ARM: use <target/arm.h> not armv4_5.h
[fw/openocd] / src / target / arm7_9_common.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2008 by Hongtao Zheng                                   *
12  *   hontor@126.com                                                        *
13  *                                                                         *
14  *   This program is free software; you can redistribute it and/or modify  *
15  *   it under the terms of the GNU General Public License as published by  *
16  *   the Free Software Foundation; either version 2 of the License, or     *
17  *   (at your option) any later version.                                   *
18  *                                                                         *
19  *   This program is distributed in the hope that it will be useful,       *
20  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
21  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
22  *   GNU General Public License for more details.                          *
23  *                                                                         *
24  *   You should have received a copy of the GNU General Public License     *
25  *   along with this program; if not, write to the                         *
26  *   Free Software Foundation, Inc.,                                       *
27  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
28  ***************************************************************************/
29 #ifdef HAVE_CONFIG_H
30 #include "config.h"
31 #endif
32
33 #include "breakpoints.h"
34 #include "embeddedice.h"
35 #include "target_request.h"
36 #include "etm.h"
37 #include <helper/time_support.h>
38 #include "arm_simulator.h"
39 #include "arm_semihosting.h"
40 #include "algorithm.h"
41 #include "register.h"
42 #include "armv4_5.h"
43
44
45 /**
46  * @file
47  * Hold common code supporting the ARM7 and ARM9 core generations.
48  *
49  * While the ARM core implementations evolved substantially during these
50  * two generations, they look quite similar from the JTAG perspective.
51  * Both have similar debug facilities, based on the same two scan chains
52  * providing access to the core and to an EmbeddedICE module.  Both can
53  * support similar ETM and ETB modules, for tracing.  And both expose
54  * what could be viewed as "ARM Classic", with multiple processor modes,
55  * shadowed registers, and support for the Thumb instruction set.
56  *
57  * Processor differences include things like presence or absence of MMU
58  * and cache, pipeline sizes, use of a modified Harvard Architecure
59  * (with separate instruction and data busses from the CPU), support
60  * for cpu clock gating during idle, and more.
61  */
62
63 static int arm7_9_debug_entry(struct target *target);
64
65 /**
66  * Clear watchpoints for an ARM7/9 target.
67  *
68  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
69  * @return JTAG error status after executing queue
70  */
71 static int arm7_9_clear_watchpoints(struct arm7_9_common *arm7_9)
72 {
73         LOG_DEBUG("-");
74         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
75         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
76         arm7_9->sw_breakpoint_count = 0;
77         arm7_9->sw_breakpoints_added = 0;
78         arm7_9->wp0_used = 0;
79         arm7_9->wp1_used = arm7_9->wp1_used_default;
80         arm7_9->wp_available = arm7_9->wp_available_max;
81
82         return jtag_execute_queue();
83 }
84
85 /**
86  * Assign a watchpoint to one of the two available hardware comparators in an
87  * ARM7 or ARM9 target.
88  *
89  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
90  * @param breakpoint Pointer to the breakpoint to be used as a watchpoint
91  */
92 static void arm7_9_assign_wp(struct arm7_9_common *arm7_9, struct breakpoint *breakpoint)
93 {
94         if (!arm7_9->wp0_used)
95         {
96                 arm7_9->wp0_used = 1;
97                 breakpoint->set = 1;
98                 arm7_9->wp_available--;
99         }
100         else if (!arm7_9->wp1_used)
101         {
102                 arm7_9->wp1_used = 1;
103                 breakpoint->set = 2;
104                 arm7_9->wp_available--;
105         }
106         else
107         {
108                 LOG_ERROR("BUG: no hardware comparator available");
109         }
110         LOG_DEBUG("BPID: %d (0x%08" PRIx32 ") using hw wp: %d",
111                           breakpoint->unique_id,
112                           breakpoint->address,
113                           breakpoint->set );
114 }
115
116 /**
117  * Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
118  *
119  * @param arm7_9 Pointer to common struct for ARM7/9 targets
120  * @return Error codes if there is a problem finding a watchpoint or the result
121  *         of executing the JTAG queue
122  */
123 static int arm7_9_set_software_breakpoints(struct arm7_9_common *arm7_9)
124 {
125         if (arm7_9->sw_breakpoints_added)
126         {
127                 return ERROR_OK;
128         }
129         if (arm7_9->wp_available < 1)
130         {
131                 LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
132                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
133         }
134         arm7_9->wp_available--;
135
136         /* pick a breakpoint unit */
137         if (!arm7_9->wp0_used)
138         {
139                 arm7_9->sw_breakpoints_added = 1;
140                 arm7_9->wp0_used = 3;
141         } else if (!arm7_9->wp1_used)
142         {
143                 arm7_9->sw_breakpoints_added = 2;
144                 arm7_9->wp1_used = 3;
145         }
146         else
147         {
148                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
149                 return ERROR_FAIL;
150         }
151
152         if (arm7_9->sw_breakpoints_added == 1)
153         {
154                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], arm7_9->arm_bkpt);
155                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0x0);
156                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffffu);
157                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
158                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
159         }
160         else if (arm7_9->sw_breakpoints_added == 2)
161         {
162                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], arm7_9->arm_bkpt);
163                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0x0);
164                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0xffffffffu);
165                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
166                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
167         }
168         else
169         {
170                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
171                 return ERROR_FAIL;
172         }
173         LOG_DEBUG("SW BP using hw wp: %d",
174                           arm7_9->sw_breakpoints_added );
175
176         return jtag_execute_queue();
177 }
178
179 /**
180  * Setup the common pieces for an ARM7/9 target after reset or on startup.
181  *
182  * @param target Pointer to an ARM7/9 target to setup
183  * @return Result of clearing the watchpoints on the target
184  */
185 int arm7_9_setup(struct target *target)
186 {
187         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
188
189         return arm7_9_clear_watchpoints(arm7_9);
190 }
191
192 /**
193  * Set either a hardware or software breakpoint on an ARM7/9 target.  The
194  * breakpoint is set up even if it is already set.  Some actions, e.g. reset,
195  * might have erased the values in Embedded ICE.
196  *
197  * @param target Pointer to the target device to set the breakpoints on
198  * @param breakpoint Pointer to the breakpoint to be set
199  * @return For hardware breakpoints, this is the result of executing the JTAG
200  *         queue.  For software breakpoints, this will be the status of the
201  *         required memory reads and writes
202  */
203 int arm7_9_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
204 {
205         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
206         int retval = ERROR_OK;
207
208         LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32 ", Type: %d" ,
209                           breakpoint->unique_id,
210                           breakpoint->address,
211                           breakpoint->type);
212
213         if (target->state != TARGET_HALTED)
214         {
215                 LOG_WARNING("target not halted");
216                 return ERROR_TARGET_NOT_HALTED;
217         }
218
219         if (breakpoint->type == BKPT_HARD)
220         {
221                 /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
222                 uint32_t mask = (breakpoint->length == 4) ? 0x3u : 0x1u;
223
224                 /* reassign a hw breakpoint */
225                 if (breakpoint->set == 0)
226                 {
227                         arm7_9_assign_wp(arm7_9, breakpoint);
228                 }
229
230                 if (breakpoint->set == 1)
231                 {
232                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], breakpoint->address);
233                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
234                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffffu);
235                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
236                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
237                 }
238                 else if (breakpoint->set == 2)
239                 {
240                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], breakpoint->address);
241                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
242                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffffu);
243                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
244                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
245                 }
246                 else
247                 {
248                         LOG_ERROR("BUG: no hardware comparator available");
249                         return ERROR_OK;
250                 }
251
252                 retval = jtag_execute_queue();
253         }
254         else if (breakpoint->type == BKPT_SOFT)
255         {
256                 /* did we already set this breakpoint? */
257                 if (breakpoint->set)
258                         return ERROR_OK;
259
260                 if (breakpoint->length == 4)
261                 {
262                         uint32_t verify = 0xffffffff;
263                         /* keep the original instruction in target endianness */
264                         if ((retval = target_read_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
265                         {
266                                 return retval;
267                         }
268                         /* write the breakpoint instruction in target endianness (arm7_9->arm_bkpt is host endian) */
269                         if ((retval = target_write_u32(target, breakpoint->address, arm7_9->arm_bkpt)) != ERROR_OK)
270                         {
271                                 return retval;
272                         }
273
274                         if ((retval = target_read_u32(target, breakpoint->address, &verify)) != ERROR_OK)
275                         {
276                                 return retval;
277                         }
278                         if (verify != arm7_9->arm_bkpt)
279                         {
280                                 LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
281                                 return ERROR_OK;
282                         }
283                 }
284                 else
285                 {
286                         uint16_t verify = 0xffff;
287                         /* keep the original instruction in target endianness */
288                         if ((retval = target_read_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
289                         {
290                                 return retval;
291                         }
292                         /* write the breakpoint instruction in target endianness (arm7_9->thumb_bkpt is host endian) */
293                         if ((retval = target_write_u16(target, breakpoint->address, arm7_9->thumb_bkpt)) != ERROR_OK)
294                         {
295                                 return retval;
296                         }
297
298                         if ((retval = target_read_u16(target, breakpoint->address, &verify)) != ERROR_OK)
299                         {
300                                 return retval;
301                         }
302                         if (verify != arm7_9->thumb_bkpt)
303                         {
304                                 LOG_ERROR("Unable to set thumb software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
305                                 return ERROR_OK;
306                         }
307                 }
308
309                 if ((retval = arm7_9_set_software_breakpoints(arm7_9)) != ERROR_OK)
310                         return retval;
311
312                 arm7_9->sw_breakpoint_count++;
313
314                 breakpoint->set = 1;
315         }
316
317         return retval;
318 }
319
320 /**
321  * Unsets an existing breakpoint on an ARM7/9 target.  If it is a hardware
322  * breakpoint, the watchpoint used will be freed and the Embedded ICE registers
323  * will be updated.  Otherwise, the software breakpoint will be restored to its
324  * original instruction if it hasn't already been modified.
325  *
326  * @param target Pointer to ARM7/9 target to unset the breakpoint from
327  * @param breakpoint Pointer to breakpoint to be unset
328  * @return For hardware breakpoints, this is the result of executing the JTAG
329  *         queue.  For software breakpoints, this will be the status of the
330  *         required memory reads and writes
331  */
332 int arm7_9_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
333 {
334         int retval = ERROR_OK;
335         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
336
337         LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32,
338                           breakpoint->unique_id,
339                           breakpoint->address );
340
341         if (!breakpoint->set)
342         {
343                 LOG_WARNING("breakpoint not set");
344                 return ERROR_OK;
345         }
346
347         if (breakpoint->type == BKPT_HARD)
348         {
349                 LOG_DEBUG("BPID: %d Releasing hw wp: %d",
350                                   breakpoint->unique_id,
351                                   breakpoint->set );
352                 if (breakpoint->set == 1)
353                 {
354                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
355                         arm7_9->wp0_used = 0;
356                         arm7_9->wp_available++;
357                 }
358                 else if (breakpoint->set == 2)
359                 {
360                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
361                         arm7_9->wp1_used = 0;
362                         arm7_9->wp_available++;
363                 }
364                 retval = jtag_execute_queue();
365                 breakpoint->set = 0;
366         }
367         else
368         {
369                 /* restore original instruction (kept in target endianness) */
370                 if (breakpoint->length == 4)
371                 {
372                         uint32_t current_instr;
373                         /* check that user program as not modified breakpoint instruction */
374                         if ((retval = target_read_memory(target, breakpoint->address, 4, 1, (uint8_t*)&current_instr)) != ERROR_OK)
375                         {
376                                 return retval;
377                         }
378                         if (current_instr == arm7_9->arm_bkpt)
379                                 if ((retval = target_write_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
380                                 {
381                                         return retval;
382                                 }
383                 }
384                 else
385                 {
386                         uint16_t current_instr;
387                         /* check that user program as not modified breakpoint instruction */
388                         if ((retval = target_read_memory(target, breakpoint->address, 2, 1, (uint8_t*)&current_instr)) != ERROR_OK)
389                         {
390                                 return retval;
391                         }
392                         if (current_instr == arm7_9->thumb_bkpt)
393                                 if ((retval = target_write_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
394                                 {
395                                         return retval;
396                                 }
397                 }
398
399                 if (--arm7_9->sw_breakpoint_count==0)
400                 {
401                         /* We have removed the last sw breakpoint, clear the hw breakpoint we used to implement it */
402                         if (arm7_9->sw_breakpoints_added == 1)
403                         {
404                                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0);
405                         }
406                         else if (arm7_9->sw_breakpoints_added == 2)
407                         {
408                                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0);
409                         }
410                 }
411
412                 breakpoint->set = 0;
413         }
414
415         return retval;
416 }
417
418 /**
419  * Add a breakpoint to an ARM7/9 target.  This makes sure that there are no
420  * dangling breakpoints and that the desired breakpoint can be added.
