target: improve robustness of reset command
[fw/openocd] / src / target / arm7_9_common.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2008 by Hongtao Zheng                                   *
12  *   hontor@126.com                                                        *
13  *                                                                         *
14  *   Copyright (C) 2009 by David Brownell                                  *
15  *                                                                         *
16  *   This program is free software; you can redistribute it and/or modify  *
17  *   it under the terms of the GNU General Public License as published by  *
18  *   the Free Software Foundation; either version 2 of the License, or     *
19  *   (at your option) any later version.                                   *
20  *                                                                         *
21  *   This program is distributed in the hope that it will be useful,       *
22  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
23  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
24  *   GNU General Public License for more details.                          *
25  *                                                                         *
26  *   You should have received a copy of the GNU General Public License     *
27  *   along with this program; if not, write to the                         *
28  *   Free Software Foundation, Inc.,                                       *
29  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.           *
30  ***************************************************************************/
31
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "breakpoints.h"
37 #include "embeddedice.h"
38 #include "target_request.h"
39 #include "etm.h"
40 #include <helper/time_support.h>
41 #include "arm_simulator.h"
42 #include "arm_semihosting.h"
43 #include "algorithm.h"
44 #include "register.h"
45 #include "armv4_5.h"
46
47 /**
48  * @file
49  * Hold common code supporting the ARM7 and ARM9 core generations.
50  *
51  * While the ARM core implementations evolved substantially during these
52  * two generations, they look quite similar from the JTAG perspective.
53  * Both have similar debug facilities, based on the same two scan chains
54  * providing access to the core and to an EmbeddedICE module.  Both can
55  * support similar ETM and ETB modules, for tracing.  And both expose
56  * what could be viewed as "ARM Classic", with multiple processor modes,
57  * shadowed registers, and support for the Thumb instruction set.
58  *
59  * Processor differences include things like presence or absence of MMU
60  * and cache, pipeline sizes, use of a modified Harvard Architecure
61  * (with separate instruction and data busses from the CPU), support
62  * for cpu clock gating during idle, and more.
63  */
64
65 static int arm7_9_debug_entry(struct target *target);
66
67 /**
68  * Clear watchpoints for an ARM7/9 target.
69  *
70  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
71  * @return JTAG error status after executing queue
72  */
73 static int arm7_9_clear_watchpoints(struct arm7_9_common *arm7_9)
74 {
75         LOG_DEBUG("-");
76         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
77         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
78         arm7_9->sw_breakpoint_count = 0;
79         arm7_9->sw_breakpoints_added = 0;
80         arm7_9->wp0_used = 0;
81         arm7_9->wp1_used = arm7_9->wp1_used_default;
82         arm7_9->wp_available = arm7_9->wp_available_max;
83
84         return jtag_execute_queue();
85 }
86
87 /**
88  * Assign a watchpoint to one of the two available hardware comparators in an
89  * ARM7 or ARM9 target.
90  *
91  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
92  * @param breakpoint Pointer to the breakpoint to be used as a watchpoint
93  */
94 static void arm7_9_assign_wp(struct arm7_9_common *arm7_9, struct breakpoint *breakpoint)
95 {
96         if (!arm7_9->wp0_used) {
97                 arm7_9->wp0_used = 1;
98                 breakpoint->set = 1;
99                 arm7_9->wp_available--;
100         } else if (!arm7_9->wp1_used) {
101                 arm7_9->wp1_used = 1;
102                 breakpoint->set = 2;
103                 arm7_9->wp_available--;
104         } else
105                 LOG_ERROR("BUG: no hardware comparator available");
106         LOG_DEBUG("BPID: %" PRId32 " (0x%08" PRIx32 ") using hw wp: %d",
107                         breakpoint->unique_id,
108                         breakpoint->address,
109                         breakpoint->set);
110 }
111
112 /**
113  * Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
114  *
115  * @param arm7_9 Pointer to common struct for ARM7/9 targets
116  * @return Error codes if there is a problem finding a watchpoint or the result
117  * of executing the JTAG queue
118  */
119 static int arm7_9_set_software_breakpoints(struct arm7_9_common *arm7_9)
120 {
121         if (arm7_9->sw_breakpoints_added)
122                 return ERROR_OK;
123         if (arm7_9->wp_available < 1) {
124                 LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
125                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
126         }
127         arm7_9->wp_available--;
128
129         /* pick a breakpoint unit */
130         if (!arm7_9->wp0_used) {
131                 arm7_9->sw_breakpoints_added = 1;
132                 arm7_9->wp0_used = 3;
133         } else if (!arm7_9->wp1_used) {
134                 arm7_9->sw_breakpoints_added = 2;
135                 arm7_9->wp1_used = 3;
136         } else {
137                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
138                 return ERROR_FAIL;
139         }
140
141         if (arm7_9->sw_breakpoints_added == 1) {
142                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], arm7_9->arm_bkpt);
143                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0x0);
144                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffffu);
145                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
146                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
147         } else if (arm7_9->sw_breakpoints_added == 2) {
148                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], arm7_9->arm_bkpt);
149                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0x0);
150                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0xffffffffu);
151                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
152                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
153         } else {
154                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
155                 return ERROR_FAIL;
156         }
157         LOG_DEBUG("SW BP using hw wp: %d",
158                 arm7_9->sw_breakpoints_added);
159
160         return jtag_execute_queue();
161 }
162
163 /**
164  * Setup the common pieces for an ARM7/9 target after reset or on startup.
165  *
166  * @param target Pointer to an ARM7/9 target to setup
167  * @return Result of clearing the watchpoints on the target
168  */
169 static int arm7_9_setup(struct target *target)
170 {
171         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
172
173         return arm7_9_clear_watchpoints(arm7_9);
174 }
175
176 /**
177  * Set either a hardware or software breakpoint on an ARM7/9 target.  The
178  * breakpoint is set up even if it is already set.  Some actions, e.g. reset,
179  * might have erased the values in Embedded ICE.
180  *
181  * @param target Pointer to the target device to set the breakpoints on
182  * @param breakpoint Pointer to the breakpoint to be set
183  * @return For hardware breakpoints, this is the result of executing the JTAG
184  * queue.  For software breakpoints, this will be the status of the
185  * required memory reads and writes
186  */
187 static int arm7_9_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
188 {
189         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
190         int retval = ERROR_OK;
191
192         LOG_DEBUG("BPID: %" PRId32 ", Address: 0x%08" PRIx32 ", Type: %d",
193                 breakpoint->unique_id,
194                 breakpoint->address,
195                 breakpoint->type);
196
197         if (target->state != TARGET_HALTED) {
198                 LOG_WARNING("target not halted");
199                 return ERROR_TARGET_NOT_HALTED;
200         }
201
202         if (breakpoint->type == BKPT_HARD) {
203                 /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
204                 uint32_t mask = (breakpoint->length == 4) ? 0x3u : 0x1u;
205
206                 /* reassign a hw breakpoint */
207                 if (breakpoint->set == 0)
208                         arm7_9_assign_wp(arm7_9, breakpoint);
209
210                 if (breakpoint->set == 1) {
211                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], breakpoint->address);
212                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
213                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffffu);
214                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
215                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
216                 } else if (breakpoint->set == 2) {
217                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], breakpoint->address);
218                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
219                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffffu);
220                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
221                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
222                 } else {
223                         LOG_ERROR("BUG: no hardware comparator available");
224                         return ERROR_OK;
225                 }
226
227                 retval = jtag_execute_queue();
228         } else if (breakpoint->type == BKPT_SOFT) {
229                 /* did we already set this breakpoint? */
230                 if (breakpoint->set)
231                         return ERROR_OK;
232
233                 if (breakpoint->length == 4) {
234                         uint32_t verify = 0xffffffff;
235                         /* keep the original instruction in target endianness */
236                         retval = target_read_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr);
237                         if (retval != ERROR_OK)
238                                 return retval;
239                         /* write the breakpoint instruction in target
240                          * endianness (arm7_9->arm_bkpt is host endian) */
241                         retval = target_write_u32(target, breakpoint->address, arm7_9->arm_bkpt);
242                         if (retval != ERROR_OK)
243                                 return retval;
244
245                         retval = target_read_u32(target, breakpoint->address, &verify);
246                         if (retval != ERROR_OK)
247                                 return retval;
248                         if (verify != arm7_9->arm_bkpt) {
249                                 LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" PRIx32
250                                                 " - check that memory is read/writable", breakpoint->address);
251                                 return ERROR_OK;
252                         }
253                 } else {
254                         uint16_t verify = 0xffff;
255                         /* keep the original instruction in target endianness */
256                         retval = target_read_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr);
257                         if (retval != ERROR_OK)
258                                 return retval;
259                         /* write the breakpoint instruction in target
260                          * endianness (arm7_9->thumb_bkpt is host endian) */
261                         retval = target_write_u16(target, breakpoint->address, arm7_9->thumb_bkpt);
262                         if (retval != ERROR_OK)
263                                 return retval;
264
265                         retval = target_read_u16(target, breakpoint->address, &verify);
266                         if (retval != ERROR_OK)
267                                 return retval;
268                         if (verify != arm7_9->thumb_bkpt) {
269                                 LOG_ERROR("Unable to set thumb software breakpoint at address %08" PRIx32
270                                                 " - check that memory is read/writable", breakpoint->address);
271                                 return ERROR_OK;
272                         }
273                 }
274
275                 retval = arm7_9_set_software_breakpoints(arm7_9);
276                 if (retval != ERROR_OK)
277                         return retval;
278
279                 arm7_9->sw_breakpoint_count++;
280
281                 breakpoint->set = 1;
282         }
283
284         return retval;
285 }
286
287 /**
288  * Unsets an existing breakpoint on an ARM7/9 target.  If it is a hardware
289  * breakpoint, the watchpoint used will be freed and the Embedded ICE registers
290  * will be updated.  Otherwise, the software breakpoint will be restored to its
291  * original instruction if it hasn't already been modified.
292  *
293  * @param target Pointer to ARM7/9 target to unset the breakpoint from
294  * @param breakpoint Pointer to breakpoint to be unset
295  * @return For hardware breakpoints, this is the result of executing the JTAG
296  * queue.  For software breakpoints, this will be the status of the
297  * required memory reads and writes
298  */
299 static int arm7_9_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
300 {
301         int retval = ERROR_OK;
302         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
303
304         LOG_DEBUG("BPID: %" PRId32 ", Address: 0x%08" PRIx32,
305                 breakpoint->unique_id,
306                 breakpoint->address);
307
308         if (!breakpoint->set) {
309                 LOG_WARNING("breakpoint not set");
310                 return ERROR_OK;
311         }
312
313         if (breakpoint->type == BKPT_HARD) {
314                 LOG_DEBUG("BPID: %" PRId32 " Releasing hw wp: %d",
315                         breakpoint->unique_id,
316                         breakpoint->set);
317                 if (breakpoint->set == 1) {
318                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
319                         arm7_9->wp0_used = 0;
320                         arm7_9->wp_available++;
321                 } else if (breakpoint->set == 2) {
322                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
323                         arm7_9->wp1_used = 0;
324                         arm7_9->wp_available++;
325                 }
326                 retval = jtag_execute_queue();
327                 breakpoint->set = 0;
328         } else {
329                 /* restore original instruction (kept in target endianness) */
330                 if (breakpoint->length == 4) {
331                         uint32_t current_instr;
332                         /* check that user program as not modified breakpoint instruction */
333                         retval = target_read_memory(target,
334                                         breakpoint->address, 4, 1, (uint8_t *)&current_instr);
335                         if (retval != ERROR_OK)
336                                 return retval;
337                         current_instr = target_buffer_get_u32(target, (uint8_t *)&current_instr);
338                         if (current_instr == arm7_9->arm_bkpt) {
339                                 retval = target_write_memory(target,
340                                                 breakpoint->address, 4, 1, breakpoint->orig_instr);
341                                 if (retval != ERROR_OK)
342                                         return retval;
343                         }
344
345                 } else {
346                         uint16_t current_instr;
347                         /* check that user program as not modified breakpoint instruction */
348                         retval = target_read_memory(target,
349                                         breakpoint->address, 2, 1, (uint8_t *)&current_instr);
350                         if (retval != ERROR_OK)
351                                 return retval;
352                         current_instr = target_buffer_get_u16(target, (uint8_t *)&current_instr);
353                         if (current_instr == arm7_9->thumb_bkpt)
354                                 retval = target_write_memory(target,
355                                                 breakpoint->address, 2, 1, breakpoint->orig_instr);
356                                 if (retval != ERROR_OK)
357                                         return retval;
358
359                 }
360
361                 if (--arm7_9->sw_breakpoint_count == 0) {
362                         /* We have removed the last sw breakpoint, clear the hw breakpoint we used
363                          *to implement it */
364                         if (arm7_9->sw_breakpoints_added == 1)
365                                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[
366                                                 EICE_W0_CONTROL_VALUE], 0);
367                         else if (arm7_9->sw_breakpoints_added == 2)
368                                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[
369                                                 EICE_W1_CONTROL_VALUE], 0);
370                 }
371
372                 breakpoint->set = 0;
373         }
374
375         return retval;
376 }
377
378 /**
379  * Add a breakpoint to an ARM7/9 target.  This makes sure that there are no
380  * dangling breakpoints and that the desired breakpoint can be added.
