debug: debug entry error propagation
[fw/openocd] / src / target / arm7_9_common.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2009 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2008 by Hongtao Zheng                                   *
12  *   hontor@126.com                                                        *
13  *                                                                         *
14  *   Copyright (C) 2009 by David Brownell                                  *
15  *                                                                         *
16  *   This program is free software; you can redistribute it and/or modify  *
17  *   it under the terms of the GNU General Public License as published by  *
18  *   the Free Software Foundation; either version 2 of the License, or     *
19  *   (at your option) any later version.                                   *
20  *                                                                         *
21  *   This program is distributed in the hope that it will be useful,       *
22  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
23  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
24  *   GNU General Public License for more details.                          *
25  *                                                                         *
26  *   You should have received a copy of the GNU General Public License     *
27  *   along with this program; if not, write to the                         *
28  *   Free Software Foundation, Inc.,                                       *
29  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
30  ***************************************************************************/
31 #ifdef HAVE_CONFIG_H
32 #include "config.h"
33 #endif
34
35 #include "breakpoints.h"
36 #include "embeddedice.h"
37 #include "target_request.h"
38 #include "etm.h"
39 #include <helper/time_support.h>
40 #include "arm_simulator.h"
41 #include "arm_semihosting.h"
42 #include "algorithm.h"
43 #include "register.h"
44 #include "armv4_5.h"
45
46
47 /**
48  * @file
49  * Hold common code supporting the ARM7 and ARM9 core generations.
50  *
51  * While the ARM core implementations evolved substantially during these
52  * two generations, they look quite similar from the JTAG perspective.
53  * Both have similar debug facilities, based on the same two scan chains
54  * providing access to the core and to an EmbeddedICE module.  Both can
55  * support similar ETM and ETB modules, for tracing.  And both expose
56  * what could be viewed as "ARM Classic", with multiple processor modes,
57  * shadowed registers, and support for the Thumb instruction set.
58  *
59  * Processor differences include things like presence or absence of MMU
60  * and cache, pipeline sizes, use of a modified Harvard Architecure
61  * (with separate instruction and data busses from the CPU), support
62  * for cpu clock gating during idle, and more.
63  */
64
65 static int arm7_9_debug_entry(struct target *target);
66
67 /**
68  * Clear watchpoints for an ARM7/9 target.
69  *
70  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
71  * @return JTAG error status after executing queue
72  */
73 static int arm7_9_clear_watchpoints(struct arm7_9_common *arm7_9)
74 {
75         LOG_DEBUG("-");
76         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
77         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
78         arm7_9->sw_breakpoint_count = 0;
79         arm7_9->sw_breakpoints_added = 0;
80         arm7_9->wp0_used = 0;
81         arm7_9->wp1_used = arm7_9->wp1_used_default;
82         arm7_9->wp_available = arm7_9->wp_available_max;
83
84         return jtag_execute_queue();
85 }
86
87 /**
88  * Assign a watchpoint to one of the two available hardware comparators in an
89  * ARM7 or ARM9 target.
90  *
91  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
92  * @param breakpoint Pointer to the breakpoint to be used as a watchpoint
93  */
94 static void arm7_9_assign_wp(struct arm7_9_common *arm7_9, struct breakpoint *breakpoint)
95 {
96         if (!arm7_9->wp0_used)
97         {
98                 arm7_9->wp0_used = 1;
99                 breakpoint->set = 1;
100                 arm7_9->wp_available--;
101         }
102         else if (!arm7_9->wp1_used)
103         {
104                 arm7_9->wp1_used = 1;
105                 breakpoint->set = 2;
106                 arm7_9->wp_available--;
107         }
108         else
109         {
110                 LOG_ERROR("BUG: no hardware comparator available");
111         }
112         LOG_DEBUG("BPID: %d (0x%08" PRIx32 ") using hw wp: %d",
113                           breakpoint->unique_id,
114                           breakpoint->address,
115                           breakpoint->set );
116 }
117
118 /**
119  * Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
120  *
121  * @param arm7_9 Pointer to common struct for ARM7/9 targets
122  * @return Error codes if there is a problem finding a watchpoint or the result
123  *         of executing the JTAG queue
124  */
125 static int arm7_9_set_software_breakpoints(struct arm7_9_common *arm7_9)
126 {
127         if (arm7_9->sw_breakpoints_added)
128         {
129                 return ERROR_OK;
130         }
131         if (arm7_9->wp_available < 1)
132         {
133                 LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
134                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
135         }
136         arm7_9->wp_available--;
137
138         /* pick a breakpoint unit */
139         if (!arm7_9->wp0_used)
140         {
141                 arm7_9->sw_breakpoints_added = 1;
142                 arm7_9->wp0_used = 3;
143         } else if (!arm7_9->wp1_used)
144         {
145                 arm7_9->sw_breakpoints_added = 2;
146                 arm7_9->wp1_used = 3;
147         }
148         else
149         {
150                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
151                 return ERROR_FAIL;
152         }
153
154         if (arm7_9->sw_breakpoints_added == 1)
155         {
156                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], arm7_9->arm_bkpt);
157                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0x0);
158                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffffu);
159                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
160                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
161         }
162         else if (arm7_9->sw_breakpoints_added == 2)
163         {
164                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], arm7_9->arm_bkpt);
165                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0x0);
166                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0xffffffffu);
167                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
168                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
169         }
170         else
171         {
172                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
173                 return ERROR_FAIL;
174         }
175         LOG_DEBUG("SW BP using hw wp: %d",
176                           arm7_9->sw_breakpoints_added );
177
178         return jtag_execute_queue();
179 }
180
181 /**
182  * Setup the common pieces for an ARM7/9 target after reset or on startup.
183  *
184  * @param target Pointer to an ARM7/9 target to setup
185  * @return Result of clearing the watchpoints on the target
186  */
187 static int arm7_9_setup(struct target *target)
188 {
189         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
190
191         return arm7_9_clear_watchpoints(arm7_9);
192 }
193
194 /**
195  * Set either a hardware or software breakpoint on an ARM7/9 target.  The
196  * breakpoint is set up even if it is already set.  Some actions, e.g. reset,
197  * might have erased the values in Embedded ICE.
198  *
199  * @param target Pointer to the target device to set the breakpoints on
200  * @param breakpoint Pointer to the breakpoint to be set
201  * @return For hardware breakpoints, this is the result of executing the JTAG
202  *         queue.  For software breakpoints, this will be the status of the
203  *         required memory reads and writes
204  */
205 static int arm7_9_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
206 {
207         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
208         int retval = ERROR_OK;
209
210         LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32 ", Type: %d" ,
211                           breakpoint->unique_id,
212                           breakpoint->address,
213                           breakpoint->type);
214
215         if (target->state != TARGET_HALTED)
216         {
217                 LOG_WARNING("target not halted");
218                 return ERROR_TARGET_NOT_HALTED;
219         }
220
221         if (breakpoint->type == BKPT_HARD)
222         {
223                 /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
224                 uint32_t mask = (breakpoint->length == 4) ? 0x3u : 0x1u;
225
226                 /* reassign a hw breakpoint */
227                 if (breakpoint->set == 0)
228                 {
229                         arm7_9_assign_wp(arm7_9, breakpoint);
230                 }
231
232                 if (breakpoint->set == 1)
233                 {
234                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], breakpoint->address);
235                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
236                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffffu);
237                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
238                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
239                 }
240                 else if (breakpoint->set == 2)
241                 {
242                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], breakpoint->address);
243                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
244                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffffu);
245                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
246                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
247                 }
248                 else
249                 {
250                         LOG_ERROR("BUG: no hardware comparator available");
251                         return ERROR_OK;
252                 }
253
254                 retval = jtag_execute_queue();
255         }
256         else if (breakpoint->type == BKPT_SOFT)
257         {
258                 /* did we already set this breakpoint? */
259                 if (breakpoint->set)
260                         return ERROR_OK;
261
262                 if (breakpoint->length == 4)
263                 {
264                         uint32_t verify = 0xffffffff;
265                         /* keep the original instruction in target endianness */
266                         if ((retval = target_read_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
267                         {
268                                 return retval;
269                         }
270                         /* write the breakpoint instruction in target endianness (arm7_9->arm_bkpt is host endian) */
271                         if ((retval = target_write_u32(target, breakpoint->address, arm7_9->arm_bkpt)) != ERROR_OK)
272                         {
273                                 return retval;
274                         }
275
276                         if ((retval = target_read_u32(target, breakpoint->address, &verify)) != ERROR_OK)
277                         {
278                                 return retval;
279                         }
280                         if (verify != arm7_9->arm_bkpt)
281                         {
282                                 LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
283                                 return ERROR_OK;
284                         }
285                 }
286                 else
287                 {
288                         uint16_t verify = 0xffff;
289                         /* keep the original instruction in target endianness */
290                         if ((retval = target_read_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
291                         {
292                                 return retval;
293                         }
294                         /* write the breakpoint instruction in target endianness (arm7_9->thumb_bkpt is host endian) */
295                         if ((retval = target_write_u16(target, breakpoint->address, arm7_9->thumb_bkpt)) != ERROR_OK)
296                         {
297                                 return retval;
298                         }
299
300                         if ((retval = target_read_u16(target, breakpoint->address, &verify)) != ERROR_OK)
301                         {
302                                 return retval;
303                         }
304                         if (verify != arm7_9->thumb_bkpt)
305                         {
306                                 LOG_ERROR("Unable to set thumb software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
307                                 return ERROR_OK;
308                         }
309                 }
310
311                 if ((retval = arm7_9_set_software_breakpoints(arm7_9)) != ERROR_OK)
312                         return retval;
313
314                 arm7_9->sw_breakpoint_count++;
315
316                 breakpoint->set = 1;
317         }
318
319         return retval;
320 }
321
322 /**
323  * Unsets an existing breakpoint on an ARM7/9 target.  If it is a hardware
324  * breakpoint, the watchpoint used will be freed and the Embedded ICE registers
325  * will be updated.  Otherwise, the software breakpoint will be restored to its
326  * original instruction if it hasn't already been modified.
327  *
328  * @param target Pointer to ARM7/9 target to unset the breakpoint from
329  * @param breakpoint Pointer to breakpoint to be unset
330  * @return For hardware breakpoints, this is the result of executing the JTAG
331  *         queue.  For software breakpoints, this will be the status of the
332  *         required memory reads and writes
333  */
334 static int arm7_9_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
335 {
336         int retval = ERROR_OK;
337         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
338
339         LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32,
340                           breakpoint->unique_id,
341                           breakpoint->address );
342
343         if (!breakpoint->set)
344         {
345                 LOG_WARNING("breakpoint not set");
346                 return ERROR_OK;
347         }
348
349         if (breakpoint->type == BKPT_HARD)
350         {
351                 LOG_DEBUG("BPID: %d Releasing hw wp: %d",
352                                   breakpoint->unique_id,
353                                   breakpoint->set );
354                 if (breakpoint->set == 1)
355                 {
356                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
357                         arm7_9->wp0_used = 0;
358                         arm7_9->wp_available++;
359                 }
360                 else if (breakpoint->set == 2)
361                 {
362                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
363                         arm7_9->wp1_used = 0;
364                         arm7_9->wp_available++;
365                 }
366                 retval = jtag_execute_queue();
367                 breakpoint->set = 0;
368         }
369         else
370         {
371                 /* restore original instruction (kept in target endianness) */
372                 if (breakpoint->length == 4)
373                 {
374                         uint32_t current_instr;
375                         /* check that user program as not modified breakpoint instruction */
376                         if ((retval = target_read_memory(target, breakpoint->address, 4, 1, (uint8_t*)&current_instr)) != ERROR_OK)
377                         {
378                                 return retval;
379                         }
380                         current_instr = target_buffer_get_u32(target, (uint8_t *)&current_instr);
381                         if (current_instr == arm7_9->arm_bkpt)
382                                 if ((retval = target_write_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
383                                 {
384                                         return retval;
385                                 }
386                 }
387                 else
388                 {
389                         uint16_t current_instr;
390                         /* check that user program as not modified breakpoint instruction */
391                         if ((retval = target_read_memory(target, breakpoint->address, 2, 1, (uint8_t*)&current_instr)) != ERROR_OK)
392                         {
393                                 return retval;
394                         }
395                         if (current_instr == arm7_9->thumb_bkpt)
396                                 if ((retval = target_write_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
397                                 {
398                                         return retval;
399                                 }
400                 }
401
402                 if (--arm7_9->sw_breakpoint_count==0)
403                 {
404                         /* We have removed the last sw breakpoint, clear the hw breakpoint we used to implement it */
405                         if (arm7_9->sw_breakpoints_added == 1)
406                         {
407                                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0);
408                         }
409                         else if (arm7_9->sw_breakpoints_added == 2)
410                         {
411                                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0);
412                         }
413                 }
414
415                 breakpoint->set = 0;
416         }
417
418         return retval;
419 }
420
421 /**
422  * Add a breakpoint to an ARM7/9 target.  This makes sure that there are no
423  * dangling breakpoints and that the desired breakpoint can be added.