421  *
422  * @param target Pointer to the target ARM7/9 device to add a breakpoint to
423  * @param breakpoint Pointer to the breakpoint to be added
424  * @return An error status if there is a problem adding the breakpoint or the
425  *         result of setting the breakpoint
426  */
427 int arm7_9_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
428 {
429         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
430
431         if (arm7_9->breakpoint_count == 0)
432         {
433                 /* make sure we don't have any dangling breakpoints. This is vital upon
434                  * GDB connect/disconnect
435                  */
436                 arm7_9_clear_watchpoints(arm7_9);
437         }
438
439         if ((breakpoint->type == BKPT_HARD) && (arm7_9->wp_available < 1))
440         {
441                 LOG_INFO("no watchpoint unit available for hardware breakpoint");
442                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
443         }
444
445         if ((breakpoint->length != 2) && (breakpoint->length != 4))
446         {
447                 LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
448                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
449         }
450
451         if (breakpoint->type == BKPT_HARD)
452         {
453                 arm7_9_assign_wp(arm7_9, breakpoint);
454         }
455
456         arm7_9->breakpoint_count++;
457
458         return arm7_9_set_breakpoint(target, breakpoint);
459 }
460
461 /**
462  * Removes a breakpoint from an ARM7/9 target.  This will make sure there are no
463  * dangling breakpoints and updates available watchpoints if it is a hardware
464  * breakpoint.
465  *
466  * @param target Pointer to the target to have a breakpoint removed
467  * @param breakpoint Pointer to the breakpoint to be removed
468  * @return Error status if there was a problem unsetting the breakpoint or the
469  *         watchpoints could not be cleared
470  */
471 int arm7_9_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
472 {
473         int retval = ERROR_OK;
474         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
475
476         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
477         {
478                 return retval;
479         }
480
481         if (breakpoint->type == BKPT_HARD)
482                 arm7_9->wp_available++;
483
484         arm7_9->breakpoint_count--;
485         if (arm7_9->breakpoint_count == 0)
486         {
487                 /* make sure we don't have any dangling breakpoints */
488                 if ((retval = arm7_9_clear_watchpoints(arm7_9)) != ERROR_OK)
489                 {
490                         return retval;
491                 }
492         }
493
494         return ERROR_OK;
495 }
496
497 /**
498  * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units.  It is
499  * considered a bug to call this function when there are no available watchpoint
500  * units.
501  *
502  * @param target Pointer to an ARM7/9 target to set a watchpoint on
503  * @param watchpoint Pointer to the watchpoint to be set
504  * @return Error status if watchpoint set fails or the result of executing the
505  *         JTAG queue
506  */
507 int arm7_9_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
508 {
509         int retval = ERROR_OK;
510         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
511         int rw_mask = 1;
512         uint32_t mask;
513
514         mask = watchpoint->length - 1;
515
516         if (target->state != TARGET_HALTED)
517         {
518                 LOG_WARNING("target not halted");
519                 return ERROR_TARGET_NOT_HALTED;
520         }
521
522         if (watchpoint->rw == WPT_ACCESS)
523                 rw_mask = 0;
524         else
525                 rw_mask = 1;
526
527         if (!arm7_9->wp0_used)
528         {
529                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], watchpoint->address);
530                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
531                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], watchpoint->mask);
532                 if (watchpoint->mask != 0xffffffffu)
533                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], watchpoint->value);
534                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
535                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
536
537                 if ((retval = jtag_execute_queue()) != ERROR_OK)
538                 {
539                         return retval;
540                 }
541                 watchpoint->set = 1;
542                 arm7_9->wp0_used = 2;
543         }
544         else if (!arm7_9->wp1_used)
545         {
546                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], watchpoint->address);
547                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
548                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], watchpoint->mask);
549                 if (watchpoint->mask != 0xffffffffu)
550                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], watchpoint->value);
551                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
552                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
553
554                 if ((retval = jtag_execute_queue()) != ERROR_OK)
555                 {
556                         return retval;
557                 }
558                 watchpoint->set = 2;
559                 arm7_9->wp1_used = 2;
560         }
561         else
562         {
563                 LOG_ERROR("BUG: no hardware comparator available");
564                 return ERROR_OK;
565         }
566
567         return ERROR_OK;
568 }
569
570 /**
571  * Unset an existing watchpoint and clear the used watchpoint unit.
572  *
573  * @param target Pointer to the target to have the watchpoint removed
574  * @param watchpoint Pointer to the watchpoint to be removed
575  * @return Error status while trying to unset the watchpoint or the result of
576  *         executing the JTAG queue
577  */
578 int arm7_9_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
579 {
580         int retval = ERROR_OK;
581         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
582
583         if (target->state != TARGET_HALTED)
584         {
585                 LOG_WARNING("target not halted");
586                 return ERROR_TARGET_NOT_HALTED;
587         }
588
589         if (!watchpoint->set)
590         {
591                 LOG_WARNING("breakpoint not set");
592                 return ERROR_OK;
593         }
594
595         if (watchpoint->set == 1)
596         {
597                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
598                 if ((retval = jtag_execute_queue()) != ERROR_OK)
599                 {
600                         return retval;
601                 }
602                 arm7_9->wp0_used = 0;
603         }
604         else if (watchpoint->set == 2)
605         {
606                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
607                 if ((retval = jtag_execute_queue()) != ERROR_OK)
608                 {
609                         return retval;
610                 }
611                 arm7_9->wp1_used = 0;
612         }
613         watchpoint->set = 0;
614
615         return ERROR_OK;
616 }
617
618 /**
619  * Add a watchpoint to an ARM7/9 target.  If there are no watchpoint units
620  * available, an error response is returned.
621  *
622  * @param target Pointer to the ARM7/9 target to add a watchpoint to
623  * @param watchpoint Pointer to the watchpoint to be added
624  * @return Error status while trying to add the watchpoint
625  */
626 int arm7_9_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
627 {
628         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
629
630         if (arm7_9->wp_available < 1)
631         {
632                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
633         }
634
635         if ((watchpoint->length != 1) && (watchpoint->length != 2) && (watchpoint->length != 4))
636         {
637                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
638         }
639
640         arm7_9->wp_available--;
641
642         return ERROR_OK;
643 }
644
645 /**
646  * Remove a watchpoint from an ARM7/9 target.  The watchpoint will be unset and
647  * the used watchpoint unit will be reopened.
648  *
649  * @param target Pointer to the target to remove a watchpoint from
650  * @param watchpoint Pointer to the watchpoint to be removed
651  * @return Result of trying to unset the watchpoint
652  */
653 int arm7_9_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
654 {
655         int retval = ERROR_OK;
656         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
657
658         if (watchpoint->set)
659         {
660                 if ((retval = arm7_9_unset_watchpoint(target, watchpoint)) != ERROR_OK)
661                 {
662                         return retval;
663                 }
664         }
665
666         arm7_9->wp_available++;
667
668         return ERROR_OK;
669 }
670
671 /**
672  * Restarts the target by sending a RESTART instruction and moving the JTAG
673  * state to IDLE.  This includes a timeout waiting for DBGACK and SYSCOMP to be
674  * asserted by the processor.
675  *
676  * @param target Pointer to target to issue commands to
677  * @return Error status if there is a timeout or a problem while executing the
678  *         JTAG queue
679  */
680 int arm7_9_execute_sys_speed(struct target *target)
681 {
682         int retval;
683         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
684         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
685         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
686
687         /* set RESTART instruction */
688         jtag_set_end_state(TAP_IDLE);
689         if (arm7_9->need_bypass_before_restart) {
690                 arm7_9->need_bypass_before_restart = 0;
691                 arm_jtag_set_instr(jtag_info, 0xf, NULL);
692         }
693         arm_jtag_set_instr(jtag_info, 0x4, NULL);
694
695         long long then = timeval_ms();
696         int timeout;
697         while (!(timeout = ((timeval_ms()-then) > 1000)))
698         {
699                 /* read debug status register */
700                 embeddedice_read_reg(dbg_stat);
701                 if ((retval = jtag_execute_queue()) != ERROR_OK)
702                         return retval;
703                 if ((buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
704                                    && (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_SYSCOMP, 1)))
705                         break;
706                 if (debug_level >= 3)
707                 {
708                         alive_sleep(100);
709                 } else
710                 {
711                         keep_alive();
712                 }
713         }
714         if (timeout)
715         {
716                 LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32 "", buf_get_u32(dbg_stat->value, 0, dbg_stat->size));
717                 return ERROR_TARGET_TIMEOUT;
718         }
719
720         return ERROR_OK;
721 }
722
723 /**
724  * Restarts the target by sending a RESTART instruction and moving the JTAG
725  * state to IDLE.  This validates that DBGACK and SYSCOMP are set without
726  * waiting until they are.
727  *
728  * @param target Pointer to the target to issue commands to
729  * @return Always ERROR_OK
730  */
731 int arm7_9_execute_fast_sys_speed(struct target *target)
732 {
733         static int set = 0;
734         static uint8_t check_value[4], check_mask[4];
735
736         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
737         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
738         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
739
740         /* set RESTART instruction */
741         jtag_set_end_state(TAP_IDLE);
742         if (arm7_9->need_bypass_before_restart) {
743                 arm7_9->need_bypass_before_restart = 0;
744                 arm_jtag_set_instr(jtag_info, 0xf, NULL);
745         }
746         arm_jtag_set_instr(jtag_info, 0x4, NULL);
747
748         if (!set)
749         {
750                 /* check for DBGACK and SYSCOMP set (others don't care) */
751
752                 /* NB! These are constants that must be available until after next jtag_execute() and
753                  * we evaluate the values upon first execution in lieu of setting up these constants
754                  * during early setup.
755                  * */
756                 buf_set_u32(check_value, 0, 32, 0x9);
757                 buf_set_u32(check_mask, 0, 32, 0x9);
758                 set = 1;
759         }
760
761         /* read debug status register */
762         embeddedice_read_reg_w_check(dbg_stat, check_value, check_mask);
763
764         return ERROR_OK;
765 }
766
767 /**
768  * Get some data from the ARM7/9 target.
769  *
770  * @param target Pointer to the ARM7/9 target to read data from
771  * @param size The number of 32bit words to be read
772  * @param buffer Pointer to the buffer that will hold the data
773  * @return The result of receiving data from the Embedded ICE unit
774  */
775 int arm7_9_target_request_data(struct target *target, uint32_t size, uint8_t *buffer)
776 {
777         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
778         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
779         uint32_t *data;
780         int retval = ERROR_OK;
781         uint32_t i;
782
783         data = malloc(size * (sizeof(uint32_t)));
784
785         retval = embeddedice_receive(jtag_info, data, size);
786
787         /* return the 32-bit ints in the 8-bit array */
788         for (i = 0; i < size; i++)
789         {
790                 h_u32_to_le(buffer + (i * 4), data[i]);
791         }
792
793         free(data);
794
795         return retval;
796 }
797
798 /**
799  * Handles requests to an ARM7/9 target.  If debug messaging is enabled, the
800  * target is running and the DCC control register has the W bit high, this will
801  * execute the request on the target.
