ARM: simplify CPSR handling
[fw/openocd] / src / target / arm7_9_common.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2008 by Hongtao Zheng                                   *
12  *   hontor@126.com                                                        *
13  *                                                                         *
14  *   This program is free software; you can redistribute it and/or modify  *
15  *   it under the terms of the GNU General Public License as published by  *
16  *   the Free Software Foundation; either version 2 of the License, or     *
17  *   (at your option) any later version.                                   *
18  *                                                                         *
19  *   This program is distributed in the hope that it will be useful,       *
20  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
21  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
22  *   GNU General Public License for more details.                          *
23  *                                                                         *
24  *   You should have received a copy of the GNU General Public License     *
25  *   along with this program; if not, write to the                         *
26  *   Free Software Foundation, Inc.,                                       *
27  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
28  ***************************************************************************/
29 #ifdef HAVE_CONFIG_H
30 #include "config.h"
31 #endif
32
33 #include "breakpoints.h"
34 #include "embeddedice.h"
35 #include "target_request.h"
36 #include "etm.h"
37 #include "time_support.h"
38 #include "arm_simulator.h"
39 #include "algorithm.h"
40 #include "register.h"
41
42
43 /**
44  * @file
45  * Hold common code supporting the ARM7 and ARM9 core generations.
46  *
47  * While the ARM core implementations evolved substantially during these
48  * two generations, they look quite similar from the JTAG perspective.
49  * Both have similar debug facilities, based on the same two scan chains
50  * providing access to the core and to an EmbeddedICE module.  Both can
51  * support similar ETM and ETB modules, for tracing.  And both expose
52  * what could be viewed as "ARM Classic", with multiple processor modes,
53  * shadowed registers, and support for the Thumb instruction set.
54  *
55  * Processor differences include things like presence or absence of MMU
56  * and cache, pipeline sizes, use of a modified Harvard Architecure
57  * (with separate instruction and data busses from the CPU), support
58  * for cpu clock gating during idle, and more.
59  */
60
61 static int arm7_9_debug_entry(struct target *target);
62
63 /**
64  * Clear watchpoints for an ARM7/9 target.
65  *
66  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
67  * @return JTAG error status after executing queue
68  */
69 static int arm7_9_clear_watchpoints(struct arm7_9_common *arm7_9)
70 {
71         LOG_DEBUG("-");
72         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
73         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
74         arm7_9->sw_breakpoint_count = 0;
75         arm7_9->sw_breakpoints_added = 0;
76         arm7_9->wp0_used = 0;
77         arm7_9->wp1_used = arm7_9->wp1_used_default;
78         arm7_9->wp_available = arm7_9->wp_available_max;
79
80         return jtag_execute_queue();
81 }
82
83 /**
84  * Assign a watchpoint to one of the two available hardware comparators in an
85  * ARM7 or ARM9 target.
86  *
87  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
88  * @param breakpoint Pointer to the breakpoint to be used as a watchpoint
89  */
90 static void arm7_9_assign_wp(struct arm7_9_common *arm7_9, struct breakpoint *breakpoint)
91 {
92         if (!arm7_9->wp0_used)
93         {
94                 arm7_9->wp0_used = 1;
95                 breakpoint->set = 1;
96                 arm7_9->wp_available--;
97         }
98         else if (!arm7_9->wp1_used)
99         {
100                 arm7_9->wp1_used = 1;
101                 breakpoint->set = 2;
102                 arm7_9->wp_available--;
103         }
104         else
105         {
106                 LOG_ERROR("BUG: no hardware comparator available");
107         }
108         LOG_DEBUG("BPID: %d (0x%08" PRIx32 ") using hw wp: %d",
109                           breakpoint->unique_id,
110                           breakpoint->address,
111                           breakpoint->set );
112 }
113
114 /**
115  * Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
116  *
117  * @param arm7_9 Pointer to common struct for ARM7/9 targets
118  * @return Error codes if there is a problem finding a watchpoint or the result
119  *         of executing the JTAG queue
120  */
121 static int arm7_9_set_software_breakpoints(struct arm7_9_common *arm7_9)
122 {
123         if (arm7_9->sw_breakpoints_added)
124         {
125                 return ERROR_OK;
126         }
127         if (arm7_9->wp_available < 1)
128         {
129                 LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
130                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
131         }
132         arm7_9->wp_available--;
133
134         /* pick a breakpoint unit */
135         if (!arm7_9->wp0_used)
136         {
137                 arm7_9->sw_breakpoints_added = 1;
138                 arm7_9->wp0_used = 3;
139         } else if (!arm7_9->wp1_used)
140         {
141                 arm7_9->sw_breakpoints_added = 2;
142                 arm7_9->wp1_used = 3;
143         }
144         else
145         {
146                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
147                 return ERROR_FAIL;
148         }
149
150         if (arm7_9->sw_breakpoints_added == 1)
151         {
152                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], arm7_9->arm_bkpt);
153                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0x0);
154                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffffu);
155                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
156                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
157         }
158         else if (arm7_9->sw_breakpoints_added == 2)
159         {
160                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], arm7_9->arm_bkpt);
161                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0x0);
162                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0xffffffffu);
163                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
164                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
165         }
166         else
167         {
168                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
169                 return ERROR_FAIL;
170         }
171         LOG_DEBUG("SW BP using hw wp: %d",
172                           arm7_9->sw_breakpoints_added );
173
174         return jtag_execute_queue();
175 }
176
177 /**
178  * Setup the common pieces for an ARM7/9 target after reset or on startup.
179  *
180  * @param target Pointer to an ARM7/9 target to setup
181  * @return Result of clearing the watchpoints on the target
182  */
183 int arm7_9_setup(struct target *target)
184 {
185         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
186
187         return arm7_9_clear_watchpoints(arm7_9);
188 }
189
190 /**
191  * Set either a hardware or software breakpoint on an ARM7/9 target.  The
192  * breakpoint is set up even if it is already set.  Some actions, e.g. reset,
193  * might have erased the values in Embedded ICE.
194  *
195  * @param target Pointer to the target device to set the breakpoints on
196  * @param breakpoint Pointer to the breakpoint to be set
197  * @return For hardware breakpoints, this is the result of executing the JTAG
198  *         queue.  For software breakpoints, this will be the status of the
199  *         required memory reads and writes
200  */
201 int arm7_9_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
202 {
203         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
204         int retval = ERROR_OK;
205
206         LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32 ", Type: %d" ,
207                           breakpoint->unique_id,
208                           breakpoint->address,
209                           breakpoint->type);
210
211         if (target->state != TARGET_HALTED)
212         {
213                 LOG_WARNING("target not halted");
214                 return ERROR_TARGET_NOT_HALTED;
215         }
216
217         if (breakpoint->type == BKPT_HARD)
218         {
219                 /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
220                 uint32_t mask = (breakpoint->length == 4) ? 0x3u : 0x1u;
221
222                 /* reassign a hw breakpoint */
223                 if (breakpoint->set == 0)
224                 {
225                         arm7_9_assign_wp(arm7_9, breakpoint);
226                 }
227
228                 if (breakpoint->set == 1)
229                 {
230                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], breakpoint->address);
231                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
232                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffffu);
233                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
234                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
235                 }
236                 else if (breakpoint->set == 2)
237                 {
238                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], breakpoint->address);
239                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
240                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffffu);
241                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
242                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
243                 }
244                 else
245                 {
246                         LOG_ERROR("BUG: no hardware comparator available");
247                         return ERROR_OK;
248                 }
249
250                 retval = jtag_execute_queue();
251         }
252         else if (breakpoint->type == BKPT_SOFT)
253         {
254                 /* did we already set this breakpoint? */
255                 if (breakpoint->set)
256                         return ERROR_OK;
257
258                 if (breakpoint->length == 4)
259                 {
260                         uint32_t verify = 0xffffffff;
261                         /* keep the original instruction in target endianness */
262                         if ((retval = target_read_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
263                         {
264                                 return retval;
265                         }
266                         /* write the breakpoint instruction in target endianness (arm7_9->arm_bkpt is host endian) */
267                         if ((retval = target_write_u32(target, breakpoint->address, arm7_9->arm_bkpt)) != ERROR_OK)
268                         {
269                                 return retval;
270                         }
271
272                         if ((retval = target_read_u32(target, breakpoint->address, &verify)) != ERROR_OK)
273                         {
274                                 return retval;
275                         }
276                         if (verify != arm7_9->arm_bkpt)
277                         {
278                                 LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
279                                 return ERROR_OK;
280                         }
281                 }
282                 else
283                 {
284                         uint16_t verify = 0xffff;
285                         /* keep the original instruction in target endianness */
286                         if ((retval = target_read_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
287                         {
288                                 return retval;
289                         }
290                         /* write the breakpoint instruction in target endianness (arm7_9->thumb_bkpt is host endian) */
291                         if ((retval = target_write_u16(target, breakpoint->address, arm7_9->thumb_bkpt)) != ERROR_OK)
292                         {
293                                 return retval;
294                         }
295
296                         if ((retval = target_read_u16(target, breakpoint->address, &verify)) != ERROR_OK)
297                         {
298                                 return retval;
299                         }
300                         if (verify != arm7_9->thumb_bkpt)
301                         {
302                                 LOG_ERROR("Unable to set thumb software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
303                                 return ERROR_OK;
304                         }
305                 }
306
307                 if ((retval = arm7_9_set_software_breakpoints(arm7_9)) != ERROR_OK)
308                         return retval;
309
310                 arm7_9->sw_breakpoint_count++;
311
312                 breakpoint->set = 1;
313         }
314
315         return retval;
316 }
317
318 /**
319  * Unsets an existing breakpoint on an ARM7/9 target.  If it is a hardware
320  * breakpoint, the watchpoint used will be freed and the Embedded ICE registers
321  * will be updated.  Otherwise, the software breakpoint will be restored to its
322  * original instruction if it hasn't already been modified.
323  *
324  * @param target Pointer to ARM7/9 target to unset the breakpoint from
325  * @param breakpoint Pointer to breakpoint to be unset
326  * @return For hardware breakpoints, this is the result of executing the JTAG
327  *         queue.  For software breakpoints, this will be the status of the
328  *         required memory reads and writes
329  */
330 int arm7_9_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
331 {
332         int retval = ERROR_OK;
333         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
334
335         LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32,
336                           breakpoint->unique_id,
337                           breakpoint->address );
338
339         if (!breakpoint->set)
340         {
341                 LOG_WARNING("breakpoint not set");
342                 return ERROR_OK;
343         }
344
345         if (breakpoint->type == BKPT_HARD)
346         {
347                 LOG_DEBUG("BPID: %d Releasing hw wp: %d",
348                                   breakpoint->unique_id,
349                                   breakpoint->set );
350                 if (breakpoint->set == 1)
351                 {
352                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
353                         arm7_9->wp0_used = 0;
354                         arm7_9->wp_available++;
355                 }
356                 else if (breakpoint->set == 2)
357                 {
358                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
359                         arm7_9->wp1_used = 0;
360                         arm7_9->wp_available++;
361                 }
362                 retval = jtag_execute_queue();
363                 breakpoint->set = 0;
364         }
365         else
366         {
367                 /* restore original instruction (kept in target endianness) */
368                 if (breakpoint->length == 4)
369                 {
370                         uint32_t current_instr;
371                         /* check that user program as not modified breakpoint instruction */
372                         if ((retval = target_read_memory(target, breakpoint->address, 4, 1, (uint8_t*)&current_instr)) != ERROR_OK)
373                         {
374                                 return retval;
375                         }
376                         if (current_instr == arm7_9->arm_bkpt)
377                                 if ((retval = target_write_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
378                                 {
379                                         return retval;
380                                 }
381                 }
382                 else
383                 {
384                         uint16_t current_instr;
385                         /* check that user program as not modified breakpoint instruction */
386                         if ((retval = target_read_memory(target, breakpoint->address, 2, 1, (uint8_t*)&current_instr)) != ERROR_OK)
387                         {
388                                 return retval;
389                         }
390                         if (current_instr == arm7_9->thumb_bkpt)
391                                 if ((retval = target_write_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
392                                 {
393                                         return retval;
394                                 }
395                 }
396
397                 if (--arm7_9->sw_breakpoint_count==0)
398                 {
399                         /* We have removed the last sw breakpoint, clear the hw breakpoint we used to implement it */
400                         if (arm7_9->sw_breakpoints_added == 1)
401                         {
402                                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0);
403                         }
404                         else if (arm7_9->sw_breakpoints_added == 2)
405                         {
406                                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0);
407                         }
408                 }
409
410                 breakpoint->set = 0;
411         }
412
413         return retval;
414 }
415
416 /**
417  * Add a breakpoint to an ARM7/9 target.  This makes sure that there are no
418  * dangling breakpoints and that the desired breakpoint can be added.
