TARGET/ARM7_9_COMMON: review scope of symbols
[fw/openocd] / src / target / arm7_9_common.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2009 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2008 by Hongtao Zheng                                   *
12  *   hontor@126.com                                                        *
13  *                                                                         *
14  *   Copyright (C) 2009 by David Brownell                                  *
15  *                                                                         *
16  *   This program is free software; you can redistribute it and/or modify  *
17  *   it under the terms of the GNU General Public License as published by  *
18  *   the Free Software Foundation; either version 2 of the License, or     *
19  *   (at your option) any later version.                                   *
20  *                                                                         *
21  *   This program is distributed in the hope that it will be useful,       *
22  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
23  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
24  *   GNU General Public License for more details.                          *
25  *                                                                         *
26  *   You should have received a copy of the GNU General Public License     *
27  *   along with this program; if not, write to the                         *
28  *   Free Software Foundation, Inc.,                                       *
29  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
30  ***************************************************************************/
31 #ifdef HAVE_CONFIG_H
32 #include "config.h"
33 #endif
34
35 #include "breakpoints.h"
36 #include "embeddedice.h"
37 #include "target_request.h"
38 #include "etm.h"
39 #include <helper/time_support.h>
40 #include "arm_simulator.h"
41 #include "arm_semihosting.h"
42 #include "algorithm.h"
43 #include "register.h"
44 #include "armv4_5.h"
45
46
47 /**
48  * @file
49  * Hold common code supporting the ARM7 and ARM9 core generations.
50  *
51  * While the ARM core implementations evolved substantially during these
52  * two generations, they look quite similar from the JTAG perspective.
53  * Both have similar debug facilities, based on the same two scan chains
54  * providing access to the core and to an EmbeddedICE module.  Both can
55  * support similar ETM and ETB modules, for tracing.  And both expose
56  * what could be viewed as "ARM Classic", with multiple processor modes,
57  * shadowed registers, and support for the Thumb instruction set.
58  *
59  * Processor differences include things like presence or absence of MMU
60  * and cache, pipeline sizes, use of a modified Harvard Architecure
61  * (with separate instruction and data busses from the CPU), support
62  * for cpu clock gating during idle, and more.
63  */
64
65 static int arm7_9_debug_entry(struct target *target);
66
67 /**
68  * Clear watchpoints for an ARM7/9 target.
69  *
70  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
71  * @return JTAG error status after executing queue
72  */
73 static int arm7_9_clear_watchpoints(struct arm7_9_common *arm7_9)
74 {
75         LOG_DEBUG("-");
76         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
77         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
78         arm7_9->sw_breakpoint_count = 0;
79         arm7_9->sw_breakpoints_added = 0;
80         arm7_9->wp0_used = 0;
81         arm7_9->wp1_used = arm7_9->wp1_used_default;
82         arm7_9->wp_available = arm7_9->wp_available_max;
83
84         return jtag_execute_queue();
85 }
86
87 /**
88  * Assign a watchpoint to one of the two available hardware comparators in an
89  * ARM7 or ARM9 target.
90  *
91  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
92  * @param breakpoint Pointer to the breakpoint to be used as a watchpoint
93  */
94 static void arm7_9_assign_wp(struct arm7_9_common *arm7_9, struct breakpoint *breakpoint)
95 {
96         if (!arm7_9->wp0_used)
97         {
98                 arm7_9->wp0_used = 1;
99                 breakpoint->set = 1;
100                 arm7_9->wp_available--;
101         }
102         else if (!arm7_9->wp1_used)
103         {
104                 arm7_9->wp1_used = 1;
105                 breakpoint->set = 2;
106                 arm7_9->wp_available--;
107         }
108         else
109         {
110                 LOG_ERROR("BUG: no hardware comparator available");
111         }
112         LOG_DEBUG("BPID: %d (0x%08" PRIx32 ") using hw wp: %d",
113                           breakpoint->unique_id,
114                           breakpoint->address,
115                           breakpoint->set );
116 }
117
118 /**
119  * Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
120  *
121  * @param arm7_9 Pointer to common struct for ARM7/9 targets
122  * @return Error codes if there is a problem finding a watchpoint or the result
123  *         of executing the JTAG queue
124  */
125 static int arm7_9_set_software_breakpoints(struct arm7_9_common *arm7_9)
126 {
127         if (arm7_9->sw_breakpoints_added)
128         {
129                 return ERROR_OK;
130         }
131         if (arm7_9->wp_available < 1)
132         {
133                 LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
134                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
135         }
136         arm7_9->wp_available--;
137
138         /* pick a breakpoint unit */
139         if (!arm7_9->wp0_used)
140         {
141                 arm7_9->sw_breakpoints_added = 1;
142                 arm7_9->wp0_used = 3;
143         } else if (!arm7_9->wp1_used)
144         {
145                 arm7_9->sw_breakpoints_added = 2;
146                 arm7_9->wp1_used = 3;
147         }
148         else
149         {
150                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
151                 return ERROR_FAIL;
152         }
153
154         if (arm7_9->sw_breakpoints_added == 1)
155         {
156                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], arm7_9->arm_bkpt);
157                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0x0);
158                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffffu);
159                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
160                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
161         }
162         else if (arm7_9->sw_breakpoints_added == 2)
163         {
164                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], arm7_9->arm_bkpt);
165                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0x0);
166                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0xffffffffu);
167                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
168                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
169         }
170         else
171         {
172                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
173                 return ERROR_FAIL;
174         }
175         LOG_DEBUG("SW BP using hw wp: %d",
176                           arm7_9->sw_breakpoints_added );
177
178         return jtag_execute_queue();
179 }
180
181 /**
182  * Setup the common pieces for an ARM7/9 target after reset or on startup.
183  *
184  * @param target Pointer to an ARM7/9 target to setup
185  * @return Result of clearing the watchpoints on the target
186  */
187 static int arm7_9_setup(struct target *target)
188 {
189         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
190
191         return arm7_9_clear_watchpoints(arm7_9);
192 }
193
194 /**
195  * Set either a hardware or software breakpoint on an ARM7/9 target.  The
196  * breakpoint is set up even if it is already set.  Some actions, e.g. reset,
197  * might have erased the values in Embedded ICE.
198  *
199  * @param target Pointer to the target device to set the breakpoints on
200  * @param breakpoint Pointer to the breakpoint to be set
201  * @return For hardware breakpoints, this is the result of executing the JTAG
202  *         queue.  For software breakpoints, this will be the status of the
203  *         required memory reads and writes
204  */
205 static int arm7_9_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
206 {
207         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
208         int retval = ERROR_OK;
209
210         LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32 ", Type: %d" ,
211                           breakpoint->unique_id,
212                           breakpoint->address,
213                           breakpoint->type);
214
215         if (target->state != TARGET_HALTED)
216         {
217                 LOG_WARNING("target not halted");
218                 return ERROR_TARGET_NOT_HALTED;
219         }
220
221         if (breakpoint->type == BKPT_HARD)
222         {
223                 /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
224                 uint32_t mask = (breakpoint->length == 4) ? 0x3u : 0x1u;
225
226                 /* reassign a hw breakpoint */
227                 if (breakpoint->set == 0)
228                 {
229                         arm7_9_assign_wp(arm7_9, breakpoint);
230                 }
231
232                 if (breakpoint->set == 1)
233                 {
234                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], breakpoint->address);
235                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
236                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffffu);
237                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
238                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
239                 }
240                 else if (breakpoint->set == 2)
241                 {
242                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], breakpoint->address);
243                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
244                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffffu);
245                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
246                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
247                 }
248                 else
249                 {
250                         LOG_ERROR("BUG: no hardware comparator available");
251                         return ERROR_OK;
252                 }
253
254                 retval = jtag_execute_queue();
255         }
256         else if (breakpoint->type == BKPT_SOFT)
257         {
258                 /* did we already set this breakpoint? */
259                 if (breakpoint->set)
260                         return ERROR_OK;
261
262                 if (breakpoint->length == 4)
263                 {
264                         uint32_t verify = 0xffffffff;
265                         /* keep the original instruction in target endianness */
266                         if ((retval = target_read_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
267                         {
268                                 return retval;
269                         }
270                         /* write the breakpoint instruction in target endianness (arm7_9->arm_bkpt is host endian) */
271                         if ((retval = target_write_u32(target, breakpoint->address, arm7_9->arm_bkpt)) != ERROR_OK)
272                         {
273                                 return retval;
274                         }
275
276                         if ((retval = target_read_u32(target, breakpoint->address, &verify)) != ERROR_OK)
277                         {
278                                 return retval;
279                         }
280                         if (verify != arm7_9->arm_bkpt)
281                         {
282                                 LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
283                                 return ERROR_OK;
284                         }
285                 }
286                 else
287                 {
288                         uint16_t verify = 0xffff;
289                         /* keep the original instruction in target endianness */
290                         if ((retval = target_read_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
291                         {
292                                 return retval;
293                         }
294                         /* write the breakpoint instruction in target endianness (arm7_9->thumb_bkpt is host endian) */
295                         if ((retval = target_write_u16(target, breakpoint->address, arm7_9->thumb_bkpt)) != ERROR_OK)
296                         {
297                                 return retval;
298                         }
299
300                         if ((retval = target_read_u16(target, breakpoint->address, &verify)) != ERROR_OK)
301                         {
302                                 return retval;
303                         }
304                         if (verify != arm7_9->thumb_bkpt)
305                         {
306                                 LOG_ERROR("Unable to set thumb software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
307                                 return ERROR_OK;
308                         }
309                 }
310
311                 if ((retval = arm7_9_set_software_breakpoints(arm7_9)) != ERROR_OK)
312                         return retval;
313
314                 arm7_9->sw_breakpoint_count++;
315
316                 breakpoint->set = 1;
317         }
318
319         return retval;
320 }
321
322 /**
323  * Unsets an existing breakpoint on an ARM7/9 target.  If it is a hardware
324  * breakpoint, the watchpoint used will be freed and the Embedded ICE registers
325  * will be updated.  Otherwise, the software breakpoint will be restored to its
326  * original instruction if it hasn't already been modified.
327  *
328  * @param target Pointer to ARM7/9 target to unset the breakpoint from
329  * @param breakpoint Pointer to breakpoint to be unset
330  * @return For hardware breakpoints, this is the result of executing the JTAG
331  *         queue.  For software breakpoints, this will be the status of the
332  *         required memory reads and writes
333  */
334 static int arm7_9_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
335 {
336         int retval = ERROR_OK;
337         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
338
339         LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32,
340                           breakpoint->unique_id,
341                           breakpoint->address );
342
343         if (!breakpoint->set)
344         {
345                 LOG_WARNING("breakpoint not set");
346                 return ERROR_OK;
347         }
348
349         if (breakpoint->type == BKPT_HARD)
350         {
351                 LOG_DEBUG("BPID: %d Releasing hw wp: %d",
352                                   breakpoint->unique_id,
353                                   breakpoint->set );
354                 if (breakpoint->set == 1)
355                 {
356                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
357                         arm7_9->wp0_used = 0;
358                         arm7_9->wp_available++;
359                 }
360                 else if (breakpoint->set == 2)
361                 {
362                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
363                         arm7_9->wp1_used = 0;
364                         arm7_9->wp_available++;
365                 }
366                 retval = jtag_execute_queue();
367                 breakpoint->set = 0;
368         }
369         else
370         {
371                 /* restore original instruction (kept in target endianness) */
372                 if (breakpoint->length == 4)
373                 {
374                         uint32_t current_instr;
375                         /* check that user program as not modified breakpoint instruction */
376                         if ((retval = target_read_memory(target, breakpoint->address, 4, 1, (uint8_t*)&current_instr)) != ERROR_OK)
377                         {
378                                 return retval;
379                         }
380                         if (current_instr == arm7_9->arm_bkpt)
381                                 if ((retval = target_write_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
382                                 {
383                                         return retval;
384                                 }
385                 }
386                 else
387                 {
388                         uint16_t current_instr;
389                         /* check that user program as not modified breakpoint instruction */
390                         if ((retval = target_read_memory(target, breakpoint->address, 2, 1, (uint8_t*)&current_instr)) != ERROR_OK)
391                         {
392                                 return retval;
393                         }
394                         if (current_instr == arm7_9->thumb_bkpt)
395                                 if ((retval = target_write_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
396                                 {
397                                         return retval;
398                                 }
399                 }
400
401                 if (--arm7_9->sw_breakpoint_count==0)
402                 {
403                         /* We have removed the last sw breakpoint, clear the hw breakpoint we used to implement it */
404                         if (arm7_9->sw_breakpoints_added == 1)
405                         {
406                                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0);
407                         }
408                         else if (arm7_9->sw_breakpoints_added == 2)
409                         {
410                                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0);
411                         }
412                 }
413
414                 breakpoint->set = 0;
415         }
416
417         return retval;
418 }
419
420 /**
421  * Add a breakpoint to an ARM7/9 target.  This makes sure that there are no
422  * dangling breakpoints and that the desired breakpoint can be added.