802  *
803  * @param priv Void pointer expected to be a struct target pointer
804  * @return ERROR_OK unless there are issues with the JTAG queue or when reading
805  *                  from the Embedded ICE unit
806  */
807 int arm7_9_handle_target_request(void *priv)
808 {
809         int retval = ERROR_OK;
810         struct target *target = priv;
811         if (!target_was_examined(target))
812                 return ERROR_OK;
813         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
814         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
815         struct reg *dcc_control = &arm7_9->eice_cache->reg_list[EICE_COMMS_CTRL];
816
817         if (!target->dbg_msg_enabled)
818                 return ERROR_OK;
819
820         if (target->state == TARGET_RUNNING)
821         {
822                 /* read DCC control register */
823                 embeddedice_read_reg(dcc_control);
824                 if ((retval = jtag_execute_queue()) != ERROR_OK)
825                 {
826                         return retval;
827                 }
828
829                 /* check W bit */
830                 if (buf_get_u32(dcc_control->value, 1, 1) == 1)
831                 {
832                         uint32_t request;
833
834                         if ((retval = embeddedice_receive(jtag_info, &request, 1)) != ERROR_OK)
835                         {
836                                 return retval;
837                         }
838                         if ((retval = target_request(target, request)) != ERROR_OK)
839                         {
840                                 return retval;
841                         }
842                 }
843         }
844
845         return ERROR_OK;
846 }
847
848 /**
849  * Polls an ARM7/9 target for its current status.  If DBGACK is set, the target
850  * is manipulated to the right halted state based on its current state.  This is
851  * what happens:
852  *
853  * <table>
854  *              <tr><th > State</th><th > Action</th></tr>
855  *              <tr><td > TARGET_RUNNING | TARGET_RESET</td><td > Enters debug mode.  If TARGET_RESET, pc may be checked</td></tr>
856  *              <tr><td > TARGET_UNKNOWN</td><td > Warning is logged</td></tr>
857  *              <tr><td > TARGET_DEBUG_RUNNING</td><td > Enters debug mode</td></tr>
858  *              <tr><td > TARGET_HALTED</td><td > Nothing</td></tr>
859  * </table>
860  *
861  * If the target does not end up in the halted state, a warning is produced.  If
862  * DBGACK is cleared, then the target is expected to either be running or
863  * running in debug.
864  *
865  * @param target Pointer to the ARM7/9 target to poll
866  * @return ERROR_OK or an error status if a command fails
867  */
868 int arm7_9_poll(struct target *target)
869 {
870         int retval;
871         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
872         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
873
874         /* read debug status register */
875         embeddedice_read_reg(dbg_stat);
876         if ((retval = jtag_execute_queue()) != ERROR_OK)
877         {
878                 return retval;
879         }
880
881         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
882         {
883 /*              LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, 32));*/
884                 if (target->state == TARGET_UNKNOWN)
885                 {
886                         /* Starting OpenOCD with target in debug-halt */
887                         target->state = TARGET_RUNNING;
888                         LOG_DEBUG("DBGACK already set during server startup.");
889                 }
890                 if ((target->state == TARGET_RUNNING) || (target->state == TARGET_RESET))
891                 {
892                         int check_pc = 0;
893                         if (target->state == TARGET_RESET)
894                         {
895                                 if (target->reset_halt)
896                                 {
897                                         enum reset_types jtag_reset_config = jtag_get_reset_config();
898                                         if ((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0)
899                                         {
900                                                 check_pc = 1;
901                                         }
902                                 }
903                         }
904
905                         target->state = TARGET_HALTED;
906
907                         if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
908                                 return retval;
909
910                         if (check_pc)
911                         {
912                                 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
913                                 uint32_t t=*((uint32_t *)reg->value);
914                                 if (t != 0)
915                                 {
916                                         LOG_ERROR("PC was not 0. Does this target need srst_pulls_trst?");
917                                 }
918                         }
919
920                         if (arm_semihosting(target, &retval) != 0)
921                                 return retval;
922
923                         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
924                         {
925                                 return retval;
926                         }
927                 }
928                 if (target->state == TARGET_DEBUG_RUNNING)
929                 {
930                         target->state = TARGET_HALTED;
931                         if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
932                                 return retval;
933
934                         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED)) != ERROR_OK)
935                         {
936                                 return retval;
937                         }
938                 }
939                 if (target->state != TARGET_HALTED)
940                 {
941                         LOG_WARNING("DBGACK set, but the target did not end up in the halted state %d", target->state);
942                 }
943         }
944         else
945         {
946                 if (target->state != TARGET_DEBUG_RUNNING)
947                         target->state = TARGET_RUNNING;
948         }
949
950         return ERROR_OK;
951 }
952
953 /**
954  * Asserts the reset (SRST) on an ARM7/9 target.  Some -S targets (ARM966E-S in
955  * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
956  * affected) completely stop the JTAG clock while the core is held in reset
957  * (SRST).  It isn't possible to program the halt condition once reset is
958  * asserted, hence a hook that allows the target to set up its reset-halt
959  * condition is setup prior to asserting reset.
960  *
961  * @param target Pointer to an ARM7/9 target to assert reset on
962  * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
963  */
964 int arm7_9_assert_reset(struct target *target)
965 {
966         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
967
968         LOG_DEBUG("target->state: %s",
969                   target_state_name(target));
970
971         enum reset_types jtag_reset_config = jtag_get_reset_config();
972         if (!(jtag_reset_config & RESET_HAS_SRST))
973         {
974                 LOG_ERROR("Can't assert SRST");
975                 return ERROR_FAIL;
976         }
977
978         /* At this point trst has been asserted/deasserted once. We would
979          * like to program EmbeddedICE while SRST is asserted, instead of
980          * depending on SRST to leave that module alone.  However, many CPUs
981          * gate the JTAG clock while SRST is asserted; or JTAG may need
982          * clock stability guarantees (adaptive clocking might help).
983          *
984          * So we assume JTAG access during SRST is off the menu unless it's
985          * been specifically enabled.
986          */
987         bool srst_asserted = false;
988
989         if (((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0)
990                         && (jtag_reset_config & RESET_SRST_NO_GATING))
991         {
992                 jtag_add_reset(0, 1);
993                 srst_asserted = true;
994         }
995
996         if (target->reset_halt)
997         {
998                 /*
999                  * Some targets do not support communication while SRST is asserted. We need to
1000                  * set up the reset vector catch here.
1001                  *
1002                  * If TRST is asserted, then these settings will be reset anyway, so setting them
1003                  * here is harmless.
1004                  */
1005                 if (arm7_9->has_vector_catch)
1006                 {
1007                         /* program vector catch register to catch reset vector */
1008                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH], 0x1);
1009
1010                         /* extra runtest added as issues were found with certain ARM9 cores (maybe more) - AT91SAM9260 and STR9 */
1011                         jtag_add_runtest(1, jtag_get_end_state());
1012                 }
1013                 else
1014                 {
1015                         /* program watchpoint unit to match on reset vector address */
1016                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], 0x0);
1017                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0x3);
1018                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1019                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1020                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1021                 }
1022         }
1023
1024         /* here we should issue an SRST only, but we may have to assert TRST as well */
1025         if (jtag_reset_config & RESET_SRST_PULLS_TRST)
1026         {
1027                 jtag_add_reset(1, 1);
1028         } else if (!srst_asserted)
1029         {
1030                 jtag_add_reset(0, 1);
1031         }
1032
1033         target->state = TARGET_RESET;
1034         jtag_add_sleep(50000);
1035
1036         register_cache_invalidate(arm7_9->armv4_5_common.core_cache);
1037
1038         if ((target->reset_halt) && ((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0))
1039         {
1040                 /* debug entry was already prepared in arm7_9_assert_reset() */
1041                 target->debug_reason = DBG_REASON_DBGRQ;
1042         }
1043
1044         return ERROR_OK;
1045 }
1046
1047 /**
1048  * Deassert the reset (SRST) signal on an ARM7/9 target.  If SRST pulls TRST
1049  * and the target is being reset into a halt, a warning will be triggered
1050  * because it is not possible to reset into a halted mode in this case.  The
1051  * target is halted using the target's functions.
1052  *
1053  * @param target Pointer to the target to have the reset deasserted
1054  * @return ERROR_OK or an error from polling or halting the target
1055  */
1056 int arm7_9_deassert_reset(struct target *target)
1057 {
1058         int retval = ERROR_OK;
1059         LOG_DEBUG("target->state: %s",
1060                 target_state_name(target));
1061
1062         /* deassert reset lines */
1063         jtag_add_reset(0, 0);
1064
1065         enum reset_types jtag_reset_config = jtag_get_reset_config();
1066         if (target->reset_halt && (jtag_reset_config & RESET_SRST_PULLS_TRST) != 0)
1067         {
1068                 LOG_WARNING("srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
1069                 /* set up embedded ice registers again */
1070                 if ((retval = target_examine_one(target)) != ERROR_OK)
1071                         return retval;
1072
1073                 if ((retval = target_poll(target)) != ERROR_OK)
1074                 {
1075                         return retval;
1076                 }
1077
1078                 if ((retval = target_halt(target)) != ERROR_OK)
1079                 {
1080                         return retval;
1081                 }
1082
1083         }
1084         return retval;
1085 }
1086
1087 /**
1088  * Clears the halt condition for an ARM7/9 target.  If it isn't coming out of
1089  * reset and if DBGRQ is used, it is progammed to be deasserted.  If the reset
1090  * vector catch was used, it is restored.  Otherwise, the control value is
1091  * restored and the watchpoint unit is restored if it was in use.
1092  *
1093  * @param target Pointer to the ARM7/9 target to have halt cleared
1094  * @return Always ERROR_OK
1095  */
1096 int arm7_9_clear_halt(struct target *target)
1097 {
1098         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1099         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1100
1101         /* we used DBGRQ only if we didn't come out of reset */
1102         if (!arm7_9->debug_entry_from_reset && arm7_9->use_dbgrq)
1103         {
1104                 /* program EmbeddedICE Debug Control Register to deassert DBGRQ
1105                  */
1106                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1107                 embeddedice_store_reg(dbg_ctrl);
1108         }
1109         else
1110         {
1111                 if (arm7_9->debug_entry_from_reset && arm7_9->has_vector_catch)
1112                 {
1113                         /* if we came out of reset, and vector catch is supported, we used
1114                          * vector catch to enter debug state
1115                          * restore the register in that case
1116                          */
1117                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH]);
1118                 }
1119                 else
1120                 {
1121                         /* restore registers if watchpoint unit 0 was in use
1122                          */
1123                         if (arm7_9->wp0_used)
1124                         {
1125                                 if (arm7_9->debug_entry_from_reset)
1126                                 {
1127                                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE]);
1128                                 }
1129                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1130                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1131                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1132                         }
1133                         /* control value always has to be restored, as it was either disabled,
1134                          * or enabled with possibly different bits
1135                          */
1136                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1137                 }
1138         }
1139
1140         return ERROR_OK;
1141 }
1142
1143 /**
1144  * Issue a software reset and halt to an ARM7/9 target.  The target is halted
1145  * and then there is a wait until the processor shows the halt.  This wait can
1146  * timeout and results in an error being returned.  The software reset involves
1147  * clearing the halt, updating the debug control register, changing to ARM mode,
1148  * reset of the program counter, and reset of all of the registers.