381  *
382  * @param target Pointer to the target ARM7/9 device to add a breakpoint to
383  * @param breakpoint Pointer to the breakpoint to be added
384  * @return An error status if there is a problem adding the breakpoint or the
385  * result of setting the breakpoint
386  */
387 int arm7_9_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
388 {
389         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
390
391         if (arm7_9->breakpoint_count == 0) {
392                 /* make sure we don't have any dangling breakpoints. This is vital upon
393                  * GDB connect/disconnect
394                  */
395                 arm7_9_clear_watchpoints(arm7_9);
396         }
397
398         if ((breakpoint->type == BKPT_HARD) && (arm7_9->wp_available < 1)) {
399                 LOG_INFO("no watchpoint unit available for hardware breakpoint");
400                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
401         }
402
403         if ((breakpoint->length != 2) && (breakpoint->length != 4)) {
404                 LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
405                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
406         }
407
408         if (breakpoint->type == BKPT_HARD)
409                 arm7_9_assign_wp(arm7_9, breakpoint);
410
411         arm7_9->breakpoint_count++;
412
413         return arm7_9_set_breakpoint(target, breakpoint);
414 }
415
416 /**
417  * Removes a breakpoint from an ARM7/9 target.  This will make sure there are no
418  * dangling breakpoints and updates available watchpoints if it is a hardware
419  * breakpoint.
420  *
421  * @param target Pointer to the target to have a breakpoint removed
422  * @param breakpoint Pointer to the breakpoint to be removed
423  * @return Error status if there was a problem unsetting the breakpoint or the
424  * watchpoints could not be cleared
425  */
426 int arm7_9_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
427 {
428         int retval = ERROR_OK;
429         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
430
431         retval = arm7_9_unset_breakpoint(target, breakpoint);
432         if (retval != ERROR_OK)
433                 return retval;
434
435         if (breakpoint->type == BKPT_HARD)
436                 arm7_9->wp_available++;
437
438         arm7_9->breakpoint_count--;
439         if (arm7_9->breakpoint_count == 0) {
440                 /* make sure we don't have any dangling breakpoints */
441                 retval = arm7_9_clear_watchpoints(arm7_9);
442                 if (retval != ERROR_OK)
443                         return retval;
444         }
445
446         return ERROR_OK;
447 }
448
449 /**
450  * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units.  It is
451  * considered a bug to call this function when there are no available watchpoint
452  * units.
453  *
454  * @param target Pointer to an ARM7/9 target to set a watchpoint on
455  * @param watchpoint Pointer to the watchpoint to be set
456  * @return Error status if watchpoint set fails or the result of executing the
457  * JTAG queue
458  */
459 static int arm7_9_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
460 {
461         int retval = ERROR_OK;
462         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
463         int rw_mask = 1;
464         uint32_t mask;
465
466         mask = watchpoint->length - 1;
467
468         if (target->state != TARGET_HALTED) {
469                 LOG_WARNING("target not halted");
470                 return ERROR_TARGET_NOT_HALTED;
471         }
472
473         if (watchpoint->rw == WPT_ACCESS)
474                 rw_mask = 0;
475         else
476                 rw_mask = 1;
477
478         if (!arm7_9->wp0_used) {
479                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE],
480                         watchpoint->address);
481                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
482                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK],
483                         watchpoint->mask);
484                 if (watchpoint->mask != 0xffffffffu)
485                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE],
486                                 watchpoint->value);
487                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK],
488                         0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
489                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE],
490                         EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
491
492                 retval = jtag_execute_queue();
493                 if (retval != ERROR_OK)
494                         return retval;
495                 watchpoint->set = 1;
496                 arm7_9->wp0_used = 2;
497         } else if (!arm7_9->wp1_used) {
498                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE],
499                         watchpoint->address);
500                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
501                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK],
502                         watchpoint->mask);
503                 if (watchpoint->mask != 0xffffffffu)
504                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE],
505                                 watchpoint->value);
506                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK],
507                         0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
508                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE],
509                         EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
510
511                 retval = jtag_execute_queue();
512                 if (retval != ERROR_OK)
513                         return retval;
514                 watchpoint->set = 2;
515                 arm7_9->wp1_used = 2;
516         } else {
517                 LOG_ERROR("BUG: no hardware comparator available");
518                 return ERROR_OK;
519         }
520
521         return ERROR_OK;
522 }
523
524 /**
525  * Unset an existing watchpoint and clear the used watchpoint unit.
526  *
527  * @param target Pointer to the target to have the watchpoint removed
528  * @param watchpoint Pointer to the watchpoint to be removed
529  * @return Error status while trying to unset the watchpoint or the result of
530  *         executing the JTAG queue
531  */
532 static int arm7_9_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
533 {
534         int retval = ERROR_OK;
535         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
536
537         if (target->state != TARGET_HALTED) {
538                 LOG_WARNING("target not halted");
539                 return ERROR_TARGET_NOT_HALTED;
540         }
541
542         if (!watchpoint->set) {
543                 LOG_WARNING("breakpoint not set");
544                 return ERROR_OK;
545         }
546
547         if (watchpoint->set == 1) {
548                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
549                 retval = jtag_execute_queue();
550                 if (retval != ERROR_OK)
551                         return retval;
552                 arm7_9->wp0_used = 0;
553         } else if (watchpoint->set == 2) {
554                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
555                 retval = jtag_execute_queue();
556                 if (retval != ERROR_OK)
557                         return retval;
558                 arm7_9->wp1_used = 0;
559         }
560         watchpoint->set = 0;
561
562         return ERROR_OK;
563 }
564
565 /**
566  * Add a watchpoint to an ARM7/9 target.  If there are no watchpoint units
567  * available, an error response is returned.
568  *
569  * @param target Pointer to the ARM7/9 target to add a watchpoint to
570  * @param watchpoint Pointer to the watchpoint to be added
571  * @return Error status while trying to add the watchpoint
572  */
573 int arm7_9_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
574 {
575         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
576
577         if (arm7_9->wp_available < 1)
578                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
579
580         if ((watchpoint->length != 1) && (watchpoint->length != 2) && (watchpoint->length != 4))
581                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
582
583         arm7_9->wp_available--;
584
585         return ERROR_OK;
586 }
587
588 /**
589  * Remove a watchpoint from an ARM7/9 target.  The watchpoint will be unset and
590  * the used watchpoint unit will be reopened.
591  *
592  * @param target Pointer to the target to remove a watchpoint from
593  * @param watchpoint Pointer to the watchpoint to be removed
594  * @return Result of trying to unset the watchpoint
595  */
596 int arm7_9_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
597 {
598         int retval = ERROR_OK;
599         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
600
601         if (watchpoint->set) {
602                 retval = arm7_9_unset_watchpoint(target, watchpoint);
603                 if (retval != ERROR_OK)
604                         return retval;
605         }
606
607         arm7_9->wp_available++;
608
609         return ERROR_OK;
610 }
611
612 /**
613  * Restarts the target by sending a RESTART instruction and moving the JTAG
614  * state to IDLE.  This includes a timeout waiting for DBGACK and SYSCOMP to be
615  * asserted by the processor.
616  *
617  * @param target Pointer to target to issue commands to
618  * @return Error status if there is a timeout or a problem while executing the
619  * JTAG queue
620  */
621 int arm7_9_execute_sys_speed(struct target *target)
622 {
623         int retval;
624         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
625         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
626         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
627
628         /* set RESTART instruction */
629         if (arm7_9->need_bypass_before_restart) {
630                 arm7_9->need_bypass_before_restart = 0;
631                 retval = arm_jtag_set_instr(jtag_info->tap, 0xf, NULL, TAP_IDLE);
632                 if (retval != ERROR_OK)
633                         return retval;
634         }
635         retval = arm_jtag_set_instr(jtag_info->tap, 0x4, NULL, TAP_IDLE);
636         if (retval != ERROR_OK)
637                 return retval;
638
639         long long then = timeval_ms();
640         int timeout;
641         while (!(timeout = ((timeval_ms()-then) > 1000))) {
642                 /* read debug status register */
643                 embeddedice_read_reg(dbg_stat);
644                 retval = jtag_execute_queue();
645                 if (retval != ERROR_OK)
646                         return retval;
647                 if ((buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
648                                 && (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_SYSCOMP, 1)))
649                         break;
650                 if (debug_level >= 3)
651                         alive_sleep(100);
652                 else
653                         keep_alive();
654         }
655         if (timeout) {
656                 LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32 "",
657                         buf_get_u32(dbg_stat->value, 0, dbg_stat->size));
658                 return ERROR_TARGET_TIMEOUT;
659         }
660
661         return ERROR_OK;
662 }
663
664 /**
665  * Restarts the target by sending a RESTART instruction and moving the JTAG
666  * state to IDLE.  This validates that DBGACK and SYSCOMP are set without
667  * waiting until they are.
668  *
669  * @param target Pointer to the target to issue commands to
670  * @return Always ERROR_OK
671  */
672 static int arm7_9_execute_fast_sys_speed(struct target *target)
673 {
674         static int set;
675         static uint8_t check_value[4], check_mask[4];
676
677         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
678         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
679         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
680         int retval;
681
682         /* set RESTART instruction */
683         if (arm7_9->need_bypass_before_restart) {
684                 arm7_9->need_bypass_before_restart = 0;
685                 retval = arm_jtag_set_instr(jtag_info->tap, 0xf, NULL, TAP_IDLE);
686                 if (retval != ERROR_OK)
687                         return retval;
688         }
689         retval = arm_jtag_set_instr(jtag_info->tap, 0x4, NULL, TAP_IDLE);
690         if (retval != ERROR_OK)
691                 return retval;
692
693         if (!set) {
694                 /* check for DBGACK and SYSCOMP set (others don't care) */
695
696                 /* NB! These are constants that must be available until after next jtag_execute() and
697                  * we evaluate the values upon first execution in lieu of setting up these constants
698                  * during early setup.
699                  * */
700                 buf_set_u32(check_value, 0, 32, 0x9);
701                 buf_set_u32(check_mask, 0, 32, 0x9);
702                 set = 1;
703         }
704
705         /* read debug status register */
706         embeddedice_read_reg_w_check(dbg_stat, check_value, check_mask);
707
708         return ERROR_OK;
709 }
710
711 /**
712  * Get some data from the ARM7/9 target.
713  *
714  * @param target Pointer to the ARM7/9 target to read data from
715  * @param size The number of 32bit words to be read
716  * @param buffer Pointer to the buffer that will hold the data
717  * @return The result of receiving data from the Embedded ICE unit
718  */
719 int arm7_9_target_request_data(struct target *target, uint32_t size, uint8_t *buffer)
720 {
721         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
722         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
723         uint32_t *data;
724         int retval = ERROR_OK;
725         uint32_t i;
726
727         data = malloc(size * (sizeof(uint32_t)));
728
729         retval = embeddedice_receive(jtag_info, data, size);
730
731         /* return the 32-bit ints in the 8-bit array */
732         for (i = 0; i < size; i++)
733                 h_u32_to_le(buffer + (i * 4), data[i]);
734
735         free(data);
736
737         return retval;
738 }
739
740 /**
741  * Handles requests to an ARM7/9 target.  If debug messaging is enabled, the
742  * target is running and the DCC control register has the W bit high, this will
743  * execute the request on the target.