423  *
424  * @param target Pointer to the target ARM7/9 device to add a breakpoint to
425  * @param breakpoint Pointer to the breakpoint to be added
426  * @return An error status if there is a problem adding the breakpoint or the
427  *         result of setting the breakpoint
428  */
429 int arm7_9_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
430 {
431         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
432
433         if (arm7_9->breakpoint_count == 0)
434         {
435                 /* make sure we don't have any dangling breakpoints. This is vital upon
436                  * GDB connect/disconnect
437                  */
438                 arm7_9_clear_watchpoints(arm7_9);
439         }
440
441         if ((breakpoint->type == BKPT_HARD) && (arm7_9->wp_available < 1))
442         {
443                 LOG_INFO("no watchpoint unit available for hardware breakpoint");
444                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
445         }
446
447         if ((breakpoint->length != 2) && (breakpoint->length != 4))
448         {
449                 LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
450                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
451         }
452
453         if (breakpoint->type == BKPT_HARD)
454         {
455                 arm7_9_assign_wp(arm7_9, breakpoint);
456         }
457
458         arm7_9->breakpoint_count++;
459
460         return arm7_9_set_breakpoint(target, breakpoint);
461 }
462
463 /**
464  * Removes a breakpoint from an ARM7/9 target.  This will make sure there are no
465  * dangling breakpoints and updates available watchpoints if it is a hardware
466  * breakpoint.
467  *
468  * @param target Pointer to the target to have a breakpoint removed
469  * @param breakpoint Pointer to the breakpoint to be removed
470  * @return Error status if there was a problem unsetting the breakpoint or the
471  *         watchpoints could not be cleared
472  */
473 int arm7_9_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
474 {
475         int retval = ERROR_OK;
476         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
477
478         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
479         {
480                 return retval;
481         }
482
483         if (breakpoint->type == BKPT_HARD)
484                 arm7_9->wp_available++;
485
486         arm7_9->breakpoint_count--;
487         if (arm7_9->breakpoint_count == 0)
488         {
489                 /* make sure we don't have any dangling breakpoints */
490                 if ((retval = arm7_9_clear_watchpoints(arm7_9)) != ERROR_OK)
491                 {
492                         return retval;
493                 }
494         }
495
496         return ERROR_OK;
497 }
498
499 /**
500  * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units.  It is
501  * considered a bug to call this function when there are no available watchpoint
502  * units.
503  *
504  * @param target Pointer to an ARM7/9 target to set a watchpoint on
505  * @param watchpoint Pointer to the watchpoint to be set
506  * @return Error status if watchpoint set fails or the result of executing the
507  *         JTAG queue
508  */
509 static int arm7_9_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
510 {
511         int retval = ERROR_OK;
512         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
513         int rw_mask = 1;
514         uint32_t mask;
515
516         mask = watchpoint->length - 1;
517
518         if (target->state != TARGET_HALTED)
519         {
520                 LOG_WARNING("target not halted");
521                 return ERROR_TARGET_NOT_HALTED;
522         }
523
524         if (watchpoint->rw == WPT_ACCESS)
525                 rw_mask = 0;
526         else
527                 rw_mask = 1;
528
529         if (!arm7_9->wp0_used)
530         {
531                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], watchpoint->address);
532                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
533                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], watchpoint->mask);
534                 if (watchpoint->mask != 0xffffffffu)
535                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], watchpoint->value);
536                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
537                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
538
539                 if ((retval = jtag_execute_queue()) != ERROR_OK)
540                 {
541                         return retval;
542                 }
543                 watchpoint->set = 1;
544                 arm7_9->wp0_used = 2;
545         }
546         else if (!arm7_9->wp1_used)
547         {
548                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], watchpoint->address);
549                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
550                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], watchpoint->mask);
551                 if (watchpoint->mask != 0xffffffffu)
552                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], watchpoint->value);
553                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
554                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
555
556                 if ((retval = jtag_execute_queue()) != ERROR_OK)
557                 {
558                         return retval;
559                 }
560                 watchpoint->set = 2;
561                 arm7_9->wp1_used = 2;
562         }
563         else
564         {
565                 LOG_ERROR("BUG: no hardware comparator available");
566                 return ERROR_OK;
567         }
568
569         return ERROR_OK;
570 }
571
572 /**
573  * Unset an existing watchpoint and clear the used watchpoint unit.
574  *
575  * @param target Pointer to the target to have the watchpoint removed
576  * @param watchpoint Pointer to the watchpoint to be removed
577  * @return Error status while trying to unset the watchpoint or the result of
578  *         executing the JTAG queue
579  */
580 static int arm7_9_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
581 {
582         int retval = ERROR_OK;
583         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
584
585         if (target->state != TARGET_HALTED)
586         {
587                 LOG_WARNING("target not halted");
588                 return ERROR_TARGET_NOT_HALTED;
589         }
590
591         if (!watchpoint->set)
592         {
593                 LOG_WARNING("breakpoint not set");
594                 return ERROR_OK;
595         }
596
597         if (watchpoint->set == 1)
598         {
599                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
600                 if ((retval = jtag_execute_queue()) != ERROR_OK)
601                 {
602                         return retval;
603                 }
604                 arm7_9->wp0_used = 0;
605         }
606         else if (watchpoint->set == 2)
607         {
608                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
609                 if ((retval = jtag_execute_queue()) != ERROR_OK)
610                 {
611                         return retval;
612                 }
613                 arm7_9->wp1_used = 0;
614         }
615         watchpoint->set = 0;
616
617         return ERROR_OK;
618 }
619
620 /**
621  * Add a watchpoint to an ARM7/9 target.  If there are no watchpoint units
622  * available, an error response is returned.
623  *
624  * @param target Pointer to the ARM7/9 target to add a watchpoint to
625  * @param watchpoint Pointer to the watchpoint to be added
626  * @return Error status while trying to add the watchpoint
627  */
628 int arm7_9_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
629 {
630         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
631
632         if (arm7_9->wp_available < 1)
633         {
634                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
635         }
636
637         if ((watchpoint->length != 1) && (watchpoint->length != 2) && (watchpoint->length != 4))
638         {
639                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
640         }
641
642         arm7_9->wp_available--;
643
644         return ERROR_OK;
645 }
646
647 /**
648  * Remove a watchpoint from an ARM7/9 target.  The watchpoint will be unset and
649  * the used watchpoint unit will be reopened.
650  *
651  * @param target Pointer to the target to remove a watchpoint from
652  * @param watchpoint Pointer to the watchpoint to be removed
653  * @return Result of trying to unset the watchpoint
654  */
655 int arm7_9_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
656 {
657         int retval = ERROR_OK;
658         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
659
660         if (watchpoint->set)
661         {
662                 if ((retval = arm7_9_unset_watchpoint(target, watchpoint)) != ERROR_OK)
663                 {
664                         return retval;
665                 }
666         }
667
668         arm7_9->wp_available++;
669
670         return ERROR_OK;
671 }
672
673 /**
674  * Restarts the target by sending a RESTART instruction and moving the JTAG
675  * state to IDLE.  This includes a timeout waiting for DBGACK and SYSCOMP to be
676  * asserted by the processor.
677  *
678  * @param target Pointer to target to issue commands to
679  * @return Error status if there is a timeout or a problem while executing the
680  *         JTAG queue
681  */
682 int arm7_9_execute_sys_speed(struct target *target)
683 {
684         int retval;
685         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
686         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
687         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
688
689         /* set RESTART instruction */
690         if (arm7_9->need_bypass_before_restart) {
691                 arm7_9->need_bypass_before_restart = 0;
692                 arm_jtag_set_instr(jtag_info, 0xf, NULL, TAP_IDLE);
693         }
694         arm_jtag_set_instr(jtag_info, 0x4, NULL, TAP_IDLE);
695
696         long long then = timeval_ms();
697         int timeout;
698         while (!(timeout = ((timeval_ms()-then) > 1000)))
699         {
700                 /* read debug status register */
701                 embeddedice_read_reg(dbg_stat);
702                 if ((retval = jtag_execute_queue()) != ERROR_OK)
703                         return retval;
704                 if ((buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
705                                    && (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_SYSCOMP, 1)))
706                         break;
707                 if (debug_level >= 3)
708                 {
709                         alive_sleep(100);
710                 } else
711                 {
712                         keep_alive();
713                 }
714         }
715         if (timeout)
716         {
717                 LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32 "", buf_get_u32(dbg_stat->value, 0, dbg_stat->size));
718                 return ERROR_TARGET_TIMEOUT;
719         }
720
721         return ERROR_OK;
722 }
723
724 /**
725  * Restarts the target by sending a RESTART instruction and moving the JTAG
726  * state to IDLE.  This validates that DBGACK and SYSCOMP are set without
727  * waiting until they are.
728  *
729  * @param target Pointer to the target to issue commands to
730  * @return Always ERROR_OK
731  */
732 static int arm7_9_execute_fast_sys_speed(struct target *target)
733 {
734         static int set = 0;
735         static uint8_t check_value[4], check_mask[4];
736
737         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
738         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
739         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
740
741         /* set RESTART instruction */
742         if (arm7_9->need_bypass_before_restart) {
743                 arm7_9->need_bypass_before_restart = 0;
744                 arm_jtag_set_instr(jtag_info, 0xf, NULL, TAP_IDLE);
745         }
746         arm_jtag_set_instr(jtag_info, 0x4, NULL, TAP_IDLE);
747
748         if (!set)
749         {
750                 /* check for DBGACK and SYSCOMP set (others don't care) */
751
752                 /* NB! These are constants that must be available until after next jtag_execute() and
753                  * we evaluate the values upon first execution in lieu of setting up these constants
754                  * during early setup.
755                  * */
756                 buf_set_u32(check_value, 0, 32, 0x9);
757                 buf_set_u32(check_mask, 0, 32, 0x9);
758                 set = 1;
759         }
760
761         /* read debug status register */
762         embeddedice_read_reg_w_check(dbg_stat, check_value, check_mask);
763
764         return ERROR_OK;
765 }
766
767 /**
768  * Get some data from the ARM7/9 target.
769  *
770  * @param target Pointer to the ARM7/9 target to read data from
771  * @param size The number of 32bit words to be read
772  * @param buffer Pointer to the buffer that will hold the data
773  * @return The result of receiving data from the Embedded ICE unit
774  */
775 int arm7_9_target_request_data(struct target *target, uint32_t size, uint8_t *buffer)
776 {
777         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
778         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
779         uint32_t *data;
780         int retval = ERROR_OK;
781         uint32_t i;
782
783         data = malloc(size * (sizeof(uint32_t)));
784
785         retval = embeddedice_receive(jtag_info, data, size);
786
787         /* return the 32-bit ints in the 8-bit array */
788         for (i = 0; i < size; i++)
789         {
790                 h_u32_to_le(buffer + (i * 4), data[i]);
791         }
792
793         free(data);
794
795         return retval;
796 }
797
798 /**
799  * Handles requests to an ARM7/9 target.  If debug messaging is enabled, the
800  * target is running and the DCC control register has the W bit high, this will
801  * execute the request on the target.