1149  *
1150  * @param target Pointer to the ARM7/9 target to be reset and halted by software
1151  * @return Error status if any of the commands fail, otherwise ERROR_OK
1152  */
1153 int arm7_9_soft_reset_halt(struct target *target)
1154 {
1155         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1156         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1157         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1158         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1159         int i;
1160         int retval;
1161
1162         /* FIX!!! replace some of this code with tcl commands
1163          *
1164          * halt # the halt command is synchronous
1165          * armv4_5 core_state arm
1166          *
1167          */
1168
1169         if ((retval = target_halt(target)) != ERROR_OK)
1170                 return retval;
1171
1172         long long then = timeval_ms();
1173         int timeout;
1174         while (!(timeout = ((timeval_ms()-then) > 1000)))
1175         {
1176                 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) != 0)
1177                         break;
1178                 embeddedice_read_reg(dbg_stat);
1179                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1180                         return retval;
1181                 if (debug_level >= 3)
1182                 {
1183                         alive_sleep(100);
1184                 } else
1185                 {
1186                         keep_alive();
1187                 }
1188         }
1189         if (timeout)
1190         {
1191                 LOG_ERROR("Failed to halt CPU after 1 sec");
1192                 return ERROR_TARGET_TIMEOUT;
1193         }
1194         target->state = TARGET_HALTED;
1195
1196         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1197          * ensure that DBGRQ is cleared
1198          */
1199         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1200         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1201         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1202         embeddedice_store_reg(dbg_ctrl);
1203
1204         if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1205         {
1206                 return retval;
1207         }
1208
1209         /* if the target is in Thumb state, change to ARM state */
1210         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1211         {
1212                 uint32_t r0_thumb, pc_thumb;
1213                 LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
1214                 /* Entered debug from Thumb mode */
1215                 armv4_5->core_state = ARM_STATE_THUMB;
1216                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1217         }
1218
1219         /* REVISIT likewise for bit 5 -- switch Jazelle-to-ARM */
1220
1221         /* all register content is now invalid */
1222         register_cache_invalidate(armv4_5->core_cache);
1223
1224         /* SVC, ARM state, IRQ and FIQ disabled */
1225         uint32_t cpsr;
1226
1227         cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 32);
1228         cpsr &= ~0xff;
1229         cpsr |= 0xd3;
1230         arm_set_cpsr(armv4_5, cpsr);
1231         armv4_5->cpsr->dirty = 1;
1232
1233         /* start fetching from 0x0 */
1234         buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, 0x0);
1235         armv4_5->core_cache->reg_list[15].dirty = 1;
1236         armv4_5->core_cache->reg_list[15].valid = 1;
1237
1238         /* reset registers */
1239         for (i = 0; i <= 14; i++)
1240         {
1241                 struct reg *r = arm_reg_current(armv4_5, i);
1242
1243                 buf_set_u32(r->value, 0, 32, 0xffffffff);
1244                 r->dirty = 1;
1245                 r->valid = 1;
1246         }
1247
1248         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
1249         {
1250                 return retval;
1251         }
1252
1253         return ERROR_OK;
1254 }
1255
1256 /**
1257  * Halt an ARM7/9 target.  This is accomplished by either asserting the DBGRQ
1258  * line or by programming a watchpoint to trigger on any address.  It is
1259  * considered a bug to call this function while the target is in the
1260  * TARGET_RESET state.
1261  *
1262  * @param target Pointer to the ARM7/9 target to be halted
1263  * @return Always ERROR_OK
1264  */
1265 int arm7_9_halt(struct target *target)
1266 {
1267         if (target->state == TARGET_RESET)
1268         {
1269                 LOG_ERROR("BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
1270                 return ERROR_OK;
1271         }
1272
1273         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1274         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1275
1276         LOG_DEBUG("target->state: %s",
1277                   target_state_name(target));
1278
1279         if (target->state == TARGET_HALTED)
1280         {
1281                 LOG_DEBUG("target was already halted");
1282                 return ERROR_OK;
1283         }
1284
1285         if (target->state == TARGET_UNKNOWN)
1286         {
1287                 LOG_WARNING("target was in unknown state when halt was requested");
1288         }
1289
1290         if (arm7_9->use_dbgrq)
1291         {
1292                 /* program EmbeddedICE Debug Control Register to assert DBGRQ
1293                  */
1294                 if (arm7_9->set_special_dbgrq) {
1295                         arm7_9->set_special_dbgrq(target);
1296                 } else {
1297                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 1);
1298                         embeddedice_store_reg(dbg_ctrl);
1299                 }
1300         }
1301         else
1302         {
1303                 /* program watchpoint unit to match on any address
1304                  */
1305                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1306                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1307                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1308                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1309         }
1310
1311         target->debug_reason = DBG_REASON_DBGRQ;
1312
1313         return ERROR_OK;
1314 }
1315
1316 /**
1317  * Handle an ARM7/9 target's entry into debug mode.  The halt is cleared on the
1318  * ARM.  The JTAG queue is then executed and the reason for debug entry is
1319  * examined.  Once done, the target is verified to be halted and the processor
1320  * is forced into ARM mode.  The core registers are saved for the current core
1321  * mode and the program counter (register 15) is updated as needed.  The core
1322  * registers and CPSR and SPSR are saved for restoration later.
1323  *
1324  * @param target Pointer to target that is entering debug mode
1325  * @return Error code if anything fails, otherwise ERROR_OK
1326  */
1327 static int arm7_9_debug_entry(struct target *target)
1328 {
1329         int i;
1330         uint32_t context[16];
1331         uint32_t* context_p[16];
1332         uint32_t r0_thumb, pc_thumb;
1333         uint32_t cpsr, cpsr_mask = 0;
1334         int retval;
1335         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1336         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1337         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1338         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1339
1340 #ifdef _DEBUG_ARM7_9_
1341         LOG_DEBUG("-");
1342 #endif
1343
1344         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1345          * ensure that DBGRQ is cleared
1346          */
1347         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1348         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1349         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1350         embeddedice_store_reg(dbg_ctrl);
1351
1352         if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1353         {
1354                 return retval;
1355         }
1356
1357         if ((retval = jtag_execute_queue()) != ERROR_OK)
1358         {
1359                 return retval;
1360         }
1361
1362         if ((retval = arm7_9->examine_debug_reason(target)) != ERROR_OK)
1363                 return retval;
1364
1365
1366         if (target->state != TARGET_HALTED)
1367         {
1368                 LOG_WARNING("target not halted");
1369                 return ERROR_TARGET_NOT_HALTED;
1370         }
1371
1372         /* if the target is in Thumb state, change to ARM state */
1373         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1374         {
1375                 LOG_DEBUG("target entered debug from Thumb state");
1376                 /* Entered debug from Thumb mode */
1377                 armv4_5->core_state = ARM_STATE_THUMB;
1378                 cpsr_mask = 1 << 5;
1379                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1380                 LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32
1381                         ", pc_thumb: 0x%8.8" PRIx32, r0_thumb, pc_thumb);
1382         } else if (buf_get_u32(dbg_stat->value, 5, 1)) {
1383                 /* \todo Get some vaguely correct handling of Jazelle, if
1384                  * anyone ever uses it and full info becomes available.
1385                  * See ARM9EJS TRM B.7.1 for how to switch J->ARM; and
1386                  * B.7.3 for the reverse.  That'd be the bare minimum...
1387                  */
1388                 LOG_DEBUG("target entered debug from Jazelle state");
1389                 armv4_5->core_state = ARM_STATE_JAZELLE;
1390                 cpsr_mask = 1 << 24;
1391                 LOG_ERROR("Jazelle debug entry -- BROKEN!");
1392         } else {
1393                 LOG_DEBUG("target entered debug from ARM state");
1394                 /* Entered debug from ARM mode */
1395                 armv4_5->core_state = ARM_STATE_ARM;
1396         }
1397
1398         for (i = 0; i < 16; i++)
1399                 context_p[i] = &context[i];
1400         /* save core registers (r0 - r15 of current core mode) */
1401         arm7_9->read_core_regs(target, 0xffff, context_p);
1402
1403         arm7_9->read_xpsr(target, &cpsr, 0);
1404
1405         if ((retval = jtag_execute_queue()) != ERROR_OK)
1406                 return retval;
1407
1408         /* Sync our CPSR copy with J or T bits EICE reported, but
1409          * which we then erased by putting the core into ARM mode.
1410          */
1411         arm_set_cpsr(armv4_5, cpsr | cpsr_mask);
1412
1413         if (!is_arm_mode(armv4_5->core_mode))
1414         {
1415                 target->state = TARGET_UNKNOWN;
1416                 LOG_ERROR("cpsr contains invalid mode value - communication failure");
1417                 return ERROR_TARGET_FAILURE;
1418         }
1419
1420         LOG_DEBUG("target entered debug state in %s mode",
1421                          arm_mode_name(armv4_5->core_mode));
1422
1423         if (armv4_5->core_state == ARM_STATE_THUMB)
1424         {
1425                 LOG_DEBUG("thumb state, applying fixups");
1426                 context[0] = r0_thumb;
1427                 context[15] = pc_thumb;
1428         } else if (armv4_5->core_state == ARM_STATE_ARM)
1429         {
1430                 /* adjust value stored by STM */
1431                 context[15] -= 3 * 4;
1432         }
1433
1434         if ((target->debug_reason != DBG_REASON_DBGRQ) || (!arm7_9->use_dbgrq))
1435                 context[15] -= 3 * ((armv4_5->core_state == ARM_STATE_ARM) ? 4 : 2);
1436         else
1437                 context[15] -= arm7_9->dbgreq_adjust_pc * ((armv4_5->core_state == ARM_STATE_ARM) ? 4 : 2);
1438
1439         for (i = 0; i <= 15; i++)
1440         {
1441                 struct reg *r = arm_reg_current(armv4_5, i);
1442
1443                 LOG_DEBUG("r%i: 0x%8.8" PRIx32 "", i, context[i]);
1444
1445                 buf_set_u32(r->value, 0, 32, context[i]);
1446                 /* r0 and r15 (pc) have to be restored later */
1447                 r->dirty = (i == 0) || (i == 15);
1448                 r->valid = 1;
1449         }
1450
1451         LOG_DEBUG("entered debug state at PC 0x%" PRIx32 "", context[15]);
1452
1453         /* exceptions other than USR & SYS have a saved program status register */
1454         if (armv4_5->spsr) {
1455                 uint32_t spsr;
1456                 arm7_9->read_xpsr(target, &spsr, 1);
1457                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1458                 {
1459                         return retval;
1460                 }
1461                 buf_set_u32(armv4_5->spsr->value, 0, 32, spsr);
1462                 armv4_5->spsr->dirty = 0;
1463                 armv4_5->spsr->valid = 1;
1464         }
1465
1466         if ((retval = jtag_execute_queue()) != ERROR_OK)
1467                 return retval;
1468
1469         if (arm7_9->post_debug_entry)
1470                 arm7_9->post_debug_entry(target);
1471
1472         return ERROR_OK;
1473 }
1474
1475 /**
1476  * Validate the full context for an ARM7/9 target in all processor modes.  If
1477  * there are any invalid registers for the target, they will all be read.  This
1478  * includes the PSR.