419  *
420  * @param target Pointer to the target ARM7/9 device to add a breakpoint to
421  * @param breakpoint Pointer to the breakpoint to be added
422  * @return An error status if there is a problem adding the breakpoint or the
423  *         result of setting the breakpoint
424  */
425 int arm7_9_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
426 {
427         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
428
429         if (target->state != TARGET_HALTED)
430         {
431                 LOG_WARNING("target not halted");
432                 return ERROR_TARGET_NOT_HALTED;
433         }
434
435         if (arm7_9->breakpoint_count == 0)
436         {
437                 /* make sure we don't have any dangling breakpoints. This is vital upon
438                  * GDB connect/disconnect
439                  */
440                 arm7_9_clear_watchpoints(arm7_9);
441         }
442
443         if ((breakpoint->type == BKPT_HARD) && (arm7_9->wp_available < 1))
444         {
445                 LOG_INFO("no watchpoint unit available for hardware breakpoint");
446                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
447         }
448
449         if ((breakpoint->length != 2) && (breakpoint->length != 4))
450         {
451                 LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
452                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
453         }
454
455         if (breakpoint->type == BKPT_HARD)
456         {
457                 arm7_9_assign_wp(arm7_9, breakpoint);
458         }
459
460         arm7_9->breakpoint_count++;
461
462         return arm7_9_set_breakpoint(target, breakpoint);
463 }
464
465 /**
466  * Removes a breakpoint from an ARM7/9 target.  This will make sure there are no
467  * dangling breakpoints and updates available watchpoints if it is a hardware
468  * breakpoint.
469  *
470  * @param target Pointer to the target to have a breakpoint removed
471  * @param breakpoint Pointer to the breakpoint to be removed
472  * @return Error status if there was a problem unsetting the breakpoint or the
473  *         watchpoints could not be cleared
474  */
475 int arm7_9_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
476 {
477         int retval = ERROR_OK;
478         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
479
480         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
481         {
482                 return retval;
483         }
484
485         if (breakpoint->type == BKPT_HARD)
486                 arm7_9->wp_available++;
487
488         arm7_9->breakpoint_count--;
489         if (arm7_9->breakpoint_count == 0)
490         {
491                 /* make sure we don't have any dangling breakpoints */
492                 if ((retval = arm7_9_clear_watchpoints(arm7_9)) != ERROR_OK)
493                 {
494                         return retval;
495                 }
496         }
497
498         return ERROR_OK;
499 }
500
501 /**
502  * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units.  It is
503  * considered a bug to call this function when there are no available watchpoint
504  * units.
505  *
506  * @param target Pointer to an ARM7/9 target to set a watchpoint on
507  * @param watchpoint Pointer to the watchpoint to be set
508  * @return Error status if watchpoint set fails or the result of executing the
509  *         JTAG queue
510  */
511 int arm7_9_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
512 {
513         int retval = ERROR_OK;
514         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
515         int rw_mask = 1;
516         uint32_t mask;
517
518         mask = watchpoint->length - 1;
519
520         if (target->state != TARGET_HALTED)
521         {
522                 LOG_WARNING("target not halted");
523                 return ERROR_TARGET_NOT_HALTED;
524         }
525
526         if (watchpoint->rw == WPT_ACCESS)
527                 rw_mask = 0;
528         else
529                 rw_mask = 1;
530
531         if (!arm7_9->wp0_used)
532         {
533                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], watchpoint->address);
534                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
535                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], watchpoint->mask);
536                 if (watchpoint->mask != 0xffffffffu)
537                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], watchpoint->value);
538                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
539                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
540
541                 if ((retval = jtag_execute_queue()) != ERROR_OK)
542                 {
543                         return retval;
544                 }
545                 watchpoint->set = 1;
546                 arm7_9->wp0_used = 2;
547         }
548         else if (!arm7_9->wp1_used)
549         {
550                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], watchpoint->address);
551                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
552                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], watchpoint->mask);
553                 if (watchpoint->mask != 0xffffffffu)
554                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], watchpoint->value);
555                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
556                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
557
558                 if ((retval = jtag_execute_queue()) != ERROR_OK)
559                 {
560                         return retval;
561                 }
562                 watchpoint->set = 2;
563                 arm7_9->wp1_used = 2;
564         }
565         else
566         {
567                 LOG_ERROR("BUG: no hardware comparator available");
568                 return ERROR_OK;
569         }
570
571         return ERROR_OK;
572 }
573
574 /**
575  * Unset an existing watchpoint and clear the used watchpoint unit.
576  *
577  * @param target Pointer to the target to have the watchpoint removed
578  * @param watchpoint Pointer to the watchpoint to be removed
579  * @return Error status while trying to unset the watchpoint or the result of
580  *         executing the JTAG queue
581  */
582 int arm7_9_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
583 {
584         int retval = ERROR_OK;
585         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
586
587         if (target->state != TARGET_HALTED)
588         {
589                 LOG_WARNING("target not halted");
590                 return ERROR_TARGET_NOT_HALTED;
591         }
592
593         if (!watchpoint->set)
594         {
595                 LOG_WARNING("breakpoint not set");
596                 return ERROR_OK;
597         }
598
599         if (watchpoint->set == 1)
600         {
601                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
602                 if ((retval = jtag_execute_queue()) != ERROR_OK)
603                 {
604                         return retval;
605                 }
606                 arm7_9->wp0_used = 0;
607         }
608         else if (watchpoint->set == 2)
609         {
610                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
611                 if ((retval = jtag_execute_queue()) != ERROR_OK)
612                 {
613                         return retval;
614                 }
615                 arm7_9->wp1_used = 0;
616         }
617         watchpoint->set = 0;
618
619         return ERROR_OK;
620 }
621
622 /**
623  * Add a watchpoint to an ARM7/9 target.  If there are no watchpoint units
624  * available, an error response is returned.
625  *
626  * @param target Pointer to the ARM7/9 target to add a watchpoint to
627  * @param watchpoint Pointer to the watchpoint to be added
628  * @return Error status while trying to add the watchpoint
629  */
630 int arm7_9_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
631 {
632         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
633
634         if (target->state != TARGET_HALTED)
635         {
636                 LOG_WARNING("target not halted");
637                 return ERROR_TARGET_NOT_HALTED;
638         }
639
640         if (arm7_9->wp_available < 1)
641         {
642                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
643         }
644
645         if ((watchpoint->length != 1) && (watchpoint->length != 2) && (watchpoint->length != 4))
646         {
647                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
648         }
649
650         arm7_9->wp_available--;
651
652         return ERROR_OK;
653 }
654
655 /**
656  * Remove a watchpoint from an ARM7/9 target.  The watchpoint will be unset and
657  * the used watchpoint unit will be reopened.
658  *
659  * @param target Pointer to the target to remove a watchpoint from
660  * @param watchpoint Pointer to the watchpoint to be removed
661  * @return Result of trying to unset the watchpoint
662  */
663 int arm7_9_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
664 {
665         int retval = ERROR_OK;
666         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
667
668         if (watchpoint->set)
669         {
670                 if ((retval = arm7_9_unset_watchpoint(target, watchpoint)) != ERROR_OK)
671                 {
672                         return retval;
673                 }
674         }
675
676         arm7_9->wp_available++;
677
678         return ERROR_OK;
679 }
680
681 /**
682  * Restarts the target by sending a RESTART instruction and moving the JTAG
683  * state to IDLE.  This includes a timeout waiting for DBGACK and SYSCOMP to be
684  * asserted by the processor.
685  *
686  * @param target Pointer to target to issue commands to
687  * @return Error status if there is a timeout or a problem while executing the
688  *         JTAG queue
689  */
690 int arm7_9_execute_sys_speed(struct target *target)
691 {
692         int retval;
693         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
694         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
695         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
696
697         /* set RESTART instruction */
698         jtag_set_end_state(TAP_IDLE);
699         if (arm7_9->need_bypass_before_restart) {
700                 arm7_9->need_bypass_before_restart = 0;
701                 arm_jtag_set_instr(jtag_info, 0xf, NULL);
702         }
703         arm_jtag_set_instr(jtag_info, 0x4, NULL);
704
705         long long then = timeval_ms();
706         int timeout;
707         while (!(timeout = ((timeval_ms()-then) > 1000)))
708         {
709                 /* read debug status register */
710                 embeddedice_read_reg(dbg_stat);
711                 if ((retval = jtag_execute_queue()) != ERROR_OK)
712                         return retval;
713                 if ((buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
714                                    && (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_SYSCOMP, 1)))
715                         break;
716                 if (debug_level >= 3)
717                 {
718                         alive_sleep(100);
719                 } else
720                 {
721                         keep_alive();
722                 }
723         }
724         if (timeout)
725         {
726                 LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32 "", buf_get_u32(dbg_stat->value, 0, dbg_stat->size));
727                 return ERROR_TARGET_TIMEOUT;
728         }
729
730         return ERROR_OK;
731 }
732
733 /**
734  * Restarts the target by sending a RESTART instruction and moving the JTAG
735  * state to IDLE.  This validates that DBGACK and SYSCOMP are set without
736  * waiting until they are.
737  *
738  * @param target Pointer to the target to issue commands to
739  * @return Always ERROR_OK
740  */
741 int arm7_9_execute_fast_sys_speed(struct target *target)
742 {
743         static int set = 0;
744         static uint8_t check_value[4], check_mask[4];
745
746         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
747         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
748         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
749
750         /* set RESTART instruction */
751         jtag_set_end_state(TAP_IDLE);
752         if (arm7_9->need_bypass_before_restart) {
753                 arm7_9->need_bypass_before_restart = 0;
754                 arm_jtag_set_instr(jtag_info, 0xf, NULL);
755         }
756         arm_jtag_set_instr(jtag_info, 0x4, NULL);
757
758         if (!set)
759         {
760                 /* check for DBGACK and SYSCOMP set (others don't care) */
761
762                 /* NB! These are constants that must be available until after next jtag_execute() and
763                  * we evaluate the values upon first execution in lieu of setting up these constants
764                  * during early setup.