802  *
803  * @param priv Void pointer expected to be a struct target pointer
804  * @return ERROR_OK unless there are issues with the JTAG queue or when reading
805  *                  from the Embedded ICE unit
806  */
807 static int arm7_9_handle_target_request(void *priv)
808 {
809         int retval = ERROR_OK;
810         struct target *target = priv;
811         if (!target_was_examined(target))
812                 return ERROR_OK;
813         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
814         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
815         struct reg *dcc_control = &arm7_9->eice_cache->reg_list[EICE_COMMS_CTRL];
816
817         if (!target->dbg_msg_enabled)
818                 return ERROR_OK;
819
820         if (target->state == TARGET_RUNNING)
821         {
822                 /* read DCC control register */
823                 embeddedice_read_reg(dcc_control);
824                 if ((retval = jtag_execute_queue()) != ERROR_OK)
825                 {
826                         return retval;
827                 }
828
829                 /* check W bit */
830                 if (buf_get_u32(dcc_control->value, 1, 1) == 1)
831                 {
832                         uint32_t request;
833
834                         if ((retval = embeddedice_receive(jtag_info, &request, 1)) != ERROR_OK)
835                         {
836                                 return retval;
837                         }
838                         if ((retval = target_request(target, request)) != ERROR_OK)
839                         {
840                                 return retval;
841                         }
842                 }
843         }
844
845         return ERROR_OK;
846 }
847
848 /**
849  * Polls an ARM7/9 target for its current status.  If DBGACK is set, the target
850  * is manipulated to the right halted state based on its current state.  This is
851  * what happens:
852  *
853  * <table>
854  *              <tr><th > State</th><th > Action</th></tr>
855  *              <tr><td > TARGET_RUNNING | TARGET_RESET</td><td > Enters debug mode.  If TARGET_RESET, pc may be checked</td></tr>
856  *              <tr><td > TARGET_UNKNOWN</td><td > Warning is logged</td></tr>
857  *              <tr><td > TARGET_DEBUG_RUNNING</td><td > Enters debug mode</td></tr>
858  *              <tr><td > TARGET_HALTED</td><td > Nothing</td></tr>
859  * </table>
860  *
861  * If the target does not end up in the halted state, a warning is produced.  If
862  * DBGACK is cleared, then the target is expected to either be running or
863  * running in debug.
864  *
865  * @param target Pointer to the ARM7/9 target to poll
866  * @return ERROR_OK or an error status if a command fails
867  */
868 int arm7_9_poll(struct target *target)
869 {
870         int retval;
871         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
872         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
873
874         /* read debug status register */
875         embeddedice_read_reg(dbg_stat);
876         if ((retval = jtag_execute_queue()) != ERROR_OK)
877         {
878                 return retval;
879         }
880
881         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
882         {
883 /*              LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, 32));*/
884                 if (target->state == TARGET_UNKNOWN)
885                 {
886                         /* Starting OpenOCD with target in debug-halt */
887                         target->state = TARGET_RUNNING;
888                         LOG_DEBUG("DBGACK already set during server startup.");
889                 }
890                 if ((target->state == TARGET_RUNNING) || (target->state == TARGET_RESET))
891                 {
892                         target->state = TARGET_HALTED;
893
894                         if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
895                                 return retval;
896
897                         if (arm_semihosting(target, &retval) != 0)
898                                 return retval;
899
900                         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
901                         {
902                                 return retval;
903                         }
904                 }
905                 if (target->state == TARGET_DEBUG_RUNNING)
906                 {
907                         target->state = TARGET_HALTED;
908                         if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
909                                 return retval;
910
911                         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED)) != ERROR_OK)
912                         {
913                                 return retval;
914                         }
915                 }
916                 if (target->state != TARGET_HALTED)
917                 {
918                         LOG_WARNING("DBGACK set, but the target did not end up in the halted state %d", target->state);
919                 }
920         }
921         else
922         {
923                 if (target->state != TARGET_DEBUG_RUNNING)
924                         target->state = TARGET_RUNNING;
925         }
926
927         return ERROR_OK;
928 }
929
930 /**
931  * Asserts the reset (SRST) on an ARM7/9 target.  Some -S targets (ARM966E-S in
932  * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
933  * affected) completely stop the JTAG clock while the core is held in reset
934  * (SRST).  It isn't possible to program the halt condition once reset is
935  * asserted, hence a hook that allows the target to set up its reset-halt
936  * condition is setup prior to asserting reset.
937  *
938  * @param target Pointer to an ARM7/9 target to assert reset on
939  * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
940  */
941 int arm7_9_assert_reset(struct target *target)
942 {
943         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
944         enum reset_types jtag_reset_config = jtag_get_reset_config();
945         bool use_event = false;
946
947         LOG_DEBUG("target->state: %s",
948                   target_state_name(target));
949
950         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
951                 use_event = true;
952         else if (!(jtag_reset_config & RESET_HAS_SRST)) {
953                 LOG_ERROR("%s: how to reset?", target_name(target));
954                 return ERROR_FAIL;
955         }
956
957         /* At this point trst has been asserted/deasserted once. We would
958          * like to program EmbeddedICE while SRST is asserted, instead of
959          * depending on SRST to leave that module alone.  However, many CPUs
960          * gate the JTAG clock while SRST is asserted; or JTAG may need
961          * clock stability guarantees (adaptive clocking might help).
962          *
963          * So we assume JTAG access during SRST is off the menu unless it's
964          * been specifically enabled.
965          */
966         bool srst_asserted = false;
967
968         if (!use_event
969                         && !(jtag_reset_config & RESET_SRST_PULLS_TRST)
970                         && (jtag_reset_config & RESET_SRST_NO_GATING))
971         {
972                 jtag_add_reset(0, 1);
973                 srst_asserted = true;
974         }
975
976         if (target->reset_halt)
977         {
978                 /*
979                  * For targets that don't support communication while SRST is
980                  * asserted, we need to set up the reset vector catch first.
981                  *
982                  * When we use TRST+SRST and that's equivalent to a power-up
983                  * reset, these settings may well be reset anyway; so setting
984                  * them here won't matter.
985                  */
986                 if (arm7_9->has_vector_catch)
987                 {
988                         /* program vector catch register to catch reset */
989                         embeddedice_write_reg(&arm7_9->eice_cache
990                                         ->reg_list[EICE_VEC_CATCH], 0x1);
991
992                         /* extra runtest added as issues were found with
993                          * certain ARM9 cores (maybe more) - AT91SAM9260
994                          * and STR9
995                          */
996                         jtag_add_runtest(1, TAP_IDLE);
997                 }
998                 else
999                 {
1000                         /* program watchpoint unit to match on reset vector
1001                          * address
1002                          */
1003                         embeddedice_write_reg(&arm7_9->eice_cache
1004                                         ->reg_list[EICE_W0_ADDR_VALUE], 0x0);
1005                         embeddedice_write_reg(&arm7_9->eice_cache
1006                                         ->reg_list[EICE_W0_ADDR_MASK], 0x3);
1007                         embeddedice_write_reg(&arm7_9->eice_cache
1008                                         ->reg_list[EICE_W0_DATA_MASK],
1009                                                 0xffffffff);
1010                         embeddedice_write_reg(&arm7_9->eice_cache
1011                                         ->reg_list[EICE_W0_CONTROL_VALUE],
1012                                                 EICE_W_CTRL_ENABLE);
1013                         embeddedice_write_reg(&arm7_9->eice_cache
1014                                         ->reg_list[EICE_W0_CONTROL_MASK],
1015                                                 ~EICE_W_CTRL_nOPC & 0xff);
1016                 }
1017         }
1018
1019         if (use_event) {
1020                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1021         } else {
1022                 /* If we use SRST ... we'd like to issue just SRST, but the
1023                  * board or chip may be set up so we have to assert TRST as
1024                  * well.  On some chips that combination is equivalent to a
1025                  * power-up reset, and generally clobbers EICE state.
1026                  */
1027                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
1028                         jtag_add_reset(1, 1);
1029                 else if (!srst_asserted)
1030                         jtag_add_reset(0, 1);
1031                 jtag_add_sleep(50000);
1032         }
1033
1034         target->state = TARGET_RESET;
1035         register_cache_invalidate(arm7_9->armv4_5_common.core_cache);
1036
1037         /* REVISIT why isn't standard debug entry logic sufficient?? */
1038         if (target->reset_halt
1039                         && (!(jtag_reset_config & RESET_SRST_PULLS_TRST)
1040                                 || use_event))
1041         {
1042                 /* debug entry was prepared above */
1043                 target->debug_reason = DBG_REASON_DBGRQ;
1044         }
1045
1046         return ERROR_OK;
1047 }
1048
1049 /**
1050  * Deassert the reset (SRST) signal on an ARM7/9 target.  If SRST pulls TRST
1051  * and the target is being reset into a halt, a warning will be triggered
1052  * because it is not possible to reset into a halted mode in this case.  The
1053  * target is halted using the target's functions.
1054  *
1055  * @param target Pointer to the target to have the reset deasserted
1056  * @return ERROR_OK or an error from polling or halting the target
1057  */
1058 int arm7_9_deassert_reset(struct target *target)
1059 {
1060         int retval = ERROR_OK;
1061         LOG_DEBUG("target->state: %s",
1062                 target_state_name(target));
1063
1064         /* deassert reset lines */
1065         jtag_add_reset(0, 0);
1066
1067         enum reset_types jtag_reset_config = jtag_get_reset_config();
1068         if (target->reset_halt && (jtag_reset_config & RESET_SRST_PULLS_TRST) != 0)
1069         {
1070                 LOG_WARNING("srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
1071                 /* set up embedded ice registers again */
1072                 if ((retval = target_examine_one(target)) != ERROR_OK)
1073                         return retval;
1074
1075                 if ((retval = target_poll(target)) != ERROR_OK)
1076                 {
1077                         return retval;
1078                 }
1079
1080                 if ((retval = target_halt(target)) != ERROR_OK)
1081                 {
1082                         return retval;
1083                 }
1084
1085         }
1086         return retval;
1087 }
1088
1089 /**
1090  * Clears the halt condition for an ARM7/9 target.  If it isn't coming out of
1091  * reset and if DBGRQ is used, it is progammed to be deasserted.  If the reset
1092  * vector catch was used, it is restored.  Otherwise, the control value is
1093  * restored and the watchpoint unit is restored if it was in use.
1094  *
1095  * @param target Pointer to the ARM7/9 target to have halt cleared
1096  * @return Always ERROR_OK
1097  */
1098 static int arm7_9_clear_halt(struct target *target)
1099 {
1100         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1101         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1102
1103         /* we used DBGRQ only if we didn't come out of reset */
1104         if (!arm7_9->debug_entry_from_reset && arm7_9->use_dbgrq)
1105         {
1106                 /* program EmbeddedICE Debug Control Register to deassert DBGRQ
1107                  */
1108                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1109                 embeddedice_store_reg(dbg_ctrl);
1110         }
1111         else
1112         {
1113                 if (arm7_9->debug_entry_from_reset && arm7_9->has_vector_catch)
1114                 {
1115                         /* if we came out of reset, and vector catch is supported, we used
1116                          * vector catch to enter debug state
1117                          * restore the register in that case
1118                          */
1119                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH]);
1120                 }
1121                 else
1122                 {
1123                         /* restore registers if watchpoint unit 0 was in use
1124                          */
1125                         if (arm7_9->wp0_used)
1126                         {
1127                                 if (arm7_9->debug_entry_from_reset)
1128                                 {
1129                                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE]);
1130                                 }
1131                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1132                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1133                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1134                         }
1135                         /* control value always has to be restored, as it was either disabled,
1136                          * or enabled with possibly different bits
1137                          */
1138                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1139                 }
1140         }
1141
1142         return ERROR_OK;
1143 }
1144
1145 /**
1146  * Issue a software reset and halt to an ARM7/9 target.  The target is halted
1147  * and then there is a wait until the processor shows the halt.  This wait can
1148  * timeout and results in an error being returned.  The software reset involves
1149  * clearing the halt, updating the debug control register, changing to ARM mode,
1150  * reset of the program counter, and reset of all of the registers.