1479  *
1480  * @param target Pointer to the ARM7/9 target to capture the full context from
1481  * @return Error if the target is not halted, has an invalid core mode, or if
1482  *         the JTAG queue fails to execute
1483  */
1484 int arm7_9_full_context(struct target *target)
1485 {
1486         int i;
1487         int retval;
1488         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1489         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1490
1491         LOG_DEBUG("-");
1492
1493         if (target->state != TARGET_HALTED)
1494         {
1495                 LOG_WARNING("target not halted");
1496                 return ERROR_TARGET_NOT_HALTED;
1497         }
1498
1499         if (!is_arm_mode(armv4_5->core_mode))
1500                 return ERROR_FAIL;
1501
1502         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1503          * SYS shares registers with User, so we don't touch SYS
1504          */
1505         for (i = 0; i < 6; i++)
1506         {
1507                 uint32_t mask = 0;
1508                 uint32_t* reg_p[16];
1509                 int j;
1510                 int valid = 1;
1511
1512                 /* check if there are invalid registers in the current mode
1513                  */
1514                 for (j = 0; j <= 16; j++)
1515                 {
1516                         if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1517                                 valid = 0;
1518                 }
1519
1520                 if (!valid)
1521                 {
1522                         uint32_t tmp_cpsr;
1523
1524                         /* change processor mode (and mask T bit) */
1525                         tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8)
1526                                         & 0xe0;
1527                         tmp_cpsr |= armv4_5_number_to_mode(i);
1528                         tmp_cpsr &= ~0x20;
1529                         arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1530
1531                         for (j = 0; j < 15; j++)
1532                         {
1533                                 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1534                                 {
1535                                         reg_p[j] = (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).value;
1536                                         mask |= 1 << j;
1537                                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid = 1;
1538                                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).dirty = 0;
1539                                 }
1540                         }
1541
1542                         /* if only the PSR is invalid, mask is all zeroes */
1543                         if (mask)
1544                                 arm7_9->read_core_regs(target, mask, reg_p);
1545
1546                         /* check if the PSR has to be read */
1547                         if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid == 0)
1548                         {
1549                                 arm7_9->read_xpsr(target, (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).value, 1);
1550                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid = 1;
1551                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).dirty = 0;
1552                         }
1553                 }
1554         }
1555
1556         /* restore processor mode (mask T bit) */
1557         arm7_9->write_xpsr_im8(target,
1558                         buf_get_u32(armv4_5->cpsr->value, 0, 8) & ~0x20,
1559                         0, 0);
1560
1561         if ((retval = jtag_execute_queue()) != ERROR_OK)
1562         {
1563                 return retval;
1564         }
1565         return ERROR_OK;
1566 }
1567
1568 /**
1569  * Restore the processor context on an ARM7/9 target.  The full processor
1570  * context is analyzed to see if any of the registers are dirty on this end, but
1571  * have a valid new value.  If this is the case, the processor is changed to the
1572  * appropriate mode and the new register values are written out to the
1573  * processor.  If there happens to be a dirty register with an invalid value, an
1574  * error will be logged.
1575  *
1576  * @param target Pointer to the ARM7/9 target to have its context restored
1577  * @return Error status if the target is not halted or the core mode in the
1578  *         armv4_5 struct is invalid.
1579  */
1580 int arm7_9_restore_context(struct target *target)
1581 {
1582         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1583         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1584         struct reg *reg;
1585         struct arm_reg *reg_arch_info;
1586         enum arm_mode current_mode = armv4_5->core_mode;
1587         int i, j;
1588         int dirty;
1589         int mode_change;
1590
1591         LOG_DEBUG("-");
1592
1593         if (target->state != TARGET_HALTED)
1594         {
1595                 LOG_WARNING("target not halted");
1596                 return ERROR_TARGET_NOT_HALTED;
1597         }
1598
1599         if (arm7_9->pre_restore_context)
1600                 arm7_9->pre_restore_context(target);
1601
1602         if (!is_arm_mode(armv4_5->core_mode))
1603                 return ERROR_FAIL;
1604
1605         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1606          * SYS shares registers with User, so we don't touch SYS
1607          */
1608         for (i = 0; i < 6; i++)
1609         {
1610                 LOG_DEBUG("examining %s mode",
1611                                 arm_mode_name(armv4_5->core_mode));
1612                 dirty = 0;
1613                 mode_change = 0;
1614                 /* check if there are dirty registers in the current mode
1615                 */
1616                 for (j = 0; j <= 16; j++)
1617                 {
1618                         reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1619                         reg_arch_info = reg->arch_info;
1620                         if (reg->dirty == 1)
1621                         {
1622                                 if (reg->valid == 1)
1623                                 {
1624                                         dirty = 1;
1625                                         LOG_DEBUG("examining dirty reg: %s", reg->name);
1626                                         if ((reg_arch_info->mode != ARM_MODE_ANY)
1627                                                 && (reg_arch_info->mode != current_mode)
1628                                                 && !((reg_arch_info->mode == ARM_MODE_USR) && (armv4_5->core_mode == ARM_MODE_SYS))
1629                                                 && !((reg_arch_info->mode == ARM_MODE_SYS) && (armv4_5->core_mode == ARM_MODE_USR)))
1630                                         {
1631                                                 mode_change = 1;
1632                                                 LOG_DEBUG("require mode change");
1633                                         }
1634                                 }
1635                                 else
1636                                 {
1637                                         LOG_ERROR("BUG: dirty register '%s', but no valid data", reg->name);
1638                                 }
1639                         }
1640                 }
1641
1642                 if (dirty)
1643                 {
1644                         uint32_t mask = 0x0;
1645                         int num_regs = 0;
1646                         uint32_t regs[16];
1647
1648                         if (mode_change)
1649                         {
1650                                 uint32_t tmp_cpsr;
1651
1652                                 /* change processor mode (mask T bit) */
1653                                 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value,
1654                                                 0, 8) & 0xe0;
1655                                 tmp_cpsr |= armv4_5_number_to_mode(i);
1656                                 tmp_cpsr &= ~0x20;
1657                                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1658                                 current_mode = armv4_5_number_to_mode(i);
1659                         }
1660
1661                         for (j = 0; j <= 14; j++)
1662                         {
1663                                 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1664                                 reg_arch_info = reg->arch_info;
1665
1666
1667                                 if (reg->dirty == 1)
1668                                 {
1669                                         regs[j] = buf_get_u32(reg->value, 0, 32);
1670                                         mask |= 1 << j;
1671                                         num_regs++;
1672                                         reg->dirty = 0;
1673                                         reg->valid = 1;
1674                                         LOG_DEBUG("writing register %i mode %s "
1675                                                 "with value 0x%8.8" PRIx32, j,
1676                                                 arm_mode_name(armv4_5->core_mode),
1677                                                 regs[j]);
1678                                 }
1679                         }
1680
1681                         if (mask)
1682                         {
1683                                 arm7_9->write_core_regs(target, mask, regs);
1684                         }
1685
1686                         reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16);
1687                         reg_arch_info = reg->arch_info;
1688                         if ((reg->dirty) && (reg_arch_info->mode != ARM_MODE_ANY))
1689                         {
1690                                 LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32 "", i, buf_get_u32(reg->value, 0, 32));
1691                                 arm7_9->write_xpsr(target, buf_get_u32(reg->value, 0, 32), 1);
1692                         }
1693                 }
1694         }
1695
1696         if (!armv4_5->cpsr->dirty && (armv4_5->core_mode != current_mode))
1697         {
1698                 /* restore processor mode (mask T bit) */
1699                 uint32_t tmp_cpsr;
1700
1701                 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
1702                 tmp_cpsr |= armv4_5_number_to_mode(i);
1703                 tmp_cpsr &= ~0x20;
1704                 LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr));
1705                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1706         }
1707         else if (armv4_5->cpsr->dirty)
1708         {
1709                 /* CPSR has been changed, full restore necessary (mask T bit) */
1710                 LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32,
1711                                 buf_get_u32(armv4_5->cpsr->value, 0, 32));
1712                 arm7_9->write_xpsr(target,
1713                                 buf_get_u32(armv4_5->cpsr->value, 0, 32)
1714                                         & ~0x20, 0);
1715                 armv4_5->cpsr->dirty = 0;
1716                 armv4_5->cpsr->valid = 1;
1717         }
1718
1719         /* restore PC */
1720         LOG_DEBUG("writing PC with value 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1721         arm7_9->write_pc(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1722         armv4_5->core_cache->reg_list[15].dirty = 0;
1723
1724         if (arm7_9->post_restore_context)
1725                 arm7_9->post_restore_context(target);
1726
1727         return ERROR_OK;
1728 }
1729
1730 /**
1731  * Restart the core of an ARM7/9 target.  A RESTART command is sent to the
1732  * instruction register and the JTAG state is set to TAP_IDLE causing a core
1733  * restart.
1734  *
1735  * @param target Pointer to the ARM7/9 target to be restarted
1736  * @return Result of executing the JTAG queue
1737  */
1738 int arm7_9_restart_core(struct target *target)
1739 {
1740         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1741         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
1742
1743         /* set RESTART instruction */
1744         jtag_set_end_state(TAP_IDLE);
1745         if (arm7_9->need_bypass_before_restart) {
1746                 arm7_9->need_bypass_before_restart = 0;
1747                 arm_jtag_set_instr(jtag_info, 0xf, NULL);
1748         }
1749         arm_jtag_set_instr(jtag_info, 0x4, NULL);
1750
1751         jtag_add_runtest(1, jtag_set_end_state(TAP_IDLE));
1752         return jtag_execute_queue();
1753 }
1754
1755 /**
1756  * Enable the watchpoints on an ARM7/9 target.  The target's watchpoints are
1757  * iterated through and are set on the target if they aren't already set.
1758  *
1759  * @param target Pointer to the ARM7/9 target to enable watchpoints on
1760  */
1761 void arm7_9_enable_watchpoints(struct target *target)
1762 {
1763         struct watchpoint *watchpoint = target->watchpoints;
1764
1765         while (watchpoint)
1766         {
1767                 if (watchpoint->set == 0)
1768                         arm7_9_set_watchpoint(target, watchpoint);
1769                 watchpoint = watchpoint->next;
1770         }
1771 }
1772
1773 /**
1774  * Enable the breakpoints on an ARM7/9 target.  The target's breakpoints are
1775  * iterated through and are set on the target.