765                  * */
766                 buf_set_u32(check_value, 0, 32, 0x9);
767                 buf_set_u32(check_mask, 0, 32, 0x9);
768                 set = 1;
769         }
770
771         /* read debug status register */
772         embeddedice_read_reg_w_check(dbg_stat, check_value, check_mask);
773
774         return ERROR_OK;
775 }
776
777 /**
778  * Get some data from the ARM7/9 target.
779  *
780  * @param target Pointer to the ARM7/9 target to read data from
781  * @param size The number of 32bit words to be read
782  * @param buffer Pointer to the buffer that will hold the data
783  * @return The result of receiving data from the Embedded ICE unit
784  */
785 int arm7_9_target_request_data(struct target *target, uint32_t size, uint8_t *buffer)
786 {
787         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
788         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
789         uint32_t *data;
790         int retval = ERROR_OK;
791         uint32_t i;
792
793         data = malloc(size * (sizeof(uint32_t)));
794
795         retval = embeddedice_receive(jtag_info, data, size);
796
797         /* return the 32-bit ints in the 8-bit array */
798         for (i = 0; i < size; i++)
799         {
800                 h_u32_to_le(buffer + (i * 4), data[i]);
801         }
802
803         free(data);
804
805         return retval;
806 }
807
808 /**
809  * Handles requests to an ARM7/9 target.  If debug messaging is enabled, the
810  * target is running and the DCC control register has the W bit high, this will
811  * execute the request on the target.
812  *
813  * @param priv Void pointer expected to be a struct target pointer
814  * @return ERROR_OK unless there are issues with the JTAG queue or when reading
815  *                  from the Embedded ICE unit
816  */
817 int arm7_9_handle_target_request(void *priv)
818 {
819         int retval = ERROR_OK;
820         struct target *target = priv;
821         if (!target_was_examined(target))
822                 return ERROR_OK;
823         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
824         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
825         struct reg *dcc_control = &arm7_9->eice_cache->reg_list[EICE_COMMS_CTRL];
826
827         if (!target->dbg_msg_enabled)
828                 return ERROR_OK;
829
830         if (target->state == TARGET_RUNNING)
831         {
832                 /* read DCC control register */
833                 embeddedice_read_reg(dcc_control);
834                 if ((retval = jtag_execute_queue()) != ERROR_OK)
835                 {
836                         return retval;
837                 }
838
839                 /* check W bit */
840                 if (buf_get_u32(dcc_control->value, 1, 1) == 1)
841                 {
842                         uint32_t request;
843
844                         if ((retval = embeddedice_receive(jtag_info, &request, 1)) != ERROR_OK)
845                         {
846                                 return retval;
847                         }
848                         if ((retval = target_request(target, request)) != ERROR_OK)
849                         {
850                                 return retval;
851                         }
852                 }
853         }
854
855         return ERROR_OK;
856 }
857
858 /**
859  * Polls an ARM7/9 target for its current status.  If DBGACK is set, the target
860  * is manipulated to the right halted state based on its current state.  This is
861  * what happens:
862  *
863  * <table>
864  *              <tr><th > State</th><th > Action</th></tr>
865  *              <tr><td > TARGET_RUNNING | TARGET_RESET</td><td > Enters debug mode.  If TARGET_RESET, pc may be checked</td></tr>
866  *              <tr><td > TARGET_UNKNOWN</td><td > Warning is logged</td></tr>
867  *              <tr><td > TARGET_DEBUG_RUNNING</td><td > Enters debug mode</td></tr>
868  *              <tr><td > TARGET_HALTED</td><td > Nothing</td></tr>
869  * </table>
870  *
871  * If the target does not end up in the halted state, a warning is produced.  If
872  * DBGACK is cleared, then the target is expected to either be running or
873  * running in debug.
874  *
875  * @param target Pointer to the ARM7/9 target to poll
876  * @return ERROR_OK or an error status if a command fails
877  */
878 int arm7_9_poll(struct target *target)
879 {
880         int retval;
881         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
882         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
883
884         /* read debug status register */
885         embeddedice_read_reg(dbg_stat);
886         if ((retval = jtag_execute_queue()) != ERROR_OK)
887         {
888                 return retval;
889         }
890
891         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
892         {
893 /*              LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, 32));*/
894                 if (target->state == TARGET_UNKNOWN)
895                 {
896                         /* Starting OpenOCD with target in debug-halt */
897                         target->state = TARGET_RUNNING;
898                         LOG_DEBUG("DBGACK already set during server startup.");
899                 }
900                 if ((target->state == TARGET_RUNNING) || (target->state == TARGET_RESET))
901                 {
902                         int check_pc = 0;
903                         if (target->state == TARGET_RESET)
904                         {
905                                 if (target->reset_halt)
906                                 {
907                                         enum reset_types jtag_reset_config = jtag_get_reset_config();
908                                         if ((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0)
909                                         {
910                                                 check_pc = 1;
911                                         }
912                                 }
913                         }
914
915                         target->state = TARGET_HALTED;
916
917                         if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
918                                 return retval;
919
920                         if (check_pc)
921                         {
922                                 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
923                                 uint32_t t=*((uint32_t *)reg->value);
924                                 if (t != 0)
925                                 {
926                                         LOG_ERROR("PC was not 0. Does this target need srst_pulls_trst?");
927                                 }
928                         }
929
930                         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
931                         {
932                                 return retval;
933                         }
934                 }
935                 if (target->state == TARGET_DEBUG_RUNNING)
936                 {
937                         target->state = TARGET_HALTED;
938                         if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
939                                 return retval;
940
941                         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED)) != ERROR_OK)
942                         {
943                                 return retval;
944                         }
945                 }
946                 if (target->state != TARGET_HALTED)
947                 {
948                         LOG_WARNING("DBGACK set, but the target did not end up in the halted state %d", target->state);
949                 }
950         }
951         else
952         {
953                 if (target->state != TARGET_DEBUG_RUNNING)
954                         target->state = TARGET_RUNNING;
955         }
956
957         return ERROR_OK;
958 }
959
960 /**
961  * Asserts the reset (SRST) on an ARM7/9 target.  Some -S targets (ARM966E-S in
962  * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
963  * affected) completely stop the JTAG clock while the core is held in reset
964  * (SRST).  It isn't possible to program the halt condition once reset is
965  * asserted, hence a hook that allows the target to set up its reset-halt
966  * condition is setup prior to asserting reset.
967  *
968  * @param target Pointer to an ARM7/9 target to assert reset on
969  * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
970  */
971 int arm7_9_assert_reset(struct target *target)
972 {
973         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
974
975         LOG_DEBUG("target->state: %s",
976                   target_state_name(target));
977
978         enum reset_types jtag_reset_config = jtag_get_reset_config();
979         if (!(jtag_reset_config & RESET_HAS_SRST))
980         {
981                 LOG_ERROR("Can't assert SRST");
982                 return ERROR_FAIL;
983         }
984
985         /* At this point trst has been asserted/deasserted once. We would
986          * like to program EmbeddedICE while SRST is asserted, instead of
987          * depending on SRST to leave that module alone.  However, many CPUs
988          * gate the JTAG clock while SRST is asserted; or JTAG may need
989          * clock stability guarantees (adaptive clocking might help).
990          *
991          * So we assume JTAG access during SRST is off the menu unless it's
992          * been specifically enabled.
993          */
994         bool srst_asserted = false;
995
996         if (((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0)
997                         && (jtag_reset_config & RESET_SRST_NO_GATING))
998         {
999                 jtag_add_reset(0, 1);
1000                 srst_asserted = true;
1001         }
1002
1003         if (target->reset_halt)
1004         {
1005                 /*
1006                  * Some targets do not support communication while SRST is asserted. We need to
1007                  * set up the reset vector catch here.
1008                  *
1009                  * If TRST is asserted, then these settings will be reset anyway, so setting them
1010                  * here is harmless.
1011                  */
1012                 if (arm7_9->has_vector_catch)
1013                 {
1014                         /* program vector catch register to catch reset vector */
1015                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH], 0x1);
1016
1017                         /* extra runtest added as issues were found with certain ARM9 cores (maybe more) - AT91SAM9260 and STR9 */
1018                         jtag_add_runtest(1, jtag_get_end_state());
1019                 }
1020                 else
1021                 {
1022                         /* program watchpoint unit to match on reset vector address */
1023                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], 0x0);
1024                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0x3);
1025                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1026                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1027                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1028                 }
1029         }
1030
1031         /* here we should issue an SRST only, but we may have to assert TRST as well */
1032         if (jtag_reset_config & RESET_SRST_PULLS_TRST)
1033         {
1034                 jtag_add_reset(1, 1);
1035         } else if (!srst_asserted)
1036         {
1037                 jtag_add_reset(0, 1);
1038         }
1039
1040         target->state = TARGET_RESET;
1041         jtag_add_sleep(50000);
1042
1043         register_cache_invalidate(arm7_9->armv4_5_common.core_cache);
1044
1045         if ((target->reset_halt) && ((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0))
1046         {
1047                 /* debug entry was already prepared in arm7_9_assert_reset() */
1048                 target->debug_reason = DBG_REASON_DBGRQ;
1049         }
1050
1051         return ERROR_OK;
1052 }
1053
1054 /**
1055  * Deassert the reset (SRST) signal on an ARM7/9 target.  If SRST pulls TRST
1056  * and the target is being reset into a halt, a warning will be triggered
1057  * because it is not possible to reset into a halted mode in this case.  The
1058  * target is halted using the target's functions.
1059  *
1060  * @param target Pointer to the target to have the reset deasserted
1061  * @return ERROR_OK or an error from polling or halting the target
1062  */
1063 int arm7_9_deassert_reset(struct target *target)
1064 {
1065         int retval = ERROR_OK;
1066         LOG_DEBUG("target->state: %s",
1067                 target_state_name(target));
1068
1069         /* deassert reset lines */
1070         jtag_add_reset(0, 0);
1071
1072         enum reset_types jtag_reset_config = jtag_get_reset_config();
1073         if (target->reset_halt && (jtag_reset_config & RESET_SRST_PULLS_TRST) != 0)
1074         {
1075                 LOG_WARNING("srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
1076                 /* set up embedded ice registers again */
1077                 if ((retval = target_examine_one(target)) != ERROR_OK)
1078                         return retval;
1079
1080                 if ((retval = target_poll(target)) != ERROR_OK)
1081                 {
1082                         return retval;
1083                 }
1084
1085                 if ((retval = target_halt(target)) != ERROR_OK)
1086                 {
1087                         return retval;
1088                 }
1089
1090         }
1091         return retval;
1092 }
1093
1094 /**
1095  * Clears the halt condition for an ARM7/9 target.  If it isn't coming out of
1096  * reset and if DBGRQ is used, it is progammed to be deasserted.  If the reset
1097  * vector catch was used, it is restored.  Otherwise, the control value is
1098  * restored and the watchpoint unit is restored if it was in use.