1151  *
1152  * @param target Pointer to the ARM7/9 target to be reset and halted by software
1153  * @return Error status if any of the commands fail, otherwise ERROR_OK
1154  */
1155 int arm7_9_soft_reset_halt(struct target *target)
1156 {
1157         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1158         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1159         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1160         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1161         int i;
1162         int retval;
1163
1164         /* FIX!!! replace some of this code with tcl commands
1165          *
1166          * halt # the halt command is synchronous
1167          * armv4_5 core_state arm
1168          *
1169          */
1170
1171         if ((retval = target_halt(target)) != ERROR_OK)
1172                 return retval;
1173
1174         long long then = timeval_ms();
1175         int timeout;
1176         while (!(timeout = ((timeval_ms()-then) > 1000)))
1177         {
1178                 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) != 0)
1179                         break;
1180                 embeddedice_read_reg(dbg_stat);
1181                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1182                         return retval;
1183                 if (debug_level >= 3)
1184                 {
1185                         alive_sleep(100);
1186                 } else
1187                 {
1188                         keep_alive();
1189                 }
1190         }
1191         if (timeout)
1192         {
1193                 LOG_ERROR("Failed to halt CPU after 1 sec");
1194                 return ERROR_TARGET_TIMEOUT;
1195         }
1196         target->state = TARGET_HALTED;
1197
1198         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1199          * ensure that DBGRQ is cleared
1200          */
1201         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1202         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1203         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1204         embeddedice_store_reg(dbg_ctrl);
1205
1206         if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1207         {
1208                 return retval;
1209         }
1210
1211         /* if the target is in Thumb state, change to ARM state */
1212         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1213         {
1214                 uint32_t r0_thumb, pc_thumb;
1215                 LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
1216                 /* Entered debug from Thumb mode */
1217                 armv4_5->core_state = ARM_STATE_THUMB;
1218                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1219         }
1220
1221         /* REVISIT likewise for bit 5 -- switch Jazelle-to-ARM */
1222
1223         /* all register content is now invalid */
1224         register_cache_invalidate(armv4_5->core_cache);
1225
1226         /* SVC, ARM state, IRQ and FIQ disabled */
1227         uint32_t cpsr;
1228
1229         cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 32);
1230         cpsr &= ~0xff;
1231         cpsr |= 0xd3;
1232         arm_set_cpsr(armv4_5, cpsr);
1233         armv4_5->cpsr->dirty = 1;
1234
1235         /* start fetching from 0x0 */
1236         buf_set_u32(armv4_5->pc->value, 0, 32, 0x0);
1237         armv4_5->pc->dirty = 1;
1238         armv4_5->pc->valid = 1;
1239
1240         /* reset registers */
1241         for (i = 0; i <= 14; i++)
1242         {
1243                 struct reg *r = arm_reg_current(armv4_5, i);
1244
1245                 buf_set_u32(r->value, 0, 32, 0xffffffff);
1246                 r->dirty = 1;
1247                 r->valid = 1;
1248         }
1249
1250         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
1251         {
1252                 return retval;
1253         }
1254
1255         return ERROR_OK;
1256 }
1257
1258 /**
1259  * Halt an ARM7/9 target.  This is accomplished by either asserting the DBGRQ
1260  * line or by programming a watchpoint to trigger on any address.  It is
1261  * considered a bug to call this function while the target is in the
1262  * TARGET_RESET state.
1263  *
1264  * @param target Pointer to the ARM7/9 target to be halted
1265  * @return Always ERROR_OK
1266  */
1267 int arm7_9_halt(struct target *target)
1268 {
1269         if (target->state == TARGET_RESET)
1270         {
1271                 LOG_ERROR("BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
1272                 return ERROR_OK;
1273         }
1274
1275         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1276         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1277
1278         LOG_DEBUG("target->state: %s",
1279                   target_state_name(target));
1280
1281         if (target->state == TARGET_HALTED)
1282         {
1283                 LOG_DEBUG("target was already halted");
1284                 return ERROR_OK;
1285         }
1286
1287         if (target->state == TARGET_UNKNOWN)
1288         {
1289                 LOG_WARNING("target was in unknown state when halt was requested");
1290         }
1291
1292         if (arm7_9->use_dbgrq)
1293         {
1294                 /* program EmbeddedICE Debug Control Register to assert DBGRQ
1295                  */
1296                 if (arm7_9->set_special_dbgrq) {
1297                         arm7_9->set_special_dbgrq(target);
1298                 } else {
1299                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 1);
1300                         embeddedice_store_reg(dbg_ctrl);
1301                 }
1302         }
1303         else
1304         {
1305                 /* program watchpoint unit to match on any address
1306                  */
1307                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1308                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1309                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1310                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1311         }
1312
1313         target->debug_reason = DBG_REASON_DBGRQ;
1314
1315         return ERROR_OK;
1316 }
1317
1318 /**
1319  * Handle an ARM7/9 target's entry into debug mode.  The halt is cleared on the
1320  * ARM.  The JTAG queue is then executed and the reason for debug entry is
1321  * examined.  Once done, the target is verified to be halted and the processor
1322  * is forced into ARM mode.  The core registers are saved for the current core
1323  * mode and the program counter (register 15) is updated as needed.  The core
1324  * registers and CPSR and SPSR are saved for restoration later.
1325  *
1326  * @param target Pointer to target that is entering debug mode
1327  * @return Error code if anything fails, otherwise ERROR_OK
1328  */
1329 static int arm7_9_debug_entry(struct target *target)
1330 {
1331         int i;
1332         uint32_t context[16];
1333         uint32_t* context_p[16];
1334         uint32_t r0_thumb, pc_thumb;
1335         uint32_t cpsr, cpsr_mask = 0;
1336         int retval;
1337         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1338         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1339         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1340         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1341
1342 #ifdef _DEBUG_ARM7_9_
1343         LOG_DEBUG("-");
1344 #endif
1345
1346         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1347          * ensure that DBGRQ is cleared
1348          */
1349         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1350         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1351         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1352         embeddedice_store_reg(dbg_ctrl);
1353
1354         if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1355         {
1356                 return retval;
1357         }
1358
1359         if ((retval = jtag_execute_queue()) != ERROR_OK)
1360         {
1361                 return retval;
1362         }
1363
1364         if ((retval = arm7_9->examine_debug_reason(target)) != ERROR_OK)
1365                 return retval;
1366
1367
1368         if (target->state != TARGET_HALTED)
1369         {
1370                 LOG_WARNING("target not halted");
1371                 return ERROR_TARGET_NOT_HALTED;
1372         }
1373
1374         /* if the target is in Thumb state, change to ARM state */
1375         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1376         {
1377                 LOG_DEBUG("target entered debug from Thumb state");
1378                 /* Entered debug from Thumb mode */
1379                 armv4_5->core_state = ARM_STATE_THUMB;
1380                 cpsr_mask = 1 << 5;
1381                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1382                 LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32
1383                         ", pc_thumb: 0x%8.8" PRIx32, r0_thumb, pc_thumb);
1384         } else if (buf_get_u32(dbg_stat->value, 5, 1)) {
1385                 /* \todo Get some vaguely correct handling of Jazelle, if
1386                  * anyone ever uses it and full info becomes available.
1387                  * See ARM9EJS TRM B.7.1 for how to switch J->ARM; and
1388                  * B.7.3 for the reverse.  That'd be the bare minimum...
1389                  */
1390                 LOG_DEBUG("target entered debug from Jazelle state");
1391                 armv4_5->core_state = ARM_STATE_JAZELLE;
1392                 cpsr_mask = 1 << 24;
1393                 LOG_ERROR("Jazelle debug entry -- BROKEN!");
1394         } else {
1395                 LOG_DEBUG("target entered debug from ARM state");
1396                 /* Entered debug from ARM mode */
1397                 armv4_5->core_state = ARM_STATE_ARM;
1398         }
1399
1400         for (i = 0; i < 16; i++)
1401                 context_p[i] = &context[i];
1402         /* save core registers (r0 - r15 of current core mode) */
1403         arm7_9->read_core_regs(target, 0xffff, context_p);
1404
1405         arm7_9->read_xpsr(target, &cpsr, 0);
1406
1407         if ((retval = jtag_execute_queue()) != ERROR_OK)
1408                 return retval;
1409
1410         /* Sync our CPSR copy with J or T bits EICE reported, but
1411          * which we then erased by putting the core into ARM mode.
1412          */
1413         arm_set_cpsr(armv4_5, cpsr | cpsr_mask);
1414
1415         if (!is_arm_mode(armv4_5->core_mode))
1416         {
1417                 target->state = TARGET_UNKNOWN;
1418                 LOG_ERROR("cpsr contains invalid mode value - communication failure");
1419                 return ERROR_TARGET_FAILURE;
1420         }
1421
1422         LOG_DEBUG("target entered debug state in %s mode",
1423                          arm_mode_name(armv4_5->core_mode));
1424
1425         if (armv4_5->core_state == ARM_STATE_THUMB)
1426         {
1427                 LOG_DEBUG("thumb state, applying fixups");
1428                 context[0] = r0_thumb;
1429                 context[15] = pc_thumb;
1430         } else if (armv4_5->core_state == ARM_STATE_ARM)
1431         {
1432                 /* adjust value stored by STM */
1433                 context[15] -= 3 * 4;
1434         }
1435
1436         if ((target->debug_reason != DBG_REASON_DBGRQ) || (!arm7_9->use_dbgrq))
1437                 context[15] -= 3 * ((armv4_5->core_state == ARM_STATE_ARM) ? 4 : 2);
1438         else
1439                 context[15] -= arm7_9->dbgreq_adjust_pc * ((armv4_5->core_state == ARM_STATE_ARM) ? 4 : 2);
1440
1441         for (i = 0; i <= 15; i++)
1442         {
1443                 struct reg *r = arm_reg_current(armv4_5, i);
1444
1445                 LOG_DEBUG("r%i: 0x%8.8" PRIx32 "", i, context[i]);
1446
1447                 buf_set_u32(r->value, 0, 32, context[i]);
1448                 /* r0 and r15 (pc) have to be restored later */
1449                 r->dirty = (i == 0) || (i == 15);
1450                 r->valid = 1;
1451         }
1452
1453         LOG_DEBUG("entered debug state at PC 0x%" PRIx32 "", context[15]);
1454
1455         /* exceptions other than USR & SYS have a saved program status register */
1456         if (armv4_5->spsr) {
1457                 uint32_t spsr;
1458                 arm7_9->read_xpsr(target, &spsr, 1);
1459                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1460                 {
1461                         return retval;
1462                 }
1463                 buf_set_u32(armv4_5->spsr->value, 0, 32, spsr);
1464                 armv4_5->spsr->dirty = 0;
1465                 armv4_5->spsr->valid = 1;
1466         }
1467
1468         if ((retval = jtag_execute_queue()) != ERROR_OK)
1469                 return retval;
1470
1471         if (arm7_9->post_debug_entry)
1472                 arm7_9->post_debug_entry(target);
1473
1474         return ERROR_OK;
1475 }
1476
1477 /**
1478  * Validate the full context for an ARM7/9 target in all processor modes.  If
1479  * there are any invalid registers for the target, they will all be read.  This
1480  * includes the PSR.