1776  *
1777  * @param target Pointer to the ARM7/9 target to enable breakpoints on
1778  */
1779 void arm7_9_enable_breakpoints(struct target *target)
1780 {
1781         struct breakpoint *breakpoint = target->breakpoints;
1782
1783         /* set any pending breakpoints */
1784         while (breakpoint)
1785         {
1786                 arm7_9_set_breakpoint(target, breakpoint);
1787                 breakpoint = breakpoint->next;
1788         }
1789 }
1790
1791 int arm7_9_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
1792 {
1793         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1794         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1795         struct breakpoint *breakpoint = target->breakpoints;
1796         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1797         int err, retval = ERROR_OK;
1798
1799         LOG_DEBUG("-");
1800
1801         if (target->state != TARGET_HALTED)
1802         {
1803                 LOG_WARNING("target not halted");
1804                 return ERROR_TARGET_NOT_HALTED;
1805         }
1806
1807         if (!debug_execution)
1808         {
1809                 target_free_all_working_areas(target);
1810         }
1811
1812         /* current = 1: continue on current pc, otherwise continue at <address> */
1813         if (!current)
1814                 buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
1815
1816         uint32_t current_pc;
1817         current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
1818
1819         /* the front-end may request us not to handle breakpoints */
1820         if (handle_breakpoints)
1821         {
1822                 if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
1823                 {
1824                         LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (id: %d)", breakpoint->address, breakpoint->unique_id );
1825                         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
1826                         {
1827                                 return retval;
1828                         }
1829
1830                         /* calculate PC of next instruction */
1831                         uint32_t next_pc;
1832                         if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
1833                         {
1834                                 uint32_t current_opcode;
1835                                 target_read_u32(target, current_pc, &current_opcode);
1836                                 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
1837                                 return retval;
1838                         }
1839
1840                         LOG_DEBUG("enable single-step");
1841                         arm7_9->enable_single_step(target, next_pc);
1842
1843                         target->debug_reason = DBG_REASON_SINGLESTEP;
1844
1845                         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1846                         {
1847                                 return retval;
1848                         }
1849
1850                         if (armv4_5->core_state == ARM_STATE_ARM)
1851                                 arm7_9->branch_resume(target);
1852                         else if (armv4_5->core_state == ARM_STATE_THUMB)
1853                         {
1854                                 arm7_9->branch_resume_thumb(target);
1855                         }
1856                         else
1857                         {
1858                                 LOG_ERROR("unhandled core state");
1859                                 return ERROR_FAIL;
1860                         }
1861
1862                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1863                         embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1864                         err = arm7_9_execute_sys_speed(target);
1865
1866                         LOG_DEBUG("disable single-step");
1867                         arm7_9->disable_single_step(target);
1868
1869                         if (err != ERROR_OK)
1870                         {
1871                                 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1872                                 {
1873                                         return retval;
1874                                 }
1875                                 target->state = TARGET_UNKNOWN;
1876                                 return err;
1877                         }
1878
1879                         arm7_9_debug_entry(target);
1880                         LOG_DEBUG("new PC after step: 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1881
1882                         LOG_DEBUG("set breakpoint at 0x%8.8" PRIx32 "", breakpoint->address);
1883                         if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1884                         {
1885                                 return retval;
1886                         }
1887                 }
1888         }
1889
1890         /* enable any pending breakpoints and watchpoints */
1891         arm7_9_enable_breakpoints(target);
1892         arm7_9_enable_watchpoints(target);
1893
1894         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1895         {
1896                 return retval;
1897         }
1898
1899         if (armv4_5->core_state == ARM_STATE_ARM)
1900         {
1901                 arm7_9->branch_resume(target);
1902         }
1903         else if (armv4_5->core_state == ARM_STATE_THUMB)
1904         {
1905                 arm7_9->branch_resume_thumb(target);
1906         }
1907         else
1908         {
1909                 LOG_ERROR("unhandled core state");
1910                 return ERROR_FAIL;
1911         }
1912
1913         /* deassert DBGACK and INTDIS */
1914         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1915         /* INTDIS only when we really resume, not during debug execution */
1916         if (!debug_execution)
1917                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 0);
1918         embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1919
1920         if ((retval = arm7_9_restart_core(target)) != ERROR_OK)
1921         {
1922                 return retval;
1923         }
1924
1925         target->debug_reason = DBG_REASON_NOTHALTED;
1926
1927         if (!debug_execution)
1928         {
1929                 /* registers are now invalid */
1930                 register_cache_invalidate(armv4_5->core_cache);
1931                 target->state = TARGET_RUNNING;
1932                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
1933                 {
1934                         return retval;
1935                 }
1936         }
1937         else
1938         {
1939                 target->state = TARGET_DEBUG_RUNNING;
1940                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED)) != ERROR_OK)
1941                 {
1942                         return retval;
1943                 }
1944         }
1945
1946         LOG_DEBUG("target resumed");
1947
1948         return ERROR_OK;
1949 }
1950
1951 void arm7_9_enable_eice_step(struct target *target, uint32_t next_pc)
1952 {
1953         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1954         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1955         uint32_t current_pc;
1956         current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
1957
1958         if (next_pc != current_pc)
1959         {
1960                 /* setup an inverse breakpoint on the current PC
1961                 * - comparator 1 matches the current address
1962                 * - rangeout from comparator 1 is connected to comparator 0 rangein
1963                 * - comparator 0 matches any address, as long as rangein is low */
1964                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1965                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1966                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1967                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~(EICE_W_CTRL_RANGE | EICE_W_CTRL_nOPC) & 0xff);
1968                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], current_pc);
1969                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1970                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1971                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
1972                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1973         }
1974         else
1975         {
1976                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1977                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1978                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
1979                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff);
1980                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], next_pc);
1981                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1982                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1983                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1984                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1985         }
1986 }
1987
1988 void arm7_9_disable_eice_step(struct target *target)
1989 {
1990         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1991
1992         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1993         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1994         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1995         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1996         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE]);
1997         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK]);
1998         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK]);
1999         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK]);
2000         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE]);
2001 }
2002
2003 int arm7_9_step(struct target *target, int current, uint32_t address, int handle_breakpoints)
2004 {
2005         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2006         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2007         struct breakpoint *breakpoint = NULL;
2008         int err, retval;
2009
2010         if (target->state != TARGET_HALTED)
2011         {
2012                 LOG_WARNING("target not halted");
2013                 return ERROR_TARGET_NOT_HALTED;
2014         }
2015
2016         /* current = 1: continue on current pc, otherwise continue at <address> */
2017         if (!current)
2018                 buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
2019
2020         uint32_t current_pc;
2021         current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
2022
2023         /* the front-end may request us not to handle breakpoints */
2024         if (handle_breakpoints)
2025                 if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
2026                         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
2027                         {
2028                                 return retval;
2029                         }
2030
2031         target->debug_reason = DBG_REASON_SINGLESTEP;
2032
2033         /* calculate PC of next instruction */
2034         uint32_t next_pc;
2035         if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
2036         {
2037                 uint32_t current_opcode;
2038                 target_read_u32(target, current_pc, &current_opcode);
2039                 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
2040                 return retval;
2041         }
2042
2043         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
2044         {
2045                 return retval;
2046         }
2047
2048         arm7_9->enable_single_step(target, next_pc);
2049
2050         if (armv4_5->core_state == ARM_STATE_ARM)
2051         {
2052                 arm7_9->branch_resume(target);
2053         }
2054         else if (armv4_5->core_state == ARM_STATE_THUMB)
2055         {
2056                 arm7_9->branch_resume_thumb(target);
2057         }
2058         else
2059         {
2060                 LOG_ERROR("unhandled core state");
2061                 return ERROR_FAIL;
2062         }
2063
2064         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
2065         {
2066                 return retval;
2067         }
2068
2069         err = arm7_9_execute_sys_speed(target);
2070         arm7_9->disable_single_step(target);
2071
2072         /* registers are now invalid */
2073         register_cache_invalidate(armv4_5->core_cache);
2074
2075         if (err != ERROR_OK)
2076         {
2077                 target->state = TARGET_UNKNOWN;
2078         } else {
2079                 arm7_9_debug_entry(target);
2080                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
2081                 {
2082                         return retval;
2083                 }
2084                 LOG_DEBUG("target stepped");
2085         }
2086
2087         if (breakpoint)
2088                 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
2089                 {
2090                         return retval;
2091                 }
2092
2093         return err;
2094 }
2095
2096 static int arm7_9_read_core_reg(struct target *target, struct reg *r,
2097                 int num, enum arm_mode mode)
2098 {
2099         uint32_t* reg_p[16];
2100         uint32_t value;
2101         int retval;
2102         struct arm_reg *areg = r->arch_info;
2103         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2104         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2105
2106         if (!is_arm_mode(armv4_5->core_mode))
2107                 return ERROR_FAIL;
2108         if ((num < 0) || (num > 16))
2109                 return ERROR_INVALID_ARGUMENTS;
2110
2111         if ((mode != ARM_MODE_ANY)
2112                         && (mode != armv4_5->core_mode)
2113                         && (areg->mode != ARM_MODE_ANY))
2114         {
2115                 uint32_t tmp_cpsr;
2116
2117                 /* change processor mode (mask T bit) */
2118                 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
2119                 tmp_cpsr |= mode;
2120                 tmp_cpsr &= ~0x20;
2121                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2122         }
2123
2124         if ((num >= 0) && (num <= 15))
2125         {
2126                 /* read a normal core register */
2127                 reg_p[num] = &value;
2128
2129                 arm7_9->read_core_regs(target, 1 << num, reg_p);
2130         }
2131         else
2132         {
2133                 /* read a program status register
2134                  * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
2135                  */
2136                 arm7_9->read_xpsr(target, &value, areg->mode != ARM_MODE_ANY);
2137         }
2138
2139         if ((retval = jtag_execute_queue()) != ERROR_OK)
2140         {
2141                 return retval;
2142         }
2143
2144         r->valid = 1;
2145         r->dirty = 0;
2146         buf_set_u32(r->value, 0, 32, value);
2147
2148         if ((mode != ARM_MODE_ANY)
2149                         && (mode != armv4_5->core_mode)
2150                         && (areg->mode != ARM_MODE_ANY))        {
2151                 /* restore processor mode (mask T bit) */
2152                 arm7_9->write_xpsr_im8(target,
2153                                 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2154                                         & ~0x20, 0, 0);
2155         }
2156
2157         return ERROR_OK;
2158 }
2159
2160 static int arm7_9_write_core_reg(struct target *target, struct reg *r,
2161                 int num, enum arm_mode mode, uint32_t value)
2162 {
2163         uint32_t reg[16];
2164         struct arm_reg *areg = r->arch_info;
2165         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2166         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2167
2168         if (!is_arm_mode(armv4_5->core_mode))
2169                 return ERROR_FAIL;
2170         if ((num < 0) || (num > 16))
2171                 return ERROR_INVALID_ARGUMENTS;
2172
2173         if ((mode != ARM_MODE_ANY)
2174                         && (mode != armv4_5->core_mode)
2175                         && (areg->mode != ARM_MODE_ANY))        {