744  *
745  * @param priv Void pointer expected to be a struct target pointer
746  * @return ERROR_OK unless there are issues with the JTAG queue or when reading
747  * from the Embedded ICE unit
748  */
749 static int arm7_9_handle_target_request(void *priv)
750 {
751         int retval = ERROR_OK;
752         struct target *target = priv;
753         if (!target_was_examined(target))
754                 return ERROR_OK;
755         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
756         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
757         struct reg *dcc_control = &arm7_9->eice_cache->reg_list[EICE_COMMS_CTRL];
758
759         if (!target->dbg_msg_enabled)
760                 return ERROR_OK;
761
762         if (target->state == TARGET_RUNNING) {
763                 /* read DCC control register */
764                 embeddedice_read_reg(dcc_control);
765                 retval = jtag_execute_queue();
766                 if (retval != ERROR_OK)
767                         return retval;
768
769                 /* check W bit */
770                 if (buf_get_u32(dcc_control->value, 1, 1) == 1) {
771                         uint32_t request;
772
773                         retval = embeddedice_receive(jtag_info, &request, 1);
774                         if (retval != ERROR_OK)
775                                 return retval;
776                         retval = target_request(target, request);
777                         if (retval != ERROR_OK)
778                                 return retval;
779                 }
780         }
781
782         return ERROR_OK;
783 }
784
785 /**
786  * Polls an ARM7/9 target for its current status.  If DBGACK is set, the target
787  * is manipulated to the right halted state based on its current state.  This is
788  * what happens:
789  *
790  * <table>
791  *   <tr><th > State</th><th > Action</th></tr>
792  *   <tr><td > TARGET_RUNNING | TARGET_RESET</td>
793  *     <td > Enters debug mode.  If TARGET_RESET, pc may be checked</td></tr>
794  *   <tr><td > TARGET_UNKNOWN</td><td > Warning is logged</td></tr>
795  *   <tr><td > TARGET_DEBUG_RUNNING</td><td > Enters debug mode</td></tr>
796  *   <tr><td > TARGET_HALTED</td><td > Nothing</td></tr>
797  * </table>
798  *
799  * If the target does not end up in the halted state, a warning is produced.  If
800  * DBGACK is cleared, then the target is expected to either be running or
801  * running in debug.
802  *
803  * @param target Pointer to the ARM7/9 target to poll
804  * @return ERROR_OK or an error status if a command fails
805  */
806 int arm7_9_poll(struct target *target)
807 {
808         int retval;
809         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
810         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
811
812         /* read debug status register */
813         embeddedice_read_reg(dbg_stat);
814         retval = jtag_execute_queue();
815         if (retval != ERROR_OK)
816                 return retval;
817
818         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1)) {
819                 /* LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, *32));*/
820                 if (target->state == TARGET_UNKNOWN) {
821                         /* Starting OpenOCD with target in debug-halt */
822                         target->state = TARGET_RUNNING;
823                         LOG_DEBUG("DBGACK already set during server startup.");
824                 }
825                 if ((target->state == TARGET_RUNNING) || (target->state == TARGET_RESET)) {
826                         target->state = TARGET_HALTED;
827
828                         retval = arm7_9_debug_entry(target);
829                         if (retval != ERROR_OK)
830                                 return retval;
831
832                         if (arm_semihosting(target, &retval) != 0)
833                                 return retval;
834
835                         retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED);
836                         if (retval != ERROR_OK)
837                                 return retval;
838                 }
839                 if (target->state == TARGET_DEBUG_RUNNING) {
840                         target->state = TARGET_HALTED;
841                         retval = arm7_9_debug_entry(target);
842                         if (retval != ERROR_OK)
843                                 return retval;
844
845                         retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
846                         if (retval != ERROR_OK)
847                                 return retval;
848                 }
849                 if (target->state != TARGET_HALTED)
850                         LOG_WARNING(
851                                 "DBGACK set, but the target did not end up in the halted state %d",
852                                 target->state);
853         } else {
854                 if (target->state != TARGET_DEBUG_RUNNING)
855                         target->state = TARGET_RUNNING;
856         }
857
858         return ERROR_OK;
859 }
860
861 /**
862  * Asserts the reset (SRST) on an ARM7/9 target.  Some -S targets (ARM966E-S in
863  * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
864  * affected) completely stop the JTAG clock while the core is held in reset
865  * (SRST).  It isn't possible to program the halt condition once reset is
866  * asserted, hence a hook that allows the target to set up its reset-halt
867  * condition is setup prior to asserting reset.
868  *
869  * @param target Pointer to an ARM7/9 target to assert reset on
870  * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
871  */
872 int arm7_9_assert_reset(struct target *target)
873 {
874         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
875         enum reset_types jtag_reset_config = jtag_get_reset_config();
876         bool use_event = false;
877
878         /* TODO: apply hw reset signal in not examined state */
879         if (!(target_was_examined(target))) {
880                 LOG_WARNING("Reset is not asserted because the target is not examined.");
881                 LOG_WARNING("Use a reset button or power cycle the target.");
882                 return ERROR_TARGET_NOT_EXAMINED;
883         }
884
885         LOG_DEBUG("target->state: %s", target_state_name(target));
886
887         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
888                 use_event = true;
889         else if (!(jtag_reset_config & RESET_HAS_SRST)) {
890                 LOG_ERROR("%s: how to reset?", target_name(target));
891                 return ERROR_FAIL;
892         }
893
894         /* At this point trst has been asserted/deasserted once. We would
895          * like to program EmbeddedICE while SRST is asserted, instead of
896          * depending on SRST to leave that module alone.  However, many CPUs
897          * gate the JTAG clock while SRST is asserted; or JTAG may need
898          * clock stability guarantees (adaptive clocking might help).
899          *
900          * So we assume JTAG access during SRST is off the menu unless it's
901          * been specifically enabled.
902          */
903         bool srst_asserted = false;
904
905         if (!use_event && !(jtag_reset_config & RESET_SRST_PULLS_TRST)
906                         && (jtag_reset_config & RESET_SRST_NO_GATING)) {
907                 jtag_add_reset(0, 1);
908                 srst_asserted = true;
909         }
910
911         if (target->reset_halt) {
912                 /*
913                  * For targets that don't support communication while SRST is
914                  * asserted, we need to set up the reset vector catch first.
915                  *
916                  * When we use TRST+SRST and that's equivalent to a power-up
917                  * reset, these settings may well be reset anyway; so setting
918                  * them here won't matter.
919                  */
920                 if (arm7_9->has_vector_catch) {
921                         /* program vector catch register to catch reset */
922                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH], 0x1);
923
924                         /* extra runtest added as issues were found with
925                          * certain ARM9 cores (maybe more) - AT91SAM9260
926                          * and STR9
927                          */
928                         jtag_add_runtest(1, TAP_IDLE);
929                 } else {
930                         /* program watchpoint unit to match on reset vector
931                          * address
932                          */
933                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], 0x0);
934                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0x3);
935                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
936                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
937                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
938                 }
939         }
940
941         if (use_event)
942                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
943         else {
944                 /* If we use SRST ... we'd like to issue just SRST, but the
945                  * board or chip may be set up so we have to assert TRST as
946                  * well.  On some chips that combination is equivalent to a
947                  * power-up reset, and generally clobbers EICE state.
948                  */
949                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
950                         jtag_add_reset(1, 1);
951                 else if (!srst_asserted)
952                         jtag_add_reset(0, 1);
953                 jtag_add_sleep(50000);
954         }
955
956         target->state = TARGET_RESET;
957         register_cache_invalidate(arm7_9->arm.core_cache);
958
959         /* REVISIT why isn't standard debug entry logic sufficient?? */
960         if (target->reset_halt && (!(jtag_reset_config & RESET_SRST_PULLS_TRST) || use_event)) {
961                 /* debug entry was prepared above */
962                 target->debug_reason = DBG_REASON_DBGRQ;
963         }
964
965         return ERROR_OK;
966 }
967
968 /**
969  * Deassert the reset (SRST) signal on an ARM7/9 target.  If SRST pulls TRST
970  * and the target is being reset into a halt, a warning will be triggered
971  * because it is not possible to reset into a halted mode in this case.  The
972  * target is halted using the target's functions.
973  *
974  * @param target Pointer to the target to have the reset deasserted
975  * @return ERROR_OK or an error from polling or halting the target
976  */
977 int arm7_9_deassert_reset(struct target *target)
978 {
979         int retval = ERROR_OK;
980         LOG_DEBUG("target->state: %s", target_state_name(target));
981
982         /* deassert reset lines */
983         jtag_add_reset(0, 0);
984
985         /* In case polling is disabled, we need to examine the
986          * target and poll here for this target to work correctly.
987          *
988          * Otherwise, e.g. halt will fail afterwards with bogus
989          * error messages as halt will believe that reset is
990          * still in effect.
991          */
992         retval = target_examine_one(target);
993         if (retval != ERROR_OK)
994                 return retval;
995
996         retval = target_poll(target);
997         if (retval != ERROR_OK)
998                 return retval;
999
1000         enum reset_types jtag_reset_config = jtag_get_reset_config();
1001         if (target->reset_halt && (jtag_reset_config & RESET_SRST_PULLS_TRST) != 0) {
1002                 LOG_WARNING(
1003                         "srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
1004                 retval = target_halt(target);
1005                 if (retval != ERROR_OK)
1006                         return retval;
1007         }
1008         return retval;
1009 }
1010
1011 /**
1012  * Clears the halt condition for an ARM7/9 target.  If it isn't coming out of
1013  * reset and if DBGRQ is used, it is progammed to be deasserted.  If the reset
1014  * vector catch was used, it is restored.  Otherwise, the control value is
1015  * restored and the watchpoint unit is restored if it was in use.
1016  *
1017  * @param target Pointer to the ARM7/9 target to have halt cleared
1018  * @return Always ERROR_OK
1019  */
1020 static int arm7_9_clear_halt(struct target *target)
1021 {
1022         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1023         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1024
1025         /* we used DBGRQ only if we didn't come out of reset */
1026         if (!arm7_9->debug_entry_from_reset && arm7_9->use_dbgrq) {
1027                 /* program EmbeddedICE Debug Control Register to deassert DBGRQ
1028                  */
1029                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1030                 embeddedice_store_reg(dbg_ctrl);
1031         } else {
1032                 if (arm7_9->debug_entry_from_reset && arm7_9->has_vector_catch) {
1033                         /* if we came out of reset, and vector catch is supported, we used
1034                          * vector catch to enter debug state
1035                          * restore the register in that case
1036                          */
1037                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH]);
1038                 } else {
1039                         /* restore registers if watchpoint unit 0 was in use
1040                          */
1041                         if (arm7_9->wp0_used) {
1042                                 if (arm7_9->debug_entry_from_reset)
1043                                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[
1044                                                         EICE_W0_ADDR_VALUE]);
1045                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[
1046                                                 EICE_W0_ADDR_MASK]);
1047                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[
1048                                                 EICE_W0_DATA_MASK]);
1049                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[
1050                                                 EICE_W0_CONTROL_MASK]);
1051                         }
1052                         /* control value always has to be restored, as it was either disabled,
1053                          * or enabled with possibly different bits
1054                          */
1055                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1056                 }
1057         }
1058
1059         return ERROR_OK;
1060 }
1061
1062 /**
1063  * Issue a software reset and halt to an ARM7/9 target.  The target is halted
1064  * and then there is a wait until the processor shows the halt.  This wait can
1065  * timeout and results in an error being returned.  The software reset involves
1066  * clearing the halt, updating the debug control register, changing to ARM mode,
1067  * reset of the program counter, and reset of all of the registers.
1068  *
1069  * @param target Pointer to the ARM7/9 target to be reset and halted by software
1070  * @return Error status if any of the commands fail, otherwise ERROR_OK
1071  */
1072 int arm7_9_soft_reset_halt(struct target *target)
1073 {
1074         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1075         struct arm *arm = &arm7_9->arm;
1076         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1077         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1078         int i;
1079         int retval;
1080
1081         /* FIX!!! replace some of this code with tcl commands
1082          *
1083          * halt # the halt command is synchronous
1084          * armv4_5 core_state arm
1085          *
1086          */
1087
1088         retval = target_halt(target);
1089         if (retval != ERROR_OK)
1090                 return retval;
1091
1092         long long then = timeval_ms();
1093         int timeout;
1094         while (!(timeout = ((timeval_ms()-then) > 1000))) {
1095                 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) != 0)
1096                         break;
1097                 embeddedice_read_reg(dbg_stat);
1098                 retval = jtag_execute_queue();
1099                 if (retval != ERROR_OK)
1100                         return retval;
1101                 if (debug_level >= 3)
1102                         alive_sleep(100);
1103                 else
1104                         keep_alive();
1105         }
1106         if (timeout) {
1107                 LOG_ERROR("Failed to halt CPU after 1 sec");
1108                 return ERROR_TARGET_TIMEOUT;
1109         }
1110         target->state = TARGET_HALTED;
1111
1112         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1113          * ensure that DBGRQ is cleared
1114          */
1115         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1116         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1117         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1118         embeddedice_store_reg(dbg_ctrl);
1119
1120         retval = arm7_9_clear_halt(target);
1121         if (retval != ERROR_OK)
1122                 return retval;
1123
1124         /* if the target is in Thumb state, change to ARM state */
1125         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1)) {
1126                 uint32_t r0_thumb, pc_thumb;
1127                 LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
1128                 /* Entered debug from Thumb mode */
1129                 arm->core_state = ARM_STATE_THUMB;
1130                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1131         }
1132
1133         /* REVISIT likewise for bit 5 -- switch Jazelle-to-ARM */
1134
1135         /* all register content is now invalid */
1136         register_cache_invalidate(arm->core_cache);
1137
1138         /* SVC, ARM state, IRQ and FIQ disabled */
1139         uint32_t cpsr;
1140
1141         cpsr = buf_get_u32(arm->cpsr->value, 0, 32);
1142         cpsr &= ~0xff;
1143         cpsr |= 0xd3;
1144         arm_set_cpsr(arm, cpsr);
1145         arm->cpsr->dirty = 1;
1146
1147         /* start fetching from 0x0 */
1148         buf_set_u32(arm->pc->value, 0, 32, 0x0);
1149         arm->pc->dirty = 1;
1150         arm->pc->valid = 1;
1151
1152         /* reset registers */
1153         for (i = 0; i <= 14; i++) {
1154                 struct reg *r = arm_reg_current(arm, i);
1155
1156                 buf_set_u32(r->value, 0, 32, 0xffffffff);
1157                 r->dirty = 1;
1158                 r->valid = 1;
1159         }
1160
1161         retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED);
1162         if (retval != ERROR_OK)
1163                 return retval;
1164
1165         return ERROR_OK;
1166 }
1167
1168 /**
1169  * Halt an ARM7/9 target.  This is accomplished by either asserting the DBGRQ
1170  * line or by programming a watchpoint to trigger on any address.  It is
1171  * considered a bug to call this function while the target is in the
1172  * TARGET_RESET state.