1481  *
1482  * @param target Pointer to the ARM7/9 target to capture the full context from
1483  * @return Error if the target is not halted, has an invalid core mode, or if
1484  *         the JTAG queue fails to execute
1485  */
1486 static int arm7_9_full_context(struct target *target)
1487 {
1488         int i;
1489         int retval;
1490         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1491         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1492
1493         LOG_DEBUG("-");
1494
1495         if (target->state != TARGET_HALTED)
1496         {
1497                 LOG_WARNING("target not halted");
1498                 return ERROR_TARGET_NOT_HALTED;
1499         }
1500
1501         if (!is_arm_mode(armv4_5->core_mode))
1502                 return ERROR_FAIL;
1503
1504         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1505          * SYS shares registers with User, so we don't touch SYS
1506          */
1507         for (i = 0; i < 6; i++)
1508         {
1509                 uint32_t mask = 0;
1510                 uint32_t* reg_p[16];
1511                 int j;
1512                 int valid = 1;
1513
1514                 /* check if there are invalid registers in the current mode
1515                  */
1516                 for (j = 0; j <= 16; j++)
1517                 {
1518                         if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1519                                 valid = 0;
1520                 }
1521
1522                 if (!valid)
1523                 {
1524                         uint32_t tmp_cpsr;
1525
1526                         /* change processor mode (and mask T bit) */
1527                         tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8)
1528                                         & 0xe0;
1529                         tmp_cpsr |= armv4_5_number_to_mode(i);
1530                         tmp_cpsr &= ~0x20;
1531                         arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1532
1533                         for (j = 0; j < 15; j++)
1534                         {
1535                                 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1536                                 {
1537                                         reg_p[j] = (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).value;
1538                                         mask |= 1 << j;
1539                                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid = 1;
1540                                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).dirty = 0;
1541                                 }
1542                         }
1543
1544                         /* if only the PSR is invalid, mask is all zeroes */
1545                         if (mask)
1546                                 arm7_9->read_core_regs(target, mask, reg_p);
1547
1548                         /* check if the PSR has to be read */
1549                         if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid == 0)
1550                         {
1551                                 arm7_9->read_xpsr(target, (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).value, 1);
1552                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid = 1;
1553                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).dirty = 0;
1554                         }
1555                 }
1556         }
1557
1558         /* restore processor mode (mask T bit) */
1559         arm7_9->write_xpsr_im8(target,
1560                         buf_get_u32(armv4_5->cpsr->value, 0, 8) & ~0x20,
1561                         0, 0);
1562
1563         if ((retval = jtag_execute_queue()) != ERROR_OK)
1564         {
1565                 return retval;
1566         }
1567         return ERROR_OK;
1568 }
1569
1570 /**
1571  * Restore the processor context on an ARM7/9 target.  The full processor
1572  * context is analyzed to see if any of the registers are dirty on this end, but
1573  * have a valid new value.  If this is the case, the processor is changed to the
1574  * appropriate mode and the new register values are written out to the
1575  * processor.  If there happens to be a dirty register with an invalid value, an
1576  * error will be logged.
1577  *
1578  * @param target Pointer to the ARM7/9 target to have its context restored
1579  * @return Error status if the target is not halted or the core mode in the
1580  *         armv4_5 struct is invalid.
1581  */
1582 static int arm7_9_restore_context(struct target *target)
1583 {
1584         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1585         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1586         struct reg *reg;
1587         struct arm_reg *reg_arch_info;
1588         enum arm_mode current_mode = armv4_5->core_mode;
1589         int i, j;
1590         int dirty;
1591         int mode_change;
1592
1593         LOG_DEBUG("-");
1594
1595         if (target->state != TARGET_HALTED)
1596         {
1597                 LOG_WARNING("target not halted");
1598                 return ERROR_TARGET_NOT_HALTED;
1599         }
1600
1601         if (arm7_9->pre_restore_context)
1602                 arm7_9->pre_restore_context(target);
1603
1604         if (!is_arm_mode(armv4_5->core_mode))
1605                 return ERROR_FAIL;
1606
1607         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1608          * SYS shares registers with User, so we don't touch SYS
1609          */
1610         for (i = 0; i < 6; i++)
1611         {
1612                 LOG_DEBUG("examining %s mode",
1613                                 arm_mode_name(armv4_5->core_mode));
1614                 dirty = 0;
1615                 mode_change = 0;
1616                 /* check if there are dirty registers in the current mode
1617                 */
1618                 for (j = 0; j <= 16; j++)
1619                 {
1620                         reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1621                         reg_arch_info = reg->arch_info;
1622                         if (reg->dirty == 1)
1623                         {
1624                                 if (reg->valid == 1)
1625                                 {
1626                                         dirty = 1;
1627                                         LOG_DEBUG("examining dirty reg: %s", reg->name);
1628                                         if ((reg_arch_info->mode != ARM_MODE_ANY)
1629                                                 && (reg_arch_info->mode != current_mode)
1630                                                 && !((reg_arch_info->mode == ARM_MODE_USR) && (armv4_5->core_mode == ARM_MODE_SYS))
1631                                                 && !((reg_arch_info->mode == ARM_MODE_SYS) && (armv4_5->core_mode == ARM_MODE_USR)))
1632                                         {
1633                                                 mode_change = 1;
1634                                                 LOG_DEBUG("require mode change");
1635                                         }
1636                                 }
1637                                 else
1638                                 {
1639                                         LOG_ERROR("BUG: dirty register '%s', but no valid data", reg->name);
1640                                 }
1641                         }
1642                 }
1643
1644                 if (dirty)
1645                 {
1646                         uint32_t mask = 0x0;
1647                         int num_regs = 0;
1648                         uint32_t regs[16];
1649
1650                         if (mode_change)
1651                         {
1652                                 uint32_t tmp_cpsr;
1653
1654                                 /* change processor mode (mask T bit) */
1655                                 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value,
1656                                                 0, 8) & 0xe0;
1657                                 tmp_cpsr |= armv4_5_number_to_mode(i);
1658                                 tmp_cpsr &= ~0x20;
1659                                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1660                                 current_mode = armv4_5_number_to_mode(i);
1661                         }
1662
1663                         for (j = 0; j <= 14; j++)
1664                         {
1665                                 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1666                                 reg_arch_info = reg->arch_info;
1667
1668
1669                                 if (reg->dirty == 1)
1670                                 {
1671                                         regs[j] = buf_get_u32(reg->value, 0, 32);
1672                                         mask |= 1 << j;
1673                                         num_regs++;
1674                                         reg->dirty = 0;
1675                                         reg->valid = 1;
1676                                         LOG_DEBUG("writing register %i mode %s "
1677                                                 "with value 0x%8.8" PRIx32, j,
1678                                                 arm_mode_name(armv4_5->core_mode),
1679                                                 regs[j]);
1680                                 }
1681                         }
1682
1683                         if (mask)
1684                         {
1685                                 arm7_9->write_core_regs(target, mask, regs);
1686                         }
1687
1688                         reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16);
1689                         reg_arch_info = reg->arch_info;
1690                         if ((reg->dirty) && (reg_arch_info->mode != ARM_MODE_ANY))
1691                         {
1692                                 LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32 "", i, buf_get_u32(reg->value, 0, 32));
1693                                 arm7_9->write_xpsr(target, buf_get_u32(reg->value, 0, 32), 1);
1694                         }
1695                 }
1696         }
1697
1698         if (!armv4_5->cpsr->dirty && (armv4_5->core_mode != current_mode))
1699         {
1700                 /* restore processor mode (mask T bit) */
1701                 uint32_t tmp_cpsr;
1702
1703                 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
1704                 tmp_cpsr |= armv4_5_number_to_mode(i);
1705                 tmp_cpsr &= ~0x20;
1706                 LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr));
1707                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1708         }
1709         else if (armv4_5->cpsr->dirty)
1710         {
1711                 /* CPSR has been changed, full restore necessary (mask T bit) */
1712                 LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32,
1713                                 buf_get_u32(armv4_5->cpsr->value, 0, 32));
1714                 arm7_9->write_xpsr(target,
1715                                 buf_get_u32(armv4_5->cpsr->value, 0, 32)
1716                                         & ~0x20, 0);
1717                 armv4_5->cpsr->dirty = 0;
1718                 armv4_5->cpsr->valid = 1;
1719         }
1720
1721         /* restore PC */
1722         LOG_DEBUG("writing PC with value 0x%8.8" PRIx32,
1723                         buf_get_u32(armv4_5->pc->value, 0, 32));
1724         arm7_9->write_pc(target, buf_get_u32(armv4_5->pc->value, 0, 32));
1725         armv4_5->pc->dirty = 0;
1726
1727         return ERROR_OK;
1728 }
1729
1730 /**
1731  * Restart the core of an ARM7/9 target.  A RESTART command is sent to the
1732  * instruction register and the JTAG state is set to TAP_IDLE causing a core
1733  * restart.
1734  *
1735  * @param target Pointer to the ARM7/9 target to be restarted
1736  * @return Result of executing the JTAG queue
1737  */
1738 static int arm7_9_restart_core(struct target *target)
1739 {
1740         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1741         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
1742
1743         /* set RESTART instruction */
1744         if (arm7_9->need_bypass_before_restart) {
1745                 arm7_9->need_bypass_before_restart = 0;
1746                 arm_jtag_set_instr(jtag_info, 0xf, NULL, TAP_IDLE);
1747         }
1748         arm_jtag_set_instr(jtag_info, 0x4, NULL, TAP_IDLE);
1749
1750         jtag_add_runtest(1, TAP_IDLE);
1751         return jtag_execute_queue();
1752 }
1753
1754 /**
1755  * Enable the watchpoints on an ARM7/9 target.  The target's watchpoints are
1756  * iterated through and are set on the target if they aren't already set.
1757  *
1758  * @param target Pointer to the ARM7/9 target to enable watchpoints on
1759  */
1760 static void arm7_9_enable_watchpoints(struct target *target)
1761 {
1762         struct watchpoint *watchpoint = target->watchpoints;
1763
1764         while (watchpoint)
1765         {
1766                 if (watchpoint->set == 0)
1767                         arm7_9_set_watchpoint(target, watchpoint);
1768                 watchpoint = watchpoint->next;
1769         }
1770 }
1771
1772 /**
1773  * Enable the breakpoints on an ARM7/9 target.  The target's breakpoints are
1774  * iterated through and are set on the target.