1099  *
1100  * @param target Pointer to the ARM7/9 target to have halt cleared
1101  * @return Always ERROR_OK
1102  */
1103 int arm7_9_clear_halt(struct target *target)
1104 {
1105         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1106         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1107
1108         /* we used DBGRQ only if we didn't come out of reset */
1109         if (!arm7_9->debug_entry_from_reset && arm7_9->use_dbgrq)
1110         {
1111                 /* program EmbeddedICE Debug Control Register to deassert DBGRQ
1112                  */
1113                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1114                 embeddedice_store_reg(dbg_ctrl);
1115         }
1116         else
1117         {
1118                 if (arm7_9->debug_entry_from_reset && arm7_9->has_vector_catch)
1119                 {
1120                         /* if we came out of reset, and vector catch is supported, we used
1121                          * vector catch to enter debug state
1122                          * restore the register in that case
1123                          */
1124                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH]);
1125                 }
1126                 else
1127                 {
1128                         /* restore registers if watchpoint unit 0 was in use
1129                          */
1130                         if (arm7_9->wp0_used)
1131                         {
1132                                 if (arm7_9->debug_entry_from_reset)
1133                                 {
1134                                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE]);
1135                                 }
1136                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1137                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1138                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1139                         }
1140                         /* control value always has to be restored, as it was either disabled,
1141                          * or enabled with possibly different bits
1142                          */
1143                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1144                 }
1145         }
1146
1147         return ERROR_OK;
1148 }
1149
1150 /**
1151  * Issue a software reset and halt to an ARM7/9 target.  The target is halted
1152  * and then there is a wait until the processor shows the halt.  This wait can
1153  * timeout and results in an error being returned.  The software reset involves
1154  * clearing the halt, updating the debug control register, changing to ARM mode,
1155  * reset of the program counter, and reset of all of the registers.
1156  *
1157  * @param target Pointer to the ARM7/9 target to be reset and halted by software
1158  * @return Error status if any of the commands fail, otherwise ERROR_OK
1159  */
1160 int arm7_9_soft_reset_halt(struct target *target)
1161 {
1162         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1163         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1164         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1165         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1166         int i;
1167         int retval;
1168
1169         /* FIX!!! replace some of this code with tcl commands
1170          *
1171          * halt # the halt command is synchronous
1172          * armv4_5 core_state arm
1173          *
1174          */
1175
1176         if ((retval = target_halt(target)) != ERROR_OK)
1177                 return retval;
1178
1179         long long then = timeval_ms();
1180         int timeout;
1181         while (!(timeout = ((timeval_ms()-then) > 1000)))
1182         {
1183                 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) != 0)
1184                         break;
1185                 embeddedice_read_reg(dbg_stat);
1186                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1187                         return retval;
1188                 if (debug_level >= 3)
1189                 {
1190                         alive_sleep(100);
1191                 } else
1192                 {
1193                         keep_alive();
1194                 }
1195         }
1196         if (timeout)
1197         {
1198                 LOG_ERROR("Failed to halt CPU after 1 sec");
1199                 return ERROR_TARGET_TIMEOUT;
1200         }
1201         target->state = TARGET_HALTED;
1202
1203         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1204          * ensure that DBGRQ is cleared
1205          */
1206         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1207         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1208         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1209         embeddedice_store_reg(dbg_ctrl);
1210
1211         if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1212         {
1213                 return retval;
1214         }
1215
1216         /* if the target is in Thumb state, change to ARM state */
1217         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1218         {
1219                 uint32_t r0_thumb, pc_thumb;
1220                 LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
1221                 /* Entered debug from Thumb mode */
1222                 armv4_5->core_state = ARMV4_5_STATE_THUMB;
1223                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1224         }
1225
1226         /* all register content is now invalid */
1227         register_cache_invalidate(armv4_5->core_cache);
1228
1229         /* SVC, ARM state, IRQ and FIQ disabled */
1230         buf_set_u32(armv4_5->cpsr->value, 0, 8, 0xd3);
1231         armv4_5->cpsr->dirty = 1;
1232         armv4_5->cpsr->valid = 1;
1233
1234         /* start fetching from 0x0 */
1235         buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, 0x0);
1236         armv4_5->core_cache->reg_list[15].dirty = 1;
1237         armv4_5->core_cache->reg_list[15].valid = 1;
1238
1239         armv4_5->core_mode = ARMV4_5_MODE_SVC;
1240         armv4_5->core_state = ARMV4_5_STATE_ARM;
1241
1242         /* reset registers */
1243         for (i = 0; i <= 14; i++)
1244         {
1245                 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).value, 0, 32, 0xffffffff);
1246                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = 1;
1247                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid = 1;
1248         }
1249
1250         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
1251         {
1252                 return retval;
1253         }
1254
1255         return ERROR_OK;
1256 }
1257
1258 /**
1259  * Halt an ARM7/9 target.  This is accomplished by either asserting the DBGRQ
1260  * line or by programming a watchpoint to trigger on any address.  It is
1261  * considered a bug to call this function while the target is in the
1262  * TARGET_RESET state.
1263  *
1264  * @param target Pointer to the ARM7/9 target to be halted
1265  * @return Always ERROR_OK
1266  */
1267 int arm7_9_halt(struct target *target)
1268 {
1269         if (target->state == TARGET_RESET)
1270         {
1271                 LOG_ERROR("BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
1272                 return ERROR_OK;
1273         }
1274
1275         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1276         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1277
1278         LOG_DEBUG("target->state: %s",
1279                   target_state_name(target));
1280
1281         if (target->state == TARGET_HALTED)
1282         {
1283                 LOG_DEBUG("target was already halted");
1284                 return ERROR_OK;
1285         }
1286
1287         if (target->state == TARGET_UNKNOWN)
1288         {
1289                 LOG_WARNING("target was in unknown state when halt was requested");
1290         }
1291
1292         if (arm7_9->use_dbgrq)
1293         {
1294                 /* program EmbeddedICE Debug Control Register to assert DBGRQ
1295                  */
1296                 if (arm7_9->set_special_dbgrq) {
1297                         arm7_9->set_special_dbgrq(target);
1298                 } else {
1299                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 1);
1300                         embeddedice_store_reg(dbg_ctrl);
1301                 }
1302         }
1303         else
1304         {
1305                 /* program watchpoint unit to match on any address
1306                  */
1307                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1308                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1309                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1310                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1311         }
1312
1313         target->debug_reason = DBG_REASON_DBGRQ;
1314
1315         return ERROR_OK;
1316 }
1317
1318 /**
1319  * Handle an ARM7/9 target's entry into debug mode.  The halt is cleared on the
1320  * ARM.  The JTAG queue is then executed and the reason for debug entry is
1321  * examined.  Once done, the target is verified to be halted and the processor
1322  * is forced into ARM mode.  The core registers are saved for the current core
1323  * mode and the program counter (register 15) is updated as needed.  The core
1324  * registers and CPSR and SPSR are saved for restoration later.
1325  *
1326  * @param target Pointer to target that is entering debug mode
1327  * @return Error code if anything fails, otherwise ERROR_OK
1328  */
1329 static int arm7_9_debug_entry(struct target *target)
1330 {
1331         int i;
1332         uint32_t context[16];
1333         uint32_t* context_p[16];
1334         uint32_t r0_thumb, pc_thumb;
1335         uint32_t cpsr;
1336         int retval;
1337         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1338         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1339         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1340         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1341
1342 #ifdef _DEBUG_ARM7_9_
1343         LOG_DEBUG("-");
1344 #endif
1345
1346         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1347          * ensure that DBGRQ is cleared
1348          */
1349         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1350         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1351         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1352         embeddedice_store_reg(dbg_ctrl);
1353
1354         if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1355         {
1356                 return retval;
1357         }
1358
1359         if ((retval = jtag_execute_queue()) != ERROR_OK)
1360         {
1361                 return retval;
1362         }
1363
1364         if ((retval = arm7_9->examine_debug_reason(target)) != ERROR_OK)
1365                 return retval;
1366
1367
1368         if (target->state != TARGET_HALTED)
1369         {
1370                 LOG_WARNING("target not halted");
1371                 return ERROR_TARGET_NOT_HALTED;
1372         }
1373
1374         /* if the target is in Thumb state, change to ARM state */
1375         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1376         {
1377                 LOG_DEBUG("target entered debug from Thumb state");
1378                 /* Entered debug from Thumb mode */
1379                 armv4_5->core_state = ARMV4_5_STATE_THUMB;
1380                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1381                 LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32 ", pc_thumb: 0x%8.8" PRIx32 "", r0_thumb, pc_thumb);
1382         }
1383         else
1384         {
1385                 LOG_DEBUG("target entered debug from ARM state");
1386                 /* Entered debug from ARM mode */
1387                 armv4_5->core_state = ARMV4_5_STATE_ARM;
1388         }
1389
1390         for (i = 0; i < 16; i++)
1391                 context_p[i] = &context[i];
1392         /* save core registers (r0 - r15 of current core mode) */
1393         arm7_9->read_core_regs(target, 0xffff, context_p);
1394
1395         arm7_9->read_xpsr(target, &cpsr, 0);
1396
1397         if ((retval = jtag_execute_queue()) != ERROR_OK)
1398                 return retval;
1399
1400         /* if the core has been executing in Thumb state, set the T bit */
1401         if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1402                 cpsr |= 0x20;
1403
1404         buf_set_u32(armv4_5->cpsr->value, 0, 32, cpsr);
1405         armv4_5->cpsr->dirty = 0;
1406         armv4_5->cpsr->valid = 1;
1407
1408         armv4_5->core_mode = cpsr & 0x1f;
1409
1410         if (!is_arm_mode(armv4_5->core_mode))
1411         {
1412                 target->state = TARGET_UNKNOWN;
1413                 LOG_ERROR("cpsr contains invalid mode value - communication failure");
1414                 return ERROR_TARGET_FAILURE;
1415         }
1416
1417         LOG_DEBUG("target entered debug state in %s mode",
1418                          arm_mode_name(armv4_5->core_mode));
1419
1420         if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1421         {
1422                 LOG_DEBUG("thumb state, applying fixups");
1423                 context[0] = r0_thumb;
1424                 context[15] = pc_thumb;
1425         } else if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1426         {
1427                 /* adjust value stored by STM */
1428                 context[15] -= 3 * 4;
1429         }
1430
1431         if ((target->debug_reason != DBG_REASON_DBGRQ) || (!arm7_9->use_dbgrq))
1432                 context[15] -= 3 * ((armv4_5->core_state == ARMV4_5_STATE_ARM) ? 4 : 2);
1433         else
1434                 context[15] -= arm7_9->dbgreq_adjust_pc * ((armv4_5->core_state == ARMV4_5_STATE_ARM) ? 4 : 2);
1435
1436         for (i = 0; i <= 15; i++)
1437         {
1438                 LOG_DEBUG("r%i: 0x%8.8" PRIx32 "", i, context[i]);
1439                 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).value, 0, 32, context[i]);
1440                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = 0;
1441                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid = 1;
1442         }
1443
1444         LOG_DEBUG("entered debug state at PC 0x%" PRIx32 "", context[15]);
1445
1446         /* exceptions other than USR & SYS have a saved program status register */
1447         if ((armv4_5->core_mode != ARMV4_5_MODE_USR) && (armv4_5->core_mode != ARMV4_5_MODE_SYS))
1448         {
1449                 uint32_t spsr;
1450                 arm7_9->read_xpsr(target, &spsr, 1);
1451                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1452                 {
1453                         return retval;
1454                 }
1455                 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).value, 0, 32, spsr);
1456                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).dirty = 0;
1457                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).valid = 1;
1458         }
1459
1460         /* r0 and r15 (pc) have to be restored later */
1461         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).valid;
1462         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).valid;
1463
1464         if ((retval = jtag_execute_queue()) != ERROR_OK)
1465                 return retval;
1466
1467         if (arm7_9->post_debug_entry)
1468                 arm7_9->post_debug_entry(target);
1469
1470         return ERROR_OK;
1471 }
1472
1473 /**
1474  * Validate the full context for an ARM7/9 target in all processor modes.  If
1475  * there are any invalid registers for the target, they will all be read.  This
1476  * includes the PSR.