1173  *
1174  * @param target Pointer to the ARM7/9 target to be halted
1175  * @return Always ERROR_OK
1176  */
1177 int arm7_9_halt(struct target *target)
1178 {
1179         if (target->state == TARGET_RESET) {
1180                 LOG_ERROR(
1181                         "BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
1182                 return ERROR_OK;
1183         }
1184
1185         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1186         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1187
1188         LOG_DEBUG("target->state: %s",
1189                 target_state_name(target));
1190
1191         if (target->state == TARGET_HALTED) {
1192                 LOG_DEBUG("target was already halted");
1193                 return ERROR_OK;
1194         }
1195
1196         if (target->state == TARGET_UNKNOWN)
1197                 LOG_WARNING("target was in unknown state when halt was requested");
1198
1199         if (arm7_9->use_dbgrq) {
1200                 /* program EmbeddedICE Debug Control Register to assert DBGRQ
1201                  */
1202                 if (arm7_9->set_special_dbgrq)
1203                         arm7_9->set_special_dbgrq(target);
1204                 else {
1205                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 1);
1206                         embeddedice_store_reg(dbg_ctrl);
1207                 }
1208         } else {
1209                 /* program watchpoint unit to match on any address
1210                  */
1211                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1212                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1213                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE],
1214                         EICE_W_CTRL_ENABLE);
1215                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK],
1216                         ~EICE_W_CTRL_nOPC & 0xff);
1217         }
1218
1219         target->debug_reason = DBG_REASON_DBGRQ;
1220
1221         return ERROR_OK;
1222 }
1223
1224 /**
1225  * Handle an ARM7/9 target's entry into debug mode.  The halt is cleared on the
1226  * ARM.  The JTAG queue is then executed and the reason for debug entry is
1227  * examined.  Once done, the target is verified to be halted and the processor
1228  * is forced into ARM mode.  The core registers are saved for the current core
1229  * mode and the program counter (register 15) is updated as needed.  The core
1230  * registers and CPSR and SPSR are saved for restoration later.
1231  *
1232  * @param target Pointer to target that is entering debug mode
1233  * @return Error code if anything fails, otherwise ERROR_OK
1234  */
1235 static int arm7_9_debug_entry(struct target *target)
1236 {
1237         int i;
1238         uint32_t context[16];
1239         uint32_t *context_p[16];
1240         uint32_t r0_thumb, pc_thumb;
1241         uint32_t cpsr, cpsr_mask = 0;
1242         int retval;
1243         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1244         struct arm *arm = &arm7_9->arm;
1245         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1246         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1247
1248 #ifdef _DEBUG_ARM7_9_
1249         LOG_DEBUG("-");
1250 #endif
1251
1252         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1253          * ensure that DBGRQ is cleared
1254          */
1255         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1256         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1257         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1258         embeddedice_store_reg(dbg_ctrl);
1259
1260         retval = arm7_9_clear_halt(target);
1261         if (retval != ERROR_OK)
1262                 return retval;
1263
1264         retval = jtag_execute_queue();
1265         if (retval != ERROR_OK)
1266                 return retval;
1267
1268         retval = arm7_9->examine_debug_reason(target);
1269         if (retval != ERROR_OK)
1270                 return retval;
1271
1272         if (target->state != TARGET_HALTED) {
1273                 LOG_WARNING("target not halted");
1274                 return ERROR_TARGET_NOT_HALTED;
1275         }
1276
1277         /* if the target is in Thumb state, change to ARM state */
1278         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1)) {
1279                 LOG_DEBUG("target entered debug from Thumb state");
1280                 /* Entered debug from Thumb mode */
1281                 arm->core_state = ARM_STATE_THUMB;
1282                 cpsr_mask = 1 << 5;
1283                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1284                 LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32
1285                         ", pc_thumb: 0x%8.8" PRIx32, r0_thumb, pc_thumb);
1286         } else if (buf_get_u32(dbg_stat->value, 5, 1)) {
1287                 /* \todo Get some vaguely correct handling of Jazelle, if
1288                  * anyone ever uses it and full info becomes available.
1289                  * See ARM9EJS TRM B.7.1 for how to switch J->ARM; and
1290                  * B.7.3 for the reverse.  That'd be the bare minimum...
1291                  */
1292                 LOG_DEBUG("target entered debug from Jazelle state");
1293                 arm->core_state = ARM_STATE_JAZELLE;
1294                 cpsr_mask = 1 << 24;
1295                 LOG_ERROR("Jazelle debug entry -- BROKEN!");
1296         } else {
1297                 LOG_DEBUG("target entered debug from ARM state");
1298                 /* Entered debug from ARM mode */
1299                 arm->core_state = ARM_STATE_ARM;
1300         }
1301
1302         for (i = 0; i < 16; i++)
1303                 context_p[i] = &context[i];
1304         /* save core registers (r0 - r15 of current core mode) */
1305         arm7_9->read_core_regs(target, 0xffff, context_p);
1306
1307         arm7_9->read_xpsr(target, &cpsr, 0);
1308
1309         retval = jtag_execute_queue();
1310         if (retval != ERROR_OK)
1311                 return retval;
1312
1313         /* Sync our CPSR copy with J or T bits EICE reported, but
1314          * which we then erased by putting the core into ARM mode.
1315          */
1316         arm_set_cpsr(arm, cpsr | cpsr_mask);
1317
1318         if (!is_arm_mode(arm->core_mode)) {
1319                 target->state = TARGET_UNKNOWN;
1320                 LOG_ERROR("cpsr contains invalid mode value - communication failure");
1321                 return ERROR_TARGET_FAILURE;
1322         }
1323
1324         LOG_DEBUG("target entered debug state in %s mode",
1325                 arm_mode_name(arm->core_mode));
1326
1327         if (arm->core_state == ARM_STATE_THUMB) {
1328                 LOG_DEBUG("thumb state, applying fixups");
1329                 context[0] = r0_thumb;
1330                 context[15] = pc_thumb;
1331         } else if (arm->core_state == ARM_STATE_ARM) {
1332                 /* adjust value stored by STM */
1333                 context[15] -= 3 * 4;
1334         }
1335
1336         if ((target->debug_reason != DBG_REASON_DBGRQ) || (!arm7_9->use_dbgrq))
1337                 context[15] -= 3 * ((arm->core_state == ARM_STATE_ARM) ? 4 : 2);
1338         else
1339                 context[15] -= arm7_9->dbgreq_adjust_pc *
1340                         ((arm->core_state == ARM_STATE_ARM) ? 4 : 2);
1341
1342         for (i = 0; i <= 15; i++) {
1343                 struct reg *r = arm_reg_current(arm, i);
1344
1345                 LOG_DEBUG("r%i: 0x%8.8" PRIx32 "", i, context[i]);
1346
1347                 buf_set_u32(r->value, 0, 32, context[i]);
1348                 /* r0 and r15 (pc) have to be restored later */
1349                 r->dirty = (i == 0) || (i == 15);
1350                 r->valid = 1;
1351         }
1352
1353         LOG_DEBUG("entered debug state at PC 0x%" PRIx32 "", context[15]);
1354
1355         /* exceptions other than USR & SYS have a saved program status register */
1356         if (arm->spsr) {
1357                 uint32_t spsr;
1358                 arm7_9->read_xpsr(target, &spsr, 1);
1359                 retval = jtag_execute_queue();
1360                 if (retval != ERROR_OK)
1361                         return retval;
1362                 buf_set_u32(arm->spsr->value, 0, 32, spsr);
1363                 arm->spsr->dirty = 0;
1364                 arm->spsr->valid = 1;
1365         }
1366
1367         retval = jtag_execute_queue();
1368         if (retval != ERROR_OK)
1369                 return retval;
1370
1371         if (arm7_9->post_debug_entry) {
1372                 retval = arm7_9->post_debug_entry(target);
1373                 if (retval != ERROR_OK)
1374                         return retval;
1375         }
1376
1377         return ERROR_OK;
1378 }
1379
1380 /**
1381  * Validate the full context for an ARM7/9 target in all processor modes.  If
1382  * there are any invalid registers for the target, they will all be read.  This
1383  * includes the PSR.
1384  *
1385  * @param target Pointer to the ARM7/9 target to capture the full context from
1386  * @return Error if the target is not halted, has an invalid core mode, or if
1387  *         the JTAG queue fails to execute
1388  */
1389 static int arm7_9_full_context(struct target *target)
1390 {
1391         int i;
1392         int retval;
1393         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1394         struct arm *arm = &arm7_9->arm;
1395
1396         LOG_DEBUG("-");
1397
1398         if (target->state != TARGET_HALTED) {
1399                 LOG_WARNING("target not halted");
1400                 return ERROR_TARGET_NOT_HALTED;
1401         }
1402
1403         if (!is_arm_mode(arm->core_mode)) {
1404                 LOG_ERROR("not a valid arm core mode - communication failure?");
1405                 return ERROR_FAIL;
1406         }
1407
1408         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1409          * SYS shares registers with User, so we don't touch SYS
1410          */
1411         for (i = 0; i < 6; i++) {
1412                 uint32_t mask = 0;
1413                 uint32_t *reg_p[16];
1414                 int j;
1415                 int valid = 1;
1416
1417                 /* check if there are invalid registers in the current mode
1418                  */
1419                 for (j = 0; j <= 16; j++) {
1420                         if (ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1421                                 valid = 0;
1422                 }
1423
1424                 if (!valid) {
1425                         uint32_t tmp_cpsr;
1426
1427                         /* change processor mode (and mask T bit) */
1428                         tmp_cpsr = buf_get_u32(arm->cpsr->value, 0, 8)
1429                                 & 0xe0;
1430                         tmp_cpsr |= armv4_5_number_to_mode(i);
1431                         tmp_cpsr &= ~0x20;
1432                         arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1433
1434                         for (j = 0; j < 15; j++) {
1435                                 if (ARMV4_5_CORE_REG_MODE(arm->core_cache,
1436                                                 armv4_5_number_to_mode(i), j).valid == 0) {
1437                                         reg_p[j] = (uint32_t *)ARMV4_5_CORE_REG_MODE(
1438                                                         arm->core_cache,
1439                                                         armv4_5_number_to_mode(i),
1440                                                         j).value;
1441                                         mask |= 1 << j;
1442                                         ARMV4_5_CORE_REG_MODE(arm->core_cache,
1443                                                 armv4_5_number_to_mode(i),
1444                                                 j).valid = 1;
1445                                         ARMV4_5_CORE_REG_MODE(arm->core_cache,
1446                                                 armv4_5_number_to_mode(i),
1447                                                 j).dirty = 0;
1448                                 }
1449                         }
1450
1451                         /* if only the PSR is invalid, mask is all zeroes */
1452                         if (mask)
1453                                 arm7_9->read_core_regs(target, mask, reg_p);
1454
1455                         /* check if the PSR has to be read */
1456                         if (ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i),
1457                                         16).valid == 0) {
1458                                 arm7_9->read_xpsr(target,
1459                                         (uint32_t *)ARMV4_5_CORE_REG_MODE(arm->core_cache,
1460                                                 armv4_5_number_to_mode(i), 16).value, 1);
1461                                 ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i),
1462                                         16).valid = 1;
1463                                 ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i),
1464                                         16).dirty = 0;
1465                         }
1466                 }
1467         }
1468
1469         /* restore processor mode (mask T bit) */
1470         arm7_9->write_xpsr_im8(target,
1471                 buf_get_u32(arm->cpsr->value, 0, 8) & ~0x20, 0, 0);
1472
1473         retval = jtag_execute_queue();
1474         if (retval != ERROR_OK)
1475                 return retval;
1476         return ERROR_OK;
1477 }
1478
1479 /**
1480  * Restore the processor context on an ARM7/9 target.  The full processor
1481  * context is analyzed to see if any of the registers are dirty on this end, but
1482  * have a valid new value.  If this is the case, the processor is changed to the
1483  * appropriate mode and the new register values are written out to the
1484  * processor.  If there happens to be a dirty register with an invalid value, an
1485  * error will be logged.