1775  *
1776  * @param target Pointer to the ARM7/9 target to enable breakpoints on
1777  */
1778 static void arm7_9_enable_breakpoints(struct target *target)
1779 {
1780         struct breakpoint *breakpoint = target->breakpoints;
1781
1782         /* set any pending breakpoints */
1783         while (breakpoint)
1784         {
1785                 arm7_9_set_breakpoint(target, breakpoint);
1786                 breakpoint = breakpoint->next;
1787         }
1788 }
1789
1790 int arm7_9_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
1791 {
1792         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1793         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1794         struct breakpoint *breakpoint = target->breakpoints;
1795         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1796         int err, retval = ERROR_OK;
1797
1798         LOG_DEBUG("-");
1799
1800         if (target->state != TARGET_HALTED)
1801         {
1802                 LOG_WARNING("target not halted");
1803                 return ERROR_TARGET_NOT_HALTED;
1804         }
1805
1806         if (!debug_execution)
1807         {
1808                 target_free_all_working_areas(target);
1809         }
1810
1811         /* current = 1: continue on current pc, otherwise continue at <address> */
1812         if (!current)
1813                 buf_set_u32(armv4_5->pc->value, 0, 32, address);
1814
1815         uint32_t current_pc;
1816         current_pc = buf_get_u32(armv4_5->pc->value, 0, 32);
1817
1818         /* the front-end may request us not to handle breakpoints */
1819         if (handle_breakpoints)
1820         {
1821                 breakpoint = breakpoint_find(target,
1822                                 buf_get_u32(armv4_5->pc->value, 0, 32));
1823                 if (breakpoint != NULL)
1824                 {
1825                         LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (id: %d)", breakpoint->address, breakpoint->unique_id );
1826                         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
1827                         {
1828                                 return retval;
1829                         }
1830
1831                         /* calculate PC of next instruction */
1832                         uint32_t next_pc;
1833                         if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
1834                         {
1835                                 uint32_t current_opcode;
1836                                 target_read_u32(target, current_pc, &current_opcode);
1837                                 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
1838                                 return retval;
1839                         }
1840
1841                         LOG_DEBUG("enable single-step");
1842                         arm7_9->enable_single_step(target, next_pc);
1843
1844                         target->debug_reason = DBG_REASON_SINGLESTEP;
1845
1846                         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1847                         {
1848                                 return retval;
1849                         }
1850
1851                         if (armv4_5->core_state == ARM_STATE_ARM)
1852                                 arm7_9->branch_resume(target);
1853                         else if (armv4_5->core_state == ARM_STATE_THUMB)
1854                         {
1855                                 arm7_9->branch_resume_thumb(target);
1856                         }
1857                         else
1858                         {
1859                                 LOG_ERROR("unhandled core state");
1860                                 return ERROR_FAIL;
1861                         }
1862
1863                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1864                         embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1865                         err = arm7_9_execute_sys_speed(target);
1866
1867                         LOG_DEBUG("disable single-step");
1868                         arm7_9->disable_single_step(target);
1869
1870                         if (err != ERROR_OK)
1871                         {
1872                                 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1873                                 {
1874                                         return retval;
1875                                 }
1876                                 target->state = TARGET_UNKNOWN;
1877                                 return err;
1878                         }
1879
1880                         arm7_9_debug_entry(target);
1881                         LOG_DEBUG("new PC after step: 0x%8.8" PRIx32,
1882                                         buf_get_u32(armv4_5->pc->value, 0, 32));
1883
1884                         LOG_DEBUG("set breakpoint at 0x%8.8" PRIx32 "", breakpoint->address);
1885                         if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1886                         {
1887                                 return retval;
1888                         }
1889                 }
1890         }
1891
1892         /* enable any pending breakpoints and watchpoints */
1893         arm7_9_enable_breakpoints(target);
1894         arm7_9_enable_watchpoints(target);
1895
1896         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1897         {
1898                 return retval;
1899         }
1900
1901         if (armv4_5->core_state == ARM_STATE_ARM)
1902         {
1903                 arm7_9->branch_resume(target);
1904         }
1905         else if (armv4_5->core_state == ARM_STATE_THUMB)
1906         {
1907                 arm7_9->branch_resume_thumb(target);
1908         }
1909         else
1910         {
1911                 LOG_ERROR("unhandled core state");
1912                 return ERROR_FAIL;
1913         }
1914
1915         /* deassert DBGACK and INTDIS */
1916         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1917         /* INTDIS only when we really resume, not during debug execution */
1918         if (!debug_execution)
1919                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 0);
1920         embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1921
1922         if ((retval = arm7_9_restart_core(target)) != ERROR_OK)
1923         {
1924                 return retval;
1925         }
1926
1927         target->debug_reason = DBG_REASON_NOTHALTED;
1928
1929         if (!debug_execution)
1930         {
1931                 /* registers are now invalid */
1932                 register_cache_invalidate(armv4_5->core_cache);
1933                 target->state = TARGET_RUNNING;
1934                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
1935                 {
1936                         return retval;
1937                 }
1938         }
1939         else
1940         {
1941                 target->state = TARGET_DEBUG_RUNNING;
1942                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED)) != ERROR_OK)
1943                 {
1944                         return retval;
1945                 }
1946         }
1947
1948         LOG_DEBUG("target resumed");
1949
1950         return ERROR_OK;
1951 }
1952
1953 void arm7_9_enable_eice_step(struct target *target, uint32_t next_pc)
1954 {
1955         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1956         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1957         uint32_t current_pc;
1958         current_pc = buf_get_u32(armv4_5->pc->value, 0, 32);
1959
1960         if (next_pc != current_pc)
1961         {
1962                 /* setup an inverse breakpoint on the current PC
1963                 * - comparator 1 matches the current address
1964                 * - rangeout from comparator 1 is connected to comparator 0 rangein
1965                 * - comparator 0 matches any address, as long as rangein is low */
1966                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1967                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1968                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1969                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~(EICE_W_CTRL_RANGE | EICE_W_CTRL_nOPC) & 0xff);
1970                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], current_pc);
1971                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1972                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1973                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
1974                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1975         }
1976         else
1977         {
1978                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1979                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1980                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
1981                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff);
1982                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], next_pc);
1983                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1984                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1985                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1986                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1987         }
1988 }
1989
1990 void arm7_9_disable_eice_step(struct target *target)
1991 {
1992         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1993
1994         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1995         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1996         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1997         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1998         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE]);
1999         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK]);
2000         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK]);
2001         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK]);
2002         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE]);
2003 }
2004
2005 int arm7_9_step(struct target *target, int current, uint32_t address, int handle_breakpoints)
2006 {
2007         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2008         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2009         struct breakpoint *breakpoint = NULL;
2010         int err, retval;
2011
2012         if (target->state != TARGET_HALTED)
2013         {
2014                 LOG_WARNING("target not halted");
2015                 return ERROR_TARGET_NOT_HALTED;
2016         }
2017
2018         /* current = 1: continue on current pc, otherwise continue at <address> */
2019         if (!current)
2020                 buf_set_u32(armv4_5->pc->value, 0, 32, address);
2021
2022         uint32_t current_pc = buf_get_u32(armv4_5->pc->value, 0, 32);
2023
2024         /* the front-end may request us not to handle breakpoints */
2025         if (handle_breakpoints)
2026                 breakpoint = breakpoint_find(target, current_pc);
2027         if (breakpoint != NULL) {
2028                 retval = arm7_9_unset_breakpoint(target, breakpoint);
2029                 if (retval != ERROR_OK)
2030                         return retval;
2031         }
2032
2033         target->debug_reason = DBG_REASON_SINGLESTEP;
2034
2035         /* calculate PC of next instruction */
2036         uint32_t next_pc;
2037         if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
2038         {
2039                 uint32_t current_opcode;
2040                 target_read_u32(target, current_pc, &current_opcode);
2041                 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
2042                 return retval;
2043         }
2044
2045         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
2046         {
2047                 return retval;
2048         }
2049
2050         arm7_9->enable_single_step(target, next_pc);
2051
2052         if (armv4_5->core_state == ARM_STATE_ARM)
2053         {
2054                 arm7_9->branch_resume(target);
2055         }
2056         else if (armv4_5->core_state == ARM_STATE_THUMB)
2057         {
2058                 arm7_9->branch_resume_thumb(target);
2059         }
2060         else
2061         {
2062                 LOG_ERROR("unhandled core state");
2063                 return ERROR_FAIL;
2064         }
2065
2066         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
2067         {
2068                 return retval;
2069         }
2070
2071         err = arm7_9_execute_sys_speed(target);
2072         arm7_9->disable_single_step(target);
2073
2074         /* registers are now invalid */
2075         register_cache_invalidate(armv4_5->core_cache);
2076
2077         if (err != ERROR_OK)
2078         {
2079                 target->state = TARGET_UNKNOWN;
2080         } else {
2081                 arm7_9_debug_entry(target);
2082                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
2083                 {
2084                         return retval;
2085                 }
2086                 LOG_DEBUG("target stepped");
2087         }
2088
2089         if (breakpoint)
2090                 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
2091                 {
2092                         return retval;
2093                 }
2094
2095         return err;
2096 }
2097
2098 static int arm7_9_read_core_reg(struct target *target, struct reg *r,
2099                 int num, enum arm_mode mode)
2100 {
2101         uint32_t* reg_p[16];
2102         uint32_t value;
2103         int retval;
2104         struct arm_reg *areg = r->arch_info;
2105         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2106         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2107
2108         if (!is_arm_mode(armv4_5->core_mode))
2109                 return ERROR_FAIL;
2110         if ((num < 0) || (num > 16))
2111                 return ERROR_INVALID_ARGUMENTS;
2112
2113         if ((mode != ARM_MODE_ANY)
2114                         && (mode != armv4_5->core_mode)
2115                         && (areg->mode != ARM_MODE_ANY))
2116         {
2117                 uint32_t tmp_cpsr;
2118
2119                 /* change processor mode (mask T bit) */
2120                 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
2121                 tmp_cpsr |= mode;
2122                 tmp_cpsr &= ~0x20;
2123                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2124         }
2125
2126         if ((num >= 0) && (num <= 15))
2127         {
2128                 /* read a normal core register */
2129                 reg_p[num] = &value;
2130
2131                 arm7_9->read_core_regs(target, 1 << num, reg_p);
2132         }
2133         else
2134         {
2135                 /* read a program status register
2136                  * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
2137                  */
2138                 arm7_9->read_xpsr(target, &value, areg->mode != ARM_MODE_ANY);
2139         }
2140
2141         if ((retval = jtag_execute_queue()) != ERROR_OK)
2142         {
2143                 return retval;
2144         }
2145
2146         r->valid = 1;
2147         r->dirty = 0;
2148         buf_set_u32(r->value, 0, 32, value);
2149
2150         if ((mode != ARM_MODE_ANY)
2151                         && (mode != armv4_5->core_mode)
2152                         && (areg->mode != ARM_MODE_ANY))        {
2153                 /* restore processor mode (mask T bit) */
2154                 arm7_9->write_xpsr_im8(target,
2155                                 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2156                                         & ~0x20, 0, 0);
2157         }
2158
2159         return ERROR_OK;
2160 }
2161
2162 static int arm7_9_write_core_reg(struct target *target, struct reg *r,
2163                 int num, enum arm_mode mode, uint32_t value)
2164 {
2165         uint32_t reg[16];
2166         struct arm_reg *areg = r->arch_info;
2167         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2168         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2169
2170         if (!is_arm_mode(armv4_5->core_mode))