424  *
425  * @param target Pointer to the target ARM7/9 device to add a breakpoint to
426  * @param breakpoint Pointer to the breakpoint to be added
427  * @return An error status if there is a problem adding the breakpoint or the
428  *         result of setting the breakpoint
429  */
430 int arm7_9_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
431 {
432         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
433
434         if (arm7_9->breakpoint_count == 0)
435         {
436                 /* make sure we don't have any dangling breakpoints. This is vital upon
437                  * GDB connect/disconnect
438                  */
439                 arm7_9_clear_watchpoints(arm7_9);
440         }
441
442         if ((breakpoint->type == BKPT_HARD) && (arm7_9->wp_available < 1))
443         {
444                 LOG_INFO("no watchpoint unit available for hardware breakpoint");
445                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
446         }
447
448         if ((breakpoint->length != 2) && (breakpoint->length != 4))
449         {
450                 LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
451                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
452         }
453
454         if (breakpoint->type == BKPT_HARD)
455         {
456                 arm7_9_assign_wp(arm7_9, breakpoint);
457         }
458
459         arm7_9->breakpoint_count++;
460
461         return arm7_9_set_breakpoint(target, breakpoint);
462 }
463
464 /**
465  * Removes a breakpoint from an ARM7/9 target.  This will make sure there are no
466  * dangling breakpoints and updates available watchpoints if it is a hardware
467  * breakpoint.
468  *
469  * @param target Pointer to the target to have a breakpoint removed
470  * @param breakpoint Pointer to the breakpoint to be removed
471  * @return Error status if there was a problem unsetting the breakpoint or the
472  *         watchpoints could not be cleared
473  */
474 int arm7_9_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
475 {
476         int retval = ERROR_OK;
477         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
478
479         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
480         {
481                 return retval;
482         }
483
484         if (breakpoint->type == BKPT_HARD)
485                 arm7_9->wp_available++;
486
487         arm7_9->breakpoint_count--;
488         if (arm7_9->breakpoint_count == 0)
489         {
490                 /* make sure we don't have any dangling breakpoints */
491                 if ((retval = arm7_9_clear_watchpoints(arm7_9)) != ERROR_OK)
492                 {
493                         return retval;
494                 }
495         }
496
497         return ERROR_OK;
498 }
499
500 /**
501  * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units.  It is
502  * considered a bug to call this function when there are no available watchpoint
503  * units.
504  *
505  * @param target Pointer to an ARM7/9 target to set a watchpoint on
506  * @param watchpoint Pointer to the watchpoint to be set
507  * @return Error status if watchpoint set fails or the result of executing the
508  *         JTAG queue
509  */
510 static int arm7_9_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
511 {
512         int retval = ERROR_OK;
513         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
514         int rw_mask = 1;
515         uint32_t mask;
516
517         mask = watchpoint->length - 1;
518
519         if (target->state != TARGET_HALTED)
520         {
521                 LOG_WARNING("target not halted");
522                 return ERROR_TARGET_NOT_HALTED;
523         }
524
525         if (watchpoint->rw == WPT_ACCESS)
526                 rw_mask = 0;
527         else
528                 rw_mask = 1;
529
530         if (!arm7_9->wp0_used)
531         {
532                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], watchpoint->address);
533                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
534                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], watchpoint->mask);
535                 if (watchpoint->mask != 0xffffffffu)
536                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], watchpoint->value);
537                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
538                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
539
540                 if ((retval = jtag_execute_queue()) != ERROR_OK)
541                 {
542                         return retval;
543                 }
544                 watchpoint->set = 1;
545                 arm7_9->wp0_used = 2;
546         }
547         else if (!arm7_9->wp1_used)
548         {
549                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], watchpoint->address);
550                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
551                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], watchpoint->mask);
552                 if (watchpoint->mask != 0xffffffffu)
553                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], watchpoint->value);
554                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
555                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
556
557                 if ((retval = jtag_execute_queue()) != ERROR_OK)
558                 {
559                         return retval;
560                 }
561                 watchpoint->set = 2;
562                 arm7_9->wp1_used = 2;
563         }
564         else
565         {
566                 LOG_ERROR("BUG: no hardware comparator available");
567                 return ERROR_OK;
568         }
569
570         return ERROR_OK;
571 }
572
573 /**
574  * Unset an existing watchpoint and clear the used watchpoint unit.
575  *
576  * @param target Pointer to the target to have the watchpoint removed
577  * @param watchpoint Pointer to the watchpoint to be removed
578  * @return Error status while trying to unset the watchpoint or the result of
579  *         executing the JTAG queue
580  */
581 static int arm7_9_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
582 {
583         int retval = ERROR_OK;
584         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
585
586         if (target->state != TARGET_HALTED)
587         {
588                 LOG_WARNING("target not halted");
589                 return ERROR_TARGET_NOT_HALTED;
590         }
591
592         if (!watchpoint->set)
593         {
594                 LOG_WARNING("breakpoint not set");
595                 return ERROR_OK;
596         }
597
598         if (watchpoint->set == 1)
599         {
600                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
601                 if ((retval = jtag_execute_queue()) != ERROR_OK)
602                 {
603                         return retval;
604                 }
605                 arm7_9->wp0_used = 0;
606         }
607         else if (watchpoint->set == 2)
608         {
609                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
610                 if ((retval = jtag_execute_queue()) != ERROR_OK)
611                 {
612                         return retval;
613                 }
614                 arm7_9->wp1_used = 0;
615         }
616         watchpoint->set = 0;
617
618         return ERROR_OK;
619 }
620
621 /**
622  * Add a watchpoint to an ARM7/9 target.  If there are no watchpoint units
623  * available, an error response is returned.
624  *
625  * @param target Pointer to the ARM7/9 target to add a watchpoint to
626  * @param watchpoint Pointer to the watchpoint to be added
627  * @return Error status while trying to add the watchpoint
628  */
629 int arm7_9_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
630 {
631         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
632
633         if (arm7_9->wp_available < 1)
634         {
635                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
636         }
637
638         if ((watchpoint->length != 1) && (watchpoint->length != 2) && (watchpoint->length != 4))
639         {
640                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
641         }
642
643         arm7_9->wp_available--;
644
645         return ERROR_OK;
646 }
647
648 /**
649  * Remove a watchpoint from an ARM7/9 target.  The watchpoint will be unset and
650  * the used watchpoint unit will be reopened.
651  *
652  * @param target Pointer to the target to remove a watchpoint from
653  * @param watchpoint Pointer to the watchpoint to be removed
654  * @return Result of trying to unset the watchpoint
655  */
656 int arm7_9_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
657 {
658         int retval = ERROR_OK;
659         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
660
661         if (watchpoint->set)
662         {
663                 if ((retval = arm7_9_unset_watchpoint(target, watchpoint)) != ERROR_OK)
664                 {
665                         return retval;
666                 }
667         }
668
669         arm7_9->wp_available++;
670
671         return ERROR_OK;
672 }
673
674 /**
675  * Restarts the target by sending a RESTART instruction and moving the JTAG
676  * state to IDLE.  This includes a timeout waiting for DBGACK and SYSCOMP to be
677  * asserted by the processor.
678  *
679  * @param target Pointer to target to issue commands to
680  * @return Error status if there is a timeout or a problem while executing the
681  *         JTAG queue
682  */
683 int arm7_9_execute_sys_speed(struct target *target)
684 {
685         int retval;
686         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
687         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
688         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
689
690         /* set RESTART instruction */
691         if (arm7_9->need_bypass_before_restart) {
692                 arm7_9->need_bypass_before_restart = 0;
693                 arm_jtag_set_instr(jtag_info, 0xf, NULL, TAP_IDLE);
694         }
695         arm_jtag_set_instr(jtag_info, 0x4, NULL, TAP_IDLE);
696
697         long long then = timeval_ms();
698         int timeout;
699         while (!(timeout = ((timeval_ms()-then) > 1000)))
700         {
701                 /* read debug status register */
702                 embeddedice_read_reg(dbg_stat);
703                 if ((retval = jtag_execute_queue()) != ERROR_OK)
704                         return retval;
705                 if ((buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
706                                    && (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_SYSCOMP, 1)))
707                         break;
708                 if (debug_level >= 3)
709                 {
710                         alive_sleep(100);
711                 } else
712                 {
713                         keep_alive();
714                 }
715         }
716         if (timeout)
717         {
718                 LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32 "", buf_get_u32(dbg_stat->value, 0, dbg_stat->size));
719                 return ERROR_TARGET_TIMEOUT;
720         }
721
722         return ERROR_OK;
723 }
724
725 /**
726  * Restarts the target by sending a RESTART instruction and moving the JTAG
727  * state to IDLE.  This validates that DBGACK and SYSCOMP are set without
728  * waiting until they are.
729  *
730  * @param target Pointer to the target to issue commands to
731  * @return Always ERROR_OK
732  */
733 static int arm7_9_execute_fast_sys_speed(struct target *target)
734 {
735         static int set = 0;
736         static uint8_t check_value[4], check_mask[4];
737
738         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
739         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
740         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
741
742         /* set RESTART instruction */
743         if (arm7_9->need_bypass_before_restart) {
744                 arm7_9->need_bypass_before_restart = 0;
745                 arm_jtag_set_instr(jtag_info, 0xf, NULL, TAP_IDLE);
746         }
747         arm_jtag_set_instr(jtag_info, 0x4, NULL, TAP_IDLE);
748
749         if (!set)
750         {
751                 /* check for DBGACK and SYSCOMP set (others don't care) */
752
753                 /* NB! These are constants that must be available until after next jtag_execute() and
754                  * we evaluate the values upon first execution in lieu of setting up these constants
755                  * during early setup.
756                  * */
757                 buf_set_u32(check_value, 0, 32, 0x9);
758                 buf_set_u32(check_mask, 0, 32, 0x9);
759                 set = 1;
760         }
761
762         /* read debug status register */
763         embeddedice_read_reg_w_check(dbg_stat, check_value, check_mask);
764
765         return ERROR_OK;
766 }
767
768 /**
769  * Get some data from the ARM7/9 target.
770  *
771  * @param target Pointer to the ARM7/9 target to read data from
772  * @param size The number of 32bit words to be read
773  * @param buffer Pointer to the buffer that will hold the data
774  * @return The result of receiving data from the Embedded ICE unit
775  */
776 int arm7_9_target_request_data(struct target *target, uint32_t size, uint8_t *buffer)
777 {
778         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
779         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
780         uint32_t *data;
781         int retval = ERROR_OK;
782         uint32_t i;
783
784         data = malloc(size * (sizeof(uint32_t)));
785
786         retval = embeddedice_receive(jtag_info, data, size);
787
788         /* return the 32-bit ints in the 8-bit array */
789         for (i = 0; i < size; i++)
790         {
791                 h_u32_to_le(buffer + (i * 4), data[i]);
792         }
793
794         free(data);
795
796         return retval;
797 }
798
799 /**
800  * Handles requests to an ARM7/9 target.  If debug messaging is enabled, the
801  * target is running and the DCC control register has the W bit high, this will
802  * execute the request on the target.