1486  *
1487  * @param target Pointer to the ARM7/9 target to have its context restored
1488  * @return Error status if the target is not halted or the core mode in the
1489  * armv4_5 struct is invalid.
1490  */
1491 static int arm7_9_restore_context(struct target *target)
1492 {
1493         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1494         struct arm *arm = &arm7_9->arm;
1495         struct reg *reg;
1496         enum arm_mode current_mode = arm->core_mode;
1497         int i, j;
1498         int dirty;
1499         int mode_change;
1500
1501         LOG_DEBUG("-");
1502
1503         if (target->state != TARGET_HALTED) {
1504                 LOG_WARNING("target not halted");
1505                 return ERROR_TARGET_NOT_HALTED;
1506         }
1507
1508         if (arm7_9->pre_restore_context)
1509                 arm7_9->pre_restore_context(target);
1510
1511         if (!is_arm_mode(arm->core_mode)) {
1512                 LOG_ERROR("not a valid arm core mode - communication failure?");
1513                 return ERROR_FAIL;
1514         }
1515
1516         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1517          * SYS shares registers with User, so we don't touch SYS
1518          */
1519         for (i = 0; i < 6; i++) {
1520                 LOG_DEBUG("examining %s mode",
1521                         arm_mode_name(arm->core_mode));
1522                 dirty = 0;
1523                 mode_change = 0;
1524                 /* check if there are dirty registers in the current mode
1525                 */
1526                 for (j = 0; j <= 16; j++) {
1527                         reg = &ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i), j);
1528                         if (reg->dirty == 1) {
1529                                 if (reg->valid == 1) {
1530                                         dirty = 1;
1531                                         LOG_DEBUG("examining dirty reg: %s", reg->name);
1532                                         struct arm_reg *reg_arch_info;
1533                                         reg_arch_info = reg->arch_info;
1534                                         if ((reg_arch_info->mode != ARM_MODE_ANY)
1535                                                         && (reg_arch_info->mode != current_mode)
1536                                                         && !((reg_arch_info->mode == ARM_MODE_USR)
1537                                                         && (arm->core_mode == ARM_MODE_SYS))
1538                                                         && !((reg_arch_info->mode == ARM_MODE_SYS)
1539                                                         && (arm->core_mode == ARM_MODE_USR))) {
1540                                                 mode_change = 1;
1541                                                 LOG_DEBUG("require mode change");
1542                                         }
1543                                 } else
1544                                         LOG_ERROR("BUG: dirty register '%s', but no valid data",
1545                                                 reg->name);
1546                         }
1547                 }
1548
1549                 if (dirty) {
1550                         uint32_t mask = 0x0;
1551                         int num_regs = 0;
1552                         uint32_t regs[16];
1553
1554                         if (mode_change) {
1555                                 uint32_t tmp_cpsr;
1556
1557                                 /* change processor mode (mask T bit) */
1558                                 tmp_cpsr = buf_get_u32(arm->cpsr->value,
1559                                                 0, 8) & 0xe0;
1560                                 tmp_cpsr |= armv4_5_number_to_mode(i);
1561                                 tmp_cpsr &= ~0x20;
1562                                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1563                                 current_mode = armv4_5_number_to_mode(i);
1564                         }
1565
1566                         for (j = 0; j <= 14; j++) {
1567                                 reg = &ARMV4_5_CORE_REG_MODE(arm->core_cache,
1568                                                 armv4_5_number_to_mode(i),
1569                                                 j);
1570
1571                                 if (reg->dirty == 1) {
1572                                         regs[j] = buf_get_u32(reg->value, 0, 32);
1573                                         mask |= 1 << j;
1574                                         num_regs++;
1575                                         reg->dirty = 0;
1576                                         reg->valid = 1;
1577                                         LOG_DEBUG("writing register %i mode %s "
1578                                                 "with value 0x%8.8" PRIx32, j,
1579                                                 arm_mode_name(arm->core_mode),
1580                                                 regs[j]);
1581                                 }
1582                         }
1583
1584                         if (mask)
1585                                 arm7_9->write_core_regs(target, mask, regs);
1586
1587                         reg =
1588                                 &ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(
1589                                                 i), 16);
1590                         struct arm_reg *reg_arch_info;
1591                         reg_arch_info = reg->arch_info;
1592                         if ((reg->dirty) && (reg_arch_info->mode != ARM_MODE_ANY)) {
1593                                 LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32 "",
1594                                         i,
1595                                         buf_get_u32(reg->value, 0, 32));
1596                                 arm7_9->write_xpsr(target, buf_get_u32(reg->value, 0, 32), 1);
1597                         }
1598                 }
1599         }
1600
1601         if (!arm->cpsr->dirty && (arm->core_mode != current_mode)) {
1602                 /* restore processor mode (mask T bit) */
1603                 uint32_t tmp_cpsr;
1604
1605                 tmp_cpsr = buf_get_u32(arm->cpsr->value, 0, 8) & 0xE0;
1606                 tmp_cpsr |= armv4_5_number_to_mode(i);
1607                 tmp_cpsr &= ~0x20;
1608                 LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr));
1609                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1610
1611         } else if (arm->cpsr->dirty) {
1612                 /* CPSR has been changed, full restore necessary (mask T bit) */
1613                 LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32,
1614                         buf_get_u32(arm->cpsr->value, 0, 32));
1615                 arm7_9->write_xpsr(target,
1616                         buf_get_u32(arm->cpsr->value, 0, 32)
1617                         & ~0x20, 0);
1618                 arm->cpsr->dirty = 0;
1619                 arm->cpsr->valid = 1;
1620         }
1621
1622         /* restore PC */
1623         LOG_DEBUG("writing PC with value 0x%8.8" PRIx32,
1624                 buf_get_u32(arm->pc->value, 0, 32));
1625         arm7_9->write_pc(target, buf_get_u32(arm->pc->value, 0, 32));
1626         arm->pc->dirty = 0;
1627
1628         return ERROR_OK;
1629 }
1630
1631 /**
1632  * Restart the core of an ARM7/9 target.  A RESTART command is sent to the
1633  * instruction register and the JTAG state is set to TAP_IDLE causing a core
1634  * restart.
1635  *
1636  * @param target Pointer to the ARM7/9 target to be restarted
1637  * @return Result of executing the JTAG queue
1638  */
1639 static int arm7_9_restart_core(struct target *target)
1640 {
1641         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1642         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
1643         int retval;
1644
1645         /* set RESTART instruction */
1646         if (arm7_9->need_bypass_before_restart) {
1647                 arm7_9->need_bypass_before_restart = 0;
1648
1649                 retval = arm_jtag_set_instr(jtag_info->tap, 0xf, NULL, TAP_IDLE);
1650                 if (retval != ERROR_OK)
1651                         return retval;
1652         }
1653         retval = arm_jtag_set_instr(jtag_info->tap, 0x4, NULL, TAP_IDLE);
1654         if (retval != ERROR_OK)
1655                 return retval;
1656
1657         jtag_add_runtest(1, TAP_IDLE);
1658         return jtag_execute_queue();
1659 }
1660
1661 /**
1662  * Enable the watchpoints on an ARM7/9 target.  The target's watchpoints are
1663  * iterated through and are set on the target if they aren't already set.
1664  *
1665  * @param target Pointer to the ARM7/9 target to enable watchpoints on
1666  */
1667 static void arm7_9_enable_watchpoints(struct target *target)
1668 {
1669         struct watchpoint *watchpoint = target->watchpoints;
1670
1671         while (watchpoint) {
1672                 if (watchpoint->set == 0)
1673                         arm7_9_set_watchpoint(target, watchpoint);
1674                 watchpoint = watchpoint->next;
1675         }
1676 }
1677
1678 /**
1679  * Enable the breakpoints on an ARM7/9 target.  The target's breakpoints are
1680  * iterated through and are set on the target.
1681  *
1682  * @param target Pointer to the ARM7/9 target to enable breakpoints on
1683  */
1684 static void arm7_9_enable_breakpoints(struct target *target)
1685 {
1686         struct breakpoint *breakpoint = target->breakpoints;
1687
1688         /* set any pending breakpoints */
1689         while (breakpoint) {
1690                 arm7_9_set_breakpoint(target, breakpoint);
1691                 breakpoint = breakpoint->next;
1692         }
1693 }
1694
1695 int arm7_9_resume(struct target *target,
1696         int current,
1697         uint32_t address,
1698         int handle_breakpoints,
1699         int debug_execution)
1700 {
1701         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1702         struct arm *arm = &arm7_9->arm;
1703         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1704         int err, retval = ERROR_OK;
1705
1706         LOG_DEBUG("-");
1707
1708         if (target->state != TARGET_HALTED) {
1709                 LOG_WARNING("target not halted");
1710                 return ERROR_TARGET_NOT_HALTED;
1711         }
1712
1713         if (!debug_execution)
1714                 target_free_all_working_areas(target);
1715
1716         /* current = 1: continue on current pc, otherwise continue at <address> */
1717         if (!current)
1718                 buf_set_u32(arm->pc->value, 0, 32, address);
1719
1720         uint32_t current_pc;
1721         current_pc = buf_get_u32(arm->pc->value, 0, 32);
1722
1723         /* the front-end may request us not to handle breakpoints */
1724         if (handle_breakpoints) {
1725                 struct breakpoint *breakpoint;
1726                 breakpoint = breakpoint_find(target,
1727                                 buf_get_u32(arm->pc->value, 0, 32));
1728                 if (breakpoint != NULL) {
1729                         LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (id: %" PRId32,
1730                                 breakpoint->address,
1731                                 breakpoint->unique_id);
1732                         retval = arm7_9_unset_breakpoint(target, breakpoint);
1733                         if (retval != ERROR_OK)
1734                                 return retval;
1735
1736                         /* calculate PC of next instruction */
1737                         uint32_t next_pc;
1738                         retval = arm_simulate_step(target, &next_pc);
1739                         if (retval != ERROR_OK) {
1740                                 uint32_t current_opcode;
1741                                 target_read_u32(target, current_pc, &current_opcode);
1742                                 LOG_ERROR(
1743                                         "Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "",
1744                                         current_opcode);
1745                                 return retval;
1746                         }
1747
1748                         LOG_DEBUG("enable single-step");
1749                         arm7_9->enable_single_step(target, next_pc);
1750
1751                         target->debug_reason = DBG_REASON_SINGLESTEP;
1752
1753                         retval = arm7_9_restore_context(target);
1754                         if (retval != ERROR_OK)
1755                                 return retval;
1756
1757                         if (arm->core_state == ARM_STATE_ARM)
1758                                 arm7_9->branch_resume(target);
1759                         else if (arm->core_state == ARM_STATE_THUMB)
1760                                 arm7_9->branch_resume_thumb(target);
1761                         else {
1762                                 LOG_ERROR("unhandled core state");
1763                                 return ERROR_FAIL;
1764                         }
1765
1766                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1767                         embeddedice_write_reg(dbg_ctrl,
1768                                 buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1769                         err = arm7_9_execute_sys_speed(target);
1770
1771                         LOG_DEBUG("disable single-step");
1772                         arm7_9->disable_single_step(target);
1773
1774                         if (err != ERROR_OK) {
1775                                 retval = arm7_9_set_breakpoint(target, breakpoint);
1776                                 if (retval != ERROR_OK)
1777                                         return retval;
1778                                 target->state = TARGET_UNKNOWN;
1779                                 return err;
1780                         }
1781
1782                         retval = arm7_9_debug_entry(target);
1783                         if (retval != ERROR_OK)
1784                                 return retval;
1785                         LOG_DEBUG("new PC after step: 0x%8.8" PRIx32,
1786                                 buf_get_u32(arm->pc->value, 0, 32));
1787
1788                         LOG_DEBUG("set breakpoint at 0x%8.8" PRIx32 "", breakpoint->address);
1789                         retval = arm7_9_set_breakpoint(target, breakpoint);
1790                         if (retval != ERROR_OK)
1791                                 return retval;
1792                 }
1793         }
1794
1795         /* enable any pending breakpoints and watchpoints */
1796         arm7_9_enable_breakpoints(target);
1797         arm7_9_enable_watchpoints(target);
1798
1799         retval = arm7_9_restore_context(target);
1800         if (retval != ERROR_OK)
1801                 return retval;
1802
1803         if (arm->core_state == ARM_STATE_ARM)
1804                 arm7_9->branch_resume(target);
1805         else if (arm->core_state == ARM_STATE_THUMB)
1806                 arm7_9->branch_resume_thumb(target);
1807         else {
1808                 LOG_ERROR("unhandled core state");
1809                 return ERROR_FAIL;
1810         }
1811
1812         /* deassert DBGACK and INTDIS */
1813         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1814         /* INTDIS only when we really resume, not during debug execution */
1815         if (!debug_execution)
1816                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 0);
1817         embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1818
1819         retval = arm7_9_restart_core(target);
1820         if (retval != ERROR_OK)
1821                 return retval;
1822