1477  *
1478  * @param target Pointer to the ARM7/9 target to capture the full context from
1479  * @return Error if the target is not halted, has an invalid core mode, or if
1480  *         the JTAG queue fails to execute
1481  */
1482 int arm7_9_full_context(struct target *target)
1483 {
1484         int i;
1485         int retval;
1486         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1487         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1488
1489         LOG_DEBUG("-");
1490
1491         if (target->state != TARGET_HALTED)
1492         {
1493                 LOG_WARNING("target not halted");
1494                 return ERROR_TARGET_NOT_HALTED;
1495         }
1496
1497         if (!is_arm_mode(armv4_5->core_mode))
1498                 return ERROR_FAIL;
1499
1500         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1501          * SYS shares registers with User, so we don't touch SYS
1502          */
1503         for (i = 0; i < 6; i++)
1504         {
1505                 uint32_t mask = 0;
1506                 uint32_t* reg_p[16];
1507                 int j;
1508                 int valid = 1;
1509
1510                 /* check if there are invalid registers in the current mode
1511                  */
1512                 for (j = 0; j <= 16; j++)
1513                 {
1514                         if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1515                                 valid = 0;
1516                 }
1517
1518                 if (!valid)
1519                 {
1520                         uint32_t tmp_cpsr;
1521
1522                         /* change processor mode (and mask T bit) */
1523                         tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8)
1524                                         & 0xe0;
1525                         tmp_cpsr |= armv4_5_number_to_mode(i);
1526                         tmp_cpsr &= ~0x20;
1527                         arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1528
1529                         for (j = 0; j < 15; j++)
1530                         {
1531                                 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1532                                 {
1533                                         reg_p[j] = (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).value;
1534                                         mask |= 1 << j;
1535                                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid = 1;
1536                                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).dirty = 0;
1537                                 }
1538                         }
1539
1540                         /* if only the PSR is invalid, mask is all zeroes */
1541                         if (mask)
1542                                 arm7_9->read_core_regs(target, mask, reg_p);
1543
1544                         /* check if the PSR has to be read */
1545                         if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid == 0)
1546                         {
1547                                 arm7_9->read_xpsr(target, (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).value, 1);
1548                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid = 1;
1549                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).dirty = 0;
1550                         }
1551                 }
1552         }
1553
1554         /* restore processor mode (mask T bit) */
1555         arm7_9->write_xpsr_im8(target,
1556                         buf_get_u32(armv4_5->cpsr->value, 0, 8) & ~0x20,
1557                         0, 0);
1558
1559         if ((retval = jtag_execute_queue()) != ERROR_OK)
1560         {
1561                 return retval;
1562         }
1563         return ERROR_OK;
1564 }
1565
1566 /**
1567  * Restore the processor context on an ARM7/9 target.  The full processor
1568  * context is analyzed to see if any of the registers are dirty on this end, but
1569  * have a valid new value.  If this is the case, the processor is changed to the
1570  * appropriate mode and the new register values are written out to the
1571  * processor.  If there happens to be a dirty register with an invalid value, an
1572  * error will be logged.
1573  *
1574  * @param target Pointer to the ARM7/9 target to have its context restored
1575  * @return Error status if the target is not halted or the core mode in the
1576  *         armv4_5 struct is invalid.
1577  */
1578 int arm7_9_restore_context(struct target *target)
1579 {
1580         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1581         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1582         struct reg *reg;
1583         struct arm_reg *reg_arch_info;
1584         enum armv4_5_mode current_mode = armv4_5->core_mode;
1585         int i, j;
1586         int dirty;
1587         int mode_change;
1588
1589         LOG_DEBUG("-");
1590
1591         if (target->state != TARGET_HALTED)
1592         {
1593                 LOG_WARNING("target not halted");
1594                 return ERROR_TARGET_NOT_HALTED;
1595         }
1596
1597         if (arm7_9->pre_restore_context)
1598                 arm7_9->pre_restore_context(target);
1599
1600         if (!is_arm_mode(armv4_5->core_mode))
1601                 return ERROR_FAIL;
1602
1603         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1604          * SYS shares registers with User, so we don't touch SYS
1605          */
1606         for (i = 0; i < 6; i++)
1607         {
1608                 LOG_DEBUG("examining %s mode",
1609                                 arm_mode_name(armv4_5->core_mode));
1610                 dirty = 0;
1611                 mode_change = 0;
1612                 /* check if there are dirty registers in the current mode
1613                 */
1614                 for (j = 0; j <= 16; j++)
1615                 {
1616                         reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1617                         reg_arch_info = reg->arch_info;
1618                         if (reg->dirty == 1)
1619                         {
1620                                 if (reg->valid == 1)
1621                                 {
1622                                         dirty = 1;
1623                                         LOG_DEBUG("examining dirty reg: %s", reg->name);
1624                                         if ((reg_arch_info->mode != ARMV4_5_MODE_ANY)
1625                                                 && (reg_arch_info->mode != current_mode)
1626                                                 && !((reg_arch_info->mode == ARMV4_5_MODE_USR) && (armv4_5->core_mode == ARMV4_5_MODE_SYS))
1627                                                 && !((reg_arch_info->mode == ARMV4_5_MODE_SYS) && (armv4_5->core_mode == ARMV4_5_MODE_USR)))
1628                                         {
1629                                                 mode_change = 1;
1630                                                 LOG_DEBUG("require mode change");
1631                                         }
1632                                 }
1633                                 else
1634                                 {
1635                                         LOG_ERROR("BUG: dirty register '%s', but no valid data", reg->name);
1636                                 }
1637                         }
1638                 }
1639
1640                 if (dirty)
1641                 {
1642                         uint32_t mask = 0x0;
1643                         int num_regs = 0;
1644                         uint32_t regs[16];
1645
1646                         if (mode_change)
1647                         {
1648                                 uint32_t tmp_cpsr;
1649
1650                                 /* change processor mode (mask T bit) */
1651                                 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value,
1652                                                 0, 8) & 0xe0;
1653                                 tmp_cpsr |= armv4_5_number_to_mode(i);
1654                                 tmp_cpsr &= ~0x20;
1655                                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1656                                 current_mode = armv4_5_number_to_mode(i);
1657                         }
1658
1659                         for (j = 0; j <= 14; j++)
1660                         {
1661                                 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1662                                 reg_arch_info = reg->arch_info;
1663
1664
1665                                 if (reg->dirty == 1)
1666                                 {
1667                                         regs[j] = buf_get_u32(reg->value, 0, 32);
1668                                         mask |= 1 << j;
1669                                         num_regs++;
1670                                         reg->dirty = 0;
1671                                         reg->valid = 1;
1672                                         LOG_DEBUG("writing register %i mode %s "
1673                                                 "with value 0x%8.8" PRIx32, j,
1674                                                 arm_mode_name(armv4_5->core_mode),
1675                                                 regs[j]);
1676                                 }
1677                         }
1678
1679                         if (mask)
1680                         {
1681                                 arm7_9->write_core_regs(target, mask, regs);
1682                         }
1683
1684                         reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16);
1685                         reg_arch_info = reg->arch_info;
1686                         if ((reg->dirty) && (reg_arch_info->mode != ARMV4_5_MODE_ANY))
1687                         {
1688                                 LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32 "", i, buf_get_u32(reg->value, 0, 32));
1689                                 arm7_9->write_xpsr(target, buf_get_u32(reg->value, 0, 32), 1);
1690                         }
1691                 }
1692         }
1693
1694         if (!armv4_5->cpsr->dirty && (armv4_5->core_mode != current_mode))
1695         {
1696                 /* restore processor mode (mask T bit) */
1697                 uint32_t tmp_cpsr;
1698
1699                 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
1700                 tmp_cpsr |= armv4_5_number_to_mode(i);
1701                 tmp_cpsr &= ~0x20;
1702                 LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr));
1703                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1704         }
1705         else if (armv4_5->cpsr->dirty)
1706         {
1707                 /* CPSR has been changed, full restore necessary (mask T bit) */
1708                 LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32,
1709                                 buf_get_u32(armv4_5->cpsr->value, 0, 32));
1710                 arm7_9->write_xpsr(target,
1711                                 buf_get_u32(armv4_5->cpsr->value, 0, 32)
1712                                         & ~0x20, 0);
1713                 armv4_5->cpsr->dirty = 0;
1714                 armv4_5->cpsr->valid = 1;
1715         }
1716
1717         /* restore PC */
1718         LOG_DEBUG("writing PC with value 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1719         arm7_9->write_pc(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1720         armv4_5->core_cache->reg_list[15].dirty = 0;
1721
1722         if (arm7_9->post_restore_context)
1723                 arm7_9->post_restore_context(target);
1724
1725         return ERROR_OK;
1726 }
1727
1728 /**
1729  * Restart the core of an ARM7/9 target.  A RESTART command is sent to the
1730  * instruction register and the JTAG state is set to TAP_IDLE causing a core
1731  * restart.
1732  *
1733  * @param target Pointer to the ARM7/9 target to be restarted
1734  * @return Result of executing the JTAG queue
1735  */
1736 int arm7_9_restart_core(struct target *target)
1737 {
1738         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1739         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
1740
1741         /* set RESTART instruction */
1742         jtag_set_end_state(TAP_IDLE);
1743         if (arm7_9->need_bypass_before_restart) {
1744                 arm7_9->need_bypass_before_restart = 0;
1745                 arm_jtag_set_instr(jtag_info, 0xf, NULL);
1746         }
1747         arm_jtag_set_instr(jtag_info, 0x4, NULL);
1748
1749         jtag_add_runtest(1, jtag_set_end_state(TAP_IDLE));
1750         return jtag_execute_queue();
1751 }
1752
1753 /**
1754  * Enable the watchpoints on an ARM7/9 target.  The target's watchpoints are
1755  * iterated through and are set on the target if they aren't already set.
1756  *
1757  * @param target Pointer to the ARM7/9 target to enable watchpoints on
1758  */
1759 void arm7_9_enable_watchpoints(struct target *target)
1760 {
1761         struct watchpoint *watchpoint = target->watchpoints;
1762
1763         while (watchpoint)
1764         {
1765                 if (watchpoint->set == 0)
1766                         arm7_9_set_watchpoint(target, watchpoint);
1767                 watchpoint = watchpoint->next;
1768         }
1769 }
1770
1771 /**
1772  * Enable the breakpoints on an ARM7/9 target.  The target's breakpoints are
1773  * iterated through and are set on the target.