803  *
804  * @param priv Void pointer expected to be a struct target pointer
805  * @return ERROR_OK unless there are issues with the JTAG queue or when reading
806  *                  from the Embedded ICE unit
807  */
808 static int arm7_9_handle_target_request(void *priv)
809 {
810         int retval = ERROR_OK;
811         struct target *target = priv;
812         if (!target_was_examined(target))
813                 return ERROR_OK;
814         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
815         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
816         struct reg *dcc_control = &arm7_9->eice_cache->reg_list[EICE_COMMS_CTRL];
817
818         if (!target->dbg_msg_enabled)
819                 return ERROR_OK;
820
821         if (target->state == TARGET_RUNNING)
822         {
823                 /* read DCC control register */
824                 embeddedice_read_reg(dcc_control);
825                 if ((retval = jtag_execute_queue()) != ERROR_OK)
826                 {
827                         return retval;
828                 }
829
830                 /* check W bit */
831                 if (buf_get_u32(dcc_control->value, 1, 1) == 1)
832                 {
833                         uint32_t request;
834
835                         if ((retval = embeddedice_receive(jtag_info, &request, 1)) != ERROR_OK)
836                         {
837                                 return retval;
838                         }
839                         if ((retval = target_request(target, request)) != ERROR_OK)
840                         {
841                                 return retval;
842                         }
843                 }
844         }
845
846         return ERROR_OK;
847 }
848
849 /**
850  * Polls an ARM7/9 target for its current status.  If DBGACK is set, the target
851  * is manipulated to the right halted state based on its current state.  This is
852  * what happens:
853  *
854  * <table>
855  *              <tr><th > State</th><th > Action</th></tr>
856  *              <tr><td > TARGET_RUNNING | TARGET_RESET</td><td > Enters debug mode.  If TARGET_RESET, pc may be checked</td></tr>
857  *              <tr><td > TARGET_UNKNOWN</td><td > Warning is logged</td></tr>
858  *              <tr><td > TARGET_DEBUG_RUNNING</td><td > Enters debug mode</td></tr>
859  *              <tr><td > TARGET_HALTED</td><td > Nothing</td></tr>
860  * </table>
861  *
862  * If the target does not end up in the halted state, a warning is produced.  If
863  * DBGACK is cleared, then the target is expected to either be running or
864  * running in debug.
865  *
866  * @param target Pointer to the ARM7/9 target to poll
867  * @return ERROR_OK or an error status if a command fails
868  */
869 int arm7_9_poll(struct target *target)
870 {
871         int retval;
872         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
873         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
874
875         /* read debug status register */
876         embeddedice_read_reg(dbg_stat);
877         if ((retval = jtag_execute_queue()) != ERROR_OK)
878         {
879                 return retval;
880         }
881
882         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
883         {
884 /*              LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, 32));*/
885                 if (target->state == TARGET_UNKNOWN)
886                 {
887                         /* Starting OpenOCD with target in debug-halt */
888                         target->state = TARGET_RUNNING;
889                         LOG_DEBUG("DBGACK already set during server startup.");
890                 }
891                 if ((target->state == TARGET_RUNNING) || (target->state == TARGET_RESET))
892                 {
893                         target->state = TARGET_HALTED;
894
895                         if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
896                                 return retval;
897
898                         if (arm_semihosting(target, &retval) != 0)
899                                 return retval;
900
901                         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
902                         {
903                                 return retval;
904                         }
905                 }
906                 if (target->state == TARGET_DEBUG_RUNNING)
907                 {
908                         target->state = TARGET_HALTED;
909                         if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
910                                 return retval;
911
912                         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED)) != ERROR_OK)
913                         {
914                                 return retval;
915                         }
916                 }
917                 if (target->state != TARGET_HALTED)
918                 {
919                         LOG_WARNING("DBGACK set, but the target did not end up in the halted state %d", target->state);
920                 }
921         }
922         else
923         {
924                 if (target->state != TARGET_DEBUG_RUNNING)
925                         target->state = TARGET_RUNNING;
926         }
927
928         return ERROR_OK;
929 }
930
931 /**
932  * Asserts the reset (SRST) on an ARM7/9 target.  Some -S targets (ARM966E-S in
933  * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
934  * affected) completely stop the JTAG clock while the core is held in reset
935  * (SRST).  It isn't possible to program the halt condition once reset is
936  * asserted, hence a hook that allows the target to set up its reset-halt
937  * condition is setup prior to asserting reset.
938  *
939  * @param target Pointer to an ARM7/9 target to assert reset on
940  * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
941  */
942 int arm7_9_assert_reset(struct target *target)
943 {
944         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
945         enum reset_types jtag_reset_config = jtag_get_reset_config();
946         bool use_event = false;
947
948         LOG_DEBUG("target->state: %s",
949                   target_state_name(target));
950
951         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
952                 use_event = true;
953         else if (!(jtag_reset_config & RESET_HAS_SRST)) {
954                 LOG_ERROR("%s: how to reset?", target_name(target));
955                 return ERROR_FAIL;
956         }
957
958         /* At this point trst has been asserted/deasserted once. We would
959          * like to program EmbeddedICE while SRST is asserted, instead of
960          * depending on SRST to leave that module alone.  However, many CPUs
961          * gate the JTAG clock while SRST is asserted; or JTAG may need
962          * clock stability guarantees (adaptive clocking might help).
963          *
964          * So we assume JTAG access during SRST is off the menu unless it's
965          * been specifically enabled.
966          */
967         bool srst_asserted = false;
968
969         if (!use_event
970                         && !(jtag_reset_config & RESET_SRST_PULLS_TRST)
971                         && (jtag_reset_config & RESET_SRST_NO_GATING))
972         {
973                 jtag_add_reset(0, 1);
974                 srst_asserted = true;
975         }
976
977         if (target->reset_halt)
978         {
979                 /*
980                  * For targets that don't support communication while SRST is
981                  * asserted, we need to set up the reset vector catch first.
982                  *
983                  * When we use TRST+SRST and that's equivalent to a power-up
984                  * reset, these settings may well be reset anyway; so setting
985                  * them here won't matter.
986                  */
987                 if (arm7_9->has_vector_catch)
988                 {
989                         /* program vector catch register to catch reset */
990                         embeddedice_write_reg(&arm7_9->eice_cache
991                                         ->reg_list[EICE_VEC_CATCH], 0x1);
992
993                         /* extra runtest added as issues were found with
994                          * certain ARM9 cores (maybe more) - AT91SAM9260
995                          * and STR9
996                          */
997                         jtag_add_runtest(1, TAP_IDLE);
998                 }
999                 else
1000                 {
1001                         /* program watchpoint unit to match on reset vector
1002                          * address
1003                          */
1004                         embeddedice_write_reg(&arm7_9->eice_cache
1005                                         ->reg_list[EICE_W0_ADDR_VALUE], 0x0);
1006                         embeddedice_write_reg(&arm7_9->eice_cache
1007                                         ->reg_list[EICE_W0_ADDR_MASK], 0x3);
1008                         embeddedice_write_reg(&arm7_9->eice_cache
1009                                         ->reg_list[EICE_W0_DATA_MASK],
1010                                                 0xffffffff);
1011                         embeddedice_write_reg(&arm7_9->eice_cache
1012                                         ->reg_list[EICE_W0_CONTROL_VALUE],
1013                                                 EICE_W_CTRL_ENABLE);
1014                         embeddedice_write_reg(&arm7_9->eice_cache
1015                                         ->reg_list[EICE_W0_CONTROL_MASK],
1016                                                 ~EICE_W_CTRL_nOPC & 0xff);
1017                 }
1018         }
1019
1020         if (use_event) {
1021                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1022         } else {
1023                 /* If we use SRST ... we'd like to issue just SRST, but the
1024                  * board or chip may be set up so we have to assert TRST as
1025                  * well.  On some chips that combination is equivalent to a
1026                  * power-up reset, and generally clobbers EICE state.
1027                  */
1028                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
1029                         jtag_add_reset(1, 1);
1030                 else if (!srst_asserted)
1031                         jtag_add_reset(0, 1);
1032                 jtag_add_sleep(50000);
1033         }
1034
1035         target->state = TARGET_RESET;
1036         register_cache_invalidate(arm7_9->armv4_5_common.core_cache);
1037
1038         /* REVISIT why isn't standard debug entry logic sufficient?? */
1039         if (target->reset_halt
1040                         && (!(jtag_reset_config & RESET_SRST_PULLS_TRST)
1041                                 || use_event))
1042         {
1043                 /* debug entry was prepared above */
1044                 target->debug_reason = DBG_REASON_DBGRQ;
1045         }
1046
1047         return ERROR_OK;
1048 }
1049
1050 /**
1051  * Deassert the reset (SRST) signal on an ARM7/9 target.  If SRST pulls TRST
1052  * and the target is being reset into a halt, a warning will be triggered
1053  * because it is not possible to reset into a halted mode in this case.  The
1054  * target is halted using the target's functions.
1055  *
1056  * @param target Pointer to the target to have the reset deasserted
1057  * @return ERROR_OK or an error from polling or halting the target
1058  */
1059 int arm7_9_deassert_reset(struct target *target)
1060 {
1061         int retval = ERROR_OK;
1062         LOG_DEBUG("target->state: %s",
1063                 target_state_name(target));
1064
1065         /* deassert reset lines */
1066         jtag_add_reset(0, 0);
1067
1068         enum reset_types jtag_reset_config = jtag_get_reset_config();
1069         if (target->reset_halt && (jtag_reset_config & RESET_SRST_PULLS_TRST) != 0)
1070         {
1071                 LOG_WARNING("srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
1072                 /* set up embedded ice registers again */
1073                 if ((retval = target_examine_one(target)) != ERROR_OK)
1074                         return retval;
1075
1076                 if ((retval = target_poll(target)) != ERROR_OK)
1077                 {
1078                         return retval;
1079                 }
1080
1081                 if ((retval = target_halt(target)) != ERROR_OK)
1082                 {
1083                         return retval;
1084                 }
1085
1086         }
1087         return retval;
1088 }
1089
1090 /**
1091  * Clears the halt condition for an ARM7/9 target.  If it isn't coming out of
1092  * reset and if DBGRQ is used, it is progammed to be deasserted.  If the reset
1093  * vector catch was used, it is restored.  Otherwise, the control value is
1094  * restored and the watchpoint unit is restored if it was in use.
1095  *
1096  * @param target Pointer to the ARM7/9 target to have halt cleared
1097  * @return Always ERROR_OK
1098  */
1099 static int arm7_9_clear_halt(struct target *target)
1100 {
1101         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1102         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1103
1104         /* we used DBGRQ only if we didn't come out of reset */
1105         if (!arm7_9->debug_entry_from_reset && arm7_9->use_dbgrq)
1106         {
1107                 /* program EmbeddedICE Debug Control Register to deassert DBGRQ
1108                  */
1109                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1110                 embeddedice_store_reg(dbg_ctrl);
1111         }
1112         else
1113         {
1114                 if (arm7_9->debug_entry_from_reset && arm7_9->has_vector_catch)
1115                 {
1116                         /* if we came out of reset, and vector catch is supported, we used
1117                          * vector catch to enter debug state
1118                          * restore the register in that case
1119                          */
1120                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH]);
1121                 }
1122                 else
1123                 {
1124                         /* restore registers if watchpoint unit 0 was in use
1125                          */
1126                         if (arm7_9->wp0_used)
1127                         {
1128                                 if (arm7_9->debug_entry_from_reset)
1129                                 {
1130                                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE]);
1131                                 }
1132                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1133                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1134                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1135                         }
1136                         /* control value always has to be restored, as it was either disabled,
1137                          * or enabled with possibly different bits
1138                          */
1139                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1140                 }
1141         }
1142
1143         return ERROR_OK;
1144 }
1145
1146 /**
1147  * Issue a software reset and halt to an ARM7/9 target.  The target is halted
1148  * and then there is a wait until the processor shows the halt.  This wait can
1149  * timeout and results in an error being returned.  The software reset involves
1150  * clearing the halt, updating the debug control register, changing to ARM mode,
1151  * reset of the program counter, and reset of all of the registers.