1823         target->debug_reason = DBG_REASON_NOTHALTED;
1824
1825         if (!debug_execution) {
1826                 /* registers are now invalid */
1827                 register_cache_invalidate(arm->core_cache);
1828                 target->state = TARGET_RUNNING;
1829                 retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1830                 if (retval != ERROR_OK)
1831                         return retval;
1832         } else {
1833                 target->state = TARGET_DEBUG_RUNNING;
1834                 retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
1835                 if (retval != ERROR_OK)
1836                         return retval;
1837         }
1838
1839         LOG_DEBUG("target resumed");
1840
1841         return ERROR_OK;
1842 }
1843
1844 void arm7_9_enable_eice_step(struct target *target, uint32_t next_pc)
1845 {
1846         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1847         struct arm *arm = &arm7_9->arm;
1848         uint32_t current_pc;
1849         current_pc = buf_get_u32(arm->pc->value, 0, 32);
1850
1851         if (next_pc != current_pc) {
1852                 /* setup an inverse breakpoint on the current PC
1853                 * - comparator 1 matches the current address
1854                 * - rangeout from comparator 1 is connected to comparator 0 rangein
1855                 * - comparator 0 matches any address, as long as rangein is low */
1856                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1857                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1858                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE],
1859                         EICE_W_CTRL_ENABLE);
1860                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK],
1861                         ~(EICE_W_CTRL_RANGE | EICE_W_CTRL_nOPC) & 0xff);
1862                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE],
1863                         current_pc);
1864                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1865                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1866                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
1867                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK],
1868                         ~EICE_W_CTRL_nOPC & 0xff);
1869         } else {
1870                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1871                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1872                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
1873                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff);
1874                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], next_pc);
1875                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1876                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1877                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE],
1878                         EICE_W_CTRL_ENABLE);
1879                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK],
1880                         ~EICE_W_CTRL_nOPC & 0xff);
1881         }
1882 }
1883
1884 void arm7_9_disable_eice_step(struct target *target)
1885 {
1886         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1887
1888         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1889         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1890         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1891         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1892         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE]);
1893         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK]);
1894         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK]);
1895         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK]);
1896         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE]);
1897 }
1898
1899 int arm7_9_step(struct target *target, int current, uint32_t address, int handle_breakpoints)
1900 {
1901         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1902         struct arm *arm = &arm7_9->arm;
1903         struct breakpoint *breakpoint = NULL;
1904         int err, retval;
1905
1906         if (target->state != TARGET_HALTED) {
1907                 LOG_WARNING("target not halted");
1908                 return ERROR_TARGET_NOT_HALTED;
1909         }
1910
1911         /* current = 1: continue on current pc, otherwise continue at <address> */
1912         if (!current)
1913                 buf_set_u32(arm->pc->value, 0, 32, address);
1914
1915         uint32_t current_pc = buf_get_u32(arm->pc->value, 0, 32);
1916
1917         /* the front-end may request us not to handle breakpoints */
1918         if (handle_breakpoints)
1919                 breakpoint = breakpoint_find(target, current_pc);
1920         if (breakpoint != NULL) {
1921                 retval = arm7_9_unset_breakpoint(target, breakpoint);
1922                 if (retval != ERROR_OK)
1923                         return retval;
1924         }
1925
1926         target->debug_reason = DBG_REASON_SINGLESTEP;
1927
1928         /* calculate PC of next instruction */
1929         uint32_t next_pc;
1930         retval = arm_simulate_step(target, &next_pc);
1931         if (retval != ERROR_OK) {
1932                 uint32_t current_opcode;
1933                 target_read_u32(target, current_pc, &current_opcode);
1934                 LOG_ERROR(
1935                         "Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "",
1936                         current_opcode);
1937                 return retval;
1938         }
1939
1940         retval = arm7_9_restore_context(target);
1941         if (retval != ERROR_OK)
1942                 return retval;
1943
1944         arm7_9->enable_single_step(target, next_pc);
1945
1946         if (arm->core_state == ARM_STATE_ARM)
1947                 arm7_9->branch_resume(target);
1948         else if (arm->core_state == ARM_STATE_THUMB)
1949                 arm7_9->branch_resume_thumb(target);
1950         else {
1951                 LOG_ERROR("unhandled core state");
1952                 return ERROR_FAIL;
1953         }
1954
1955         retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1956         if (retval != ERROR_OK)
1957                 return retval;
1958
1959         err = arm7_9_execute_sys_speed(target);
1960         arm7_9->disable_single_step(target);
1961
1962         /* registers are now invalid */
1963         register_cache_invalidate(arm->core_cache);
1964
1965         if (err != ERROR_OK)
1966                 target->state = TARGET_UNKNOWN;
1967         else {
1968                 retval = arm7_9_debug_entry(target);
1969                 if (retval != ERROR_OK)
1970                         return retval;
1971                 retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED);
1972                 if (retval != ERROR_OK)
1973                         return retval;
1974                 LOG_DEBUG("target stepped");
1975         }
1976
1977         if (breakpoint) {
1978                 retval = arm7_9_set_breakpoint(target, breakpoint);
1979                 if (retval != ERROR_OK)
1980                         return retval;
1981         }
1982
1983         return err;
1984 }
1985
1986 static int arm7_9_read_core_reg(struct target *target, struct reg *r,
1987         int num, enum arm_mode mode)
1988 {
1989         uint32_t *reg_p[16];
1990         int retval;
1991         struct arm_reg *areg = r->arch_info;
1992         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1993         struct arm *arm = &arm7_9->arm;
1994
1995         if (!is_arm_mode(arm->core_mode))
1996                 return ERROR_FAIL;
1997         if ((num < 0) || (num > 16))
1998                 return ERROR_COMMAND_SYNTAX_ERROR;
1999
2000         if ((mode != ARM_MODE_ANY) && (mode != arm->core_mode)
2001                         && (areg->mode != ARM_MODE_ANY)) {
2002                 uint32_t tmp_cpsr;
2003
2004                 /* change processor mode (mask T bit) */
2005                 tmp_cpsr = buf_get_u32(arm->cpsr->value, 0, 8) & 0xE0;
2006                 tmp_cpsr |= mode;
2007                 tmp_cpsr &= ~0x20;
2008                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2009         }
2010
2011         uint32_t value = 0;
2012         if ((num >= 0) && (num <= 15)) {
2013                 /* read a normal core register */
2014                 reg_p[num] = &value;
2015
2016                 arm7_9->read_core_regs(target, 1 << num, reg_p);
2017         } else {
2018                 /* read a program status register
2019                  * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
2020                  */
2021                 arm7_9->read_xpsr(target, &value, areg->mode != ARM_MODE_ANY);
2022         }
2023
2024         retval = jtag_execute_queue();
2025         if (retval != ERROR_OK)
2026                 return retval;
2027
2028         r->valid = 1;
2029         r->dirty = 0;
2030         buf_set_u32(r->value, 0, 32, value);
2031
2032         if ((mode != ARM_MODE_ANY) && (mode != arm->core_mode)
2033                         && (areg->mode != ARM_MODE_ANY)) {
2034                 /* restore processor mode (mask T bit) */
2035                 arm7_9->write_xpsr_im8(target,
2036                         buf_get_u32(arm->cpsr->value, 0, 8) & ~0x20, 0, 0);
2037         }
2038
2039         return ERROR_OK;
2040 }
2041
2042 static int arm7_9_write_core_reg(struct target *target, struct reg *r,
2043         int num, enum arm_mode mode, uint8_t *value)
2044 {
2045         uint32_t reg[16];
2046         struct arm_reg *areg = r->arch_info;
2047         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2048         struct arm *arm = &arm7_9->arm;
2049
2050         if (!is_arm_mode(arm->core_mode))
2051                 return ERROR_FAIL;
2052         if ((num < 0) || (num > 16))
2053                 return ERROR_COMMAND_SYNTAX_ERROR;
2054
2055         if ((mode != ARM_MODE_ANY) && (mode != arm->core_mode)
2056                         && (areg->mode != ARM_MODE_ANY)) {
2057                 uint32_t tmp_cpsr;
2058
2059                 /* change processor mode (mask T bit) */
2060                 tmp_cpsr = buf_get_u32(arm->cpsr->value, 0, 8) & 0xE0;
2061                 tmp_cpsr |= mode;
2062                 tmp_cpsr &= ~0x20;
2063                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2064         }
2065
2066         if ((num >= 0) && (num <= 15)) {
2067                 /* write a normal core register */
2068                 reg[num] = buf_get_u32(value, 0, 32);
2069
2070                 arm7_9->write_core_regs(target, 1 << num, reg);
2071         } else {
2072                 /* write a program status register
2073                 * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
2074                 */
2075                 int spsr = (areg->mode != ARM_MODE_ANY);
2076
2077                 uint32_t t = buf_get_u32(value, 0, 32);
2078                 /* if we're writing the CPSR, mask the T bit */
2079                 if (!spsr)
2080                         t &= ~0x20;
2081
2082                 arm7_9->write_xpsr(target, t, spsr);
2083         }
2084
2085         r->valid = 1;
2086         r->dirty = 0;
2087
2088         if ((mode != ARM_MODE_ANY) && (mode != arm->core_mode)
2089                         && (areg->mode != ARM_MODE_ANY)) {
2090                 /* restore processor mode (mask T bit) */
2091                 arm7_9->write_xpsr_im8(target,
2092                                 buf_get_u32(arm->cpsr->value, 0, 8) & ~0x20, 0, 0);
2093         }
2094
2095         return jtag_execute_queue();
2096 }
2097
2098 int arm7_9_read_memory(struct target *target,
2099         uint32_t address,
2100         uint32_t size,
2101         uint32_t count,
2102         uint8_t *buffer)
2103 {
2104         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2105         struct arm *arm = &arm7_9->arm;
2106         uint32_t reg[16];
2107         uint32_t num_accesses = 0;
2108         int thisrun_accesses;
2109         int i;
2110         uint32_t cpsr;
2111         int retval;
2112         int last_reg = 0;
2113
2114         LOG_DEBUG("address: 0x%8.8" PRIx32 ", size: 0x%8.8" PRIx32 ", count: 0x%8.8" PRIx32 "",
2115                 address, size, count);
2116
2117         if (target->state != TARGET_HALTED) {
2118                 LOG_WARNING("target not halted");
2119                 return ERROR_TARGET_NOT_HALTED;
2120         }
2121
2122         /* sanitize arguments */
2123         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2124                 return ERROR_COMMAND_SYNTAX_ERROR;
2125
2126         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2127                 return ERROR_TARGET_UNALIGNED_ACCESS;
2128
2129         /* load the base register with the address of the first word */
2130         reg[0] = address;
2131         arm7_9->write_core_regs(target, 0x1, reg);
2132
2133         int j = 0;
2134
2135         switch (size) {
2136                 case 4:
2137                         while (num_accesses < count) {
2138                                 uint32_t reg_list;
2139                                 thisrun_accesses =
2140                                                 ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2141                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2142
2143                                 if (last_reg <= thisrun_accesses)
2144                                         last_reg = thisrun_accesses;
2145
2146                                 arm7_9->load_word_regs(target, reg_list);
2147
2148                                 /* fast memory reads are only safe when the target is running
2149                                  * from a sufficiently high clock (32 kHz is usually too slow)
2150                                  */
2151                                 if (arm7_9->fast_memory_access)
2152                                         retval = arm7_9_execute_fast_sys_speed(target);
2153                                 else
2154                                         retval = arm7_9_execute_sys_speed(target);
2155                                 if (retval != ERROR_OK)
2156                                         return retval;
2157
2158                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 4);
2159
2160                                 /* advance buffer, count number of accesses */
2161                                 buffer += thisrun_accesses * 4;
2162                                 num_accesses += thisrun_accesses;
2163
2164                                 if ((j++%1024) == 0)
2165                                         keep_alive();
2166                         }
2167                         break;
2168                 case 2:
2169                         while (num_accesses < count) {
2170                                 uint32_t reg_list;
2171                                 thisrun_accesses =
2172                                                 ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2173                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2174
2175                                 for (i = 1; i <= thisrun_accesses; i++) {
2176                                         if (i > last_reg)
2177                                             last_reg = i;
2178                                         arm7_9->load_hword_reg(target, i);
2179                                         /* fast memory reads are only safe when the target is running
2180                                          * from a sufficiently high clock (32 kHz is usually too slow)