2176                 uint32_t tmp_cpsr;
2177
2178                 /* change processor mode (mask T bit) */
2179                 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
2180                 tmp_cpsr |= mode;
2181                 tmp_cpsr &= ~0x20;
2182                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2183         }
2184
2185         if ((num >= 0) && (num <= 15))
2186         {
2187                 /* write a normal core register */
2188                 reg[num] = value;
2189
2190                 arm7_9->write_core_regs(target, 1 << num, reg);
2191         }
2192         else
2193         {
2194                 /* write a program status register
2195                 * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
2196                 */
2197                 int spsr = (areg->mode != ARM_MODE_ANY);
2198
2199                 /* if we're writing the CPSR, mask the T bit */
2200                 if (!spsr)
2201                         value &= ~0x20;
2202
2203                 arm7_9->write_xpsr(target, value, spsr);
2204         }
2205
2206         r->valid = 1;
2207         r->dirty = 0;
2208
2209         if ((mode != ARM_MODE_ANY)
2210                         && (mode != armv4_5->core_mode)
2211                         && (areg->mode != ARM_MODE_ANY))        {
2212                 /* restore processor mode (mask T bit) */
2213                 arm7_9->write_xpsr_im8(target,
2214                                 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2215                                         & ~0x20, 0, 0);
2216         }
2217
2218         return jtag_execute_queue();
2219 }
2220
2221 int arm7_9_read_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2222 {
2223         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2224         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2225         uint32_t reg[16];
2226         uint32_t num_accesses = 0;
2227         int thisrun_accesses;
2228         int i;
2229         uint32_t cpsr;
2230         int retval;
2231         int last_reg = 0;
2232
2233         LOG_DEBUG("address: 0x%8.8" PRIx32 ", size: 0x%8.8" PRIx32 ", count: 0x%8.8" PRIx32 "", address, size, count);
2234
2235         if (target->state != TARGET_HALTED)
2236         {
2237                 LOG_WARNING("target not halted");
2238                 return ERROR_TARGET_NOT_HALTED;
2239         }
2240
2241         /* sanitize arguments */
2242         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2243                 return ERROR_INVALID_ARGUMENTS;
2244
2245         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2246                 return ERROR_TARGET_UNALIGNED_ACCESS;
2247
2248         /* load the base register with the address of the first word */
2249         reg[0] = address;
2250         arm7_9->write_core_regs(target, 0x1, reg);
2251
2252         int j = 0;
2253
2254         switch (size)
2255         {
2256                 case 4:
2257                         while (num_accesses < count)
2258                         {
2259                                 uint32_t reg_list;
2260                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2261                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2262
2263                                 if (last_reg <= thisrun_accesses)
2264                                         last_reg = thisrun_accesses;
2265
2266                                 arm7_9->load_word_regs(target, reg_list);
2267
2268                                 /* fast memory reads are only safe when the target is running
2269                                  * from a sufficiently high clock (32 kHz is usually too slow)
2270                                  */
2271                                 if (arm7_9->fast_memory_access)
2272                                         retval = arm7_9_execute_fast_sys_speed(target);
2273                                 else
2274                                         retval = arm7_9_execute_sys_speed(target);
2275                                 if (retval != ERROR_OK)
2276                                         return retval;
2277
2278                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 4);
2279
2280                                 /* advance buffer, count number of accesses */
2281                                 buffer += thisrun_accesses * 4;
2282                                 num_accesses += thisrun_accesses;
2283
2284                                 if ((j++%1024) == 0)
2285                                 {
2286                                         keep_alive();
2287                                 }
2288                         }
2289                         break;
2290                 case 2:
2291                         while (num_accesses < count)
2292                         {
2293                                 uint32_t reg_list;
2294                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2295                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2296
2297                                 for (i = 1; i <= thisrun_accesses; i++)
2298                                 {
2299                                         if (i > last_reg)
2300                                                 last_reg = i;
2301                                         arm7_9->load_hword_reg(target, i);
2302                                         /* fast memory reads are only safe when the target is running
2303                                          * from a sufficiently high clock (32 kHz is usually too slow)
2304                                          */
2305                                         if (arm7_9->fast_memory_access)
2306                                                 retval = arm7_9_execute_fast_sys_speed(target);
2307                                         else
2308                                                 retval = arm7_9_execute_sys_speed(target);
2309                                         if (retval != ERROR_OK)
2310                                         {
2311                                                 return retval;
2312                                         }
2313
2314                                 }
2315
2316                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 2);
2317
2318                                 /* advance buffer, count number of accesses */
2319                                 buffer += thisrun_accesses * 2;
2320                                 num_accesses += thisrun_accesses;
2321
2322                                 if ((j++%1024) == 0)
2323                                 {
2324                                         keep_alive();
2325                                 }
2326                         }
2327                         break;
2328                 case 1:
2329                         while (num_accesses < count)
2330                         {
2331                                 uint32_t reg_list;
2332                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2333                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2334
2335                                 for (i = 1; i <= thisrun_accesses; i++)
2336                                 {
2337                                         if (i > last_reg)
2338                                                 last_reg = i;
2339                                         arm7_9->load_byte_reg(target, i);
2340                                         /* fast memory reads are only safe when the target is running
2341                                          * from a sufficiently high clock (32 kHz is usually too slow)
2342                                          */
2343                                         if (arm7_9->fast_memory_access)
2344                                                 retval = arm7_9_execute_fast_sys_speed(target);
2345                                         else
2346                                                 retval = arm7_9_execute_sys_speed(target);
2347                                         if (retval != ERROR_OK)
2348                                         {
2349                                                 return retval;
2350                                         }
2351                                 }
2352
2353                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 1);
2354
2355                                 /* advance buffer, count number of accesses */
2356                                 buffer += thisrun_accesses * 1;
2357                                 num_accesses += thisrun_accesses;
2358
2359                                 if ((j++%1024) == 0)
2360                                 {
2361                                         keep_alive();
2362                                 }
2363                         }
2364                         break;
2365                 default:
2366                         LOG_ERROR("BUG: we shouldn't get here");
2367                         exit(-1);
2368                         break;
2369         }
2370
2371         if (!is_arm_mode(armv4_5->core_mode))
2372                 return ERROR_FAIL;
2373
2374         for (i = 0; i <= last_reg; i++) {
2375                 struct reg *r = arm_reg_current(armv4_5, i);
2376
2377                 r->dirty = r->valid;
2378         }
2379
2380         arm7_9->read_xpsr(target, &cpsr, 0);
2381         if ((retval = jtag_execute_queue()) != ERROR_OK)
2382         {
2383                 LOG_ERROR("JTAG error while reading cpsr");
2384                 return ERROR_TARGET_DATA_ABORT;
2385         }
2386
2387         if (((cpsr & 0x1f) == ARM_MODE_ABT) && (armv4_5->core_mode != ARM_MODE_ABT))
2388         {
2389                 LOG_WARNING("memory read caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2390
2391                 arm7_9->write_xpsr_im8(target,
2392                                 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2393                                         & ~0x20, 0, 0);
2394
2395                 return ERROR_TARGET_DATA_ABORT;
2396         }
2397
2398         return ERROR_OK;
2399 }
2400
2401 int arm7_9_write_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2402 {
2403         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2404         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2405         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
2406
2407         uint32_t reg[16];
2408         uint32_t num_accesses = 0;
2409         int thisrun_accesses;
2410         int i;
2411         uint32_t cpsr;
2412         int retval;
2413         int last_reg = 0;
2414
2415 #ifdef _DEBUG_ARM7_9_
2416         LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address, size, count);
2417 #endif
2418
2419         if (target->state != TARGET_HALTED)
2420         {
2421                 LOG_WARNING("target not halted");
2422                 return ERROR_TARGET_NOT_HALTED;
2423         }
2424
2425         /* sanitize arguments */
2426         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2427                 return ERROR_INVALID_ARGUMENTS;
2428
2429         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2430                 return ERROR_TARGET_UNALIGNED_ACCESS;
2431
2432         /* load the base register with the address of the first word */
2433         reg[0] = address;
2434         arm7_9->write_core_regs(target, 0x1, reg);
2435
2436         /* Clear DBGACK, to make sure memory fetches work as expected */
2437         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
2438         embeddedice_store_reg(dbg_ctrl);
2439
2440         switch (size)
2441         {
2442                 case 4:
2443                         while (num_accesses < count)
2444                         {
2445                                 uint32_t reg_list;
2446                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2447                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2448
2449                                 for (i = 1; i <= thisrun_accesses; i++)
2450                                 {
2451                                         if (i > last_reg)
2452                                                 last_reg = i;
2453                                         reg[i] = target_buffer_get_u32(target, buffer);
2454                                         buffer += 4;
2455                                 }
2456
2457                                 arm7_9->write_core_regs(target, reg_list, reg);
2458
2459                                 arm7_9->store_word_regs(target, reg_list);
2460
2461                                 /* fast memory writes are only safe when the target is running
2462                                  * from a sufficiently high clock (32 kHz is usually too slow)
2463                                  */
2464                                 if (arm7_9->fast_memory_access)
2465                                         retval = arm7_9_execute_fast_sys_speed(target);
2466                                 else
2467                                         retval = arm7_9_execute_sys_speed(target);
2468                                 if (retval != ERROR_OK)
2469                                 {
2470                                         return retval;
2471                                 }
2472
2473                                 num_accesses += thisrun_accesses;
2474                         }
2475                         break;
2476                 case 2:
2477                         while (num_accesses < count)
2478                         {
2479                                 uint32_t reg_list;
2480                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2481                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2482
2483                                 for (i = 1; i <= thisrun_accesses; i++)
2484                                 {
2485                                         if (i > last_reg)
2486                                                 last_reg = i;
2487                                         reg[i] = target_buffer_get_u16(target, buffer) & 0xffff;
2488                                         buffer += 2;
2489                                 }
2490
2491                                 arm7_9->write_core_regs(target, reg_list, reg);
2492
2493                                 for (i = 1; i <= thisrun_accesses; i++)
2494                                 {
2495                                         arm7_9->store_hword_reg(target, i);
2496
2497                                         /* fast memory writes are only safe when the target is running
2498                                          * from a sufficiently high clock (32 kHz is usually too slow)
2499                                          */
2500                                         if (arm7_9->fast_memory_access)
2501                                                 retval = arm7_9_execute_fast_sys_speed(target);
2502                                         else
2503                                                 retval = arm7_9_execute_sys_speed(target);
2504                                         if (retval != ERROR_OK)
2505                                         {
2506                                                 return retval;
2507                                         }
2508                                 }
2509
2510                                 num_accesses += thisrun_accesses;
2511                         }
2512                         break;
2513                 case 1:
2514                         while (num_accesses < count)
2515                         {
2516                                 uint32_t reg_list;
2517                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2518                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2519
2520                                 for (i = 1; i <= thisrun_accesses; i++)
2521                                 {
2522                                         if (i > last_reg)
2523                                                 last_reg = i;
2524                                         reg[i] = *buffer++ & 0xff;
2525                                 }
2526
2527                                 arm7_9->write_core_regs(target, reg_list, reg);
2528
2529                                 for (i = 1; i <= thisrun_accesses; i++)
2530                                 {
2531                                         arm7_9->store_byte_reg(target, i);
