471                 case 2:
2472                         while (num_accesses < count)
2473                         {
2474                                 uint32_t reg_list;
2475                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2476                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2477
2478                                 for (i = 1; i <= thisrun_accesses; i++)
2479                                 {
2480                                         if (i > last_reg)
2481                                                 last_reg = i;
2482                                         reg[i] = target_buffer_get_u16(target, buffer) & 0xffff;
2483                                         buffer += 2;
2484                                 }
2485
2486                                 arm7_9->write_core_regs(target, reg_list, reg);
2487
2488                                 for (i = 1; i <= thisrun_accesses; i++)
2489                                 {
2490                                         arm7_9->store_hword_reg(target, i);
2491
2492                                         /* fast memory writes are only safe when the target is running
2493                                          * from a sufficiently high clock (32 kHz is usually too slow)
2494                                          */
2495                                         if (arm7_9->fast_memory_access)
2496                                                 retval = arm7_9_execute_fast_sys_speed(target);
2497                                         else
2498                                                 retval = arm7_9_execute_sys_speed(target);
2499                                         if (retval != ERROR_OK)
2500                                         {
2501                                                 return retval;
2502                                         }
2503                                 }
2504
2505                                 num_accesses += thisrun_accesses;
2506                         }
2507                         break;
2508                 case 1:
2509                         while (num_accesses < count)
2510                         {
2511                                 uint32_t reg_list;
2512                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2513                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2514
2515                                 for (i = 1; i <= thisrun_accesses; i++)
2516                                 {
2517                                         if (i > last_reg)
2518                                                 last_reg = i;
2519                                         reg[i] = *buffer++ & 0xff;
2520                                 }
2521
2522                                 arm7_9->write_core_regs(target, reg_list, reg);
2523
2524                                 for (i = 1; i <= thisrun_accesses; i++)
2525                                 {
2526                                         arm7_9->store_byte_reg(target, i);
2527                                         /* fast memory writes are only safe when the target is running
2528                                          * from a sufficiently high clock (32 kHz is usually too slow)
2529                                          */
2530                                         if (arm7_9->fast_memory_access)
2531                                                 retval = arm7_9_execute_fast_sys_speed(target);
2532                                         else
2533                                                 retval = arm7_9_execute_sys_speed(target);
2534                                         if (retval != ERROR_OK)
2535                                         {
2536                                                 return retval;
2537                                         }
2538
2539                                 }
2540
2541                                 num_accesses += thisrun_accesses;
2542                         }
2543                         break;
2544                 default:
2545                         LOG_ERROR("BUG: we shouldn't get here");
2546                         exit(-1);
2547                         break;
2548         }
2549
2550         /* Re-Set DBGACK */
2551         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
2552         embeddedice_store_reg(dbg_ctrl);
2553
2554         if (!is_arm_mode(armv4_5->core_mode))
2555                 return ERROR_FAIL;
2556
2557         for (i = 0; i <= last_reg; i++) {
2558                 struct reg *r = arm_reg_current(armv4_5, i);
2559
2560                 r->dirty = r->valid;
2561         }
2562
2563         arm7_9->read_xpsr(target, &cpsr, 0);
2564         if ((retval = jtag_execute_queue()) != ERROR_OK)
2565         {
2566                 LOG_ERROR("JTAG error while reading cpsr");
2567                 return ERROR_TARGET_DATA_ABORT;
2568         }
2569
2570         if (((cpsr & 0x1f) == ARMV4_5_MODE_ABT) && (armv4_5->core_mode != ARMV4_5_MODE_ABT))
2571         {
2572                 LOG_WARNING("memory write caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2573
2574                 arm7_9->write_xpsr_im8(target,
2575                                 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2576                                         & ~0x20, 0, 0);
2577
2578                 return ERROR_TARGET_DATA_ABORT;
2579         }
2580
2581         return ERROR_OK;
2582 }
2583
2584 static int dcc_count;
2585 static uint8_t *dcc_buffer;
2586
2587 static int arm7_9_dcc_completion(struct target *target, uint32_t exit_point, int timeout_ms, void *arch_info)
2588 {
2589         int retval = ERROR_OK;