1774  *
1775  * @param target Pointer to the ARM7/9 target to enable breakpoints on
1776  */
1777 void arm7_9_enable_breakpoints(struct target *target)
1778 {
1779         struct breakpoint *breakpoint = target->breakpoints;
1780
1781         /* set any pending breakpoints */
1782         while (breakpoint)
1783         {
1784                 arm7_9_set_breakpoint(target, breakpoint);
1785                 breakpoint = breakpoint->next;
1786         }
1787 }
1788
1789 int arm7_9_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
1790 {
1791         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1792         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1793         struct breakpoint *breakpoint = target->breakpoints;
1794         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1795         int err, retval = ERROR_OK;
1796
1797         LOG_DEBUG("-");
1798
1799         if (target->state != TARGET_HALTED)
1800         {
1801                 LOG_WARNING("target not halted");
1802                 return ERROR_TARGET_NOT_HALTED;
1803         }
1804
1805         if (!debug_execution)
1806         {
1807                 target_free_all_working_areas(target);
1808         }
1809
1810         /* current = 1: continue on current pc, otherwise continue at <address> */
1811         if (!current)
1812                 buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
1813
1814         uint32_t current_pc;
1815         current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
1816
1817         /* the front-end may request us not to handle breakpoints */
1818         if (handle_breakpoints)
1819         {
1820                 if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
1821                 {
1822                         LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (id: %d)", breakpoint->address, breakpoint->unique_id );
1823                         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
1824                         {
1825                                 return retval;
1826                         }
1827
1828                         /* calculate PC of next instruction */
1829                         uint32_t next_pc;
1830                         if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
1831                         {
1832                                 uint32_t current_opcode;
1833                                 target_read_u32(target, current_pc, &current_opcode);
1834                                 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
1835                                 return retval;
1836                         }
1837
1838                         LOG_DEBUG("enable single-step");
1839                         arm7_9->enable_single_step(target, next_pc);
1840
1841                         target->debug_reason = DBG_REASON_SINGLESTEP;
1842
1843                         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1844                         {
1845                                 return retval;
1846                         }
1847
1848                         if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1849                                 arm7_9->branch_resume(target);
1850                         else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1851                         {
1852                                 arm7_9->branch_resume_thumb(target);
1853                         }
1854                         else
1855                         {
1856                                 LOG_ERROR("unhandled core state");
1857                                 return ERROR_FAIL;
1858                         }
1859
1860                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1861                         embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1862                         err = arm7_9_execute_sys_speed(target);
1863
1864                         LOG_DEBUG("disable single-step");
1865                         arm7_9->disable_single_step(target);
1866
1867                         if (err != ERROR_OK)
1868                         {
1869                                 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1870                                 {
1871                                         return retval;
1872                                 }
1873                                 target->state = TARGET_UNKNOWN;
1874                                 return err;
1875                         }
1876
1877                         arm7_9_debug_entry(target);
1878                         LOG_DEBUG("new PC after step: 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1879
1880                         LOG_DEBUG("set breakpoint at 0x%8.8" PRIx32 "", breakpoint->address);
1881                         if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1882                         {
1883                                 return retval;
1884                         }
1885                 }
1886         }
1887
1888         /* enable any pending breakpoints and watchpoints */
1889         arm7_9_enable_breakpoints(target);
1890         arm7_9_enable_watchpoints(target);
1891
1892         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1893         {
1894                 return retval;
1895         }
1896
1897         if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1898         {
1899                 arm7_9->branch_resume(target);
1900         }
1901         else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1902         {
1903                 arm7_9->branch_resume_thumb(target);
1904         }
1905         else
1906         {
1907                 LOG_ERROR("unhandled core state");
1908                 return ERROR_FAIL;
1909         }
1910
1911         /* deassert DBGACK and INTDIS */
1912         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1913         /* INTDIS only when we really resume, not during debug execution */
1914         if (!debug_execution)
1915                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 0);
1916         embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1917
1918         if ((retval = arm7_9_restart_core(target)) != ERROR_OK)
1919         {
1920                 return retval;
1921         }
1922
1923         target->debug_reason = DBG_REASON_NOTHALTED;
1924
1925         if (!debug_execution)
1926         {
1927                 /* registers are now invalid */
1928                 register_cache_invalidate(armv4_5->core_cache);
1929                 target->state = TARGET_RUNNING;
1930                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
1931                 {
1932                         return retval;
1933                 }
1934         }
1935         else
1936         {
1937                 target->state = TARGET_DEBUG_RUNNING;
1938                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED)) != ERROR_OK)
1939                 {
1940                         return retval;
1941                 }
1942         }
1943
1944         LOG_DEBUG("target resumed");
1945
1946         return ERROR_OK;
1947 }
1948
1949 void arm7_9_enable_eice_step(struct target *target, uint32_t next_pc)
1950 {
1951         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1952         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1953         uint32_t current_pc;
1954         current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
1955
1956         if (next_pc != current_pc)
1957         {
1958                 /* setup an inverse breakpoint on the current PC
1959                 * - comparator 1 matches the current address
1960                 * - rangeout from comparator 1 is connected to comparator 0 rangein
1961                 * - comparator 0 matches any address, as long as rangein is low */
1962                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1963                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1964                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1965                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~(EICE_W_CTRL_RANGE | EICE_W_CTRL_nOPC) & 0xff);
1966                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], current_pc);
1967                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1968                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1969                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
1970                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1971         }
1972         else
1973         {
1974                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1975                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1976                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
1977                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff);
1978                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], next_pc);
1979                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1980                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1981                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1982                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1983         }
1984 }
1985
1986 void arm7_9_disable_eice_step(struct target *target)
1987 {
1988         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1989
1990         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1991         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1992         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1993         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1994         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE]);
1995         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK]);
1996         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK]);
1997         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK]);
1998         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE]);
1999 }
2000
2001 int arm7_9_step(struct target *target, int current, uint32_t address, int handle_breakpoints)
2002 {
2003         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2004         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
2005         struct breakpoint *breakpoint = NULL;
2006         int err, retval;
2007
2008         if (target->state != TARGET_HALTED)
2009         {
2010                 LOG_WARNING("target not halted");
2011                 return ERROR_TARGET_NOT_HALTED;
2012         }
2013
2014         /* current = 1: continue on current pc, otherwise continue at <address> */
2015         if (!current)
2016                 buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
2017
2018         uint32_t current_pc;
2019         current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
2020
2021         /* the front-end may request us not to handle breakpoints */
2022         if (handle_breakpoints)
2023                 if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
2024                         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
2025                         {
2026                                 return retval;
2027                         }
2028
2029         target->debug_reason = DBG_REASON_SINGLESTEP;
2030
2031         /* calculate PC of next instruction */
2032         uint32_t next_pc;
2033         if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
2034         {
2035                 uint32_t current_opcode;
2036                 target_read_u32(target, current_pc, &current_opcode);
2037                 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
2038                 return retval;
2039         }
2040
2041         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
2042         {
2043                 return retval;
2044         }
2045
2046         arm7_9->enable_single_step(target, next_pc);
2047
2048         if (armv4_5->core_state == ARMV4_5_STATE_ARM)
2049         {
2050                 arm7_9->branch_resume(target);
2051         }
2052         else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
2053         {
2054                 arm7_9->branch_resume_thumb(target);
2055         }
2056         else
2057         {
2058                 LOG_ERROR("unhandled core state");
2059                 return ERROR_FAIL;
2060         }
2061
2062         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
2063         {
2064                 return retval;
2065         }
2066
2067         err = arm7_9_execute_sys_speed(target);
2068         arm7_9->disable_single_step(target);
2069
2070         /* registers are now invalid */
2071         register_cache_invalidate(armv4_5->core_cache);
2072
2073         if (err != ERROR_OK)
2074         {
2075                 target->state = TARGET_UNKNOWN;
2076         } else {
2077                 arm7_9_debug_entry(target);
2078                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
2079                 {
2080                         return retval;
2081                 }
2082                 LOG_DEBUG("target stepped");
2083         }
2084
2085         if (breakpoint)
2086                 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
2087                 {
2088                         return retval;
2089                 }
2090
2091         return err;
2092 }
2093
2094 static int arm7_9_read_core_reg(struct target *target, struct reg *r,
2095                 int num, enum armv4_5_mode mode)
2096 {
2097         uint32_t* reg_p[16];
2098         uint32_t value;
2099         int retval;
2100         struct arm_reg *areg = r->arch_info;
2101         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2102         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
2103
2104         if (!is_arm_mode(armv4_5->core_mode))
2105                 return ERROR_FAIL;
2106         if ((num < 0) || (num > 16))
2107                 return ERROR_INVALID_ARGUMENTS;
2108
2109         if ((mode != ARMV4_5_MODE_ANY)
2110                         && (mode != armv4_5->core_mode)
2111                         && (areg->mode != ARMV4_5_MODE_ANY))
2112         {
2113                 uint32_t tmp_cpsr;
2114
2115                 /* change processor mode (mask T bit) */
2116                 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
2117                 tmp_cpsr |= mode;
2118                 tmp_cpsr &= ~0x20;
2119                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2120         }
2121
2122         if ((num >= 0) && (num <= 15))
2123         {
2124                 /* read a normal core register */
2125                 reg_p[num] = &value;
2126
2127                 arm7_9->read_core_regs(target, 1 << num, reg_p);
2128         }
2129         else
2130         {
2131                 /* read a program status register
2132                  * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
2133                  */
2134                 arm7_9->read_xpsr(target, &value, areg->mode != ARMV4_5_MODE_ANY);
2135         }
2136
2137         if ((retval = jtag_execute_queue()) != ERROR_OK)
2138         {
2139                 return retval;
2140         }
2141
2142         r->valid = 1;
2143         r->dirty = 0;
2144         buf_set_u32(r->value, 0, 32, value);
2145
2146         if ((mode != ARMV4_5_MODE_ANY)
2147                         && (mode != armv4_5->core_mode)
2148                         && (areg->mode != ARMV4_5_MODE_ANY))    {
2149                 /* restore processor mode (mask T bit) */