2171                 return ERROR_FAIL;
2172         if ((num < 0) || (num > 16))
2173                 return ERROR_INVALID_ARGUMENTS;
2174
2175         if ((mode != ARM_MODE_ANY)
2176                         && (mode != armv4_5->core_mode)
2177                         && (areg->mode != ARM_MODE_ANY))        {
2178                 uint32_t tmp_cpsr;
2179
2180                 /* change processor mode (mask T bit) */
2181                 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
2182                 tmp_cpsr |= mode;
2183                 tmp_cpsr &= ~0x20;
2184                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2185         }
2186
2187         if ((num >= 0) && (num <= 15))
2188         {
2189                 /* write a normal core register */
2190                 reg[num] = value;
2191
2192                 arm7_9->write_core_regs(target, 1 << num, reg);
2193         }
2194         else
2195         {
2196                 /* write a program status register
2197                 * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
2198                 */
2199                 int spsr = (areg->mode != ARM_MODE_ANY);
2200
2201                 /* if we're writing the CPSR, mask the T bit */
2202                 if (!spsr)
2203                         value &= ~0x20;
2204
2205                 arm7_9->write_xpsr(target, value, spsr);
2206         }
2207
2208         r->valid = 1;
2209         r->dirty = 0;
2210
2211         if ((mode != ARM_MODE_ANY)
2212                         && (mode != armv4_5->core_mode)
2213                         && (areg->mode != ARM_MODE_ANY))        {
2214                 /* restore processor mode (mask T bit) */
2215                 arm7_9->write_xpsr_im8(target,
2216                                 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2217                                         & ~0x20, 0, 0);
2218         }
2219
2220         return jtag_execute_queue();
2221 }
2222
2223 int arm7_9_read_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2224 {
2225         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2226         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2227         uint32_t reg[16];
2228         uint32_t num_accesses = 0;
2229         int thisrun_accesses;
2230         int i;
2231         uint32_t cpsr;
2232         int retval;
2233         int last_reg = 0;
2234
2235         LOG_DEBUG("address: 0x%8.8" PRIx32 ", size: 0x%8.8" PRIx32 ", count: 0x%8.8" PRIx32 "", address, size, count);
2236
2237         if (target->state != TARGET_HALTED)
2238         {
2239                 LOG_WARNING("target not halted");
2240                 return ERROR_TARGET_NOT_HALTED;
2241         }
2242
2243         /* sanitize arguments */
2244         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2245                 return ERROR_INVALID_ARGUMENTS;
2246
2247         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2248                 return ERROR_TARGET_UNALIGNED_ACCESS;
2249
2250         /* load the base register with the address of the first word */
2251         reg[0] = address;
2252         arm7_9->write_core_regs(target, 0x1, reg);
2253
2254         int j = 0;
2255
2256         switch (size)
2257         {
2258                 case 4:
2259                         while (num_accesses < count)
2260                         {
2261                                 uint32_t reg_list;
2262                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2263                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2264
2265                                 if (last_reg <= thisrun_accesses)
2266                                         last_reg = thisrun_accesses;
2267
2268                                 arm7_9->load_word_regs(target, reg_list);
2269
2270                                 /* fast memory reads are only safe when the target is running
2271                                  * from a sufficiently high clock (32 kHz is usually too slow)
2272                                  */
2273                                 if (arm7_9->fast_memory_access)
2274                                         retval = arm7_9_execute_fast_sys_speed(target);
2275                                 else
2276                                         retval = arm7_9_execute_sys_speed(target);
2277                                 if (retval != ERROR_OK)
2278                                         return retval;
2279
2280                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 4);
2281
2282                                 /* advance buffer, count number of accesses */
2283                                 buffer += thisrun_accesses * 4;
2284                                 num_accesses += thisrun_accesses;
2285
2286                                 if ((j++%1024) == 0)
2287                                 {
2288                                         keep_alive();
2289                                 }
2290                         }
2291                         break;
2292                 case 2:
2293                         while (num_accesses < count)
2294                         {
2295                                 uint32_t reg_list;
2296                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2297                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2298
2299                                 for (i = 1; i <= thisrun_accesses; i++)
2300                                 {
2301                                         if (i > last_reg)
2302                                                 last_reg = i;
2303                                         arm7_9->load_hword_reg(target, i);
2304                                         /* fast memory reads are only safe when the target is running
2305                                          * from a sufficiently high clock (32 kHz is usually too slow)
2306                                          */
2307                                         if (arm7_9->fast_memory_access)
2308                                                 retval = arm7_9_execute_fast_sys_speed(target);
2309                                         else
2310                                                 retval = arm7_9_execute_sys_speed(target);
2311                                         if (retval != ERROR_OK)
2312                                         {
2313                                                 return retval;
2314                                         }
2315
2316                                 }
2317
2318                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 2);
2319
2320                                 /* advance buffer, count number of accesses */
2321                                 buffer += thisrun_accesses * 2;
2322                                 num_accesses += thisrun_accesses;
2323
2324                                 if ((j++%1024) == 0)
2325                                 {
2326                                         keep_alive();
2327                                 }
2328                         }
2329                         break;
2330                 case 1:
2331                         while (num_accesses < count)
2332                         {
2333                                 uint32_t reg_list;
2334                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2335                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2336
2337                                 for (i = 1; i <= thisrun_accesses; i++)
2338                                 {
2339                                         if (i > last_reg)
2340                                                 last_reg = i;
2341                                         arm7_9->load_byte_reg(target, i);
2342                                         /* fast memory reads are only safe when the target is running
2343                                          * from a sufficiently high clock (32 kHz is usually too slow)
2344                                          */
2345                                         if (arm7_9->fast_memory_access)
2346                                                 retval = arm7_9_execute_fast_sys_speed(target);
2347                                         else
2348                                                 retval = arm7_9_execute_sys_speed(target);
2349                                         if (retval != ERROR_OK)
2350                                         {
2351                                                 return retval;
2352                                         }
2353                                 }
2354
2355                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 1);
2356
2357                                 /* advance buffer, count number of accesses */
2358                                 buffer += thisrun_accesses * 1;
2359                                 num_accesses += thisrun_accesses;
2360
2361                                 if ((j++%1024) == 0)
2362                                 {
2363                                         keep_alive();
2364                                 }
2365                         }
2366                         break;
2367         }
2368
2369         if (!is_arm_mode(armv4_5->core_mode))
2370                 return ERROR_FAIL;
2371
2372         for (i = 0; i <= last_reg; i++) {
2373                 struct reg *r = arm_reg_current(armv4_5, i);
2374
2375                 r->dirty = r->valid;
2376         }
2377
2378         arm7_9->read_xpsr(target, &cpsr, 0);
2379         if ((retval = jtag_execute_queue()) != ERROR_OK)
2380         {
2381                 LOG_ERROR("JTAG error while reading cpsr");
2382                 return ERROR_TARGET_DATA_ABORT;
2383         }
2384
2385         if (((cpsr & 0x1f) == ARM_MODE_ABT) && (armv4_5->core_mode != ARM_MODE_ABT))
2386         {
2387                 LOG_WARNING("memory read caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2388
2389                 arm7_9->write_xpsr_im8(target,
2390                                 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2391                                         & ~0x20, 0, 0);
2392
2393                 return ERROR_TARGET_DATA_ABORT;
2394         }
2395
2396         return ERROR_OK;
2397 }
2398
2399 int arm7_9_write_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2400 {
2401         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2402         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2403         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
2404
2405         uint32_t reg[16];
2406         uint32_t num_accesses = 0;
2407         int thisrun_accesses;
2408         int i;
2409         uint32_t cpsr;
2410         int retval;
2411         int last_reg = 0;
2412
2413 #ifdef _DEBUG_ARM7_9_
2414         LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address, size, count);
2415 #endif
2416
2417         if (target->state != TARGET_HALTED)
2418         {
2419                 LOG_WARNING("target not halted");
2420                 return ERROR_TARGET_NOT_HALTED;
2421         }
2422
2423         /* sanitize arguments */
2424         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2425                 return ERROR_INVALID_ARGUMENTS;
2426
2427         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2428                 return ERROR_TARGET_UNALIGNED_ACCESS;
2429
2430         /* load the base register with the address of the first word */
2431         reg[0] = address;
2432         arm7_9->write_core_regs(target, 0x1, reg);
2433
2434         /* Clear DBGACK, to make sure memory fetches work as expected */
2435         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
2436         embeddedice_store_reg(dbg_ctrl);
2437
2438         switch (size)
2439         {
2440                 case 4:
2441                         while (num_accesses < count)
2442                         {
2443                                 uint32_t reg_list;
2444                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2445                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2446
2447                                 for (i = 1; i <= thisrun_accesses; i++)
2448                                 {
2449                                         if (i > last_reg)
2450                                                 last_reg = i;
2451                                         reg[i] = target_buffer_get_u32(target, buffer);
2452                                         buffer += 4;
2453                                 }
2454
2455                                 arm7_9->write_core_regs(target, reg_list, reg);
2456
2457                                 arm7_9->store_word_regs(target, reg_list);
2458
2459                                 /* fast memory writes are only safe when the target is running
2460                                  * from a sufficiently high clock (32 kHz is usually too slow)
2461                                  */
2462                                 if (arm7_9->fast_memory_access)
2463                                         retval = arm7_9_execute_fast_sys_speed(target);
2464                                 else
2465                                         retval = arm7_9_execute_sys_speed(target);
2466                                 if (retval != ERROR_OK)
2467                                 {
2468                                         return retval;
2469                                 }
2470
2471                                 num_accesses += thisrun_accesses;
2472                         }
2473                         break;
2474                 case 2:
2475                         while (num_accesses < count)
2476                         {
2477                                 uint32_t reg_list;
2478                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2479                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2480
2481                                 for (i = 1; i <= thisrun_accesses; i++)
2482                                 {
2483                                         if (i > last_reg)
2484                                                 last_reg = i;
2485                                         reg[i] = target_buffer_get_u16(target, buffer) & 0xffff;
2486                                         buffer += 2;
2487                                 }
2488
2489                                 arm7_9->write_core_regs(target, reg_list, reg);
2490
2491                                 for (i = 1; i <= thisrun_accesses; i++)
2492                                 {
2493                                         arm7_9->store_hword_reg(target, i);
2494
2495                                         /* fast memory writes are only safe when the target is running
2496                                          * from a sufficiently high clock (32 kHz is usually too slow)
2497                                          */
2498                                         if (arm7_9->fast_memory_access)
2499                                                 retval = arm7_9_execute_fast_sys_speed(target);
2500                                         else
2501                                                 retval = arm7_9_execute_sys_speed(target);
2502                                         if (retval != ERROR_OK)
2503                                         {
2504                                                 return retval;
2505                                         }
2506                                 }
2507
2508                                 num_accesses += thisrun_accesses;
2509                         }
2510                         break;
2511                 case 1:
2512                         while (num_accesses < count)
2513                         {
2514                                 uint32_t reg_list;
2515                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2516                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2517
2518                                 for (i = 1; i <= thisrun_accesses; i++)
2519                                 {
2520                                         if (i > last_reg)
2521                                                 last_reg = i;