1152  *
1153  * @param target Pointer to the ARM7/9 target to be reset and halted by software
1154  * @return Error status if any of the commands fail, otherwise ERROR_OK
1155  */
1156 int arm7_9_soft_reset_halt(struct target *target)
1157 {
1158         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1159         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1160         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1161         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1162         int i;
1163         int retval;
1164
1165         /* FIX!!! replace some of this code with tcl commands
1166          *
1167          * halt # the halt command is synchronous
1168          * armv4_5 core_state arm
1169          *
1170          */
1171
1172         if ((retval = target_halt(target)) != ERROR_OK)
1173                 return retval;
1174
1175         long long then = timeval_ms();
1176         int timeout;
1177         while (!(timeout = ((timeval_ms()-then) > 1000)))
1178         {
1179                 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) != 0)
1180                         break;
1181                 embeddedice_read_reg(dbg_stat);
1182                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1183                         return retval;
1184                 if (debug_level >= 3)
1185                 {
1186                         alive_sleep(100);
1187                 } else
1188                 {
1189                         keep_alive();
1190                 }
1191         }
1192         if (timeout)
1193         {
1194                 LOG_ERROR("Failed to halt CPU after 1 sec");
1195                 return ERROR_TARGET_TIMEOUT;
1196         }
1197         target->state = TARGET_HALTED;
1198
1199         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1200          * ensure that DBGRQ is cleared
1201          */
1202         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1203         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1204         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1205         embeddedice_store_reg(dbg_ctrl);
1206
1207         if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1208         {
1209                 return retval;
1210         }
1211
1212         /* if the target is in Thumb state, change to ARM state */
1213         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1214         {
1215                 uint32_t r0_thumb, pc_thumb;
1216                 LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
1217                 /* Entered debug from Thumb mode */
1218                 armv4_5->core_state = ARM_STATE_THUMB;
1219                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1220         }
1221
1222         /* REVISIT likewise for bit 5 -- switch Jazelle-to-ARM */
1223
1224         /* all register content is now invalid */
1225         register_cache_invalidate(armv4_5->core_cache);
1226
1227         /* SVC, ARM state, IRQ and FIQ disabled */
1228         uint32_t cpsr;
1229
1230         cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 32);
1231         cpsr &= ~0xff;
1232         cpsr |= 0xd3;
1233         arm_set_cpsr(armv4_5, cpsr);
1234         armv4_5->cpsr->dirty = 1;
1235
1236         /* start fetching from 0x0 */
1237         buf_set_u32(armv4_5->pc->value, 0, 32, 0x0);
1238         armv4_5->pc->dirty = 1;
1239         armv4_5->pc->valid = 1;
1240
1241         /* reset registers */
1242         for (i = 0; i <= 14; i++)
1243         {
1244                 struct reg *r = arm_reg_current(armv4_5, i);
1245
1246                 buf_set_u32(r->value, 0, 32, 0xffffffff);
1247                 r->dirty = 1;
1248                 r->valid = 1;
1249         }
1250
1251         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
1252         {
1253                 return retval;
1254         }
1255
1256         return ERROR_OK;
1257 }
1258
1259 /**
1260  * Halt an ARM7/9 target.  This is accomplished by either asserting the DBGRQ
1261  * line or by programming a watchpoint to trigger on any address.  It is
1262  * considered a bug to call this function while the target is in the
1263  * TARGET_RESET state.
1264  *
1265  * @param target Pointer to the ARM7/9 target to be halted
1266  * @return Always ERROR_OK
1267  */
1268 int arm7_9_halt(struct target *target)
1269 {
1270         if (target->state == TARGET_RESET)
1271         {
1272                 LOG_ERROR("BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
1273                 return ERROR_OK;
1274         }
1275
1276         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1277         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1278
1279         LOG_DEBUG("target->state: %s",
1280                   target_state_name(target));
1281
1282         if (target->state == TARGET_HALTED)
1283         {
1284                 LOG_DEBUG("target was already halted");
1285                 return ERROR_OK;
1286         }
1287
1288         if (target->state == TARGET_UNKNOWN)
1289         {
1290                 LOG_WARNING("target was in unknown state when halt was requested");
1291         }
1292
1293         if (arm7_9->use_dbgrq)
1294         {
1295                 /* program EmbeddedICE Debug Control Register to assert DBGRQ
1296                  */
1297                 if (arm7_9->set_special_dbgrq) {
1298                         arm7_9->set_special_dbgrq(target);
1299                 } else {
1300                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 1);
1301                         embeddedice_store_reg(dbg_ctrl);
1302                 }
1303         }
1304         else
1305         {
1306                 /* program watchpoint unit to match on any address
1307                  */
1308                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1309                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1310                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1311                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1312         }
1313
1314         target->debug_reason = DBG_REASON_DBGRQ;
1315
1316         return ERROR_OK;
1317 }
1318
1319 /**
1320  * Handle an ARM7/9 target's entry into debug mode.  The halt is cleared on the
1321  * ARM.  The JTAG queue is then executed and the reason for debug entry is
1322  * examined.  Once done, the target is verified to be halted and the processor
1323  * is forced into ARM mode.  The core registers are saved for the current core
1324  * mode and the program counter (register 15) is updated as needed.  The core
1325  * registers and CPSR and SPSR are saved for restoration later.
1326  *
1327  * @param target Pointer to target that is entering debug mode
1328  * @return Error code if anything fails, otherwise ERROR_OK
1329  */
1330 static int arm7_9_debug_entry(struct target *target)
1331 {
1332         int i;
1333         uint32_t context[16];
1334         uint32_t* context_p[16];
1335         uint32_t r0_thumb, pc_thumb;
1336         uint32_t cpsr, cpsr_mask = 0;
1337         int retval;
1338         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1339         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1340         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1341         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1342
1343 #ifdef _DEBUG_ARM7_9_
1344         LOG_DEBUG("-");
1345 #endif
1346
1347         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1348          * ensure that DBGRQ is cleared
1349          */
1350         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1351         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1352         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1353         embeddedice_store_reg(dbg_ctrl);
1354
1355         if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1356         {
1357                 return retval;
1358         }
1359
1360         if ((retval = jtag_execute_queue()) != ERROR_OK)
1361         {
1362                 return retval;
1363         }
1364
1365         if ((retval = arm7_9->examine_debug_reason(target)) != ERROR_OK)
1366                 return retval;
1367
1368
1369         if (target->state != TARGET_HALTED)
1370         {
1371                 LOG_WARNING("target not halted");
1372                 return ERROR_TARGET_NOT_HALTED;
1373         }
1374
1375         /* if the target is in Thumb state, change to ARM state */
1376         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1377         {
1378                 LOG_DEBUG("target entered debug from Thumb state");
1379                 /* Entered debug from Thumb mode */
1380                 armv4_5->core_state = ARM_STATE_THUMB;
1381                 cpsr_mask = 1 << 5;
1382                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1383                 LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32
1384                         ", pc_thumb: 0x%8.8" PRIx32, r0_thumb, pc_thumb);
1385         } else if (buf_get_u32(dbg_stat->value, 5, 1)) {
1386                 /* \todo Get some vaguely correct handling of Jazelle, if
1387                  * anyone ever uses it and full info becomes available.
1388                  * See ARM9EJS TRM B.7.1 for how to switch J->ARM; and
1389                  * B.7.3 for the reverse.  That'd be the bare minimum...
1390                  */
1391                 LOG_DEBUG("target entered debug from Jazelle state");
1392                 armv4_5->core_state = ARM_STATE_JAZELLE;
1393                 cpsr_mask = 1 << 24;
1394                 LOG_ERROR("Jazelle debug entry -- BROKEN!");
1395         } else {
1396                 LOG_DEBUG("target entered debug from ARM state");
1397                 /* Entered debug from ARM mode */
1398                 armv4_5->core_state = ARM_STATE_ARM;
1399         }
1400
1401         for (i = 0; i < 16; i++)
1402                 context_p[i] = &context[i];
1403         /* save core registers (r0 - r15 of current core mode) */
1404         arm7_9->read_core_regs(target, 0xffff, context_p);
1405
1406         arm7_9->read_xpsr(target, &cpsr, 0);
1407
1408         if ((retval = jtag_execute_queue()) != ERROR_OK)
1409                 return retval;
1410
1411         /* Sync our CPSR copy with J or T bits EICE reported, but
1412          * which we then erased by putting the core into ARM mode.
1413          */
1414         arm_set_cpsr(armv4_5, cpsr | cpsr_mask);
1415
1416         if (!is_arm_mode(armv4_5->core_mode))
1417         {
1418                 target->state = TARGET_UNKNOWN;
1419                 LOG_ERROR("cpsr contains invalid mode value - communication failure");
1420                 return ERROR_TARGET_FAILURE;
1421         }
1422
1423         LOG_DEBUG("target entered debug state in %s mode",
1424                          arm_mode_name(armv4_5->core_mode));
1425
1426         if (armv4_5->core_state == ARM_STATE_THUMB)
1427         {
1428                 LOG_DEBUG("thumb state, applying fixups");
1429                 context[0] = r0_thumb;
1430                 context[15] = pc_thumb;
1431         } else if (armv4_5->core_state == ARM_STATE_ARM)
1432         {
1433                 /* adjust value stored by STM */
1434                 context[15] -= 3 * 4;
1435         }
1436
1437         if ((target->debug_reason != DBG_REASON_DBGRQ) || (!arm7_9->use_dbgrq))
1438                 context[15] -= 3 * ((armv4_5->core_state == ARM_STATE_ARM) ? 4 : 2);
1439         else
1440                 context[15] -= arm7_9->dbgreq_adjust_pc * ((armv4_5->core_state == ARM_STATE_ARM) ? 4 : 2);
1441
1442         for (i = 0; i <= 15; i++)
1443         {
1444                 struct reg *r = arm_reg_current(armv4_5, i);
1445
1446                 LOG_DEBUG("r%i: 0x%8.8" PRIx32 "", i, context[i]);
1447
1448                 buf_set_u32(r->value, 0, 32, context[i]);
1449                 /* r0 and r15 (pc) have to be restored later */
1450                 r->dirty = (i == 0) || (i == 15);
1451                 r->valid = 1;
1452         }
1453
1454         LOG_DEBUG("entered debug state at PC 0x%" PRIx32 "", context[15]);
1455
1456         /* exceptions other than USR & SYS have a saved program status register */
1457         if (armv4_5->spsr) {
1458                 uint32_t spsr;
1459                 arm7_9->read_xpsr(target, &spsr, 1);
1460                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1461                 {
1462                         return retval;
1463                 }
1464                 buf_set_u32(armv4_5->spsr->value, 0, 32, spsr);
1465                 armv4_5->spsr->dirty = 0;
1466                 armv4_5->spsr->valid = 1;
1467         }
1468
1469         if ((retval = jtag_execute_queue()) != ERROR_OK)
1470                 return retval;
1471
1472         if (arm7_9->post_debug_entry)
1473         {
1474                 retval = arm7_9->post_debug_entry(target);
1475                 if (retval != ERROR_OK)
1476                         return retval;
1477         }
1478
1479         return ERROR_OK;
1480 }
1481
1482 /**
1483  * Validate the full context for an ARM7/9 target in all processor modes.  If
1484  * there are any invalid registers for the target, they will all be read.  This
1485  * includes the PSR.