2150                 arm7_9->write_xpsr_im8(target,
2151                                 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2152                                         & ~0x20, 0, 0);
2153         }
2154
2155         return ERROR_OK;
2156 }
2157
2158 static int arm7_9_write_core_reg(struct target *target, struct reg *r,
2159                 int num, enum armv4_5_mode mode, uint32_t value)
2160 {
2161         uint32_t reg[16];
2162         struct arm_reg *areg = r->arch_info;
2163         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2164         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
2165
2166         if (!is_arm_mode(armv4_5->core_mode))
2167                 return ERROR_FAIL;
2168         if ((num < 0) || (num > 16))
2169                 return ERROR_INVALID_ARGUMENTS;
2170
2171         if ((mode != ARMV4_5_MODE_ANY)
2172                         && (mode != armv4_5->core_mode)
2173                         && (areg->mode != ARMV4_5_MODE_ANY))    {
2174                 uint32_t tmp_cpsr;
2175
2176                 /* change processor mode (mask T bit) */
2177                 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
2178                 tmp_cpsr |= mode;
2179                 tmp_cpsr &= ~0x20;
2180                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2181         }
2182
2183         if ((num >= 0) && (num <= 15))
2184         {
2185                 /* write a normal core register */
2186                 reg[num] = value;
2187
2188                 arm7_9->write_core_regs(target, 1 << num, reg);
2189         }
2190         else
2191         {
2192                 /* write a program status register
2193                 * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
2194                 */
2195                 int spsr = (areg->mode != ARMV4_5_MODE_ANY);
2196
2197                 /* if we're writing the CPSR, mask the T bit */
2198                 if (!spsr)
2199                         value &= ~0x20;
2200
2201                 arm7_9->write_xpsr(target, value, spsr);
2202         }
2203
2204         r->valid = 1;
2205         r->dirty = 0;
2206
2207         if ((mode != ARMV4_5_MODE_ANY)
2208                         && (mode != armv4_5->core_mode)
2209                         && (areg->mode != ARMV4_5_MODE_ANY))    {
2210                 /* restore processor mode (mask T bit) */
2211                 arm7_9->write_xpsr_im8(target,
2212                                 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2213                                         & ~0x20, 0, 0);
2214         }
2215
2216         return jtag_execute_queue();
2217 }
2218
2219 int arm7_9_read_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2220 {
2221         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2222         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
2223         uint32_t reg[16];
2224         uint32_t num_accesses = 0;
2225         int thisrun_accesses;
2226         int i;
2227         uint32_t cpsr;
2228         int retval;
2229         int last_reg = 0;
2230
2231         LOG_DEBUG("address: 0x%8.8" PRIx32 ", size: 0x%8.8" PRIx32 ", count: 0x%8.8" PRIx32 "", address, size, count);
2232
2233         if (target->state != TARGET_HALTED)
2234         {
2235                 LOG_WARNING("target not halted");
2236                 return ERROR_TARGET_NOT_HALTED;
2237         }
2238
2239         /* sanitize arguments */
2240         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2241                 return ERROR_INVALID_ARGUMENTS;
2242
2243         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2244                 return ERROR_TARGET_UNALIGNED_ACCESS;
2245
2246         /* load the base register with the address of the first word */
2247         reg[0] = address;
2248         arm7_9->write_core_regs(target, 0x1, reg);
2249
2250         int j = 0;
2251
2252         switch (size)
2253         {
2254                 case 4:
2255                         while (num_accesses < count)
2256                         {
2257                                 uint32_t reg_list;
2258                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2259                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2260
2261                                 if (last_reg <= thisrun_accesses)
2262                                         last_reg = thisrun_accesses;
2263
2264                                 arm7_9->load_word_regs(target, reg_list);
2265
2266                                 /* fast memory reads are only safe when the target is running
2267                                  * from a sufficiently high clock (32 kHz is usually too slow)
2268                                  */
2269                                 if (arm7_9->fast_memory_access)
2270                                         retval = arm7_9_execute_fast_sys_speed(target);
2271                                 else
2272                                         retval = arm7_9_execute_sys_speed(target);
2273                                 if (retval != ERROR_OK)
2274                                         return retval;
2275
2276                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 4);
2277
2278                                 /* advance buffer, count number of accesses */
2279                                 buffer += thisrun_accesses * 4;
2280                                 num_accesses += thisrun_accesses;
2281
2282                                 if ((j++%1024) == 0)
2283                                 {
2284                                         keep_alive();
2285                                 }
2286                         }
2287                         break;
2288                 case 2:
2289                         while (num_accesses < count)
2290                         {
2291                                 uint32_t reg_list;
2292                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2293                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2294
2295                                 for (i = 1; i <= thisrun_accesses; i++)
2296                                 {
2297                                         if (i > last_reg)
2298                                                 last_reg = i;
2299                                         arm7_9->load_hword_reg(target, i);
2300                                         /* fast memory reads are only safe when the target is running
2301                                          * from a sufficiently high clock (32 kHz is usually too slow)
2302                                          */
2303                                         if (arm7_9->fast_memory_access)
2304                                                 retval = arm7_9_execute_fast_sys_speed(target);
2305                                         else
2306                                                 retval = arm7_9_execute_sys_speed(target);
2307                                         if (retval != ERROR_OK)
2308                                         {
2309                                                 return retval;
2310                                         }
2311
2312                                 }
2313
2314                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 2);
2315
2316                                 /* advance buffer, count number of accesses */
2317                                 buffer += thisrun_accesses * 2;
2318                                 num_accesses += thisrun_accesses;
2319
2320                                 if ((j++%1024) == 0)
2321                                 {
2322                                         keep_alive();
2323                                 }
2324                         }
2325                         break;
2326                 case 1:
2327                         while (num_accesses < count)
2328                         {
2329                                 uint32_t reg_list;
2330                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2331                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2332
2333                                 for (i = 1; i <= thisrun_accesses; i++)
2334                                 {
2335                                         if (i > last_reg)
2336                                                 last_reg = i;
2337                                         arm7_9->load_byte_reg(target, i);
2338                                         /* fast memory reads are only safe when the target is running
2339                                          * from a sufficiently high clock (32 kHz is usually too slow)
2340                                          */
2341                                         if (arm7_9->fast_memory_access)
2342                                                 retval = arm7_9_execute_fast_sys_speed(target);
2343                                         else
2344                                                 retval = arm7_9_execute_sys_speed(target);
2345                                         if (retval != ERROR_OK)
2346                                         {
2347                                                 return retval;
2348                                         }
2349                                 }
2350
2351                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 1);
2352
2353                                 /* advance buffer, count number of accesses */
2354                                 buffer += thisrun_accesses * 1;
2355                                 num_accesses += thisrun_accesses;
2356
2357                                 if ((j++%1024) == 0)
2358                                 {
2359                                         keep_alive();
2360                                 }
2361                         }
2362                         break;
2363                 default:
2364                         LOG_ERROR("BUG: we shouldn't get here");
2365                         exit(-1);
2366                         break;
2367         }
2368
2369         if (!is_arm_mode(armv4_5->core_mode))
2370                 return ERROR_FAIL;
2371
2372         for (i = 0; i <= last_reg; i++)
2373                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid;
2374
2375         arm7_9->read_xpsr(target, &cpsr, 0);
2376         if ((retval = jtag_execute_queue()) != ERROR_OK)
2377         {
2378                 LOG_ERROR("JTAG error while reading cpsr");
2379                 return ERROR_TARGET_DATA_ABORT;
2380         }
2381
2382         if (((cpsr & 0x1f) == ARMV4_5_MODE_ABT) && (armv4_5->core_mode != ARMV4_5_MODE_ABT))
2383         {
2384                 LOG_WARNING("memory read caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2385
2386                 arm7_9->write_xpsr_im8(target,
2387                                 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2388                                         & ~0x20, 0, 0);
2389
2390                 return ERROR_TARGET_DATA_ABORT;
2391         }
2392
2393         return ERROR_OK;
2394 }
2395
2396 int arm7_9_write_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2397 {
2398         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2399         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
2400         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
2401
2402         uint32_t reg[16];
2403         uint32_t num_accesses = 0;
2404         int thisrun_accesses;
2405         int i;
2406         uint32_t cpsr;
2407         int retval;
2408         int last_reg = 0;
2409
2410 #ifdef _DEBUG_ARM7_9_
2411         LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address, size, count);
2412 #endif
2413
2414         if (target->state != TARGET_HALTED)
2415         {
2416                 LOG_WARNING("target not halted");
2417                 return ERROR_TARGET_NOT_HALTED;
2418         }
2419
2420         /* sanitize arguments */
2421         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2422                 return ERROR_INVALID_ARGUMENTS;
2423
2424         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2425                 return ERROR_TARGET_UNALIGNED_ACCESS;
2426
2427         /* load the base register with the address of the first word */
2428         reg[0] = address;
2429         arm7_9->write_core_regs(target, 0x1, reg);
2430
2431         /* Clear DBGACK, to make sure memory fetches work as expected */
2432         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
2433         embeddedice_store_reg(dbg_ctrl);
2434
2435         switch (size)
2436         {
2437                 case 4:
2438                         while (num_accesses < count)
2439                         {
2440                                 uint32_t reg_list;
2441                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2442                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2443
2444                                 for (i = 1; i <= thisrun_accesses; i++)
2445                                 {
2446                                         if (i > last_reg)
2447                                                 last_reg = i;
2448                                         reg[i] = target_buffer_get_u32(target, buffer);
2449                                         buffer += 4;
2450                                 }
2451
2452                                 arm7_9->write_core_regs(target, reg_list, reg);
2453
2454                                 arm7_9->store_word_regs(target, reg_list);
2455
2456                                 /* fast memory writes are only safe when the target is running
2457                                  * from a sufficiently high clock (32 kHz is usually too slow)
2458                                  */
2459                                 if (arm7_9->fast_memory_access)
2460                                         retval = arm7_9_execute_fast_sys_speed(target);
2461                                 else
2462                                         retval = arm7_9_execute_sys_speed(target);
2463                                 if (retval != ERROR_OK)
2464                                 {
2465                                         return retval;
2466                                 }
2467
2468                                 num_accesses += thisrun_accesses;
2469                         }
2470                         break;
2471                 case 2:
2472                         while (num_accesses < count)
2473                         {
2474                                 uint32_t reg_list;
2475                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2476                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2477
2478                                 for (i = 1; i <= thisrun_accesses; i++)
2479                                 {
2480                                         if (i > last_reg)
2481                                                 last_reg = i;
2482                                         reg[i] = target_buffer_get_u16(target, buffer) & 0xffff;
2483                                         buffer += 2;
2484                                 }
2485
2486                                 arm7_9->write_core_regs(target, reg_list, reg);
2487
2488                                 for (i = 1; i <= thisrun_accesses; i++)
2489                                 {
2490                                         arm7_9->store_hword_reg(target, i);
2491
2492                                         /* fast memory writes are only safe when the target is running