2522                                         reg[i] = *buffer++ & 0xff;
2523                                 }
2524
2525                                 arm7_9->write_core_regs(target, reg_list, reg);
2526
2527                                 for (i = 1; i <= thisrun_accesses; i++)
2528                                 {
2529                                         arm7_9->store_byte_reg(target, i);
2530                                         /* fast memory writes are only safe when the target is running
2531                                          * from a sufficiently high clock (32 kHz is usually too slow)
2532                                          */
2533                                         if (arm7_9->fast_memory_access)
2534                                                 retval = arm7_9_execute_fast_sys_speed(target);
2535                                         else
2536                                                 retval = arm7_9_execute_sys_speed(target);
2537                                         if (retval != ERROR_OK)
2538                                         {
2539                                                 return retval;
2540                                         }
2541
2542                                 }
2543
2544                                 num_accesses += thisrun_accesses;
2545                         }
2546                         break;
2547         }
2548
2549         /* Re-Set DBGACK */
2550         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
2551         embeddedice_store_reg(dbg_ctrl);
2552
2553         if (!is_arm_mode(armv4_5->core_mode))
2554                 return ERROR_FAIL;
2555
2556         for (i = 0; i <= last_reg; i++) {
2557                 struct reg *r = arm_reg_current(armv4_5, i);
2558
2559                 r->dirty = r->valid;
2560         }
2561
2562         arm7_9->read_xpsr(target, &cpsr, 0);
2563         if ((retval = jtag_execute_queue()) != ERROR_OK)
2564         {
2565                 LOG_ERROR("JTAG error while reading cpsr");
2566                 return ERROR_TARGET_DATA_ABORT;
2567         }
2568
2569         if (((cpsr & 0x1f) == ARM_MODE_ABT) && (armv4_5->core_mode != ARM_MODE_ABT))
2570         {
2571                 LOG_WARNING("memory write caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2572
2573                 arm7_9->write_xpsr_im8(target,
2574                                 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2575                                         & ~0x20, 0, 0);
2576
2577                 return ERROR_TARGET_DATA_ABORT;
2578         }
2579
2580         return ERROR_OK;
2581 }
2582
2583 static int dcc_count;
2584 static uint8_t *dcc_buffer;
2585
2586 static int arm7_9_dcc_completion(struct target *target, uint32_t exit_point, int timeout_ms, void *arch_info)
2587 {
2588         int retval = ERROR_OK;
2589         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2590
2591         if ((retval = target_wait_state(target, TARGET_DEBUG_RUNNING, 500)) != ERROR_OK)
2592                 return retval;
2593
2594         int little = target->endianness == TARGET_LITTLE_ENDIAN;
2595         int count = dcc_count;
2596         uint8_t *buffer = dcc_buffer;
2597         if (count > 2)
2598         {
2599                 /* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
2600                  * core function repeated. */
2601                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2602                 buffer += 4;
2603
2604                 struct embeddedice_reg *ice_reg = arm7_9->eice_cache->reg_list[EICE_COMMS_DATA].arch_info;
2605                 uint8_t reg_addr = ice_reg->addr & 0x1f;
2606                 struct jtag_tap *tap;
2607                 tap = ice_reg->jtag_info->tap;
2608
2609                 embeddedice_write_dcc(tap, reg_addr, buffer, little, count-2);
2610                 buffer += (count-2)*4;
2611
2612                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2613         } else
2614         {
2615                 int i;
2616                 for (i = 0; i < count; i++)
2617                 {
2618                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2619                         buffer += 4;
2620                 }
2621         }
2622
2623         if ((retval = target_halt(target))!= ERROR_OK)
2624         {
2625                 return retval;
2626         }
2627         return target_wait_state(target, TARGET_HALTED, 500);
2628 }
2629
2630 static const uint32_t dcc_code[] =
2631 {
2632         /* r0 == input, points to memory buffer
2633          * r1 == scratch
2634          */
2635
2636         /* spin until DCC control (c0) reports data arrived */
2637         0xee101e10,     /* w: mrc p14, #0, r1, c0, c0 */
2638         0xe3110001,     /*    tst r1, #1              */
2639         0x0afffffc,     /*    bne w                   */
2640
2641         /* read word from DCC (c1), write to memory */
2642         0xee111e10,     /*    mrc p14, #0, r1, c1, c0 */
2643         0xe4801004,     /*    str r1, [r0], #4        */
2644
2645         /* repeat */
2646         0xeafffff9      /*    b   w                   */
2647 };
2648
2649 int arm7_9_bulk_write_memory(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
2650 {
2651         int retval;
2652         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2653         int i;
2654
2655         if (!arm7_9->dcc_downloads)
2656                 return target_write_memory(target, address, 4, count, buffer);
2657
2658         /* regrab previously allocated working_area, or allocate a new one */
2659         if (!arm7_9->dcc_working_area)
2660         {
2661                 uint8_t dcc_code_buf[6 * 4];
2662
2663                 /* make sure we have a working area */
2664                 if (target_alloc_working_area(target, 24, &arm7_9->dcc_working_area) != ERROR_OK)
2665                 {
2666                         LOG_INFO("no working area available, falling back to memory writes");
2667                         return target_write_memory(target, address, 4, count, buffer);
2668                 }
2669
2670                 /* copy target instructions to target endianness */
2671                 for (i = 0; i < 6; i++)
2672                 {
2673                         target_buffer_set_u32(target, dcc_code_buf + i*4, dcc_code[i]);
2674                 }
2675
2676                 /* write DCC code to working area */
2677                 if ((retval = target_write_memory(target, arm7_9->dcc_working_area->address, 4, 6, dcc_code_buf)) != ERROR_OK)
2678                 {
2679                         return retval;
2680                 }
2681         }
2682
2683         struct arm_algorithm armv4_5_info;
2684         struct reg_param reg_params[1];
2685
2686         armv4_5_info.common_magic = ARM_COMMON_MAGIC;
2687         armv4_5_info.core_mode = ARM_MODE_SVC;
2688         armv4_5_info.core_state = ARM_STATE_ARM;
2689
2690         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
2691
2692         buf_set_u32(reg_params[0].value, 0, 32, address);
2693
2694         dcc_count = count;
2695         dcc_buffer = buffer;
2696         retval = armv4_5_run_algorithm_inner(target, 0, NULL, 1, reg_params,
2697                         arm7_9->dcc_working_area->address,
2698                                 arm7_9->dcc_working_area->address + 6*4,
2699                         20*1000, &armv4_5_info, arm7_9_dcc_completion);
2700
2701         if (retval == ERROR_OK)
2702         {
2703                 uint32_t endaddress = buf_get_u32(reg_params[0].value, 0, 32);
2704                 if (endaddress != (address + count*4))
2705                 {
2706                         LOG_ERROR("DCC write failed, expected end address 0x%08" PRIx32 " got 0x%0" PRIx32 "", (address + count*4), endaddress);
2707                         retval = ERROR_FAIL;
2708                 }
2709         }
2710
2711         destroy_reg_param(&reg_params[0]);
2712
2713         return retval;
2714 }
2715
2716 /**
2717  * Perform per-target setup that requires JTAG access.
2718  */
2719 int arm7_9_examine(struct target *target)
2720 {
2721         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2722         int retval;
2723
2724         if (!target_was_examined(target)) {
2725                 struct reg_cache *t, **cache_p;
2726
2727                 t = embeddedice_build_reg_cache(target, arm7_9);
2728                 if (t == NULL)
2729                         return ERROR_FAIL;
2730
2731                 cache_p = register_get_last_cache_p(&target->reg_cache);
2732                 (*cache_p) = t;
2733                 arm7_9->eice_cache = (*cache_p);
2734
2735                 if (arm7_9->armv4_5_common.etm)
2736                         (*cache_p)->next = etm_build_reg_cache(target,
2737                                         &arm7_9->jtag_info,
2738                                         arm7_9->armv4_5_common.etm);
2739
2740                 target_set_examined(target);
2741         }
2742
2743         retval = embeddedice_setup(target);
2744         if (retval == ERROR_OK)
2745                 retval = arm7_9_setup(target);
2746         if (retval == ERROR_OK && arm7_9->armv4_5_common.etm)
2747                 retval = etm_setup(target);
2748         return retval;
2749 }
2750
2751
2752 int arm7_9_check_reset(struct target *target)
2753 {
2754         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2755
2756         if (get_target_reset_nag() && !arm7_9->dcc_downloads)
2757         {
2758                 LOG_WARNING("NOTE! DCC downloads have not been enabled, defaulting to slow memory writes. Type 'help dcc'.");
2759         }
2760
2761         if (get_target_reset_nag() && (target->working_area_size == 0))
2762         {
2763                 LOG_WARNING("NOTE! Severe performance degradation without working memory enabled.");
2764         }
2765
2766         if (get_target_reset_nag() && !arm7_9->fast_memory_access)
2767         {
2768                 LOG_WARNING("NOTE! Severe performance degradation without fast memory access enabled. Type 'help fast'.");
2769         }
2770
2771         return ERROR_OK;
2772 }
2773
2774 COMMAND_HANDLER(handle_arm7_9_dbgrq_command)
2775 {
2776         struct target *target = get_current_target(CMD_CTX);
2777         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2778
2779         if (!is_arm7_9(arm7_9))
2780         {
2781                 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2782                 return ERROR_TARGET_INVALID;
2783         }
2784
2785         if (CMD_ARGC > 0)
2786                 COMMAND_PARSE_ENABLE(CMD_ARGV[0],arm7_9->use_dbgrq);
2787
2788         command_print(CMD_CTX, "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s", (arm7_9->use_dbgrq) ? "enabled" : "disabled");
2789
2790         return ERROR_OK;
2791 }
2792
2793 COMMAND_HANDLER(handle_arm7_9_fast_memory_access_command)
2794 {
2795         struct target *target = get_current_target(CMD_CTX);
2796         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2797
2798         if (!is_arm7_9(arm7_9))
2799         {
2800                 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2801                 return ERROR_TARGET_INVALID;
2802         }
2803
2804         if (CMD_ARGC > 0)
2805                 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->fast_memory_access);
2806
2807         command_print(CMD_CTX, "fast memory access is %s", (arm7_9->fast_memory_access) ? "enabled" : "disabled");
2808
2809         return ERROR_OK;
2810 }
2811
2812 COMMAND_HANDLER(handle_arm7_9_dcc_downloads_command)
2813 {
2814         struct target *target = get_current_target(CMD_CTX);
2815         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2816
2817         if (!is_arm7_9(arm7_9))
2818         {
2819                 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2820                 return ERROR_TARGET_INVALID;
2821         }
2822
2823         if (CMD_ARGC > 0)
2824                 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->dcc_downloads);
2825
2826         command_print(CMD_CTX, "dcc downloads are %s", (arm7_9->dcc_downloads) ? "enabled" : "disabled");
2827
2828         return ERROR_OK;
2829 }
2830
2831 static int arm7_9_setup_semihosting(struct target *target, int enable)
2832 {
2833         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2834
2835         if (!is_arm7_9(arm7_9))
2836         {
2837                 LOG_USER("current target isn't an ARM7/ARM9 target");
2838                 return ERROR_TARGET_INVALID;
2839         }
2840
2841         if (arm7_9->has_vector_catch) {
2842                 struct reg *vector_catch = &arm7_9->eice_cache
2843                                 ->reg_list[EICE_VEC_CATCH];
2844
2845                 if (!vector_catch->valid)
2846                         embeddedice_read_reg(vector_catch);
2847                 buf_set_u32(vector_catch->value, 2, 1, enable);
2848                 embeddedice_store_reg(vector_catch);
2849         } else {
2850                 /* TODO: allow optional high vectors and/or BKPT_HARD */
2851                 if (enable)
2852                         breakpoint_add(target, 8, 4, BKPT_SOFT);
2853                 else
2854                         breakpoint_remove(target, 8);
2855         }
2856
2857         return ERROR_OK;
2858 }
2859
2860 int arm7_9_init_arch_info(struct target *target, struct arm7_9_common *arm7_9)
2861 {
2862         int retval = ERROR_OK;
2863         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2864
2865         arm7_9->common_magic = ARM7_9_COMMON_MAGIC;
2866
2867         if ((retval = arm_jtag_setup_connection(&arm7_9->jtag_info)) != ERROR_OK)
2868                 return retval;
2869
2870         /* caller must have allocated via calloc(), so everything's zeroed */
2871
2872         arm7_9->wp_available_max = 2;
2873
2874         arm7_9->fast_memory_access = false;
2875         arm7_9->dcc_downloads = false;
2876
2877         armv4_5->arch_info = arm7_9;
2878         armv4_5->read_core_reg = arm7_9_read_core_reg;
2879         armv4_5->write_core_reg = arm7_9_write_core_reg;
2880         armv4_5->full_context = arm7_9_full_context;
2881         armv4_5->setup_semihosting = arm7_9_setup_semihosting;
2882
2883         retval = arm_init_arch_info(target, armv4_5);
2884         if (retval != ERROR_OK)
2885                 return retval;
2886
2887         return target_register_timer_callback(arm7_9_handle_target_request,
2888                         1, 1, target);
2889 }
2890
2891 static const struct command_registration arm7_9_any_command_handlers[] = {
2892         {
2893                 "dbgrq",
2894                 .handler = handle_arm7_9_dbgrq_command,
2895                 .mode = COMMAND_ANY,
2896                 .usage = "['enable'|'disable']",
2897                 .help = "use EmbeddedICE dbgrq instead of breakpoint "
2898                         "for target halt requests",
2899         },
2900         {
2901                 "fast_memory_access",
2902                 .handler = handle_arm7_9_fast_memory_access_command,
2903                 .mode = COMMAND_ANY,
2904                 .usage = "['enable'|'disable']",
2905                 .help = "use fast memory accesses instead of slower "
2906                         "but potentially safer accesses",
2907         },
2908         {
2909                 "dcc_downloads",
2910                 .handler = handle_arm7_9_dcc_downloads_command,
2911                 .mode = COMMAND_ANY,
2912                 .usage = "['enable'|'disable']",
2913                 .help = "use DCC downloads for larger memory writes",
2914         },
2915         COMMAND_REGISTRATION_DONE
2916 };
2917 const struct command_registration arm7_9_command_handlers[] = {
2918         {
2919                 .chain = arm_command_handlers,
2920         },
2921         {
2922                 .chain = etm_command_handlers,
2923         },
2924         {
2925                 .name = "arm7_9",
2926                 .mode = COMMAND_ANY,
2927                 .help = "arm7/9 specific commands",
2928                 .chain = arm7_9_any_command_handlers,
2929         },
2930         COMMAND_REGISTRATION_DONE
2931 };