2181                                          */
2182                                         if (arm7_9->fast_memory_access)
2183                                                 retval = arm7_9_execute_fast_sys_speed(target);
2184                                         else
2185                                                 retval = arm7_9_execute_sys_speed(target);
2186                                         if (retval != ERROR_OK)
2187                                                 return retval;
2188
2189                                 }
2190
2191                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 2);
2192
2193                                 /* advance buffer, count number of accesses */
2194                                 buffer += thisrun_accesses * 2;
2195                                 num_accesses += thisrun_accesses;
2196
2197                                 if ((j++%1024) == 0)
2198                                         keep_alive();
2199                         }
2200                         break;
2201                 case 1:
2202                         while (num_accesses < count) {
2203                                 uint32_t reg_list;
2204                                 thisrun_accesses =
2205                                                 ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2206                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2207
2208                                 for (i = 1; i <= thisrun_accesses; i++) {
2209                                         if (i > last_reg)
2210                                                 last_reg = i;
2211                                         arm7_9->load_byte_reg(target, i);
2212                                         /* fast memory reads are only safe when the target is running
2213                                          * from a sufficiently high clock (32 kHz is usually too slow)
2214                                          */
2215                                         if (arm7_9->fast_memory_access)
2216                                                 retval = arm7_9_execute_fast_sys_speed(target);
2217                                         else
2218                                                 retval = arm7_9_execute_sys_speed(target);
2219                                         if (retval != ERROR_OK)
2220                                                 return retval;
2221                                 }
2222
2223                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 1);
2224
2225                                 /* advance buffer, count number of accesses */
2226                                 buffer += thisrun_accesses * 1;
2227                                 num_accesses += thisrun_accesses;
2228
2229                                 if ((j++%1024) == 0)
2230                                         keep_alive();
2231                         }
2232                         break;
2233         }
2234
2235         if (!is_arm_mode(arm->core_mode))
2236                 return ERROR_FAIL;
2237
2238         for (i = 0; i <= last_reg; i++) {
2239                 struct reg *r = arm_reg_current(arm, i);
2240                 r->dirty = r->valid;
2241         }
2242
2243         arm7_9->read_xpsr(target, &cpsr, 0);
2244         retval = jtag_execute_queue();
2245         if (retval != ERROR_OK) {
2246                 LOG_ERROR("JTAG error while reading cpsr");
2247                 return ERROR_TARGET_DATA_ABORT;
2248         }
2249
2250         if (((cpsr & 0x1f) == ARM_MODE_ABT) && (arm->core_mode != ARM_MODE_ABT)) {
2251                 LOG_WARNING(
2252                         "memory read caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")",
2253                         address,
2254                         size,
2255                         count);
2256
2257                 arm7_9->write_xpsr_im8(target,
2258                         buf_get_u32(arm->cpsr->value, 0, 8)
2259                         & ~0x20, 0, 0);
2260
2261                 return ERROR_TARGET_DATA_ABORT;
2262         }
2263
2264         return ERROR_OK;
2265 }
2266
2267 int arm7_9_write_memory(struct target *target,
2268         uint32_t address,
2269         uint32_t size,
2270         uint32_t count,
2271         const uint8_t *buffer)
2272 {
2273         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2274         struct arm *arm = &arm7_9->arm;
2275         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
2276
2277         uint32_t reg[16];
2278         uint32_t num_accesses = 0;
2279         int thisrun_accesses;
2280         int i;
2281         uint32_t cpsr;
2282         int retval;
2283         int last_reg = 0;
2284
2285 #ifdef _DEBUG_ARM7_9_
2286         LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address, size, count);
2287 #endif
2288
2289         if (target->state != TARGET_HALTED) {
2290                 LOG_WARNING("target not halted");
2291                 return ERROR_TARGET_NOT_HALTED;
2292         }
2293
2294         /* sanitize arguments */
2295         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2296                 return ERROR_COMMAND_SYNTAX_ERROR;
2297
2298         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2299                 return ERROR_TARGET_UNALIGNED_ACCESS;
2300
2301         /* load the base register with the address of the first word */
2302         reg[0] = address;
2303         arm7_9->write_core_regs(target, 0x1, reg);
2304
2305         /* Clear DBGACK, to make sure memory fetches work as expected */
2306         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
2307         embeddedice_store_reg(dbg_ctrl);
2308
2309         switch (size) {
2310                 case 4:
2311                         while (num_accesses < count) {
2312                                 uint32_t reg_list;
2313                                 thisrun_accesses =
2314                                                 ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2315                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2316
2317                                 for (i = 1; i <= thisrun_accesses; i++) {
2318                                         if (i > last_reg)
2319                                                 last_reg = i;
2320                                         reg[i] = target_buffer_get_u32(target, buffer);
2321                                         buffer += 4;
2322                                 }
2323
2324                                 arm7_9->write_core_regs(target, reg_list, reg);
2325
2326                                 arm7_9->store_word_regs(target, reg_list);
2327
2328                                 /* fast memory writes are only safe when the target is running
2329                                  * from a sufficiently high clock (32 kHz is usually too slow)
2330                                  */
2331                                 if (arm7_9->fast_memory_access)
2332                                         retval = arm7_9_execute_fast_sys_speed(target);
2333                                 else {
2334                                         retval = arm7_9_execute_sys_speed(target);
2335
2336                                         /*
2337                                          * if memory writes are made when the clock is running slow
2338                                          * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2339                                          * processor operations after a "reset halt" or "reset init",
2340                                          * need to immediately stroke the keep alive or will end up with
2341                                          * gdb "keep alive not sent error message" problem.
2342                                          */
2343
2344                                         keep_alive();
2345                                 }
2346
2347                                 if (retval != ERROR_OK)
2348                                         return retval;
2349
2350                                 num_accesses += thisrun_accesses;
2351                         }
2352                         break;
2353                 case 2:
2354                         while (num_accesses < count) {
2355                                 uint32_t reg_list;
2356                                 thisrun_accesses =
2357                                                 ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2358                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2359
2360                                 for (i = 1; i <= thisrun_accesses; i++) {
2361                                         if (i > last_reg)
2362                                                 last_reg = i;
2363                                         reg[i] = target_buffer_get_u16(target, buffer) & 0xffff;
2364                                         buffer += 2;
2365                                 }
2366
2367                                 arm7_9->write_core_regs(target, reg_list, reg);
2368
2369                                 for (i = 1; i <= thisrun_accesses; i++) {
2370                                         arm7_9->store_hword_reg(target, i);
2371
2372                                         /* fast memory writes are only safe when the target is running
2373                                          * from a sufficiently high clock (32 kHz is usually too slow)
2374                                          */
2375                                         if (arm7_9->fast_memory_access)
2376                                                 retval = arm7_9_execute_fast_sys_speed(target);
2377                                         else {
2378                                                 retval = arm7_9_execute_sys_speed(target);
2379
2380                                                 /*
2381                                                  * if memory writes are made when the clock is running slow
2382                                                  * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2383                                                  * processor operations after a "reset halt" or "reset init",
2384                                                  * need to immediately stroke the keep alive or will end up with
2385                                                  * gdb "keep alive not sent error message" problem.
2386                                                  */
2387
2388                                                 keep_alive();
2389                                         }
2390
2391                                         if (retval != ERROR_OK)
2392                                                 return retval;
2393                                 }
2394
2395                                 num_accesses += thisrun_accesses;
2396                         }
2397                         break;
2398                 case 1:
2399                         while (num_accesses < count) {
2400                                 uint32_t reg_list;
2401                                 thisrun_accesses =
2402                                                 ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2403                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2404
2405                                 for (i = 1; i <= thisrun_accesses; i++) {
2406                                         if (i > last_reg)
2407                                                 last_reg = i;
2408                                         reg[i] = *buffer++ & 0xff;
2409                                 }
2410
2411                                 arm7_9->write_core_regs(target, reg_list, reg);
2412
2413                                 for (i = 1; i <= thisrun_accesses; i++) {
2414                                         arm7_9->store_byte_reg(target, i);
2415                                         /* fast memory writes are only safe when the target is running
2416                                          * from a sufficiently high clock (32 kHz is usually too slow)
2417                                          */
2418                                         if (arm7_9->fast_memory_access)
2419                                                 retval = arm7_9_execute_fast_sys_speed(target);
2420                                         else {
2421                                                 retval = arm7_9_execute_sys_speed(target);
2422
2423                                                 /*
2424                                                  * if memory writes are made when the clock is running slow
2425                                                  * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2426                                                  * processor operations after a "reset halt" or "reset init",
2427                                                  * need to immediately stroke the keep alive or will end up with
2428                                                  * gdb "keep alive not sent error message" problem.
2429                                                  */
2430
2431                                                 keep_alive();
2432                                         }
2433
2434                                         if (retval != ERROR_OK)
2435                                                 return retval;
2436
2437                                 }
2438
2439                                 num_accesses += thisrun_accesses;
2440                         }
2441                         break;
2442         }
2443
2444         /* Re-Set DBGACK */
2445         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
2446         embeddedice_store_reg(dbg_ctrl);
2447
2448         if (!is_arm_mode(arm->core_mode))
2449                 return ERROR_FAIL;
2450
2451         for (i = 0; i <= last_reg; i++) {
2452                 struct reg *r = arm_reg_current(arm, i);
2453                 r->dirty = r->valid;
2454         }
2455
2456         arm7_9->read_xpsr(target, &cpsr, 0);
2457         retval = jtag_execute_queue();
2458         if (retval != ERROR_OK) {
2459                 LOG_ERROR("JTAG error while reading cpsr");
2460                 return ERROR_TARGET_DATA_ABORT;
2461         }
2462
2463         if (((cpsr & 0x1f) == ARM_MODE_ABT) && (arm->core_mode != ARM_MODE_ABT)) {
2464                 LOG_WARNING(
2465                         "memory write caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")",
2466                         address,
2467                         size,
2468                         count);
2469
2470                 arm7_9->write_xpsr_im8(target,
2471                         buf_get_u32(arm->cpsr->value, 0, 8)
2472                         & ~0x20, 0, 0);
2473
2474                 return ERROR_TARGET_DATA_ABORT;
2475         }
2476
2477         return ERROR_OK;
2478 }
2479
2480 int arm7_9_write_memory_opt(struct target *target,
2481         uint32_t address,
2482         uint32_t size,
2483         uint32_t count,
2484         const uint8_t *buffer)
2485 {
2486         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2487         int retval;
2488
2489         if (size == 4 && count > 32 && arm7_9->bulk_write_memory) {
2490                 /* Attempt to do a bulk write */
2491                 retval = arm7_9->bulk_write_memory(target, address, count, buffer);
2492
2493                 if (retval == ERROR_OK)
2494                         return ERROR_OK;
2495         }
2496
2497         return arm7_9->write_memory(target, address, size, count, buffer);
2498 }
2499
2500 int arm7_9_write_memory_no_opt(struct target *target,
2501         uint32_t address,
2502         uint32_t size,