2493                                          * from a sufficiently high clock (32 kHz is usually too slow)
2494                                          */
2495                                         if (arm7_9->fast_memory_access)
2496                                                 retval = arm7_9_execute_fast_sys_speed(target);
2497                                         else
2498                                                 retval = arm7_9_execute_sys_speed(target);
2499                                         if (retval != ERROR_OK)
2500                                         {
2501                                                 return retval;
2502                                         }
2503                                 }
2504
2505                                 num_accesses += thisrun_accesses;
2506                         }
2507                         break;
2508                 case 1:
2509                         while (num_accesses < count)
2510                         {
2511                                 uint32_t reg_list;
2512                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2513                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2514
2515                                 for (i = 1; i <= thisrun_accesses; i++)
2516                                 {
2517                                         if (i > last_reg)
2518                                                 last_reg = i;
2519                                         reg[i] = *buffer++ & 0xff;
2520                                 }
2521
2522                                 arm7_9->write_core_regs(target, reg_list, reg);
2523
2524                                 for (i = 1; i <= thisrun_accesses; i++)
2525                                 {
2526                                         arm7_9->store_byte_reg(target, i);
2527                                         /* fast memory writes are only safe when the target is running
2528                                          * from a sufficiently high clock (32 kHz is usually too slow)
2529                                          */
2530                                         if (arm7_9->fast_memory_access)
2531                                                 retval = arm7_9_execute_fast_sys_speed(target);
2532                                         else
2533                                                 retval = arm7_9_execute_sys_speed(target);
2534                                         if (retval != ERROR_OK)
2535                                         {
2536                                                 return retval;
2537                                         }
2538
2539                                 }
2540
2541                                 num_accesses += thisrun_accesses;
2542                         }
2543                         break;
2544                 default:
2545                         LOG_ERROR("BUG: we shouldn't get here");
2546                         exit(-1);
2547                         break;
2548         }
2549
2550         /* Re-Set DBGACK */
2551         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
2552         embeddedice_store_reg(dbg_ctrl);
2553
2554         if (!is_arm_mode(armv4_5->core_mode))
2555                 return ERROR_FAIL;
2556
2557         for (i = 0; i <= last_reg; i++)
2558                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid;
2559
2560         arm7_9->read_xpsr(target, &cpsr, 0);
2561         if ((retval = jtag_execute_queue()) != ERROR_OK)
2562         {
2563                 LOG_ERROR("JTAG error while reading cpsr");
2564                 return ERROR_TARGET_DATA_ABORT;
2565         }
2566
2567         if (((cpsr & 0x1f) == ARMV4_5_MODE_ABT) && (armv4_5->core_mode != ARMV4_5_MODE_ABT))
2568         {
2569                 LOG_WARNING("memory write caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2570
2571                 arm7_9->write_xpsr_im8(target,
2572                                 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2573                                         & ~0x20, 0, 0);
2574
2575                 return ERROR_TARGET_DATA_ABORT;
2576         }
2577
2578         return ERROR_OK;
2579 }
2580
2581 static int dcc_count;
2582 static uint8_t *dcc_buffer;
2583
2584 static int arm7_9_dcc_completion(struct target *target, uint32_t exit_point, int timeout_ms, void *arch_info)
2585 {
2586         int retval = ERROR_OK;
2587         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2588
2589         if ((retval = target_wait_state(target, TARGET_DEBUG_RUNNING, 500)) != ERROR_OK)
2590                 return retval;
2591
2592         int little = target->endianness == TARGET_LITTLE_ENDIAN;
2593         int count = dcc_count;
2594         uint8_t *buffer = dcc_buffer;
2595         if (count > 2)
2596         {
2597                 /* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
2598                  * core function repeated. */
2599                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2600                 buffer += 4;
2601
2602                 struct embeddedice_reg *ice_reg = arm7_9->eice_cache->reg_list[EICE_COMMS_DATA].arch_info;
2603                 uint8_t reg_addr = ice_reg->addr & 0x1f;
2604                 struct jtag_tap *tap;
2605                 tap = ice_reg->jtag_info->tap;
2606
2607                 embeddedice_write_dcc(tap, reg_addr, buffer, little, count-2);
2608                 buffer += (count-2)*4;
2609
2610                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2611         } else
2612         {
2613                 int i;
2614                 for (i = 0; i < count; i++)
2615                 {
2616                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2617                         buffer += 4;
2618                 }
2619         }
2620
2621         if ((retval = target_halt(target))!= ERROR_OK)
2622         {
2623                 return retval;
2624         }
2625         return target_wait_state(target, TARGET_HALTED, 500);
2626 }
2627
2628 static const uint32_t dcc_code[] =
2629 {
2630         /* r0 == input, points to memory buffer
2631          * r1 == scratch
2632          */
2633
2634         /* spin until DCC control (c0) reports data arrived */
2635         0xee101e10,     /* w: mrc p14, #0, r1, c0, c0 */
2636         0xe3110001,     /*    tst r1, #1              */
2637         0x0afffffc,     /*    bne w                   */
2638
2639         /* read word from DCC (c1), write to memory */
2640         0xee111e10,     /*    mrc p14, #0, r1, c1, c0 */
2641         0xe4801004,     /*    str r1, [r0], #4        */
2642
2643         /* repeat */
2644         0xeafffff9      /*    b   w                   */
2645 };
2646
2647 int armv4_5_run_algorithm_inner(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_params, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info, int (*run_it)(struct target *target, uint32_t exit_point, int timeout_ms, void *arch_info));
2648
2649 int arm7_9_bulk_write_memory(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
2650 {
2651         int retval;
2652         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2653         int i;
2654
2655         if (!arm7_9->dcc_downloads)
2656                 return target_write_memory(target, address, 4, count, buffer);
2657
2658         /* regrab previously allocated working_area, or allocate a new one */
2659         if (!arm7_9->dcc_working_area)
2660         {
2661                 uint8_t dcc_code_buf[6 * 4];
2662
2663                 /* make sure we have a working area */
2664                 if (target_alloc_working_area(target, 24, &arm7_9->dcc_working_area) != ERROR_OK)
2665                 {
2666                         LOG_INFO("no working area available, falling back to memory writes");
2667                         return target_write_memory(target, address, 4, count, buffer);
2668                 }
2669
2670                 /* copy target instructions to target endianness */
2671                 for (i = 0; i < 6; i++)
2672                 {
2673                         target_buffer_set_u32(target, dcc_code_buf + i*4, dcc_code[i]);
2674                 }
2675
2676                 /* write DCC code to working area */
2677                 if ((retval = target_write_memory(target, arm7_9->dcc_working_area->address, 4, 6, dcc_code_buf)) != ERROR_OK)
2678                 {
2679                         return retval;
2680                 }
2681         }
2682
2683         struct armv4_5_algorithm armv4_5_info;
2684         struct reg_param reg_params[1];
2685
2686         armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
2687         armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
2688         armv4_5_info.core_state = ARMV4_5_STATE_ARM;
2689
2690         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
2691
2692         buf_set_u32(reg_params[0].value, 0, 32, address);
2693
2694         dcc_count = count;
2695         dcc_buffer = buffer;
2696         retval = armv4_5_run_algorithm_inner(target, 0, NULL, 1, reg_params,
2697                         arm7_9->dcc_working_area->address, arm7_9->dcc_working_area->address + 6*4, 20*1000, &armv4_5_info, arm7_9_dcc_completion);
2698
2699         if (retval == ERROR_OK)
2700         {
2701                 uint32_t endaddress = buf_get_u32(reg_params[0].value, 0, 32);
2702                 if (endaddress != (address + count*4))
2703                 {
2704                         LOG_ERROR("DCC write failed, expected end address 0x%08" PRIx32 " got 0x%0" PRIx32 "", (address + count*4), endaddress);
2705                         retval = ERROR_FAIL;
2706                 }
2707         }
2708
2709         destroy_reg_param(&reg_params[0]);
2710
2711         return retval;
2712 }
2713
2714 /**
2715  * Perform per-target setup that requires JTAG access.
2716  */
2717 int arm7_9_examine(struct target *target)
2718 {
2719         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2720         int retval;
2721
2722         if (!target_was_examined(target)) {
2723                 struct reg_cache *t, **cache_p;
2724
2725                 t = embeddedice_build_reg_cache(target, arm7_9);
2726                 if (t == NULL)
2727                         return ERROR_FAIL;
2728
2729                 cache_p = register_get_last_cache_p(&target->reg_cache);
2730                 (*cache_p) = t;
2731                 arm7_9->eice_cache = (*cache_p);
2732
2733                 if (arm7_9->armv4_5_common.etm)
2734                         (*cache_p)->next = etm_build_reg_cache(target,
2735                                         &arm7_9->jtag_info,
2736                                         arm7_9->armv4_5_common.etm);
2737
2738                 target_set_examined(target);
2739         }
2740
2741         retval = embeddedice_setup(target);
2742         if (retval == ERROR_OK)
2743                 retval = arm7_9_setup(target);
2744         if (retval == ERROR_OK && arm7_9->armv4_5_common.etm)
2745                 retval = etm_setup(target);
2746         return retval;
2747 }
2748
2749 COMMAND_HANDLER(handle_arm7_9_dbgrq_command)
2750 {
2751         struct target *target = get_current_target(CMD_CTX);
2752         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2753
2754         if (!is_arm7_9(arm7_9))
2755         {
2756                 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2757                 return ERROR_TARGET_INVALID;
2758         }
2759
2760         if (CMD_ARGC > 0)
2761                 COMMAND_PARSE_ENABLE(CMD_ARGV[0],arm7_9->use_dbgrq);
2762
2763         command_print(CMD_CTX, "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s", (arm7_9->use_dbgrq) ? "enabled" : "disabled");
2764
2765         return ERROR_OK;
2766 }
2767
2768 COMMAND_HANDLER(handle_arm7_9_fast_memory_access_command)
2769 {
2770         struct target *target = get_current_target(CMD_CTX);
2771         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2772
2773         if (!is_arm7_9(arm7_9))
2774         {
2775                 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2776                 return ERROR_TARGET_INVALID;
2777         }
2778
2779         if (CMD_ARGC > 0)
2780                 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->fast_memory_access);
2781
2782         command_print(CMD_CTX, "fast memory access is %s", (arm7_9->fast_memory_access) ? "enabled" : "disabled");
2783
2784         return ERROR_OK;
2785 }
2786
2787 COMMAND_HANDLER(handle_arm7_9_dcc_downloads_command)
2788 {
2789         struct target *target = get_current_target(CMD_CTX);
2790         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2791
2792         if (!is_arm7_9(arm7_9))
2793         {
2794                 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2795                 return ERROR_TARGET_INVALID;
2796         }
2797
2798         if (CMD_ARGC > 0)
2799                 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->dcc_downloads);
2800
2801         command_print(CMD_CTX, "dcc downloads are %s", (arm7_9->dcc_downloads) ? "enabled" : "disabled");
2802
2803         return ERROR_OK;
2804 }
2805
2806 int arm7_9_init_arch_info(struct target *target, struct arm7_9_common *arm7_9)
2807 {
2808         int retval = ERROR_OK;
2809         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2810
2811         arm7_9->common_magic = ARM7_9_COMMON_MAGIC;
2812
2813         if ((retval = arm_jtag_setup_connection(&arm7_9->jtag_info)) != ERROR_OK)
2814                 return retval;
2815
2816         /* caller must have allocated via calloc(), so everything's zeroed */
2817
2818         arm7_9->wp_available_max = 2;
2819
2820         arm7_9->fast_memory_access = false;
2821         arm7_9->dcc_downloads = false;
2822
2823         armv4_5->arch_info = arm7_9;
2824         armv4_5->read_core_reg = arm7_9_read_core_reg;
2825         armv4_5->write_core_reg = arm7_9_write_core_reg;
2826         armv4_5->full_context = arm7_9_full_context;
2827
2828         if ((retval = armv4_5_init_arch_info(target, armv4_5)) != ERROR_OK)
2829                 return retval;
2830
2831         return target_register_timer_callback(arm7_9_handle_target_request,
2832                         1, 1, target);
2833 }
2834
2835 int arm7_9_register_commands(struct command_context *cmd_ctx)
2836 {
2837         struct command *arm7_9_cmd;
2838
2839         arm7_9_cmd = register_command(cmd_ctx, NULL, "arm7_9",
2840                         NULL, COMMAND_ANY, "arm7/9 specific commands");
2841
2842         register_command(cmd_ctx, arm7_9_cmd, "dbgrq",
2843                         handle_arm7_9_dbgrq_command, COMMAND_ANY,
2844                         "use EmbeddedICE dbgrq instead of breakpoint "
2845                         "for target halt requests <enable | disable>");
2846         register_command(cmd_ctx, arm7_9_cmd, "fast_memory_access",
2847                         handle_arm7_9_fast_memory_access_command, COMMAND_ANY,
2848                         "use fast memory accesses instead of slower "
2849                         "but potentially safer accesses <enable | disable>");
2850         register_command(cmd_ctx, arm7_9_cmd, "dcc_downloads",
2851                         handle_arm7_9_dcc_downloads_command, COMMAND_ANY,
2852                         "use DCC downloads for larger memory writes <enable | disable>");
2853
2854         armv4_5_register_commands(cmd_ctx);
2855
2856         etm_register_commands(cmd_ctx);
2857
2858         return ERROR_OK;
2859 }