1486  *
1487  * @param target Pointer to the ARM7/9 target to capture the full context from
1488  * @return Error if the target is not halted, has an invalid core mode, or if
1489  *         the JTAG queue fails to execute
1490  */
1491 static int arm7_9_full_context(struct target *target)
1492 {
1493         int i;
1494         int retval;
1495         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1496         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1497
1498         LOG_DEBUG("-");
1499
1500         if (target->state != TARGET_HALTED)
1501         {
1502                 LOG_WARNING("target not halted");
1503                 return ERROR_TARGET_NOT_HALTED;
1504         }
1505
1506         if (!is_arm_mode(armv4_5->core_mode))
1507                 return ERROR_FAIL;
1508
1509         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1510          * SYS shares registers with User, so we don't touch SYS
1511          */
1512         for (i = 0; i < 6; i++)
1513         {
1514                 uint32_t mask = 0;
1515                 uint32_t* reg_p[16];
1516                 int j;
1517                 int valid = 1;
1518
1519                 /* check if there are invalid registers in the current mode
1520                  */
1521                 for (j = 0; j <= 16; j++)
1522                 {
1523                         if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1524                                 valid = 0;
1525                 }
1526
1527                 if (!valid)
1528                 {
1529                         uint32_t tmp_cpsr;
1530
1531                         /* change processor mode (and mask T bit) */
1532                         tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8)
1533                                         & 0xe0;
1534                         tmp_cpsr |= armv4_5_number_to_mode(i);
1535                         tmp_cpsr &= ~0x20;
1536                         arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1537
1538                         for (j = 0; j < 15; j++)
1539                         {
1540                                 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1541                                 {
1542                                         reg_p[j] = (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).value;
1543                                         mask |= 1 << j;
1544                                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid = 1;
1545                                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).dirty = 0;
1546                                 }
1547                         }
1548
1549                         /* if only the PSR is invalid, mask is all zeroes */
1550                         if (mask)
1551                                 arm7_9->read_core_regs(target, mask, reg_p);
1552
1553                         /* check if the PSR has to be read */
1554                         if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid == 0)
1555                         {
1556                                 arm7_9->read_xpsr(target, (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).value, 1);
1557                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid = 1;
1558                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).dirty = 0;
1559                         }
1560                 }
1561         }
1562
1563         /* restore processor mode (mask T bit) */
1564         arm7_9->write_xpsr_im8(target,
1565                         buf_get_u32(armv4_5->cpsr->value, 0, 8) & ~0x20,
1566                         0, 0);
1567
1568         if ((retval = jtag_execute_queue()) != ERROR_OK)
1569         {
1570                 return retval;
1571         }
1572         return ERROR_OK;
1573 }
1574
1575 /**
1576  * Restore the processor context on an ARM7/9 target.  The full processor
1577  * context is analyzed to see if any of the registers are dirty on this end, but
1578  * have a valid new value.  If this is the case, the processor is changed to the
1579  * appropriate mode and the new register values are written out to the
1580  * processor.  If there happens to be a dirty register with an invalid value, an
1581  * error will be logged.
1582  *
1583  * @param target Pointer to the ARM7/9 target to have its context restored
1584  * @return Error status if the target is not halted or the core mode in the
1585  *         armv4_5 struct is invalid.
1586  */
1587 static int arm7_9_restore_context(struct target *target)
1588 {
1589         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1590         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1591         struct reg *reg;
1592         struct arm_reg *reg_arch_info;
1593         enum arm_mode current_mode = armv4_5->core_mode;
1594         int i, j;
1595         int dirty;
1596         int mode_change;
1597
1598         LOG_DEBUG("-");
1599
1600         if (target->state != TARGET_HALTED)
1601         {
1602                 LOG_WARNING("target not halted");
1603                 return ERROR_TARGET_NOT_HALTED;
1604         }
1605
1606         if (arm7_9->pre_restore_context)
1607                 arm7_9->pre_restore_context(target);
1608
1609         if (!is_arm_mode(armv4_5->core_mode))
1610                 return ERROR_FAIL;
1611
1612         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1613          * SYS shares registers with User, so we don't touch SYS
1614          */
1615         for (i = 0; i < 6; i++)
1616         {
1617                 LOG_DEBUG("examining %s mode",
1618                                 arm_mode_name(armv4_5->core_mode));
1619                 dirty = 0;
1620                 mode_change = 0;
1621                 /* check if there are dirty registers in the current mode
1622                 */
1623                 for (j = 0; j <= 16; j++)
1624                 {
1625                         reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1626                         reg_arch_info = reg->arch_info;
1627                         if (reg->dirty == 1)
1628                         {
1629                                 if (reg->valid == 1)
1630                                 {
1631                                         dirty = 1;
1632                                         LOG_DEBUG("examining dirty reg: %s", reg->name);
1633                                         if ((reg_arch_info->mode != ARM_MODE_ANY)
1634                                                 && (reg_arch_info->mode != current_mode)
1635                                                 && !((reg_arch_info->mode == ARM_MODE_USR) && (armv4_5->core_mode == ARM_MODE_SYS))
1636                                                 && !((reg_arch_info->mode == ARM_MODE_SYS) && (armv4_5->core_mode == ARM_MODE_USR)))
1637                                         {
1638                                                 mode_change = 1;
1639                                                 LOG_DEBUG("require mode change");
1640                                         }
1641                                 }
1642                                 else
1643                                 {
1644                                         LOG_ERROR("BUG: dirty register '%s', but no valid data", reg->name);
1645                                 }
1646                         }
1647                 }
1648
1649                 if (dirty)
1650                 {
1651                         uint32_t mask = 0x0;
1652                         int num_regs = 0;
1653                         uint32_t regs[16];
1654
1655                         if (mode_change)
1656                         {
1657                                 uint32_t tmp_cpsr;
1658
1659                                 /* change processor mode (mask T bit) */
1660                                 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value,
1661                                                 0, 8) & 0xe0;
1662                                 tmp_cpsr |= armv4_5_number_to_mode(i);
1663                                 tmp_cpsr &= ~0x20;
1664                                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1665                                 current_mode = armv4_5_number_to_mode(i);
1666                         }
1667
1668                         for (j = 0; j <= 14; j++)
1669                         {
1670                                 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1671                                 reg_arch_info = reg->arch_info;
1672
1673
1674                                 if (reg->dirty == 1)
1675                                 {
1676                                         regs[j] = buf_get_u32(reg->value, 0, 32);
1677                                         mask |= 1 << j;
1678                                         num_regs++;
1679                                         reg->dirty = 0;
1680                                         reg->valid = 1;
1681                                         LOG_DEBUG("writing register %i mode %s "
1682                                                 "with value 0x%8.8" PRIx32, j,
1683                                                 arm_mode_name(armv4_5->core_mode),
1684                                                 regs[j]);
1685                                 }
1686                         }
1687
1688                         if (mask)
1689                         {
1690                                 arm7_9->write_core_regs(target, mask, regs);
1691                         }
1692
1693                         reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16);
1694                         reg_arch_info = reg->arch_info;
1695                         if ((reg->dirty) && (reg_arch_info->mode != ARM_MODE_ANY))
1696                         {
1697                                 LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32 "", i, buf_get_u32(reg->value, 0, 32));
1698                                 arm7_9->write_xpsr(target, buf_get_u32(reg->value, 0, 32), 1);
1699                         }
1700                 }
1701         }
1702
1703         if (!armv4_5->cpsr->dirty && (armv4_5->core_mode != current_mode))
1704         {
1705                 /* restore processor mode (mask T bit) */
1706                 uint32_t tmp_cpsr;
1707
1708                 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
1709                 tmp_cpsr |= armv4_5_number_to_mode(i);
1710                 tmp_cpsr &= ~0x20;
1711                 LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr));
1712                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1713         }
1714         else if (armv4_5->cpsr->dirty)
1715         {
1716                 /* CPSR has been changed, full restore necessary (mask T bit) */
1717                 LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32,
1718                                 buf_get_u32(armv4_5->cpsr->value, 0, 32));
1719                 arm7_9->write_xpsr(target,
1720                                 buf_get_u32(armv4_5->cpsr->value, 0, 32)
1721                                         & ~0x20, 0);
1722                 armv4_5->cpsr->dirty = 0;
1723                 armv4_5->cpsr->valid = 1;
1724         }
1725
1726         /* restore PC */
1727         LOG_DEBUG("writing PC with value 0x%8.8" PRIx32,
1728                         buf_get_u32(armv4_5->pc->value, 0, 32));
1729         arm7_9->write_pc(target, buf_get_u32(armv4_5->pc->value, 0, 32));
1730         armv4_5->pc->dirty = 0;
1731
1732         return ERROR_OK;
1733 }
1734
1735 /**
1736  * Restart the core of an ARM7/9 target.  A RESTART command is sent to the
1737  * instruction register and the JTAG state is set to TAP_IDLE causing a core
1738  * restart.
1739  *
1740  * @param target Pointer to the ARM7/9 target to be restarted
1741  * @return Result of executing the JTAG queue
1742  */
1743 static int arm7_9_restart_core(struct target *target)
1744 {
1745         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1746         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
1747
1748         /* set RESTART instruction */
1749         if (arm7_9->need_bypass_before_restart) {
1750                 arm7_9->need_bypass_before_restart = 0;
1751                 arm_jtag_set_instr(jtag_info, 0xf, NULL, TAP_IDLE);
1752         }
1753         arm_jtag_set_instr(jtag_info, 0x4, NULL, TAP_IDLE);
1754
1755         jtag_add_runtest(1, TAP_IDLE);
1756         return jtag_execute_queue();
1757 }
1758
1759 /**
1760  * Enable the watchpoints on an ARM7/9 target.  The target's watchpoints are
1761  * iterated through and are set on the target if they aren't already set.
1762  *
1763  * @param target Pointer to the ARM7/9 target to enable watchpoints on
1764  */
1765 static void arm7_9_enable_watchpoints(struct target *target)
1766 {
1767         struct watchpoint *watchpoint = target->watchpoints;
1768
1769         while (watchpoint)
1770         {
1771                 if (watchpoint->set == 0)
1772                         arm7_9_set_watchpoint(target, watchpoint);
1773                 watchpoint = watchpoint->next;
1774         }
1775 }
1776
1777 /**
1778  * Enable the breakpoints on an ARM7/9 target.  The target's breakpoints are
1779  * iterated through and are set on the target.