2503         uint32_t count,
2504         const uint8_t *buffer)
2505 {
2506         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2507
2508         return arm7_9->write_memory(target, address, size, count, buffer);
2509 }
2510
2511 static int dcc_count;
2512 static const uint8_t *dcc_buffer;
2513
2514 static int arm7_9_dcc_completion(struct target *target,
2515         uint32_t exit_point,
2516         int timeout_ms,
2517         void *arch_info)
2518 {
2519         int retval = ERROR_OK;
2520         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2521
2522         retval = target_wait_state(target, TARGET_DEBUG_RUNNING, 500);
2523         if (retval != ERROR_OK)
2524                 return retval;
2525
2526         int little = target->endianness == TARGET_LITTLE_ENDIAN;
2527         int count = dcc_count;
2528         const uint8_t *buffer = dcc_buffer;
2529         if (count > 2) {
2530                 /* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
2531                  * core function repeated. */
2532                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA],
2533                         fast_target_buffer_get_u32(buffer, little));
2534                 buffer += 4;
2535
2536                 struct embeddedice_reg *ice_reg =
2537                         arm7_9->eice_cache->reg_list[EICE_COMMS_DATA].arch_info;
2538                 uint8_t reg_addr = ice_reg->addr & 0x1f;
2539                 struct jtag_tap *tap;
2540                 tap = ice_reg->jtag_info->tap;
2541
2542                 embeddedice_write_dcc(tap, reg_addr, buffer, little, count-2);
2543                 buffer += (count-2)*4;
2544
2545                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA],
2546                         fast_target_buffer_get_u32(buffer, little));
2547         } else {
2548                 int i;
2549                 for (i = 0; i < count; i++) {
2550                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA],
2551                                 fast_target_buffer_get_u32(buffer, little));
2552                         buffer += 4;
2553                 }
2554         }
2555
2556         retval = target_halt(target);
2557         if (retval != ERROR_OK)
2558                 return retval;
2559         return target_wait_state(target, TARGET_HALTED, 500);
2560 }
2561
2562 static const uint32_t dcc_code[] = {
2563         /* r0 == input, points to memory buffer
2564          * r1 == scratch
2565          */
2566
2567         /* spin until DCC control (c0) reports data arrived */
2568         0xee101e10,     /* w: mrc p14, #0, r1, c0, c0 */
2569         0xe3110001,     /*    tst r1, #1              */
2570         0x0afffffc,     /*    bne w                   */
2571
2572         /* read word from DCC (c1), write to memory */
2573         0xee111e10,     /*    mrc p14, #0, r1, c1, c0 */
2574         0xe4801004,     /*    str r1, [r0], #4        */
2575
2576         /* repeat */
2577         0xeafffff9      /*    b   w                   */
2578 };
2579
2580 int arm7_9_bulk_write_memory(struct target *target,
2581         uint32_t address,
2582         uint32_t count,
2583         const uint8_t *buffer)
2584 {
2585         int retval;
2586         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2587
2588         if (address % 4 != 0)
2589                 return ERROR_TARGET_UNALIGNED_ACCESS;
2590
2591         if (!arm7_9->dcc_downloads)
2592                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2593
2594         /* regrab previously allocated working_area, or allocate a new one */
2595         if (!arm7_9->dcc_working_area) {
2596                 uint8_t dcc_code_buf[6 * 4];
2597
2598                 /* make sure we have a working area */
2599                 if (target_alloc_working_area(target, 24, &arm7_9->dcc_working_area) != ERROR_OK) {
2600                         LOG_INFO("no working area available, falling back to memory writes");
2601                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2602                 }
2603
2604                 /* copy target instructions to target endianness */
2605                 target_buffer_set_u32_array(target, dcc_code_buf, ARRAY_SIZE(dcc_code), dcc_code);
2606
2607                 /* write DCC code to working area, using the non-optimized
2608                  * memory write to avoid ending up here again */
2609                 retval = arm7_9_write_memory_no_opt(target,
2610                                 arm7_9->dcc_working_area->address, 4, 6, dcc_code_buf);
2611                 if (retval != ERROR_OK)
2612                         return retval;
2613         }
2614
2615         struct arm_algorithm arm_algo;
2616         struct reg_param reg_params[1];
2617
2618         arm_algo.common_magic = ARM_COMMON_MAGIC;
2619         arm_algo.core_mode = ARM_MODE_SVC;
2620         arm_algo.core_state = ARM_STATE_ARM;
2621
2622         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
2623
2624         buf_set_u32(reg_params[0].value, 0, 32, address);
2625
2626         dcc_count = count;
2627         dcc_buffer = buffer;
2628         retval = armv4_5_run_algorithm_inner(target, 0, NULL, 1, reg_params,
2629                         arm7_9->dcc_working_area->address,
2630                         arm7_9->dcc_working_area->address + 6*4,
2631                         20*1000, &arm_algo, arm7_9_dcc_completion);
2632
2633         if (retval == ERROR_OK) {
2634                 uint32_t endaddress = buf_get_u32(reg_params[0].value, 0, 32);
2635                 if (endaddress != (address + count*4)) {
2636                         LOG_ERROR(
2637                                 "DCC write failed, expected end address 0x%08" PRIx32 " got 0x%0" PRIx32 "",
2638                                 (address + count*4),
2639                                 endaddress);
2640                         retval = ERROR_FAIL;
2641                 }
2642         }
2643
2644         destroy_reg_param(&reg_params[0]);
2645
2646         return retval;
2647 }
2648
2649 /**
2650  * Perform per-target setup that requires JTAG access.
2651  */
2652 int arm7_9_examine(struct target *target)
2653 {
2654         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2655         int retval;
2656
2657         if (!target_was_examined(target)) {
2658                 struct reg_cache *t, **cache_p;
2659
2660                 t = embeddedice_build_reg_cache(target, arm7_9);
2661                 if (t == NULL)
2662                         return ERROR_FAIL;
2663
2664                 cache_p = register_get_last_cache_p(&target->reg_cache);
2665                 (*cache_p) = t;
2666                 arm7_9->eice_cache = (*cache_p);
2667
2668                 if (arm7_9->arm.etm)
2669                         (*cache_p)->next = etm_build_reg_cache(target,
2670                                         &arm7_9->jtag_info,
2671                                         arm7_9->arm.etm);
2672
2673                 target_set_examined(target);
2674         }
2675
2676         retval = embeddedice_setup(target);
2677         if (retval == ERROR_OK)
2678                 retval = arm7_9_setup(target);
2679         if (retval == ERROR_OK && arm7_9->arm.etm)
2680                 retval = etm_setup(target);
2681         return retval;
2682 }
2683
2684
2685 int arm7_9_check_reset(struct target *target)
2686 {
2687         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2688
2689         if (get_target_reset_nag() && !arm7_9->dcc_downloads)
2690                 LOG_WARNING(
2691                         "NOTE! DCC downloads have not been enabled, defaulting to slow memory writes. Type 'help dcc'.");
2692
2693         if (get_target_reset_nag() && (target->working_area_size == 0))
2694                 LOG_WARNING("NOTE! Severe performance degradation without working memory enabled.");
2695
2696         if (get_target_reset_nag() && !arm7_9->fast_memory_access)
2697                 LOG_WARNING(
2698                         "NOTE! Severe performance degradation without fast memory access enabled. Type 'help fast'.");
2699
2700         return ERROR_OK;
2701 }
2702
2703 int arm7_9_endianness_callback(jtag_callback_data_t pu8_in,
2704                 jtag_callback_data_t i_size, jtag_callback_data_t i_be,
2705                 jtag_callback_data_t i_flip)
2706 {
2707         uint8_t *in = (uint8_t *)pu8_in;
2708         int size = (int)i_size;
2709         int be = (int)i_be;
2710         int flip = (int)i_flip;
2711         uint32_t readback;
2712
2713         switch (size) {
2714         case 4:
2715                 readback = le_to_h_u32(in);
2716                 if (flip)
2717                         readback = flip_u32(readback, 32);
2718                 if (be)
2719                         h_u32_to_be(in, readback);
2720                 else
2721                         h_u32_to_le(in, readback);
2722                 break;
2723         case 2:
2724                 readback = le_to_h_u16(in);
2725                 if (flip)
2726                         readback = flip_u32(readback, 16);
2727                 if (be)
2728                         h_u16_to_be(in, readback & 0xffff);
2729                 else
2730                         h_u16_to_le(in, readback & 0xffff);
2731                 break;
2732         case 1:
2733                 readback = *in;
2734                 if (flip)
2735                         readback = flip_u32(readback, 8);
2736                 *in = readback & 0xff;
2737                 break;
2738         }
2739
2740         return ERROR_OK;
2741 }
2742
2743 COMMAND_HANDLER(handle_arm7_9_dbgrq_command)
2744 {
2745         struct target *target = get_current_target(CMD_CTX);
2746         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2747
2748         if (!is_arm7_9(arm7_9)) {
2749                 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2750                 return ERROR_TARGET_INVALID;
2751         }
2752
2753         if (CMD_ARGC > 0)
2754                 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->use_dbgrq);
2755
2756         command_print(CMD_CTX,
2757                 "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s",
2758                 (arm7_9->use_dbgrq) ? "enabled" : "disabled");
2759
2760         return ERROR_OK;
2761 }
2762
2763 COMMAND_HANDLER(handle_arm7_9_fast_memory_access_command)
2764 {
2765         struct target *target = get_current_target(CMD_CTX);
2766         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2767
2768         if (!is_arm7_9(arm7_9)) {
2769                 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2770                 return ERROR_TARGET_INVALID;
2771         }
2772
2773         if (CMD_ARGC > 0)
2774                 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->fast_memory_access);
2775
2776         command_print(CMD_CTX,
2777                 "fast memory access is %s",
2778                 (arm7_9->fast_memory_access) ? "enabled" : "disabled");
2779
2780         return ERROR_OK;
2781 }
2782
2783 COMMAND_HANDLER(handle_arm7_9_dcc_downloads_command)
2784 {
2785         struct target *target = get_current_target(CMD_CTX);
2786         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2787
2788         if (!is_arm7_9(arm7_9)) {
2789                 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2790                 return ERROR_TARGET_INVALID;
2791         }
2792
2793         if (CMD_ARGC > 0)
2794                 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->dcc_downloads);
2795
2796         command_print(CMD_CTX,
2797                 "dcc downloads are %s",
2798                 (arm7_9->dcc_downloads) ? "enabled" : "disabled");
2799
2800         return ERROR_OK;
2801 }
2802
2803 static int arm7_9_setup_semihosting(struct target *target, int enable)
2804 {
2805         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2806
2807         if (!is_arm7_9(arm7_9)) {
2808                 LOG_USER("current target isn't an ARM7/ARM9 target");
2809                 return ERROR_TARGET_INVALID;
2810         }
2811
2812         if (arm7_9->has_vector_catch) {
2813                 struct reg *vector_catch = &arm7_9->eice_cache
2814                         ->reg_list[EICE_VEC_CATCH];
2815
2816                 if (!vector_catch->valid)
2817                         embeddedice_read_reg(vector_catch);
2818                 buf_set_u32(vector_catch->value, 2, 1, enable);
2819                 embeddedice_store_reg(vector_catch);
2820         } else {
2821                 /* TODO: allow optional high vectors and/or BKPT_HARD */
2822                 if (enable)
2823                         breakpoint_add(target, 8, 4, BKPT_SOFT);
2824                 else
2825                         breakpoint_remove(target, 8);
2826         }
2827
2828         return ERROR_OK;
2829 }
2830
2831 int arm7_9_init_arch_info(struct target *target, struct arm7_9_common *arm7_9)
2832 {
2833         int retval = ERROR_OK;
2834         struct arm *arm = &arm7_9->arm;
2835
2836         arm7_9->common_magic = ARM7_9_COMMON_MAGIC;
2837
2838         retval = arm_jtag_setup_connection(&arm7_9->jtag_info);
2839         if (retval != ERROR_OK)
2840                 return retval;
2841
2842         /* caller must have allocated via calloc(), so everything's zeroed */
2843
2844         arm7_9->wp_available_max = 2;
2845
2846         arm7_9->fast_memory_access = false;
2847         arm7_9->dcc_downloads = false;
2848
2849         arm->arch_info = arm7_9;
2850         arm->core_type = ARM_MODE_ANY;
2851         arm->read_core_reg = arm7_9_read_core_reg;
2852         arm->write_core_reg = arm7_9_write_core_reg;
2853         arm->full_context = arm7_9_full_context;
2854         arm->setup_semihosting = arm7_9_setup_semihosting;
2855
2856         retval = arm_init_arch_info(target, arm);
2857         if (retval != ERROR_OK)
2858                 return retval;
2859
2860         return target_register_timer_callback(arm7_9_handle_target_request,
2861                 1, 1, target);
2862 }
2863
2864 static const struct command_registration arm7_9_any_command_handlers[] = {
2865         {
2866                 "dbgrq",
2867                 .handler = handle_arm7_9_dbgrq_command,
2868                 .mode = COMMAND_ANY,
2869                 .usage = "['enable'|'disable']",
2870                 .help = "use EmbeddedICE dbgrq instead of breakpoint "
2871                         "for target halt requests",
2872         },
2873         {
2874                 "fast_memory_access",
2875                 .handler = handle_arm7_9_fast_memory_access_command,
2876                 .mode = COMMAND_ANY,
2877                 .usage = "['enable'|'disable']",
2878                 .help = "use fast memory accesses instead of slower "
2879                         "but potentially safer accesses",
2880         },
2881         {
2882                 "dcc_downloads",
2883                 .handler = handle_arm7_9_dcc_downloads_command,
2884                 .mode = COMMAND_ANY,
2885                 .usage = "['enable'|'disable']",
2886                 .help = "use DCC downloads for larger memory writes",
2887         },
2888         COMMAND_REGISTRATION_DONE
2889 };
2890 const struct command_registration arm7_9_command_handlers[] = {
2891         {
2892                 .chain = arm_command_handlers,
2893         },
2894         {
2895                 .chain = etm_command_handlers,
2896         },
2897         {
2898                 .name = "arm7_9",
2899                 .mode = COMMAND_ANY,
2900                 .help = "arm7/9 specific commands",
2901                 .usage = "",
2902                 .chain = arm7_9_any_command_handlers,
2903         },
2904         COMMAND_REGISTRATION_DONE
2905 };