2590         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2591
2592         if ((retval = target_wait_state(target, TARGET_DEBUG_RUNNING, 500)) != ERROR_OK)
2593                 return retval;
2594
2595         int little = target->endianness == TARGET_LITTLE_ENDIAN;
2596         int count = dcc_count;
2597         uint8_t *buffer = dcc_buffer;
2598         if (count > 2)
2599         {
2600                 /* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
2601                  * core function repeated. */
2602                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2603                 buffer += 4;
2604
2605                 struct embeddedice_reg *ice_reg = arm7_9->eice_cache->reg_list[EICE_COMMS_DATA].arch_info;
2606                 uint8_t reg_addr = ice_reg->addr & 0x1f;
2607                 struct jtag_tap *tap;
2608                 tap = ice_reg->jtag_info->tap;
2609
2610                 embeddedice_write_dcc(tap, reg_addr, buffer, little, count-2);
2611                 buffer += (count-2)*4;
2612
2613                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2614         } else
2615         {
2616                 int i;
2617                 for (i = 0; i < count; i++)
2618                 {
2619                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2620                         buffer += 4;
2621                 }
2622         }
2623
2624         if ((retval = target_halt(target))!= ERROR_OK)
2625         {
2626                 return retval;
2627         }
2628         return target_wait_state(target, TARGET_HALTED, 500);
2629 }
2630
2631 static const uint32_t dcc_code[] =
2632 {
2633         /* r0 == input, points to memory buffer
2634          * r1 == scratch
2635          */
2636
2637         /* spin until DCC control (c0) reports data arrived */
2638         0xee101e10,     /* w: mrc p14, #0, r1, c0, c0 */
2639         0xe3110001,     /*    tst r1, #1              */
2640         0x0afffffc,     /*    bne w                   */
2641
2642         /* read word from DCC (c1), write to memory */
2643         0xee111e10,     /*    mrc p14, #0, r1, c1, c0 */
2644         0xe4801004,     /*    str r1, [r0], #4        */
2645
2646         /* repeat */
2647         0xeafffff9      /*    b   w                   */
2648 };
2649
2650 extern int armv4_5_run_algorithm_inner(struct target *target,
2651         int num_mem_params, struct mem_param *mem_params,
2652         int num_reg_params, struct reg_param *reg_params,
2653         uint32_t entry_point, uint32_t exit_point,
2654         int timeout_ms, void *arch_info,
2655         int (*run_it)(struct target *target, uint32_t exit_point,
2656                         int timeout_ms, void *arch_info));
2657
2658 int arm7_9_bulk_write_memory(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
2659 {
2660         int retval;
2661         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2662         int i;
2663
2664         if (!arm7_9->dcc_downloads)
2665                 return target_write_memory(target, address, 4, count, buffer);
2666
2667         /* regrab previously allocated working_area, or allocate a new one */
2668         if (!arm7_9->dcc_working_area)
2669         {
2670                 uint8_t dcc_code_buf[6 * 4];
2671
2672                 /* make sure we have a working area */
2673                 if (target_alloc_working_area(target, 24, &arm7_9->dcc_working_area) != ERROR_OK)
2674                 {
2675                         LOG_INFO("no working area available, falling back to memory writes");
2676                         return target_write_memory(target, address, 4, count, buffer);
2677                 }
2678
2679                 /* copy target instructions to target endianness */
2680                 for (i = 0; i < 6; i++)
2681                 {
2682                         target_buffer_set_u32(target, dcc_code_buf + i*4, dcc_code[i]);
2683                 }
2684
2685                 /* write DCC code to working area */
2686                 if ((retval = target_write_memory(target, arm7_9->dcc_working_area->address, 4, 6, dcc_code_buf)) != ERROR_OK)
2687                 {
2688                         return retval;
2689                 }
2690         }
2691
2692         struct armv4_5_algorithm armv4_5_info;
2693         struct reg_param reg_params[1];
2694
2695         armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
2696         armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
2697         armv4_5_info.core_state = ARMV4_5_STATE_ARM;
2698
2699         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
2700
2701         buf_set_u32(reg_params[0].value, 0, 32, address);
2702
2703         dcc_count = count;
2704         dcc_buffer = buffer;
2705         retval = armv4_5_run_algorithm_inner(target, 0, NULL, 1, reg_params,
2706                         arm7_9->dcc_working_area->address,
2707                                 arm7_9->dcc_working_area->address + 6*4,
2708                         20*1000, &armv4_5_info, arm7_9_dcc_completion);
2709
2710         if (retval == ERROR_OK)
2711         {
2712                 uint32_t endaddress = buf_get_u32(reg_params[0].value, 0, 32);
2713                 if (endaddress != (address + count*4))
2714                 {
2715                         LOG_ERROR("DCC write failed, expected end address 0x%08" PRIx32 " got 0x%0" PRIx32 "", (address + count*4), endaddress);
2716                         retval = ERROR_FAIL;
2717                 }
2718         }
2719
2720         destroy_reg_param(&reg_params[0]);
2721
2722         return retval;
2723 }
2724
2725 /**
2726  * Perform per-target setup that requires JTAG access.