1780  *
1781  * @param target Pointer to the ARM7/9 target to enable breakpoints on
1782  */
1783 static void arm7_9_enable_breakpoints(struct target *target)
1784 {
1785         struct breakpoint *breakpoint = target->breakpoints;
1786
1787         /* set any pending breakpoints */
1788         while (breakpoint)
1789         {
1790                 arm7_9_set_breakpoint(target, breakpoint);
1791                 breakpoint = breakpoint->next;
1792         }
1793 }
1794
1795 int arm7_9_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
1796 {
1797         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1798         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1799         struct breakpoint *breakpoint = target->breakpoints;
1800         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1801         int err, retval = ERROR_OK;
1802
1803         LOG_DEBUG("-");
1804
1805         if (target->state != TARGET_HALTED)
1806         {
1807                 LOG_WARNING("target not halted");
1808                 return ERROR_TARGET_NOT_HALTED;
1809         }
1810
1811         if (!debug_execution)
1812         {
1813                 target_free_all_working_areas(target);
1814         }
1815
1816         /* current = 1: continue on current pc, otherwise continue at <address> */
1817         if (!current)
1818                 buf_set_u32(armv4_5->pc->value, 0, 32, address);
1819
1820         uint32_t current_pc;
1821         current_pc = buf_get_u32(armv4_5->pc->value, 0, 32);
1822
1823         /* the front-end may request us not to handle breakpoints */
1824         if (handle_breakpoints)
1825         {
1826                 breakpoint = breakpoint_find(target,
1827                                 buf_get_u32(armv4_5->pc->value, 0, 32));
1828                 if (breakpoint != NULL)
1829                 {
1830                         LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (id: %d)", breakpoint->address, breakpoint->unique_id );
1831                         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
1832                         {
1833                                 return retval;
1834                         }
1835
1836                         /* calculate PC of next instruction */
1837                         uint32_t next_pc;
1838                         if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
1839                         {
1840                                 uint32_t current_opcode;
1841                                 target_read_u32(target, current_pc, &current_opcode);
1842                                 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
1843                                 return retval;
1844                         }
1845
1846                         LOG_DEBUG("enable single-step");
1847                         arm7_9->enable_single_step(target, next_pc);
1848
1849                         target->debug_reason = DBG_REASON_SINGLESTEP;
1850
1851                         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1852                         {
1853                                 return retval;
1854                         }
1855
1856                         if (armv4_5->core_state == ARM_STATE_ARM)
1857                                 arm7_9->branch_resume(target);
1858                         else if (armv4_5->core_state == ARM_STATE_THUMB)
1859                         {
1860                                 arm7_9->branch_resume_thumb(target);
1861                         }
1862                         else
1863                         {
1864                                 LOG_ERROR("unhandled core state");
1865                                 return ERROR_FAIL;
1866                         }
1867
1868                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1869                         embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1870                         err = arm7_9_execute_sys_speed(target);
1871
1872                         LOG_DEBUG("disable single-step");
1873                         arm7_9->disable_single_step(target);
1874
1875                         if (err != ERROR_OK)
1876                         {
1877                                 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1878                                 {
1879                                         return retval;
1880                                 }
1881                                 target->state = TARGET_UNKNOWN;
1882                                 return err;
1883                         }
1884
1885                         retval = arm7_9_debug_entry(target);
1886                         if (retval != ERROR_OK)
1887                                 return retval;
1888                         LOG_DEBUG("new PC after step: 0x%8.8" PRIx32,
1889                                         buf_get_u32(armv4_5->pc->value, 0, 32));
1890
1891                         LOG_DEBUG("set breakpoint at 0x%8.8" PRIx32 "", breakpoint->address);
1892                         if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1893                         {
1894                                 return retval;
1895                         }
1896                 }
1897         }
1898
1899         /* enable any pending breakpoints and watchpoints */
1900         arm7_9_enable_breakpoints(target);
1901         arm7_9_enable_watchpoints(target);
1902
1903         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1904         {
1905                 return retval;
1906         }
1907
1908         if (armv4_5->core_state == ARM_STATE_ARM)
1909         {
1910                 arm7_9->branch_resume(target);
1911         }
1912         else if (armv4_5->core_state == ARM_STATE_THUMB)
1913         {
1914                 arm7_9->branch_resume_thumb(target);
1915         }
1916         else
1917         {
1918                 LOG_ERROR("unhandled core state");
1919                 return ERROR_FAIL;
1920         }
1921
1922         /* deassert DBGACK and INTDIS */
1923         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1924         /* INTDIS only when we really resume, not during debug execution */
1925         if (!debug_execution)
1926                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 0);
1927         embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1928
1929         if ((retval = arm7_9_restart_core(target)) != ERROR_OK)
1930         {
1931                 return retval;
1932         }
1933
1934         target->debug_reason = DBG_REASON_NOTHALTED;
1935
1936         if (!debug_execution)
1937         {
1938                 /* registers are now invalid */
1939                 register_cache_invalidate(armv4_5->core_cache);
1940                 target->state = TARGET_RUNNING;
1941                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
1942                 {
1943                         return retval;
1944                 }
1945         }
1946         else
1947         {
1948                 target->state = TARGET_DEBUG_RUNNING;
1949                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED)) != ERROR_OK)
1950                 {
1951                         return retval;
1952                 }
1953         }
1954
1955         LOG_DEBUG("target resumed");
1956
1957         return ERROR_OK;
1958 }
1959
1960 void arm7_9_enable_eice_step(struct target *target, uint32_t next_pc)
1961 {
1962         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1963         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1964         uint32_t current_pc;
1965         current_pc = buf_get_u32(armv4_5->pc->value, 0, 32);
1966
1967         if (next_pc != current_pc)
1968         {
1969                 /* setup an inverse breakpoint on the current PC
1970                 * - comparator 1 matches the current address
1971                 * - rangeout from comparator 1 is connected to comparator 0 rangein
1972                 * - comparator 0 matches any address, as long as rangein is low */
1973                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1974                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1975                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1976                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~(EICE_W_CTRL_RANGE | EICE_W_CTRL_nOPC) & 0xff);
1977                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], current_pc);
1978                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1979                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1980                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
1981                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1982         }
1983         else
1984         {
1985                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1986                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1987                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
1988                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff);
1989                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], next_pc);
1990                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1991                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1992                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1993                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1994         }
1995 }
1996
1997 void arm7_9_disable_eice_step(struct target *target)
1998 {
1999         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2000
2001         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
2002         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
2003         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
2004         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
2005         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE]);
2006         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK]);
2007         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK]);
2008         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK]);
2009         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE]);
2010 }
2011
2012 int arm7_9_step(struct target *target, int current, uint32_t address, int handle_breakpoints)
2013 {
2014         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2015         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2016         struct breakpoint *breakpoint = NULL;
2017         int err, retval;
2018
2019         if (target->state != TARGET_HALTED)
2020         {
2021                 LOG_WARNING("target not halted");
2022                 return ERROR_TARGET_NOT_HALTED;
2023         }
2024
2025         /* current = 1: continue on current pc, otherwise continue at <address> */
2026         if (!current)
2027                 buf_set_u32(armv4_5->pc->value, 0, 32, address);
2028
2029         uint32_t current_pc = buf_get_u32(armv4_5->pc->value, 0, 32);
2030
2031         /* the front-end may request us not to handle breakpoints */
2032         if (handle_breakpoints)
2033                 breakpoint = breakpoint_find(target, current_pc);
2034         if (breakpoint != NULL) {
2035                 retval = arm7_9_unset_breakpoint(target, breakpoint);
2036                 if (retval != ERROR_OK)
2037                         return retval;
2038         }
2039
2040         target->debug_reason = DBG_REASON_SINGLESTEP;
2041
2042         /* calculate PC of next instruction */
2043         uint32_t next_pc;
2044         if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
2045         {
2046                 uint32_t current_opcode;
2047                 target_read_u32(target, current_pc, &current_opcode);
2048                 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
2049                 return retval;
2050         }
2051
2052         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
2053         {
2054                 return retval;
2055         }
2056
2057         arm7_9->enable_single_step(target, next_pc);
2058
2059         if (armv4_5->core_state == ARM_STATE_ARM)
2060         {
2061                 arm7_9->branch_resume(target);
2062         }
2063         else if (armv4_5->core_state == ARM_STATE_THUMB)
2064         {
2065                 arm7_9->branch_resume_thumb(target);
2066         }
2067         else
2068         {
2069                 LOG_ERROR("unhandled core state");
2070                 return ERROR_FAIL;
2071         }
2072
2073         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
2074         {
2075                 return retval;
2076         }
2077
2078         err = arm7_9_execute_sys_speed(target);
2079         arm7_9->disable_single_step(target);
2080
2081         /* registers are now invalid */
2082         register_cache_invalidate(armv4_5->core_cache);
2083
2084         if (err != ERROR_OK)
2085         {
2086                 target->state = TARGET_UNKNOWN;
2087         } else {
2088                 retval = arm7_9_debug_entry(target);
2089                 if (retval != ERROR_OK)
2090                         return retval;
2091                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
2092                 {
2093                         return retval;
2094                 }
2095                 LOG_DEBUG("target stepped");
2096         }
2097
2098         if (breakpoint)
2099                 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
2100                 {
2101                         return retval;
2102                 }
2103
2104         return err;
2105 }
2106
2107 static int arm7_9_read_core_reg(struct target *target, struct reg *r,
2108                 int num, enum arm_mode mode)
2109 {
2110         uint32_t* reg_p[16];
2111         uint32_t value;
2112         int retval;
2113         struct arm_reg *areg = r->arch_info;
2114         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2115         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2116
2117         if (!is_arm_mode(armv4_5->core_mode))
2118                 return ERROR_FAIL;
2119         if ((num < 0) || (num > 16))
2120                 return ERROR_INVALID_ARGUMENTS;
2121
2122         if ((mode != ARM_MODE_ANY)
2123                         && (mode != armv4_5->core_mode)
2124                         && (areg->mode != ARM_MODE_ANY))
2125         {
2126                 uint32_t tmp_cpsr;
2127
2128                 /* change processor mode (mask T bit) */
2129                 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
2130                 tmp_cpsr |= mode;
2131                 tmp_cpsr &= ~0x20;
2132                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2133         }
2134
2135         if ((num >= 0) && (num <= 15))
2136         {
2137                 /* read a normal core register */
2138                 reg_p[num] = &value;
2139
2140                 arm7_9->read_core_regs(target, 1 << num, reg_p);
2141         }
2142         else
2143         {
2144                 /* read a program status register
2145                  * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
2146                  */
2147                 arm7_9->read_xpsr(target, &value, areg->mode != ARM_MODE_ANY);
2148         }
2149
2150         if ((retval = jtag_execute_queue()) != ERROR_OK)
2151         {
2152                 return retval;
2153         }
2154
2155         r->valid = 1;
2156         r->dirty = 0;
2157         buf_set_u32(r->value, 0, 32, value);
2158
2159         if ((mode != ARM_MODE_ANY)
2160                         && (mode != armv4_5->core_mode)
2161                         && (areg->mode != ARM_MODE_ANY))        {
2162                 /* restore processor mode (mask T bit) */
2163                 arm7_9->write_xpsr_im8(target,
2164                                 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2165                                         & ~0x20, 0, 0);
2166         }
2167
2168         return ERROR_OK;
2169 }
2170
2171 static int arm7_9_write_core_reg(struct target *target, struct reg *r,
2172                 int num, enum arm_mode mode, uint32_t value)
2173 {
2174         uint32_t reg[16];
2175         struct arm_reg *areg = r->arch_info;
2176         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2177         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2178
2179         if (!is_arm_mode(armv4_5->core_mode))
2180                 return ERROR_FAIL;
2181         if ((num < 0) || (num > 16))
2182                 return ERROR_INVALID_ARGUMENTS;
2183
2184         if ((mode != ARM_MODE_ANY)
2185                         && (mode != armv4_5->core_mode)
2186                         && (areg->mode != ARM_MODE_ANY))        {
2187                 uint32_t tmp_cpsr;
2188
2189                 /* change processor mode (mask T bit) */
2190                 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
2191                 tmp_cpsr |= mode;
2192                 tmp_cpsr &= ~0x20;
2193                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2194         }
2195
2196         if ((num >= 0) && (num <= 15))
2197         {
2198                 /* write a normal core register */
2199                 reg[num] = value;
2200
2201                 arm7_9->write_core_regs(target, 1 << num, reg);
2202         }
2203         else
2204         {
2205                 /* write a program status register
2206                 * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
2207                 */
2208                 int spsr = (areg->mode != ARM_MODE_ANY);
2209
2210                 /* if we're writing the CPSR, mask the T bit */
2211                 if (!spsr)
2212                         value &= ~0x20;
2213
2214                 arm7_9->write_xpsr(target, value, spsr);
2215         }
2216
2217         r->valid = 1;
2218         r->dirty = 0;
2219
2220         if ((mode != ARM_MODE_ANY)