2532                                         /* fast memory writes are only safe when the target is running
2533                                          * from a sufficiently high clock (32 kHz is usually too slow)
2534                                          */
2535                                         if (arm7_9->fast_memory_access)
2536                                                 retval = arm7_9_execute_fast_sys_speed(target);
2537                                         else
2538                                                 retval = arm7_9_execute_sys_speed(target);
2539                                         if (retval != ERROR_OK)
2540                                         {
2541                                                 return retval;
2542                                         }
2543
2544                                 }
2545
2546                                 num_accesses += thisrun_accesses;
2547                         }
2548                         break;
2549                 default:
2550                         LOG_ERROR("BUG: we shouldn't get here");
2551                         exit(-1);
2552                         break;
2553         }
2554
2555         /* Re-Set DBGACK */
2556         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
2557         embeddedice_store_reg(dbg_ctrl);
2558
2559         if (!is_arm_mode(armv4_5->core_mode))
2560                 return ERROR_FAIL;
2561
2562         for (i = 0; i <= last_reg; i++) {
2563                 struct reg *r = arm_reg_current(armv4_5, i);
2564
2565                 r->dirty = r->valid;
2566         }
2567
2568         arm7_9->read_xpsr(target, &cpsr, 0);
2569         if ((retval = jtag_execute_queue()) != ERROR_OK)
2570         {
2571                 LOG_ERROR("JTAG error while reading cpsr");
2572                 return ERROR_TARGET_DATA_ABORT;
2573         }
2574
2575         if (((cpsr & 0x1f) == ARM_MODE_ABT) && (armv4_5->core_mode != ARM_MODE_ABT))
2576         {
2577                 LOG_WARNING("memory write caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2578
2579                 arm7_9->write_xpsr_im8(target,
2580                                 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2581                                         & ~0x20, 0, 0);
2582
2583                 return ERROR_TARGET_DATA_ABORT;
2584         }
2585
2586         return ERROR_OK;
2587 }
2588
2589 static int dcc_count;
2590 static uint8_t *dcc_buffer;
2591
2592 static int arm7_9_dcc_completion(struct target *target, uint32_t exit_point, int timeout_ms, void *arch_info)
2593 {
2594         int retval = ERROR_OK;
2595         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2596
2597         if ((retval = target_wait_state(target, TARGET_DEBUG_RUNNING, 500)) != ERROR_OK)
2598                 return retval;
2599
2600         int little = target->endianness == TARGET_LITTLE_ENDIAN;
2601         int count = dcc_count;
2602         uint8_t *buffer = dcc_buffer;
2603         if (count > 2)
2604         {
2605                 /* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
2606                  * core function repeated. */
2607                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2608                 buffer += 4;
2609
2610                 struct embeddedice_reg *ice_reg = arm7_9->eice_cache->reg_list[EICE_COMMS_DATA].arch_info;
2611                 uint8_t reg_addr = ice_reg->addr & 0x1f;
2612                 struct jtag_tap *tap;
2613                 tap = ice_reg->jtag_info->tap;
2614
2615                 embeddedice_write_dcc(tap, reg_addr, buffer, little, count-2);
2616                 buffer += (count-2)*4;
2617
2618                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2619         } else
2620         {
2621                 int i;
2622                 for (i = 0; i < count; i++)
2623                 {
2624                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2625                         buffer += 4;
2626                 }
2627         }
2628
2629         if ((retval = target_halt(target))!= ERROR_OK)
2630         {
2631                 return retval;
2632         }
2633         return target_wait_state(target, TARGET_HALTED, 500);
2634 }
2635
2636 static const uint32_t dcc_code[] =
2637 {
2638         /* r0 == input, points to memory buffer
2639          * r1 == scratch
2640          */
2641
2642         /* spin until DCC control (c0) reports data arrived */
2643         0xee101e10,     /* w: mrc p14, #0, r1, c0, c0 */
2644         0xe3110001,     /*    tst r1, #1              */
2645         0x0afffffc,     /*    bne w                   */
2646
2647         /* read word from DCC (c1), write to memory */
2648         0xee111e10,     /*    mrc p14, #0, r1, c1, c0 */
2649         0xe4801004,     /*    str r1, [r0], #4        */
2650
2651         /* repeat */
2652         0xeafffff9      /*    b   w                   */
2653 };
2654
2655 extern int armv4_5_run_algorithm_inner(struct target *target,
2656         int num_mem_params, struct mem_param *mem_params,
2657         int num_reg_params, struct reg_param *reg_params,
2658         uint32_t entry_point, uint32_t exit_point,
2659         int timeout_ms, void *arch_info,
2660         int (*run_it)(struct target *target, uint32_t exit_point,
2661                         int timeout_ms, void *arch_info));
2662
2663 int arm7_9_bulk_write_memory(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
2664 {
2665         int retval;
2666         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2667         int i;
2668
2669         if (!arm7_9->dcc_downloads)
2670                 return target_write_memory(target, address, 4, count, buffer);
2671
2672         /* regrab previously allocated working_area, or allocate a new one */
2673         if (!arm7_9->dcc_working_area)
2674         {
2675                 uint8_t dcc_code_buf[6 * 4];
2676
2677                 /* make sure we have a working area */
2678                 if (target_alloc_working_area(target, 24, &arm7_9->dcc_working_area) != ERROR_OK)
2679                 {
2680                         LOG_INFO("no working area available, falling back to memory writes");
2681                         return target_write_memory(target, address, 4, count, buffer);
2682                 }
2683
2684                 /* copy target instructions to target endianness */
2685                 for (i = 0; i < 6; i++)
2686                 {
2687                         target_buffer_set_u32(target, dcc_code_buf + i*4, dcc_code[i]);
2688                 }
2689
2690                 /* write DCC code to working area */
2691                 if ((retval = target_write_memory(target, arm7_9->dcc_working_area->address, 4, 6, dcc_code_buf)) != ERROR_OK)
2692                 {
2693                         return retval;
2694                 }
2695         }
2696
2697         struct arm_algorithm armv4_5_info;
2698         struct reg_param reg_params[1];
2699
2700         armv4_5_info.common_magic = ARM_COMMON_MAGIC;
2701         armv4_5_info.core_mode = ARM_MODE_SVC;
2702         armv4_5_info.core_state = ARM_STATE_ARM;
2703
2704         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
2705
2706         buf_set_u32(reg_params[0].value, 0, 32, address);
2707
2708         dcc_count = count;
2709         dcc_buffer = buffer;
2710         retval = armv4_5_run_algorithm_inner(target, 0, NULL, 1, reg_params,
2711                         arm7_9->dcc_working_area->address,
2712                                 arm7_9->dcc_working_area->address + 6*4,
2713                         20*1000, &armv4_5_info, arm7_9_dcc_completion);
2714
2715         if (retval == ERROR_OK)
2716         {
2717                 uint32_t endaddress = buf_get_u32(reg_params[0].value, 0, 32);
2718                 if (endaddress != (address + count*4))
2719                 {
2720                         LOG_ERROR("DCC write failed, expected end address 0x%08" PRIx32 " got 0x%0" PRIx32 "", (address + count*4), endaddress);
2721                         retval = ERROR_FAIL;
2722                 }
2723         }
2724
2725         destroy_reg_param(&reg_params[0]);
2726
2727         return retval;
2728 }
2729
2730 /**
2731  * Perform per-target setup that requires JTAG access.
2732  */
2733 int arm7_9_examine(struct target *target)
2734 {
2735         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2736         int retval;
2737
2738         if (!target_was_examined(target)) {
2739                 struct reg_cache *t, **cache_p;
2740
2741                 t = embeddedice_build_reg_cache(target, arm7_9);
2742                 if (t == NULL)
2743                         return ERROR_FAIL;
2744
2745                 cache_p = register_get_last_cache_p(&target->reg_cache);
2746                 (*cache_p) = t;
2747                 arm7_9->eice_cache = (*cache_p);
2748
2749                 if (arm7_9->armv4_5_common.etm)
2750                         (*cache_p)->next = etm_build_reg_cache(target,
2751                                         &arm7_9->jtag_info,
2752                                         arm7_9->armv4_5_common.etm);
2753
2754                 target_set_examined(target);
2755         }
2756
2757         retval = embeddedice_setup(target);
2758         if (retval == ERROR_OK)
2759                 retval = arm7_9_setup(target);
2760         if (retval == ERROR_OK && arm7_9->armv4_5_common.etm)
2761                 retval = etm_setup(target);
2762         return retval;
2763 }
2764
2765 COMMAND_HANDLER(handle_arm7_9_dbgrq_command)
2766 {
2767         struct target *target = get_current_target(CMD_CTX);
2768         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2769
2770         if (!is_arm7_9(arm7_9))
2771         {
2772                 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2773                 return ERROR_TARGET_INVALID;
2774         }
2775
2776         if (CMD_ARGC > 0)
2777                 COMMAND_PARSE_ENABLE(CMD_ARGV[0],arm7_9->use_dbgrq);
2778
2779         command_print(CMD_CTX, "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s", (arm7_9->use_dbgrq) ? "enabled" : "disabled");
2780
2781         return ERROR_OK;
2782 }
2783
2784 COMMAND_HANDLER(handle_arm7_9_fast_memory_access_command)
2785 {
2786         struct target *target = get_current_target(CMD_CTX);
2787         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2788
2789         if (!is_arm7_9(arm7_9))
2790         {
2791                 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2792                 return ERROR_TARGET_INVALID;
2793         }
2794
2795         if (CMD_ARGC > 0)
2796                 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->fast_memory_access);
2797
2798         command_print(CMD_CTX, "fast memory access is %s", (arm7_9->fast_memory_access) ? "enabled" : "disabled");
2799
2800         return ERROR_OK;
2801 }
2802
2803 COMMAND_HANDLER(handle_arm7_9_dcc_downloads_command)
2804 {
2805         struct target *target = get_current_target(CMD_CTX);
2806         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2807
2808         if (!is_arm7_9(arm7_9))
2809         {
2810                 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2811                 return ERROR_TARGET_INVALID;
2812         }
2813
2814         if (CMD_ARGC > 0)
2815                 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->dcc_downloads);
2816
2817         command_print(CMD_CTX, "dcc downloads are %s", (arm7_9->dcc_downloads) ? "enabled" : "disabled");
2818
2819         return ERROR_OK;
2820 }
2821
2822 COMMAND_HANDLER(handle_arm7_9_semihosting_command)
2823 {
2824         struct target *target = get_current_target(CMD_CTX);
2825         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2826
2827         if (!is_arm7_9(arm7_9))
2828         {
2829                 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2830                 return ERROR_TARGET_INVALID;
2831         }
2832
2833         if (CMD_ARGC > 0)
2834         {
2835                 int semihosting;
2836
2837                 COMMAND_PARSE_ENABLE(CMD_ARGV[0], semihosting);
2838
2839                 if (arm7_9->has_vector_catch) {
2840                         struct reg *vector_catch = &arm7_9->eice_cache
2841                                         ->reg_list[EICE_VEC_CATCH];
2842
2843                         if (!vector_catch->valid)
2844                                 embeddedice_read_reg(vector_catch);
2845                         buf_set_u32(vector_catch->value, 2, 1, semihosting);
2846                         embeddedice_store_reg(vector_catch);
2847                 } else {
2848                         /* TODO: allow optional high vectors and/or BKPT_HARD */
2849                         if (semihosting)
2850                                 breakpoint_add(target, 8, 4, BKPT_SOFT);
2851                         else
2852                                 breakpoint_remove(target, 8); 
2853                 }
2854
2855                 /* FIXME never let that "catch" be dropped! */
2856                 arm7_9->armv4_5_common.is_semihosting = semihosting;
2857
2858         }
2859
2860         command_print(CMD_CTX, "semihosting is %s",
2861                         arm7_9->armv4_5_common.is_semihosting
2862                         ? "enabled" : "disabled");
2863
2864         return ERROR_OK;
2865 }
2866
2867 int arm7_9_init_arch_info(struct target *target, struct arm7_9_common *arm7_9)
2868 {
2869         int retval = ERROR_OK;
2870         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2871
2872         arm7_9->common_magic = ARM7_9_COMMON_MAGIC;
2873
2874         if ((retval = arm_jtag_setup_connection(&arm7_9->jtag_info)) != ERROR_OK)
2875                 return retval;
2876
2877         /* caller must have allocated via calloc(), so everything's zeroed */
2878
2879         arm7_9->wp_available_max = 2;
2880
2881         arm7_9->fast_memory_access = false;
2882         arm7_9->dcc_downloads = false;
2883
2884         armv4_5->arch_info = arm7_9;
2885         armv4_5->read_core_reg = arm7_9_read_core_reg;
2886         armv4_5->write_core_reg = arm7_9_write_core_reg;
2887         armv4_5->full_context = arm7_9_full_context;
2888
2889         retval = arm_init_arch_info(target, armv4_5);
2890         if (retval != ERROR_OK)
2891                 return retval;
2892
2893         return target_register_timer_callback(arm7_9_handle_target_request,
2894                         1, 1, target);
2895 }
2896
2897 static const struct command_registration arm7_9_any_command_handlers[] = {
2898         {
2899                 "dbgrq",
2900                 .handler = &handle_arm7_9_dbgrq_command,
2901                 .mode = COMMAND_ANY,
2902                 .usage = "<enable|disable>",
2903                 .help = "use EmbeddedICE dbgrq instead of breakpoint "
2904                         "for target halt requests",
2905         },
2906         {
2907                 "fast_memory_access",
2908                 .handler = &handle_arm7_9_fast_memory_access_command,
2909                 .mode = COMMAND_ANY,
2910                 .usage = "<enable|disable>",
2911                 .help = "use fast memory accesses instead of slower "
2912                         "but potentially safer accesses",
2913         },
2914         {
2915                 "dcc_downloads",
2916                 .handler = &handle_arm7_9_dcc_downloads_command,
2917                 .mode = COMMAND_ANY,
2918                 .usage = "<enable | disable>",
2919                 .help = "use DCC downloads for larger memory writes",
2920         },
2921         {
2922                 "semihosting",
2923                 .handler = &handle_arm7_9_semihosting_command,
2924                 .mode = COMMAND_EXEC,
2925                 .usage = "<enable | disable>",
2926                 .help = "activate support for semihosting operations",
2927         },
2928         COMMAND_REGISTRATION_DONE
2929 };
2930 const struct command_registration arm7_9_command_handlers[] = {
2931         {
2932                 .chain = arm_command_handlers,
2933         },
2934         {
2935                 .chain = etm_command_handlers,
2936         },
2937         {
2938                 .name = "arm7_9",
2939                 .mode = COMMAND_ANY,
2940                 .help = "arm7/9 specific commands",
2941                 .chain = arm7_9_any_command_handlers,
2942         },
2943         COMMAND_REGISTRATION_DONE
2944 };