2727  */
2728 int arm7_9_examine(struct target *target)
2729 {
2730         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2731         int retval;
2732
2733         if (!target_was_examined(target)) {
2734                 struct reg_cache *t, **cache_p;
2735
2736                 t = embeddedice_build_reg_cache(target, arm7_9);
2737                 if (t == NULL)
2738                         return ERROR_FAIL;
2739
2740                 cache_p = register_get_last_cache_p(&target->reg_cache);
2741                 (*cache_p) = t;
2742                 arm7_9->eice_cache = (*cache_p);
2743
2744                 if (arm7_9->armv4_5_common.etm)
2745                         (*cache_p)->next = etm_build_reg_cache(target,
2746                                         &arm7_9->jtag_info,
2747                                         arm7_9->armv4_5_common.etm);
2748
2749                 target_set_examined(target);
2750         }
2751
2752         retval = embeddedice_setup(target);
2753         if (retval == ERROR_OK)
2754                 retval = arm7_9_setup(target);
2755         if (retval == ERROR_OK && arm7_9->armv4_5_common.etm)
2756                 retval = etm_setup(target);
2757         return retval;
2758 }
2759
2760 COMMAND_HANDLER(handle_arm7_9_dbgrq_command)
2761 {
2762         struct target *target = get_current_target(CMD_CTX);
2763         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2764
2765         if (!is_arm7_9(arm7_9))
2766         {
2767                 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2768                 return ERROR_TARGET_INVALID;
2769         }
2770
2771         if (CMD_ARGC > 0)
2772                 COMMAND_PARSE_ENABLE(CMD_ARGV[0],arm7_9->use_dbgrq);
2773
2774         command_print(CMD_CTX, "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s", (arm7_9->use_dbgrq) ? "enabled" : "disabled");
2775
2776         return ERROR_OK;
2777 }
2778
2779 COMMAND_HANDLER(handle_arm7_9_fast_memory_access_command)
2780 {
2781         struct target *target = get_current_target(CMD_CTX);
2782         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2783
2784         if (!is_arm7_9(arm7_9))
2785         {
2786                 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2787                 return ERROR_TARGET_INVALID;
2788         }
2789
2790         if (CMD_ARGC > 0)
2791                 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->fast_memory_access);
2792
2793         command_print(CMD_CTX, "fast memory access is %s", (arm7_9->fast_memory_access) ? "enabled" : "disabled");
2794
2795         return ERROR_OK;
2796 }
2797
2798 COMMAND_HANDLER(handle_arm7_9_dcc_downloads_command)
2799 {
2800         struct target *target = get_current_target(CMD_CTX);
2801         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2802
2803         if (!is_arm7_9(arm7_9))
2804         {
2805                 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2806                 return ERROR_TARGET_INVALID;
2807         }
2808
2809         if (CMD_ARGC > 0)
2810                 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->dcc_downloads);
2811
2812         command_print(CMD_CTX, "dcc downloads are %s", (arm7_9->dcc_downloads) ? "enabled" : "disabled");
2813
2814         return ERROR_OK;
2815 }
2816
2817 int arm7_9_init_arch_info(struct target *target, struct arm7_9_common *arm7_9)
2818 {
2819         int retval = ERROR_OK;
2820         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2821
2822         arm7_9->common_magic = ARM7_9_COMMON_MAGIC;
2823
2824         if ((retval = arm_jtag_setup_connection(&arm7_9->jtag_info)) != ERROR_OK)
2825                 return retval;
2826
2827         /* caller must have allocated via calloc(), so everything's zeroed */
2828
2829         arm7_9->wp_available_max = 2;
2830
2831         arm7_9->fast_memory_access = false;
2832         arm7_9->dcc_downloads = false;
2833
2834         armv4_5->arch_info = arm7_9;
2835         armv4_5->read_core_reg = arm7_9_read_core_reg;
2836         armv4_5->write_core_reg = arm7_9_write_core_reg;
2837         armv4_5->full_context = arm7_9_full_context;
2838
2839         if ((retval = armv4_5_init_arch_info(target, armv4_5)) != ERROR_OK)
2840                 return retval;
2841
2842         return target_register_timer_callback(arm7_9_handle_target_request,
2843                         1, 1, target);
2844 }
2845
2846 static const struct command_registration arm7_9_any_command_handlers[] = {
2847         {
2848                 "dbgrq",
2849                 .handler = &handle_arm7_9_dbgrq_command,
2850                 .mode = COMMAND_ANY,
2851                 .usage = "<enable|disable>",
2852                 .help = "use EmbeddedICE dbgrq instead of breakpoint "
2853                         "for target halt requests",
2854         },
2855         {
2856                 "fast_memory_access",
2857                 .handler = &handle_arm7_9_fast_memory_access_command,
2858                 .mode = COMMAND_ANY,
2859                 .usage = "<enable|disable>",
2860                 .help = "use fast memory accesses instead of slower "
2861                         "but potentially safer accesses",
2862         },
2863         {
2864                 "dcc_downloads",
2865                 .handler = &handle_arm7_9_dcc_downloads_command,
2866                 .mode = COMMAND_ANY,
2867                 .usage = "<enable | disable>",
2868                 .help = "use DCC downloads for larger memory writes",
2869         },
2870         COMMAND_REGISTRATION_DONE
2871 };
2872 const struct command_registration arm7_9_command_handlers[] = {
2873         {
2874                 .chain = arm_command_handlers,
2875         },
2876         {
2877                 .chain = etm_command_handlers,
2878         },
2879         {
2880                 .name = "arm7_9",
2881                 .mode = COMMAND_ANY,
2882                 .help = "arm7/9 specific commands",
2883                 .chain = arm7_9_any_command_handlers,
2884         },
2885         COMMAND_REGISTRATION_DONE
2886 };