2221                         && (mode != armv4_5->core_mode)
2222                         && (areg->mode != ARM_MODE_ANY))        {
2223                 /* restore processor mode (mask T bit) */
2224                 arm7_9->write_xpsr_im8(target,
2225                                 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2226                                         & ~0x20, 0, 0);
2227         }
2228
2229         return jtag_execute_queue();
2230 }
2231
2232 int arm7_9_read_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2233 {
2234         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2235         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2236         uint32_t reg[16];
2237         uint32_t num_accesses = 0;
2238         int thisrun_accesses;
2239         int i;
2240         uint32_t cpsr;
2241         int retval;
2242         int last_reg = 0;
2243
2244         LOG_DEBUG("address: 0x%8.8" PRIx32 ", size: 0x%8.8" PRIx32 ", count: 0x%8.8" PRIx32 "", address, size, count);
2245
2246         if (target->state != TARGET_HALTED)
2247         {
2248                 LOG_WARNING("target not halted");
2249                 return ERROR_TARGET_NOT_HALTED;
2250         }
2251
2252         /* sanitize arguments */
2253         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2254                 return ERROR_INVALID_ARGUMENTS;
2255
2256         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2257                 return ERROR_TARGET_UNALIGNED_ACCESS;
2258
2259         /* load the base register with the address of the first word */
2260         reg[0] = address;
2261         arm7_9->write_core_regs(target, 0x1, reg);
2262
2263         int j = 0;
2264
2265         switch (size)
2266         {
2267                 case 4:
2268                         while (num_accesses < count)
2269                         {
2270                                 uint32_t reg_list;
2271                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2272                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2273
2274                                 if (last_reg <= thisrun_accesses)
2275                                         last_reg = thisrun_accesses;
2276
2277                                 arm7_9->load_word_regs(target, reg_list);
2278
2279                                 /* fast memory reads are only safe when the target is running
2280                                  * from a sufficiently high clock (32 kHz is usually too slow)
2281                                  */
2282                                 if (arm7_9->fast_memory_access)
2283                                         retval = arm7_9_execute_fast_sys_speed(target);
2284                                 else
2285                                         retval = arm7_9_execute_sys_speed(target);
2286                                 if (retval != ERROR_OK)
2287                                         return retval;
2288
2289                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 4);
2290
2291                                 /* advance buffer, count number of accesses */
2292                                 buffer += thisrun_accesses * 4;
2293                                 num_accesses += thisrun_accesses;
2294
2295                                 if ((j++%1024) == 0)
2296                                 {
2297                                         keep_alive();
2298                                 }
2299                         }
2300                         break;
2301                 case 2:
2302                         while (num_accesses < count)
2303                         {
2304                                 uint32_t reg_list;
2305                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2306                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2307
2308                                 for (i = 1; i <= thisrun_accesses; i++)
2309                                 {
2310                                         if (i > last_reg)
2311                                                 last_reg = i;
2312                                         arm7_9->load_hword_reg(target, i);
2313                                         /* fast memory reads are only safe when the target is running
2314                                          * from a sufficiently high clock (32 kHz is usually too slow)
2315                                          */
2316                                         if (arm7_9->fast_memory_access)
2317                                                 retval = arm7_9_execute_fast_sys_speed(target);
2318                                         else
2319                                                 retval = arm7_9_execute_sys_speed(target);
2320                                         if (retval != ERROR_OK)
2321                                         {
2322                                                 return retval;
2323                                         }
2324
2325                                 }
2326
2327                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 2);
2328
2329                                 /* advance buffer, count number of accesses */
2330                                 buffer += thisrun_accesses * 2;
2331                                 num_accesses += thisrun_accesses;
2332
2333                                 if ((j++%1024) == 0)
2334                                 {
2335                                         keep_alive();
2336                                 }
2337                         }
2338                         break;
2339                 case 1:
2340                         while (num_accesses < count)
2341                         {
2342                                 uint32_t reg_list;
2343                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2344                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2345
2346                                 for (i = 1; i <= thisrun_accesses; i++)
2347                                 {
2348                                         if (i > last_reg)
2349                                                 last_reg = i;
2350                                         arm7_9->load_byte_reg(target, i);
2351                                         /* fast memory reads are only safe when the target is running
2352                                          * from a sufficiently high clock (32 kHz is usually too slow)
2353                                          */
2354                                         if (arm7_9->fast_memory_access)
2355                                                 retval = arm7_9_execute_fast_sys_speed(target);
2356                                         else
2357                                                 retval = arm7_9_execute_sys_speed(target);
2358                                         if (retval != ERROR_OK)
2359                                         {
2360                                                 return retval;
2361                                         }
2362                                 }
2363
2364                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 1);
2365
2366                                 /* advance buffer, count number of accesses */
2367                                 buffer += thisrun_accesses * 1;
2368                                 num_accesses += thisrun_accesses;
2369
2370                                 if ((j++%1024) == 0)
2371                                 {
2372                                         keep_alive();
2373                                 }
2374                         }
2375                         break;
2376         }
2377
2378         if (!is_arm_mode(armv4_5->core_mode))
2379                 return ERROR_FAIL;
2380
2381         for (i = 0; i <= last_reg; i++) {
2382                 struct reg *r = arm_reg_current(armv4_5, i);
2383
2384                 r->dirty = r->valid;
2385         }
2386
2387         arm7_9->read_xpsr(target, &cpsr, 0);
2388         if ((retval = jtag_execute_queue()) != ERROR_OK)
2389         {
2390                 LOG_ERROR("JTAG error while reading cpsr");
2391                 return ERROR_TARGET_DATA_ABORT;
2392         }
2393
2394         if (((cpsr & 0x1f) == ARM_MODE_ABT) && (armv4_5->core_mode != ARM_MODE_ABT))
2395         {
2396                 LOG_WARNING("memory read caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2397
2398                 arm7_9->write_xpsr_im8(target,
2399                                 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2400                                         & ~0x20, 0, 0);
2401
2402                 return ERROR_TARGET_DATA_ABORT;
2403         }
2404
2405         return ERROR_OK;
2406 }
2407
2408 int arm7_9_write_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2409 {
2410         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2411         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2412         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
2413
2414         uint32_t reg[16];
2415         uint32_t num_accesses = 0;
2416         int thisrun_accesses;
2417         int i;
2418         uint32_t cpsr;
2419         int retval;
2420         int last_reg = 0;
2421
2422 #ifdef _DEBUG_ARM7_9_
2423         LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address, size, count);
2424 #endif
2425
2426         if (target->state != TARGET_HALTED)
2427         {
2428                 LOG_WARNING("target not halted");
2429                 return ERROR_TARGET_NOT_HALTED;
2430         }
2431
2432         /* sanitize arguments */
2433         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2434                 return ERROR_INVALID_ARGUMENTS;
2435
2436         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2437                 return ERROR_TARGET_UNALIGNED_ACCESS;
2438
2439         /* load the base register with the address of the first word */
2440         reg[0] = address;
2441         arm7_9->write_core_regs(target, 0x1, reg);
2442
2443         /* Clear DBGACK, to make sure memory fetches work as expected */
2444         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
2445         embeddedice_store_reg(dbg_ctrl);
2446
2447         switch (size)
2448         {
2449                 case 4:
2450                         while (num_accesses < count)
2451                         {
2452                                 uint32_t reg_list;
2453                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2454                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2455
2456                                 for (i = 1; i <= thisrun_accesses; i++)
2457                                 {
2458                                         if (i > last_reg)
2459                                                 last_reg = i;
2460                                         reg[i] = target_buffer_get_u32(target, buffer);
2461                                         buffer += 4;
2462                                 }
2463
2464                                 arm7_9->write_core_regs(target, reg_list, reg);
2465
2466                                 arm7_9->store_word_regs(target, reg_list);
2467
2468                                 /* fast memory writes are only safe when the target is running
2469                                  * from a sufficiently high clock (32 kHz is usually too slow)
2470                                  */
2471                                 if (arm7_9->fast_memory_access)
2472                                         retval = arm7_9_execute_fast_sys_speed(target);
2473                                 else
2474                                 {
2475                                         retval = arm7_9_execute_sys_speed(target);
2476
2477                                         /*
2478                                          * if memory writes are made when the clock is running slow
2479                                          * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2480                                          * processor operations after a "reset halt" or "reset init",
2481                                          * need to immediately stroke the keep alive or will end up with
2482                                          * gdb "keep alive not sent error message" problem.
2483                                          */
2484
2485                                         keep_alive();
2486                                 }
2487
2488                                 if (retval != ERROR_OK)
2489                                 {
2490                                         return retval;
2491                                 }
2492
2493                                 num_accesses += thisrun_accesses;
2494                         }
2495                         break;
2496                 case 2:
2497                         while (num_accesses < count)
2498                         {
2499                                 uint32_t reg_list;
2500                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2501                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2502
2503                                 for (i = 1; i <= thisrun_accesses; i++)
2504                                 {
2505                                         if (i > last_reg)
2506                                                 last_reg = i;
2507                                         reg[i] = target_buffer_get_u16(target, buffer) & 0xffff;
2508                                         buffer += 2;
2509                                 }
2510
2511                                 arm7_9->write_core_regs(target, reg_list, reg);
2512
2513                                 for (i = 1; i <= thisrun_accesses; i++)
2514                                 {
2515                                         arm7_9->store_hword_reg(target, i);
2516
2517                                         /* fast memory writes are only safe when the target is running
2518                                          * from a sufficiently high clock (32 kHz is usually too slow)
2519                                          */
2520                                         if (arm7_9->fast_memory_access)
2521                                                 retval = arm7_9_execute_fast_sys_speed(target);
2522                                         else
2523                                         {
2524                                                 retval = arm7_9_execute_sys_speed(target);
2525
2526                                                 /*
2527                                                  * if memory writes are made when the clock is running slow
2528                                                  * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2529                                                  * processor operations after a "reset halt" or "reset init",
2530                                                  * need to immediately stroke the keep alive or will end up with
2531                                                  * gdb "keep alive not sent error message" problem.
2532                                                  */     
2533
2534                                                 keep_alive();
2535                                         }
2536
2537                                         if (retval != ERROR_OK)
2538                                         {
2539                                                 return retval;
2540                                         }
2541                                 }
2542
2543                                 num_accesses += thisrun_accesses;
2544                         }
2545                         break;
2546                 case 1:
2547                         while (num_accesses < count)
2548                         {
2549                                 uint32_t reg_list;
2550                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2551                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2552
2553                                 for (i = 1; i <= thisrun_accesses; i++)
2554                                 {
2555                                         if (i > last_reg)
2556                                                 last_reg = i;
2557                                         reg[i] = *buffer++ & 0xff;
2558                                 }
2559
2560                                 arm7_9->write_core_regs(target, reg_list, reg);
2561
2562                                 for (i = 1; i <= thisrun_accesses; i++)
2563                                 {
2564                                         arm7_9->store_byte_reg(target, i);
2565                                         /* fast memory writes are only safe when the target is running
2566                                          * from a sufficiently high clock (32 kHz is usually too slow)
2567                                          */
2568                                         if (arm7_9->fast_memory_access)
2569                                                 retval = arm7_9_execute_fast_sys_speed(target);
2570                                         else
2571                                         {
2572                                                 retval = arm7_9_execute_sys_speed(target);
2573
2574                                                 /*
2575                                                  * if memory writes are made when the clock is running slow
2576                                                  * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2577                                                  * processor operations after a "reset halt" or "reset init",
2578                                                  * need to immediately stroke the keep alive or will end up with
2579                                                  * gdb "keep alive not sent error message" problem.
2580                                                  */
2581
2582                                                 keep_alive();
2583                                         }
2584
2585                                         if (retval != ERROR_OK)
2586                                         {
2587                                                 return retval;
2588                                         }
2589
2590                                 }
2591
2592                                 num_accesses += thisrun_accesses;
2593                         }
2594                         break;
2595         }
2596
2597         /* Re-Set DBGACK */
2598         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
2599         embeddedice_store_reg(dbg_ctrl);
2600
2601         if (!is_arm_mode(armv4_5->core_mode))
2602                 return ERROR_FAIL;
2603
2604         for (i = 0; i <= last_reg; i++) {
2605                 struct reg *r = arm_reg_current(armv4_5, i);
2606
2607                 r->dirty = r->valid;
2608         }
2609
2610         arm7_9->read_xpsr(target, &cpsr, 0);
2611         if ((retval = jtag_execute_queue()) != ERROR_OK)
2612         {
2613                 LOG_ERROR("JTAG error while reading cpsr");
2614                 return ERROR_TARGET_DATA_ABORT;
2615         }
2616
2617         if (((cpsr & 0x1f) == ARM_MODE_ABT) && (armv4_5->core_mode != ARM_MODE_ABT))
2618         {
2619                 LOG_WARNING("memory write caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2620
2621                 arm7_9->write_xpsr_im8(target,
2622                                 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2623                                         & ~0x20, 0, 0);
2624
2625                 return ERROR_TARGET_DATA_ABORT;
2626         }
2627
2628         return ERROR_OK;
2629 }
2630
2631 static int dcc_count;
2632 static uint8_t *dcc_buffer;
2633
2634 static int arm7_9_dcc_completion(struct target *target, uint32_t exit_point, int timeout_ms, void *arch_info)
2635 {
2636         int retval = ERROR_OK;
2637         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2638
2639         if ((retval = target_wait_state(target, TARGET_DEBUG_RUNNING, 500)) != ERROR_OK)
2640                 return retval;
2641
2642         int little = target->endianness == TARGET_LITTLE_ENDIAN;
2643         int count = dcc_count;
2644         uint8_t *buffer = dcc_buffer;
2645         if (count > 2)
2646         {
2647                 /* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
2648                  * core function repeated. */
2649                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2650                 buffer += 4;
2651
2652                 struct embeddedice_reg *ice_reg = arm7_9->eice_cache->reg_list[EICE_COMMS_DATA].arch_info;
2653                 uint8_t reg_addr = ice_reg->addr & 0x1f;
2654                 struct jtag_tap *tap;
2655                 tap = ice_reg->jtag_info->tap;
2656
2657                 embeddedice_write_dcc(tap, reg_addr, buffer, little, count-2);
2658                 buffer += (count-2)*4;
2659
2660                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2661         } else
2662         {
2663                 int i;
2664                 for (i = 0; i < count; i++)
2665                 {
2666                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2667                         buffer += 4;
2668                 }
2669         }
2670
2671         if ((retval = target_halt(target))!= ERROR_OK)
2672         {
2673                 return retval;
2674         }
2675         return target_wait_state(target, TARGET_HALTED, 500);
2676 }
2677
2678 static const uint32_t dcc_code[] =
2679 {
2680         /* r0 == input, points to memory buffer
2681          * r1 == scratch
2682          */
2683
2684         /* spin until DCC control (c0) reports data arrived */
2685         0xee101e10,     /* w: mrc p14, #0, r1, c0, c0 */
2686         0xe3110001,     /*    tst r1, #1              */
2687         0x0afffffc,     /*    bne w                   */
2688
2689         /* read word from DCC (c1), write to memory */
2690         0xee111e10,     /*    mrc p14, #0, r1, c1, c0 */
2691         0xe4801004,     /*    str r1, [r0], #4        */
2692
2693         /* repeat */
2694         0xeafffff9      /*    b   w                   */
2695 };
2696
2697 int arm7_9_bulk_write_memory(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
2698 {
2699         int retval;
2700         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2701         int i;
2702
2703         if (!arm7_9->dcc_downloads)
2704                 return target_write_memory(target, address, 4, count, buffer);
2705
2706         /* regrab previously allocated working_area, or allocate a new one */
2707         if (!arm7_9->dcc_working_area)
2708         {
2709                 uint8_t dcc_code_buf[6 * 4];
2710
2711                 /* make sure we have a working area */
2712                 if (target_alloc_working_area(target, 24, &arm7_9->dcc_working_area) != ERROR_OK)
2713                 {
2714                         LOG_INFO("no working area available, falling back to memory writes");
2715                         return target_write_memory(target, address, 4, count, buffer);
2716                 }
2717
2718                 /* copy target instructions to target endianness */
2719                 for (i = 0; i < 6; i++)
2720                 {
2721                         target_buffer_set_u32(target, dcc_code_buf + i*4, dcc_code[i]);
2722                 }
2723
2724                 /* write DCC code to working area */
2725                 if ((retval = target_write_memory(target, arm7_9->dcc_working_area->address, 4, 6, dcc_code_buf)) != ERROR_OK)
2726                 {
2727                         return retval;
2728                 }
2729         }
2730
2731         struct arm_algorithm armv4_5_info;
2732         struct reg_param reg_params[1];
2733
2734         armv4_5_info.common_magic = ARM_COMMON_MAGIC;
2735         armv4_5_info.core_mode = ARM_MODE_SVC;
2736         armv4_5_info.core_state = ARM_STATE_ARM;
2737
2738         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
2739
2740         buf_set_u32(reg_params[0].value, 0, 32, address);
2741
2742         dcc_count = count;
2743         dcc_buffer = buffer;
2744         retval = armv4_5_run_algorithm_inner(target, 0, NULL, 1, reg_params,
2745                         arm7_9->dcc_working_area->address,
2746                                 arm7_9->dcc_working_area->address + 6*4,
2747                         20*1000, &armv4_5_info, arm7_9_dcc_completion);
2748
2749         if (retval == ERROR_OK)
2750         {
2751                 uint32_t endaddress = buf_get_u32(reg_params[0].value, 0, 32);
2752                 if (endaddress != (address + count*4))
2753                 {
2754                         LOG_ERROR("DCC write failed, expected end address 0x%08" PRIx32 " got 0x%0" PRIx32 "", (address + count*4), endaddress);
2755                         retval = ERROR_FAIL;
2756                 }
2757         }
2758
2759         destroy_reg_param(&reg_params[0]);
2760
2761         return retval;
2762 }
2763
2764 /**
2765  * Perform per-target setup that requires JTAG access.
2766  */
2767 int arm7_9_examine(struct target *target)
2768 {
2769         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2770         int retval;
2771
2772         if (!target_was_examined(target)) {
2773                 struct reg_cache *t, **cache_p;
2774
2775                 t = embeddedice_build_reg_cache(target, arm7_9);
2776                 if (t == NULL)
2777                         return ERROR_FAIL;
2778
2779                 cache_p = register_get_last_cache_p(&target->reg_cache);
2780                 (*cache_p) = t;
2781                 arm7_9->eice_cache = (*cache_p);
2782
2783                 if (arm7_9->armv4_5_common.etm)
2784                         (*cache_p)->next = etm_build_reg_cache(target,
2785                                         &arm7_9->jtag_info,
2786                                         arm7_9->armv4_5_common.etm);
2787
2788                 target_set_examined(target);
2789         }
2790
2791         retval = embeddedice_setup(target);
2792         if (retval == ERROR_OK)
2793                 retval = arm7_9_setup(target);
2794         if (retval == ERROR_OK && arm7_9->armv4_5_common.etm)
2795                 retval = etm_setup(target);
2796         return retval;
2797 }
2798
2799
2800 int arm7_9_check_reset(struct target *target)
2801 {
2802         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2803
2804         if (get_target_reset_nag() && !arm7_9->dcc_downloads)
2805         {
2806                 LOG_WARNING("NOTE! DCC downloads have not been enabled, defaulting to slow memory writes. Type 'help dcc'.");
2807         }
2808
2809         if (get_target_reset_nag() && (target->working_area_size == 0))
2810         {
2811                 LOG_WARNING("NOTE! Severe performance degradation without working memory enabled.");
2812         }
2813
2814         if (get_target_reset_nag() && !arm7_9->fast_memory_access)
2815         {
2816                 LOG_WARNING("NOTE! Severe performance degradation without fast memory access enabled. Type 'help fast'.");
2817         }
2818
2819         return ERROR_OK;
2820 }
2821
2822 COMMAND_HANDLER(handle_arm7_9_dbgrq_command)
2823 {
2824         struct target *target = get_current_target(CMD_CTX);
2825         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2826
2827         if (!is_arm7_9(arm7_9))
2828         {
2829                 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2830                 return ERROR_TARGET_INVALID;
2831         }
2832
2833         if (CMD_ARGC > 0)
2834                 COMMAND_PARSE_ENABLE(CMD_ARGV[0],arm7_9->use_dbgrq);
2835
2836         command_print(CMD_CTX, "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s", (arm7_9->use_dbgrq) ? "enabled" : "disabled");
2837
2838         return ERROR_OK;
2839 }
2840
2841 COMMAND_HANDLER(handle_arm7_9_fast_memory_access_command)
2842 {
2843         struct target *target = get_current_target(CMD_CTX);
2844         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2845
2846         if (!is_arm7_9(arm7_9))
2847         {
2848                 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2849                 return ERROR_TARGET_INVALID;
2850         }
2851
2852         if (CMD_ARGC > 0)
2853                 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->fast_memory_access);
2854
2855         command_print(CMD_CTX, "fast memory access is %s", (arm7_9->fast_memory_access) ? "enabled" : "disabled");
2856
2857         return ERROR_OK;
2858 }
2859
2860 COMMAND_HANDLER(handle_arm7_9_dcc_downloads_command)
2861 {
2862         struct target *target = get_current_target(CMD_CTX);
2863         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2864
2865         if (!is_arm7_9(arm7_9))
2866         {
2867                 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2868                 return ERROR_TARGET_INVALID;
2869         }
2870
2871         if (CMD_ARGC > 0)
2872                 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->dcc_downloads);
2873
2874         command_print(CMD_CTX, "dcc downloads are %s", (arm7_9->dcc_downloads) ? "enabled" : "disabled");
2875
2876         return ERROR_OK;
2877 }
2878
2879 static int arm7_9_setup_semihosting(struct target *target, int enable)
2880 {
2881         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2882
2883         if (!is_arm7_9(arm7_9))
2884         {
2885                 LOG_USER("current target isn't an ARM7/ARM9 target");
2886                 return ERROR_TARGET_INVALID;
2887         }
2888
2889         if (arm7_9->has_vector_catch) {
2890                 struct reg *vector_catch = &arm7_9->eice_cache
2891                                 ->reg_list[EICE_VEC_CATCH];
2892
2893                 if (!vector_catch->valid)
2894                         embeddedice_read_reg(vector_catch);
2895                 buf_set_u32(vector_catch->value, 2, 1, enable);
2896                 embeddedice_store_reg(vector_catch);
2897         } else {
2898                 /* TODO: allow optional high vectors and/or BKPT_HARD */
2899                 if (enable)
2900                         breakpoint_add(target, 8, 4, BKPT_SOFT);
2901                 else
2902                         breakpoint_remove(target, 8);
2903         }
2904
2905         return ERROR_OK;
2906 }
2907
2908 int arm7_9_init_arch_info(struct target *target, struct arm7_9_common *arm7_9)
2909 {
2910         int retval = ERROR_OK;
2911         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2912
2913         arm7_9->common_magic = ARM7_9_COMMON_MAGIC;
2914
2915         if ((retval = arm_jtag_setup_connection(&arm7_9->jtag_info)) != ERROR_OK)
2916                 return retval;
2917
2918         /* caller must have allocated via calloc(), so everything's zeroed */
2919
2920         arm7_9->wp_available_max = 2;
2921
2922         arm7_9->fast_memory_access = false;
2923         arm7_9->dcc_downloads = false;
2924
2925         armv4_5->arch_info = arm7_9;
2926         armv4_5->read_core_reg = arm7_9_read_core_reg;
2927         armv4_5->write_core_reg = arm7_9_write_core_reg;
2928         armv4_5->full_context = arm7_9_full_context;
2929         armv4_5->setup_semihosting = arm7_9_setup_semihosting;
2930
2931         retval = arm_init_arch_info(target, armv4_5);
2932         if (retval != ERROR_OK)
2933                 return retval;
2934
2935         return target_register_timer_callback(arm7_9_handle_target_request,
2936                         1, 1, target);
2937 }
2938
2939 static const struct command_registration arm7_9_any_command_handlers[] = {
2940         {
2941                 "dbgrq",
2942                 .handler = handle_arm7_9_dbgrq_command,
2943                 .mode = COMMAND_ANY,
2944                 .usage = "['enable'|'disable']",
2945                 .help = "use EmbeddedICE dbgrq instead of breakpoint "
2946                         "for target halt requests",
2947         },
2948         {
2949                 "fast_memory_access",
2950                 .handler = handle_arm7_9_fast_memory_access_command,
2951                 .mode = COMMAND_ANY,
2952                 .usage = "['enable'|'disable']",
2953                 .help = "use fast memory accesses instead of slower "
2954                         "but potentially safer accesses",
2955         },
2956         {
2957                 "dcc_downloads",
2958                 .handler = handle_arm7_9_dcc_downloads_command,
2959                 .mode = COMMAND_ANY,
2960                 .usage = "['enable'|'disable']",
2961                 .help = "use DCC downloads for larger memory writes",
2962         },
2963         COMMAND_REGISTRATION_DONE
2964 };
2965 const struct command_registration arm7_9_command_handlers[] = {
2966         {
2967                 .chain = arm_command_handlers,
2968         },
2969         {
2970                 .chain = etm_command_handlers,
2971         },
2972         {
2973                 .name = "arm7_9",
2974                 .mode = COMMAND_ANY,
2975                 .help = "arm7/9 specific commands",
2976                 .chain = arm7_9_any_command_handlers,
2977         },
2978         COMMAND_REGISTRATION_DONE
2979 };